S Amat 
  
K Dadourian 
email: dadouria@cmi.univ-mrs.fr
  
J Liandrat 
email: jliandrat@ec-marseille.fr
  
On a nonlinear subdivision scheme avoiding Gibbs oscillations and converging towards C s functions with s > 1

Keywords: Nonlinear subdivision scheme, limit function, regularity, stability, Gibbs phenomenon AMS(MOS) subject classifications. 41A05, 41A10, 65D05, 65D17

This paper presents a new nonlinear dyadic subdivision scheme eliminating the Gibbs oscillations close to discontinuities. Its convergence, stability and order of approximation are analyzed. It is proved that this scheme converges towards limit functions Hölder continuous with exponent larger than 1.299. Numerical estimates provide a Hölder exponent of 2.438. This subdivision scheme is the first one that simultaneously achieves the control of the Gibbs phenomenon and has limit functions with Hölder exponent larger than 1.

Introduction

Subdivision schemes are useful tools for generating smooth curves and surfaces. For convergent schemes, starting from discrete sets of control points and using basic rules of low complexity, curves or surfaces can be obtained as limits (called limit functions) of sequences of points generated by recursive application of the subdivision scheme.

A simple example of a subdivision scheme is the family of interpolatory subdivision schemes, based on local Lagrange's interpolation that has been derived and analyzed in [START_REF] Deslauriers | Symmetric iterative interpolation processes[END_REF]. Another example is the family of spline subdivision schemes related to spline spaces [START_REF] Clark | Recursively generated B-spline surfaces on topological meshes[END_REF].

The four-point interpolatory scheme [START_REF] Dubuc | Interpolation through an iterative scheme[END_REF], [START_REF] Dyn | A four-point interpolatory subdivision scheme for curve design[END_REF], is a convergent linear scheme of the first family, involving four-point stencils at each subdivision, for which the limit functions are at least in the space C 2-(see definitions 1 and 2 in Section 3). The Chaikin algorithm [START_REF] Chaikin | An algorithm for high speed curve generation[END_REF] is an example of a spline subdivision scheme, with lower complexity than the previous example and converging towards C 2-functions.

For applications, for instance to computer-aided geometric design or image processing, complexity and convergence/regularity are not the only quality criteria. On the one hand, the order of approximation, which characterizes the precision of the scheme, is crucial. On the other hand, oscillations that could occur in the limit functions in the vicinity of strongly varying data (coming from the sampling of discontinuous functions), called Gibbs oscillations, are undesirable.

In the last decade, various attempts to improve the properties of linear subdivision schemes have lead to nonlinear subdivision schemes. For such schemes, the subdivision rules become data dependant; in addition to the previously defined criteria, a stability property should be added to ensure that the nonlinear scheme is linearly affected by perturbations of the data (for linear schemes, the stability is a direct consequence of the convergence).

For nonlinear subdivision schemes, few general results of convergence or stability are available; see for instance [START_REF] Amat | On the stability of the PPH nonlinear multiresolution[END_REF], [START_REF] Cohen | Quasilinear subdivision schemes with applications to ENO interpolation[END_REF], [START_REF] Donoho | Nonlinear pyramid transforms based on median interpolation[END_REF], [START_REF] Oswald | Smoothness of Nonlinear Median-Interpolation Subdivision[END_REF], [START_REF] Daubechies | Normal multiresolution approximation of curves[END_REF], [START_REF] Harizanov | Stability of nonlinear subdivision and multiscale transforms[END_REF] and [START_REF] Floater | Nonlinear stationary subdivision, Approximation theory: in memory of A.K. Varna[END_REF].

A large family of nonlinear subdivision schemes comprising e.g. ENO, WENO or PPH schemes [START_REF] Cohen | Quasilinear subdivision schemes with applications to ENO interpolation[END_REF], [START_REF] Amat | Analysis of a fully nonlinear multiresolution scheme for image processing[END_REF], is built from schemes constructed as a perturbation of the four-point linear interpolatory C 2-Lagrange scheme based on centered degree 3 polynomial interpolation. These schemes are interpolatory subdivision schemes and are constructed to avoid the Gibbs oscillations occurring classically for linear interpolatory schemes (see Figure 1 in Section 6). The schemes of this family are unfortunately characterized by a low regularity of the limit functions, typically C 1-. Moreover, the ENO scheme is unstable.

