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ABSTRACT

Circum-Galactic Medium surrounding galaxies has been punctually
detected, but its morphology remains largely unknown. The Multi-
Unit Spectroscopic Explorer (MUSE) spectro-imager provides for
the first time both spectral and spatial resolution to spatially map
such features. The problem lies in the statistical detection of faint
spatially-extended sources in massive hyperspectral images such as
provided by MUSE, and has not been previously handled. This paper
presents a statistical detection method based on hypothesis testing
tackling this problem. The proposed strategy is step-by-step validated
over alternative ways with simulations. Then, results on MUSE
observations are presented.

Index Terms— Statistical Detection, Hyperspectral Data, As-
tronomy, Likelihood Ratio Test.

1. INTRODUCTION

Very little information is known about the Circum-Galactic Medium
(CGM), which is supposed to trace a galaxy interaction with its envi-
ronment. Punctual detection of extra-galactic material were made [1],
but there is still no prior on its morphology. One of the brightest
expected radiation occurs in the spectrally located Lyman-alpha line,
which may be emitted by a Lyman-Alpha Emitter (LAE), re-emitted
or emitted directly by the CGM itself [2]. Furthermore, the CGM
may be spatially wide with respect to the galaxy size.

One of the few instruments able to detect these features is the
Multi-Unit Spectroscopic Explorer (MUSE) instrument [3], which
saw its first light at the ESO/VLT facility in the beginning of 2014.
This spectro-imager provides Hyper-Spectral Images (HSI) with a
spatial size of 300 × 300 px and (0.2 arcsec)2 resolution, with
3640 spectral bands at each pixels and 1.25 Å individual bandwidth.
The total bandwidth covers 4750 − 9300 Å and therefore allows
to see very distant, faint and small objects. MUSE is thus able to
spatially map a faint spectral feature such as the Lyman-Alpha line
(re-)emitted by the CGM of young galaxies.

Statistical detections method for HSI have been extensively stud-
ied [4]. A first point of interest for CGM detection is the sparsity-
oriented tests, as only a few spectrally-grouped coefficients are far
from zero. Works on this topic include sparsity-favouring [5] and
sparsity-constrained [6] detection tests. Another topic is the inte-
gration of field spread function (FSF), most often with sparsity con-
straints [7, 8].

J.-B. Courbot acknowledges support from the ERC advanced grant
339659-MUSICOS. This work was funded in part by the DSIM project under
grant ANR-14-CE27-0005.

Table 1. Detection tests summary. “3”,“7”, “–” label wheter the
corresponding models are used, not used or not applicable.
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To our knowledge, the problem of detecting a faint extended
source in multispectral or hyperspectral images has not been previ-
ously handled: a very common aspect of source detection in HSI is
the search for punctual or quasi-punctual objects [4, 5, 8, 9]. This is
mainly because most extended sources are not faint in remote sensing
and are addressed in a classification context, while instruments in
other domains do not provide sufficient spatial or spectral resolutions.

The detection problem we consider here is the following: given
an HSI arranged to form a “data-cube”, knowing it contains a bright
spatially- and spectrally-located source, we aim at detecting sim-
ilar faint emission lines covering a potentially wide region in the
HSI. With an observation such as the Hubble Deep Field South
(HDF-S) [3], the source location (s, λ) can be obtained from pub-
lic catalog [10]. Therefore one can focus on an extracted sub-cube
Y = (ys)s∈S , S being the sub-cube spectra set, around the known
object position of size e.g. 50× 50 pixels and 50 spectral bands. The
sub-cube remains an HSI as it is spectrally well resolved.

The proposed method consists in two main steps: the first one
aims at detecting the brightest part of the object, and the second one
performs a detection by similarity in the remaining HSI. Through this
paper, we will deal with various tests, including or not spatial features,
similarity constraint and compound testing. Table 1 summarizes the
test variations, names and corresponding paper section. This paper
is organized as follows: in Sections 2 and 3 the initial and extended
source detection tests are described, Section 4 reports the step-by-step
evaluation and following choices for the detection strategy. Results
on simulated and real MUSE data are finally presented in Section 5.



2. BRIGHT SOURCE DETECTION

This step aims at detecting the bright source. The additive noise ε
on the spectral axis is a realization of a random variable following a
multivariate zero-mean normal distribution of covariance matrix Σ,
notedN (0,Σ). We assume that the spectral content x of the bright
source can be described through a 1-sparse vector α and a dictionary
D containing J columns dj with x = αD. Assuming the Point
Spread Function (PSF) is separable in a spatial FSF and a spectral
Gaussian Line Spread Function (LSF), the model integrates implicitly
the LSF inD, resulting in Gaussian columns. The hypothesis to test
are the following ∀s ∈ S:{

H0 : ys = εs εs ∼ N (0,Σ)

H1 : ys = xs + εs xs =Dαs and ‖αs‖0 = 1.
(1)

The Generalized Likelihood Ratio (GLR) test with one-sparsity
constraint (GLR-s) corresponding to model (1) yields ∀s ∈ S [8]:

TGLR-s(ys) :

max
j,αj

p(ys|dj , αj)

p(ys|0)
H1

≷
H0

ξGLR-s; (2)

where ξGLR-s is a test threshold allowing to express a theoretical
probability of false alarm (PFA).