In [START_REF] Dyn | A C 2 four-point subdivision scheme with fourth order accuracy and its extensions[END_REF], a new linear and non-interpolatory four-point subdivision scheme has been presented. Its refinement rule is based on local cubic interpolation followed by a shift of 1/4 or, in other words, an evaluation at positions 1/4 and 3/4 rather than the standard evaluation at 1/2 that leads to the interpolatory scheme. This new scheme has been shown to be convergent towards a C 2 curve.

The aim of this paper is to analyze a new scheme formulated using the same trick (shift of 1/4) for the PPH-type schemes [START_REF] Amat | Analysis of a fully nonlinear multiresolution scheme for image processing[END_REF] which are derived by modifying the classical four-point interpolatory subdivision scheme substituting the arithmetic mean with the harmonic mean (see formula 2 in Section 2). After the definition of the scheme in Section 2 we successively analyze its convergence (Section 3), its stability (Section 4) and its order of approximation (in Section 5). Its behavior in presence of strongly varying data (Gibbs oscillations) is analyzed in Section 6. The last section is devoted to concluding remarks.

A new nonlinear subdivision scheme

As mentioned above, the starting point of our work is the construction of N. Dyn, M.S. Floater and K. Hormann in [START_REF] Dyn | A C 2 four-point subdivision scheme with fourth order accuracy and its extensions[END_REF]. There, a new linear and noninterpolatory four-point dyadic subdivision scheme that generates C 2 curves is presented. Its refinement rule is based on the local cubic Lagrange interpolation based on the values {f n-1 , f n , f n+1 , f n+2 } at the positions {-1, 0, 1, 2} followed by an evaluation at positions 1/4 and 3/4. For all f ∈ l ∞ (Z), the scheme is then given by 

Following [START_REF] Amat | Analysis of a fully nonlinear multiresolution scheme for image processing[END_REF] where a nonlinear scheme is derived by modifying the classical four-point interpolatory subdivision scheme substituting the harmonic mean for the arithmetic mean, we first obtain two new formulations of the scheme [START_REF] Amat | Tensor product multiresolution analysis with error control for compact image representation[END_REF].

(Sf ) 2n+1 = 1 64 f n-1 + 14 64 f n + 49 64 f n+1 - 7 64 (d 2 f n + d 2 f n+1 ) 2 .
where (d 2 f ), the second order difference, is defined by

d 2 f n = f n+1 -2f n + f n-1 .
The two formulations differ essentially in the points f k , n -1 ≤ k ≤ n + 2 contributing to the first three components of the right-hand side of 1 and 2.

Using the same strategy as in [START_REF] Amat | Analysis of a fully nonlinear multiresolution scheme for image processing[END_REF], we define the new nonlinear subdivision scheme S ppha associated to (1) by

If |d 2 f n | ≥ |d 2 f n+1 |, (S ppha f ) 2n = 49 64 f n + 14 64 f n+1 + 1 64 f n+2 - 7 64 pph(d 2 f n , d 2 f n+1 ), (S ppha f ) 2n+1 = 15 64 f n + 50 64 f n+1 - 1 64 f n+2 - 5 64 pph(d 2 f n , d 2 f n+1 ),
and if |d 2 f n | < |d 2 f n+1 |, (S ppha f ) 2n = - 1 64 f n-1 + 50 64 f n + 15 64 f n+1 - 5 64 pph(d 2 f n , d 2 f n+1 ), (S ppha f ) 2n+1 = 1 64 f n-1 + 14 64 f n + 49 64 f n+1 - 7 64 pph(d 2 f n , d 2 f n+1 ),
where pph stands for the harmonic mean defined by

(x, y) ∈ IR 2 → pph(x, y) := xy x + y (sgn(xy) + 1), (2) 
with sgn(x) = 1 if x ≥ 0 and sgn(x) = -1 if x < 0. The motivation for the substitution of the arithmetic mean by the harmonic mean is the elimination of oscillations near strongly varying data thanks to the fact that

|pph(x, y)| ≤ 2 min(|x|, |y|), (3) 
replaces x + y 2 ≤ max(|x|, |y|).
Before making a detailed analysis of the properties of the new scheme S ppha we summarize the most important properties of the harmonic mean in the following proposition (properties 1 to 9 are proved in [START_REF] Amat | On the stability of the PPH nonlinear multiresolution[END_REF] and property 10 is straightforward).

Proposition 1 Properties of the harmonic mean:

For all (x, y) ∈ R 2 , the harmonic mean pph(x, y) satisfies 1. pph(x, y) = pph(y, x).

2. pph(x, y) = 0 if xy ≤ 0.

3. pph(-x, -y) = -pph(x, y). 

| x + y 2 -pph(x, y)| = O(h 2 ). 9. |pph(x 1 , y 1 ) -pph(x 2 , y 2 )| ≤ 2 max(|x 1 -x 2 |, |y 1 -y 2 |). 10. For all (c 1 , c 2 ) ∈ R 2 , |c 1 x -c 2 pph(x, y)| ≤ max (|c 1 |, |c 2 |) max (|x|, |y|) if c 1 c 2 ≥ 0, |c 1 x -c 2 pph(x, y)| ≤ (|c 1 | + |c 2 |) max (|x|, |y|) if c 1 c 2 < 0.

Convergence and Regularity

We recall the following definitions.

Definition 1 Convergence of a subdivision scheme: A dyadic subdivision scheme S is said to be uniformly convergent if

∀f ∈ l ∞ (Z), ∃S ∞ f ∈ C 0 (R)s.t. lim j→+∞ sup n∈Z |(S j f ) n -S ∞ f (n2 -j )| = 0. Definition 2 C α-convergence of a subdivision scheme: A convergent subdivision scheme S is said to be C α-convergent if for all f ∈ l ∞ (Z), S ∞ f ∈ C α-where for 0 < α ≤ 1, C α-= {f continuous, bounded and verifying ∀α 1 < α, ∃C > 0, s. t. ∀x, y ∈ R, |f (x) -f (y)| ≤ C|x -y| α 1 },
and for α > 1, writing α = p + r > 0 with p ∈ N and 0 ≤ r < 1,

C α-= {f with f (p) ∈ C r-}.
Definition 3 L ∞ stability of the limit function:

Let S be a linear uniformly convergent subdivision scheme and let φ be its limit function defined by φ = S ∞ δ with δ n = 0 ∀n ∈ N\ {0} and δ 0 = 1. The limit function φ is said to be L ∞ stable if:

∃A, B > 0 s.t. ∀f ∈ l ∞ (Z), A||f || ∞ ≤ || n∈Z f n φ(. -n)|| L ∞ ≤ B||f || ∞ , where ||f || ∞ = sup n∈Z {|f n |}.
In order to derive the convergence, we rewrite the nonlinear subdivision scheme S ppha as a perturbation of a classical two-point linear subdivision scheme, S c , introduced by G. Chaikin in [START_REF] Chaikin | An algorithm for high speed curve generation[END_REF] and defined by

(S c f ) 2n = 3 4 f n + 1 4 f n+1 , (4) 
(S c f ) 2n+1 = 1 4 f n + 3 4 f n+1 .
The scheme S c is known to be convergent with a regularity C 2-(i.e. for any f ∈ l ∞ (Z), S ∞ c f ∈ C 2-). Moreover, its limit function is L ∞ stable. Writing

If |d 2 f n | ≥ |d 2 f n+1 |, (S ppha f ) 2n = 3 4 f n + 1 4 f n+1 + 1 64 d 2 f n+1 - 7 64 pph(d 2 f n , d 2 f n+1 ), (S ppha f ) 2n+1 = 1 4 f n + 3 4 f n+1 - 1 64 d 2 f n+1 - 5 64 pph(d 2 f n , d 2 f n+1 ),
and if |d 2 f n | < |d 2 f n+1 |, (S ppha f ) 2n = 3 4 f n + 1 4 f n+1 - 1 64 d 2 f n - 5 64 pph(d 2 f n , d 2 f n+1 ), (S ppha f ) 2n+1 = 1 4 f n + 3 4 f n+1 + 1 64 d 2 f n - 7 64 pph(d 2 f n , d 2 f n+1 ),
we get that S ppha can be expressed as

S ppha f = S c f + F (d 2 f ). ( 5 
)
Introducing the function

R(x, y) = y -pph(x, y) if |x| ≥ |y|, -x + pph(x, y) if |x| < |y|, (6) 
the expression of F reads