The FSF can also be used, allowing to integrate the spatial con-
sistency of the object of interest, by jointly testing a local spatial
neighborhood of the spectra. The MUSE FSF can be described by
a 2D Moffat function [11] with two wavelength-dependent parame-
ters, a and b, considered as constant in the sub-cube: a = 2.0 and
b = 2.6 [3]. The data can thus be transformed so that each site s ∈ S
contains jointly the original spectra and its neighbor spectra, in a
limited local neighborhood Vs, yielding:

yN,s = (yv)v∈s∪Vs . (3)

The resulting test, which is a GLR test with 1-sparsity constraint
using local neighborhood (GLR-sn), stands for the GLR-s (Eq. (2))
with transformed data and dictionary (Eq. (3)):

TGLR-sn(ys) :

max
j,αj

p(yN,s|dN,j , αj)

p(yN,s|0)
H1

≷
H0

ξGLR-sn; (4)

where dN,j = Fdj , F is the Toeplitz matrix representing the FSF,
and ξGLR-sn is the test decision threshold. Note that this formulation
is a particular case of the GLR

(3D)
1s from [8].

Then, we obtain then a spectra set B, corresponding to the object
brightest spectra. The noiseless component xs can be estimated using
D and an estimation of αs with, ∀s ∈ B:

js = arg max
j
〈dj ,ys〉;

α̂s,js = 〈djs ,ys〉 and α̂s,j = 0 ∀j 6= js;

x̂s =Dα̂s.

(5)

This step leads to an initial detection map and the corresponding set
of noiseless salient spectra. This set will be used for the extended
emission detection in the following section.

3. FAINT EXTENDED SOURCE DETECTION

Given the initial detection map, spatially extended emission lines
are searched for in the remaining data on a similarity principle. The
spectra observation model and estimations are reported in Section 3.1
and the composite test statistic is presented in Section 3.2.

3.1. Observation Model and Estimations

Here and in the following, we use whitened spectra, to ensure a
spectral decorrelation. Whitened spectra will be denoted by a “ ′ ”
superscript, and we will also have b ∈ B and f ∈ S \ B. Let us
consider y′b and y′f two spectra, respectively bright and faint. The
observation model is the following:

y′f = x′f + ε
′
f = Σ̂−1/2xf + ε

′
f ;

xf = βf,bxb;

xb =Dαb and xf =Dαf ;

(6)

where x′f is the noiseless faint whitened spectrum, xb and xf are the
bright and faint noiseless spectra, αb and αf are 1-sparse vectors,
βf,b ∈ R+, ε′ is the whitened noise and Σ̂ is the faint spectra covari-
ance matrix estimated on S \ B through the Maximum Likelihood
Estimator (MLE).

The faint spectrum is tested with respect to a spectrum obtained
from the bright source detection step (Section 2). According to the
Neyman-Pearson lemma [12], the most powerful test is the LR test,
relying on the knowledge of the noiseless spectrum x′f . Thus, it has
to be estimated from the available spectra. From Eq. (6) it is given by
x′f = βf,bΣ̂

−1/2xb.
To estimate x′f , estimations of βf,b and xb are needed. The latter

is estimated usingD andαb with Eq. (5). βf,b is estimated through a
least-square estimation minimizing ‖y′f − βf,bΣ̂−1/2x̂b‖22 for βf,b,
yielding:

β̂f,b =
y′>f Σ̂−1/2x̂b

‖Σ̂−1/2x̂b‖22
. (7)

Equations (5), (6) and (7) lead to the following estimate of x′f based
on a bright observed spectra y′b:

x̂′f,b = β̂f,bΣ̂
−1/2x̂′b. (8)

Note that the resulting estimate depends on both observations y′b and
y′f . The new composite test statistic using estimations from Eq. (8)
is presented in the next section.

3.2. Extended Source Detection Test

The estimation Eq. (8) leads to a LR statistic to test a faint spectrum
yf given the prior knowledge of a bright counterpart yb and the
noiseless estimation x̂′f,b:

TLR-s(yf , x̂
′
f,b) :

p(y′f |x̂′f,b)
p(y′f |0)

H1

≷
H0

ξLR−s; (9)

where ξLR−s is the test threshold. This test is similar to the LRMPβ
from [5].

So far, this test addresses spectra pair: the reference observa-
tion may be the mean spectra of the initial detection region B from
Section 2. However, using the sample mean underuse the available in-
formation and may lower its statistical variety. We propose therefore
to use this test on each available spectra pair, yielding a compound
(“c”) test of the following form:

TBLR-sc(yf ) =
∏
b∈B

TLR-s(y
′
f , x̂

′
f,b). (10)

We make the assumption that the reduced centered individual com-
ponents logarithms ln(TLR-s) follow, underH0, aN (0, 1) distribu-
tion [5]. We assume then that it is also the case for the reduced
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Fig. 1. Simulation example with SNR(xhalo) = 0 dB. The back-
ground image is the datacube averaged over the wawelength. Dashed
ellipse (resp. circle) represents the bright (resp. faint extended)
elements, corresponding spectra are represented in the right panel
(dotted: noiseless, plain: observed).

centered compound ln(TLR-sc). This allows to express the target PFA

of TLR-sc as a function of the threshold ξLR−sc.
Furthermore, local neighborhood can also be integrated in a

similar fashion than in Eq. (4). Using the dictionary FD yields:

TBLR-scn(ys) = TBLR-sc(yN,s). (11)

Note that the whitening producing y′N,s is only spectral and therefore
does not erase spatial correlation. The next section explains and vali-
dates the strategy combining the bright source detection (Section 2)
and the extended source detection test (Eq. (11)).

4. DETECTION STRATEGY: STEPWISE VALIDATION

In this section, we aim at building a robust detection strategy based
on the bright and faint detection tests from Sections 2 and 3. Method
relevance is qualified using a classical Receiver Operator Characteris-
tic (ROC) curve analysis. We use simulated data (illustrated in Fig. 1),
spatially compound of a bright elliptical and a faint circular emission,
with Gaussian intensities vanishing from the center of the object,
set to zero outside of the objects. The two elements have a similar
spectral emission, the circular emission being fainter. Multivariate
normal white noise is added, weighted to obtain the SNR of interest,
defined as:

SNR(xhalo) = 10log10
(
‖xhalo‖22/Tr(Σ)

)
;

where xhalo is the brightest halo spectra: this definition is simi-
lar to a peak-SNR. The ROC curves from Fig. 2 are plotted for
SNR(xhalo) = 0 dB. Note however that the following conclusions
are identical for all SNR of Fig. 2(f).

First, several initial detection methods are compared: the uncon-
strained GLR (sensitive to energy) and GLR with local neighborhood
integration (GLR-n, expected to be spatially more consistent), the
GLR-s (Eq. (2)), sensitive to spectrally-located energy) and the GLR-
sn (Eq. (4)), combining both approaches). The corresponding ROC
curves are shown in Fig. 2(a), and show that the GLR-sn (Eq. (4)) is
the most adapted to our problematic. Therefore it is retained as the
initial detection step.

Similarly, the ROC analysis can be informative about the contribu-
tion of the single/composite test, with or without neighbor integration.
Fig. 2(b) reports the ROC analysis of LR-s without (Eq. (9)) and with
local neighborhood integration (LR-sn), and their compound coun-
terparts LR-sc (Eq. (10)) and LR-snc (Eq. (11)). The non-compound
test references is the mean spectra over the initially detected re-
gion, which is replaced by the known ground-truth (blue ellipse in

Algorithm 1 Extended Hyperspectral Source Detection.
Input: Source cube Y , target PFA, dictionaryD, FSF matrix F .
Output: Detection map C2.

1. Bright detection: TGLR-sn with Y (Eq. (4)), producing B.
2. Estimate Σ̂0 with (ys)s∈S\B through MLE.
3. Data whitening: Y ′1 = (Σ̂

−1/2
0 ys)s∈S

4. 1st extended detection: TBLR-scn with Y ′1 (Eq. (11)), producing
C1.
5. Estimate Σ̂1 with (ys)s∈S\C1 through MLE.
6. Data whitening: Y ′2 = (Σ̂

−1/2
1 ys)s∈S

7. Final extended detection: TBLR-scn with Y ′2 (Eq. (11)), producing
the final map C2.

Fig. 1). Adaptive Cosine Estimator (ACE) and its squared version
(SACE) [13] alternatives to LR (Fig. 2(c)) are also tested, with the
estimate (Eq. (8)), using local neighborhood and composite testing (in
a similar fashion than in Eq. (11)). Given the two latter comparisons,
we retain the LR-snc test (Eq. (11)) for extended detection.

Furthermore, the object of interest cannot be considered as rare
in the HSI, as they may occupy a significant spatial fraction of the
data. Covariance contamination may therefore occur and must be
avoided. Hence, we propose a covariance re-estimation step after a
first extended detection; to provide a more accurate measure. This re-
estimation is then used to perform a second extended detection. The
estimated covariance may also be constrained to be block-diagonal,
as the data is spectrally whitened. Both alternatives are examined in
Fig. 2(d), which conclusively shows the benefits of each approach and
of their combination. The complete detection strategy is presented in
Alg. 1.