F (d 2 f ) 2n = 1 64 R(d 2 f n , d 2 f n+1 ) - 6 64 pph(d 2 f n , d 2 f n+1 ), (7) 
F (d 2 f ) 2n+1 = - 1 64 R(d 2 f n , d 2 f n+1 ) - 6 64 pph(d 2 f n , d 2 f n+1 ). ( 8 
)
Before analyzing the convergence and the stability of S ppha , we establish the following useful properties of the function R: Proposition 2 Properties of the function R:

1. For all (x, y) ∈ R 2 , |R(x, y)| ≤ max(|x|, |y|).

For all

(x 1 , y 1 ), (x 2 , y 2 ) ∈ R 2 , |R(x 1 , y 1 ) -R(x 2 , y 2 )| ≤ max(|x 1 -x 2 |, |y 1 -y 2 |).
Proof Property 1 is a direct consequence of Proposition 1-10. To get Property 2 we note that the function R is continuous and we prove that its first-order partial derivatives R x and R y exist and satisfy

||R x || + ||R y || ≤ 1 almost everywhere. Indeed, if x • y > 0 R x (x, y) = -2y 2 (x+y) 2 if |x| > |y|, -x 2 +2xy-y 2 (x+y) 2 if |x| < |y|, (9) 
R y (x, y) = -y 2 +2xy-x 2 (x+y) 2 if |x| > |y|, 2x 2 (x+y) 2 if |x| < |y|, (10) 
and if x • y ≤ 0

R x (x, y) = 0 if |x| > |y|, -1 if |x| < |y|, (11) 
R y (x, y) = 1 if |x| > |y|, 0 if |x| < |y|. (12) 
Therefore, by direct calculation, ||R x || + ||R y || is bounded almost everywhere by one that concludes the proof.

To analyze the convergence of S ppha , we use the following result proved in [START_REF] Amat | On the convergence of various subdivision schemes using a perturbation theorem[END_REF], [START_REF] Amat | Nonlinear Subdivision Schemes and Associated Multiresolution Transforms[END_REF]:

Let S N L be a subdivision scheme defined by

∀f ∈ l ∞ (Z), ∀n ∈ Z (S N L f ) n =(Sf ) n + F (δf ) n , ( 13 
)
where F is a nonlinear operator defined on l ∞ (Z), δ is a linear and continuous operator on l ∞ (Z) and S is a linear and convergent subdivision scheme with an L ∞ stable limit function. Then, Theorem 1 If F, S and δ given in (13) verify:

∃M > 0 s.t. ∀f ∈ l ∞ (Z) ||F (f )|| ∞ ≤ M ||f || ∞ , (14) 
∃c < 1 s.t. ∀f ∈ l ∞ (Z) ||δS(f ) + δF (δf )|| ∞ ≤ c||δf || ∞ , (15) 
then the subdivision scheme

S N L is uniformly convergent. Moreover, if S is C α-convergent then, S N L is C β-convergent with β = min (α, -log 2 (c)).
Using Theorem 1, we will prove the following result:

Theorem 2 The nonlinear subdivision scheme S ppha is C β-convergent with β ≥ -log 2 ( 13 32 ) > 1.

Proof

For the perturbation F defined by ( 7) and ( 8), it is easy to see using Proposition 1-5 and Proposition 2-1 that for all f ∈ l ∞ (Z),

||F (f )|| ∞ ≤ 7 64 ||f || ∞ , (16) 
i.e. hypothesis [START_REF] Dyn | A C 2 four-point subdivision scheme with fourth order accuracy and its extensions[END_REF]. We now consider hypothesis (15) related, in this case, to the contraction of the second-order differences (d 2 f ). To simplify the notations, we call

f 1 = S ppha (f ), thus (d 2 f 1 ) 2n = 1 64 (16(d 2 f ) n -6pph(d 2 f n-1 , d 2 f n ) + 6pph(d 2 f n , d 2 f n+1 ) -R(d 2 f n-1 , d 2 f n ) -3R(d 2 f n , d 2 f n+1 )) (d 2 f 1 ) 2n+1 = 1 64 (16(d 2 f ) n+1 + 6pph(d 2 f n , d 2 f n+1 ) -6pph(d 2 f n+1 , d 2 f n+2 ) +3R(d 2 f n , d 2 f n+1 ) + R(d 2 f n+1 , d 2 f n+2 ))
Using properties 5 and 10 of Proposition 1 as well as property 1 of Proposition 2 we deduce that for all f ∈ l ∞ (Z)

||d 2 f 1 || ∞ ≤ 13 32 ||d 2 f || ∞ . ( 17 
)
Therefore, hypothesis (15) of Theorem 1 is satisfied and consequently, the convergence of S ppha is achieved.