The method relies on local FSF-weighted windowed neighbor-
hood. The window size has to be large enough to preserve most of the
FSF, while it is of small interest to consider low contribution weights
inducing higher computation time. This windowing dependence is
investigated in Fig. 2(e). As using a width of 9 pixel yields only slight
improvement on a smaller 7-pixels width while doubling computa-
tion time, we retained the latter (meaning that about 85% of the FSF
energy is preserved).

5. RESULTS

Let us recall that so far, only punctual object detection were made in
MUSE data. These detections were made by experts, and of course
there is no ground truth available for validation. Expert confirmation
is even more complicated with targets such as the CGM with unknown
morphology. This is why simulations are also mandatory for method
evaluations.

Therefore, the proposed method (Algorithm 1) is first evaluated
with simulations at various SNR ranging from −30 to 5 dB. The
corresponding ROC analysis is presented in Fig. 2(e) and shows that
the method performs well up to −10 dB, for which half of the object
spatial extent can be recovered with a measured PFA smaller than
0.025. Note that this SNR corresponds to a power ratio of 0.1 between
the noise and the brightest extended emission spectra.

The detection strategy is also applied to Lyman-alpha emitters
(LAE) sub-cubes from the HDF-S MUSE observation [3]. The data
is highly noisy and extended sources are visible only when merging
narrow-band information [14]. To avoid contamination from neighbor
object continuum component, a spectrum-wise median subtraction
has been performed. Fig. 2(g) presents results on six objects with the
target PFA level curve ranging from 10−1 to 10−4 (resp. outer and



0.00 0.05 0.10 0.15 0.20
PFA

0.0

0.2

0.4

0.6

0.8

1.0

P
D
E
T

GLR
GLR-n
GLR-s
GLR-sn

(a)

0.00 0.05 0.10 0.15 0.20
PFA

0.0

0.2

0.4

0.6

0.8

1.0

P
D
E
T

LR-s
LR-sc
LR-sn
LR-snc

(b)

0.00 0.05 0.10 0.15 0.20
PFA

0.0

0.2

0.4

0.6

0.8

1.0

P
D
E
T

LR-snc
ACE-snc
SACE-snc

(c)

0.00 0.05 0.10 0.15 0.20
PFA

0.0

0.2

0.4

0.6

0.8

1.0

P
D
E
T

1 step
1 step, constrained Σ

2 step, constrained Σ

(d)

0.00 0.05 0.10 0.15 0.20
PFA

0.0

0.2

0.4

0.6

0.8

1.0

P
D
E
T

|F | = 9

|F | = 25

|F | = 49

|F | = 81

(e)

0.00 0.05 0.10 0.15 0.20
PFA

0.0

0.2

0.4

0.6

0.8

1.0

P
D
E
T

5 dB

−30 dB
−25 dB

−20 dB

−15 dB

−10 dB

−5 dB
0 dB

(f)

0 10 20 30 40
s1

0

10

20

30

40

s 2

ID 43

0 10 20 30 40
s1

0

10

20

30

40

s 2

ID 92

0 10 20 30 40
s1

0

10

20

30

40

s 2

ID 95

0 10 20 30 40 50 60
s1

0

10

20

30

40

50

60

s 2

ID 139

0 10 20 30 40
s1

0

10

20

30

40

s 2

ID 144

0 10 20 30 40
s1

0

10

20

30

40

s 2

ID 308

(g)

Fig. 2. (a)-(d) Stepwise ROC curve analysis (see text), with |F | = 49 and SNR = 0 dB. (e)-(f) Resp. F windowing and SNR influence on
the overall strategy (Algorithm 1). (g) Results on 6 real MUSE observations and target PFA map, with dotted initial detection contour.

inner continuous curves). The images show very consistent detection
level, with marginal spatial extensions even at high PFA. Objects
92, 95, 139, 308 show strong asymmetries. Besides, the three latter
present strong detections in non-connected regions, which may clue
for clumpiness of circum-galactic components.

6. CONCLUSION

To our knowledge there is no existing statistical detection method
relevant to the problem of CGM detection in MUSE data. In this
paper, we presented a novel dedicated detection method; each step
was compared to alternatives on simulations. Results on real data
proved to be conclusive, and will be carefully analyzed by experts.
Future works include extensions to multiple objects processing as
well as multiple-observation use. The latter requires an analysis of
the individual observation noise statistics and behavior (possibly non-
Gaussian and correlated), which will then be injected into the models.
In addition, extensions towards Inter-Galactic Medium detection in
MUSE data will also be studied.
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