For the regularity, we again use Theorem 1. According to the values α = 2 and c = 13 32 we get the regularity constant β = min (2, -log 2 13 32 ) ≈ 1.299.

Numerical Regularity

Following [START_REF] Kuijt | Convexity Preserving Interpolation: Nonlinear Subdivision and Splines[END_REF], the regularity of a limit function can be evaluated numerically. Using S 1 and S 2 the subdivision schemes for the differences of order 1 and 2 associated to S ppha (which can be derived due to the specific definition of S ppha ), the following quantities are estimated for k = 1, 2 and different values of j:

-log 2 2 k ||(S j+1 k f ) n+1 -(S j+1 k f ) n || ∞ ||(S j k f ) n+1 -(S j k f ) n || ∞ .
They provide an estimate for β 1 and β 2 such that the limit functions belong to C 1+β 1 -and C 2+β 2 -. From Table 1, the numerical estimate of the regularity is C 2.438-. Recalling that the corresponding numerical estimate for the linear scheme [START_REF] Dyn | A C 2 four-point subdivision scheme with fourth order accuracy and its extensions[END_REF] is C 2.67-, we observe that the nonlinear perturbation has a very weak influence on the regularity.

Stability

We first recall the following definition. Table 1: Numerical estimates of the limit functions regularity C 1+β 1 -and C 2+β 2 -for S ppha .

Definition 4 Stability of a convergent scheme:

A convergent subdivision scheme is stable if

∃C < +∞s.t.∀f 0 , g 0 ∈ L ∞ (Z) ||S ∞ f -S ∞ g|| L ∞ ≤ C||f 0 -g 0 || ∞ . (18) 
As for the convergence, to derive the stability of S ppha we use the following Theorem of [START_REF] Amat | Nonlinear Subdivision Schemes and Associated Multiresolution Transforms[END_REF].

Theorem 3 If F, S and δ given in [START_REF] Dyn | Subdivision schemes in computer aided geometric design, Advances in Numerical Analysis II[END_REF] 

verify: ∃M > 0, c < 1 such that ∀f, g ∈ l ∞ (Z), ||F (f ) -F (g)|| ∞ ≤ M ||f -g|| ∞ , (19) δ 
(S N L f -S N L g) ∞ ≤ c δ(f -g) ∞ , (20) 
then the nonlinear subdivision scheme S N L is stable.

Using Theorem 3, we will prove the following result:

Theorem 4 The scheme S ppha is stable.

Proof

We check the hypotheses of Theorem 3. First, we start with hypothesis [START_REF] Harizanov | Stability of nonlinear subdivision and multiscale transforms[END_REF] for F . Using the expressions of F , ( 7) and ( 8), Proposition 1-9 and Proposition 2-2, we get for all f, g ∈ l ∞ (Z)

||F (f ) -F (g)|| ∞ ≤ 1 + 7 • 2 64 ||f -g|| ∞ .
Second, we have to verify the contraction hypothesis [START_REF] Harten | Multiresolution representation of data II[END_REF].

For any couple (f, g) ∈ (l ∞ (Z)) 2 , we study (d 2 f 1 -d 2 g 1 ) k for k = 2n + 1 (Case 1) or k = 2n (Case 2). Only Case 1 is considered since the bound expressions are similar in both cases. Using Proposition 1-9 as well as Proposition 2-2 we get

64|(d 2 f 1 ) 2n+1 -(d 2 g 1 ) 2n+1 | ≤ 16|(d 2 f ) n+1 -(d 2 g) n+1 | +6|pph(d 2 f n , d 2 f n+1 ) -pph(d 2 g n , d 2 g n+1 )| +6|pph(d 2 f n+1 , d 2 f n+2 ) -pph(d 2 g n+1 , d 2 g n+2 )| +3|R(d 2 f n , d 2 f n+1 ) -R(d 2 g n , d 2 g n+1 )| +|R(d 2 f n+1 , d 2 f n+2 -R(d 2 g n+1 , d 2 g n+2 )| ≤ (16 + 12 + 12 + 3 + 1)||(d 2 f ) -(d 2 g)|| ∞ = 44||(d 2 f ) -(d 2 g)|| ∞ .
Thus, the hypotheses of Theorem [START_REF] Harten | Multiresolution representation of data II[END_REF] are verified and the stability of S ppha is established.

Order of approximation

In this section, we consider the reproduction of polynomials and the order of approximation of S ppha .

We recall the following definitions.

Definition 5 Reproduction of polynomials:

A dyadic subdivision scheme S is said to reproduce polynomials of degree k if for all polynomial P of degree k and for all sequence f such that ∀n ∈ Z, f n = P (n) then : ∃ P a polynomial of degree k such that (Sf ) n = P (2 -1 n).

Definition 6 Order of approximation:

A dyadic subdivision scheme S is said to have an order k of approximation if for all function g ∈ C k and all h > 0, f = g(h.) implies that

|Sf -g(2 -1 h.)| ≤ Ch k .
We then have the following result: Proposition 3 Reproduction of polynomials:

S ppha reproduces the polynomials of degree 2 with the translation of 1 4 .

Proof

We remark that for any P , polynomial of degree 2, and p = (P (n)) n∈Z , we have

pph(d 2 p n , d 2 p n+1 ) = d 2 p n + d 2 p n+1 2 .
Therefore, for any initial sequence p = (p n ) n∈Z , S ppha (p) coincides with the application to p of the linear scheme [START_REF] Dyn | A C 2 four-point subdivision scheme with fourth order accuracy and its extensions[END_REF]. In particular, the results of N. Dyn, M.S. Floater and K. Hormann [START_REF] Dyn | A C 2 four-point subdivision scheme with fourth order accuracy and its extensions[END_REF] can be applied and the property of definition 5 is satisfied with P (.) = P (. + 1/4).

Concerning the order of approximation the following result holds.

Proposition 4 Order of approximation: For any function g ∈ C 4 ([0, 1]) and h > 0, if

f = (g((n - 1 2 )h)) n∈Z , then if d 2 f n d 2 f n+1 > 0 for all n ∈ Z, then ||(S ppha f ) n -g(2 -1 hn)|| ∞ = O(h 4 ), otherwise ||(S ppha f ) n -g(2 -1 hn)|| ∞ = O(h 3 ). Proof According to Proposition 1, if for all n ∈ N, d 2 f n d 2 f n+1 > 0 then |pph(d 2 f n , d 2 f n+1 ) - d 2 f n + d 2 f n+1 2 | = O(h 4 ).
Therefore, if S stands for the linear scheme defined in [START_REF] Dyn | A C 2 four-point subdivision scheme with fourth order accuracy and its extensions[END_REF], according to the definition of S ppha ,

||S ppha f -Sf || ∞ = O(h 4 ).
Since (see [START_REF] Dyn | A C 2 four-point subdivision scheme with fourth order accuracy and its extensions[END_REF]) the scheme S is of order of approximation 4 we get the result when d 2 f n d 2 f n+1 > 0. Otherwise, the reproduction of polynomials leads to

||(S ppha f ) n -g(2 -1 h(n))|| ∞ = O(h 3 ).
Remark 1 Following [START_REF] Kuijt | Convexity Preserving Interpolation: Nonlinear Subdivision and Splines[END_REF] one can also establish, using the stability of S ppha that ||S ∞ ppha f -g|| ∞ = O(h 3 ).

Elimination of the Gibbs phenomenon

In this section, we focus on the behavior of the scheme in the presence of strongly varying data. The reference framework deals with the sampling of a step function as shown on Figure 1. As can be seen on the left in Figure 1, high-order linear schemes suffer from an oscillating behavior called Gibbs phenomenon.

According to D. Gottlieb and C.W. Shu [START_REF] Gottlieb | On the Gibbs phenomenon and its resolution[END_REF], given a punctually discontinuous function f and its sampling f h defined by f h n = f (nh), the Gibbs phenomenon deals with the convergence of S ∞ (f h ) towards f when h goes to 0. It can be characterized by two features ( [START_REF] Gottlieb | On the Gibbs phenomenon and its resolution[END_REF]):

1. Away from the discontinuity the convergence is rather slow and for any point x, |f (x) -S ∞ (f h )(x)| = O(h).

2. There is an overshoot, close to the discontinuity, that does not diminish with the reduction of h. Thus, max |f (x) -S ∞ (f h )(x)| does not tend to zero with h. 23)). Left, the linear scheme (1), right, the nonlinear scheme S ppha

We will now prove that the nonlinear scheme S ppha does not suffer from the Gibbs phenomenon oscillations, as can be guessed from Figure 1.

We indeed have the following: at least C 1.299-and numerically estimated at C 2.438-. By construction, it is adapted to the presence of isolated discontinuities, and the Gibbs phenomenon is eliminated. The scheme is also stable, a property that, due to nonlinearity is not a consequence of the convergence. Moreover, its order of convergence is 3. Given that it is constructed from a four-point centered stencil, all these properties make this scheme an excellent candidate for various applications. An example is given in Figure 2 devoted to 2D curve generation. 

4 . 5 .

 45 pph(x, y) = sign(x)+sign(y) 2 min(|x|, |y|) 1 + x-y x+y . |pph(x, y)| ≤ max (|x|, |y|). 6. |pph(x, y)| ≤ 2 min (|x|, |y|).

7 .

 7 For x, y > 0, min(x, y) ≤ pph(x, y) ≤ x+y 2 . 8. If x = O(1), y = O(1), |y -x| = O(h) and xy > 0 then

Figure 1 :

 1 Figure 1: Comparison of limit functions for the same initial sequence (sampling of function (23)). Left, the linear scheme (1), right, the nonlinear scheme S ppha

Figure 2 :

 2 Figure 2: Application to 2D curve generation: Initial points (•); left, linear scheme (1), middle, Chaikin scheme (4), right nonlinear scheme S ppha
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Proposition 5 Elimination of Gibbs oscillations: Given 0 ≤ ξ ≤ h, let f be any function defined by:

If h is sufficiently small to ensure that d 2 f 0 < 0 and d 2 f 1 > 0 we have:

Proof

For any iteration j , there exists p - j , p + j such that, for all n ∈ [2p - j , 2p + j ] the evaluation of S j+1 ppha f ) n is performed starting only from regular data. For j = 0, p - 0 = -1, p + 0 = 2 and by induction, p - j = -2 j+1 -2 j + 2, p + j = 2 j+1 + 2 j -1. Therefore, according to Proposition 4, for x ≥ 3h, |f (x +

). To prove the second part of the proposition, we first consider the initial data and iterate the scheme.

We recall that, by hypothesis, for all i ≥ 0, f -i = f -+O(h) and

Applying the scheme S ppha provides:

One should notice that all this points belong to an interval of the form

Without loss of generality, we focuss on negative indices. A direct evaluation of second order differences gives:

and an other application of the scheme provides: ) (c i < 0). From this stage, we are now able to prove that Gibbs oscillations can not appear.

Since after two iterations the second order differences are bounded by

According to [START_REF] Dubuc | Interpolation through an iterative scheme[END_REF] and due to the stability of S C we get that the total perturbation is bounded for all j ≥ 2 by 

Lower bound: Due to the "corner cutting property" of the scheme S C , for all j ≥ 2, and all n ∈ [2p - j-1 , 0], we get that

Adding the total perturbation ( 21) we obtain finally that for all j and all n ∈ [2p - j-1 , 0], (S j ppha f

Upper bound: Taking into account the regularity of f on ] -∞, ξ[ and the data after two iterations, a direct calculation gives that for n ∈

Here, A j+1 and B j+1 , j ≥ 2 are provided from a convex combination of A j and B j , therefore, according to their values for j = 2, A j , B j ∈ [ 1 16 , 1 4 ] and A j + B j = 1 4 . Rewritting the right hand side term of [START_REF] Oswald | Smoothness of Nonlinear Median-Interpolation Subdivision[END_REF] we get that

Therefore for all n ∈ [p - j-1 , 0], (S j ppha f ) n ≤ f -+ O(h), that concludes the proof.

Before finishing this paper, we return to Figure 1 and to the comparison between the limit functions obtained with Sppha and the limit function obtained with linear subdivision schemes starting from the sampling f h of the discontinuous function:

It appears from Figure 1 that the limit function of the nonlinear scheme S ppha (right) behaves much better close to the discontinuity than do the limit functions associated to the linear scheme of comparable complexity (left). Moreover, from Proposition 4 we know that the limit function of the scheme S ppha is, in regular regions, of higher order than the Chaikin scheme corresponding function.

Conclusions

In this paper, a new nonlinear subdivision scheme has been defined. It has many desirable properties. It is convergent with a regularity proved to be