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 allowing to reduce the dual stochastic backward system to a family of ordinary di¤erential equations. Second, we prove by examples that the notion of approximate controllability is strictly stronger than approximate null-controllability. A su¢ cient criterion for this stronger notion is also provided. The results are illustrated on a model derived from repressed bacterium operon (given in [19] and reduced in [5]).

Introduction

This short paper aims at giving an answer to an approximate (null-)controllability problem left open in [START_REF] Goreac | Algebraic invariance conditions in the study of approximate (null-) controllability of Markov switch processes[END_REF]. We deal with Markovian systems of switch type consisting of a couple mode/ trajectory denoted by ( ; X) : The mode component evolves as a pure jump Markov process and cannot be controlled. It corresponds to spikes inducing regime switching. The second component X obeys a controlled linear stochastic di¤erential equation (SDE) with respect to the compensated random measure associated to . The linear coe¢ cients governing the dynamics depend on the current mode.

The controllability problem deals with criteria allowing one to drive the X T component arbitrarily close to acceptable targets. An extensive literature on controllability is available in di¤erent frameworks: …nite-dimensional deterministic setting (Kalman's condition, Hautus test [START_REF] Hautus | Controllability and observability conditions of linear autonomous systems[END_REF]), in…nite dimensional settings (via invariance criteria in [START_REF] Schmidt | Invariance theory for in…nite dimensional linear control systems[END_REF], [START_REF] Curtain | Invariance concepts in in…nite dimensions[END_REF], [START_REF] Russell | A general necessary condition for exact observability[END_REF], [START_REF] Jacob | Exact observability of diagonal systems with a …nite-dimensional output operator[END_REF], [START_REF] Jacob | On controllability of diagonal systems with one-dimensional input space[END_REF], etc.), Brownian-driven control systems (exact terminal-controllability in [START_REF] Peng | Backward stochastic di¤erential equation and exact controllability of stochastic control systems[END_REF], approximate controllability in [START_REF] Buckdahn | A characterization of approximately controllable linear stochastic di¤erential equations[END_REF], [START_REF] Goreac | A Kalman-type condition for stochastic approximate controllability[END_REF], mean-…eld Brownian-driven systems in [START_REF] Goreac | Controllability properties of linear mean-…eld stochastic systems[END_REF], in…nite-dimensional setting in [START_REF] Fernández-Cara | On the approximate controllability of a stochastic parabolic equation with a multiplicative noise[END_REF], [START_REF] Sirbu | Null controllability of an in…nite dimensional SDE with state-and controldependent noise[END_REF], [START_REF] Barbu | Carleman estimates and controllability of linear stochastic heat equations[END_REF], [START_REF] Goreac | Approximate controllability for linear stochastic di¤erential equations in in…nite dimensions[END_REF], etc.), jump systems ( [START_REF] Goreac | A note on the controllability of jump di¤usions with linear coe¢ cients[END_REF], [START_REF] Goreac | Algebraic invariance conditions in the study of approximate (null-) controllability of Markov switch processes[END_REF], etc.). We refer to [START_REF] Goreac | Algebraic invariance conditions in the study of approximate (null-) controllability of Markov switch processes[END_REF] for more details on the literature as well as applications one can address using switch models.

The paper [START_REF] Goreac | Algebraic invariance conditions in the study of approximate (null-) controllability of Markov switch processes[END_REF] provides some necessary and some su¢ cient conditions under which approximate controllability towards null target can be achieved. In all generality, the conditions are either too strong (su¢ cient) or too weak (only necessary). Equivalence is obtained in [START_REF] Goreac | Algebraic invariance conditions in the study of approximate (null-) controllability of Markov switch processes[END_REF] for particular cases : (i) Poisson-driven systems with mode-independent coe¢ cients and (ii) continuous switching. In the present paper, we extend the work of [START_REF] Goreac | Algebraic invariance conditions in the study of approximate (null-) controllability of Markov switch processes[END_REF] and give explicit equivalence criterion for the general switching case. The approach relies, in a …rst step, as it has already been the case in [13, Theorem 1], on duality techniques (brie ‡y presented in Subsection 2.1). However, the intuition on this new criterion and its proof are extensively based on the recent ideas in [START_REF] Confortola | Backward stochastic di¤erential equations driven by a marked point process: an elementary approach, with an application to optimal control[END_REF]. The dual backward stochastic system associated to controllability is interpreted as a system of (backward) ordinary di¤erential equations in Proposition 12. Reasoning on this new system provides the necessary and su¢ cient criterion for approximate null-controllability for general switching systems with mode-dependent multiplicative noise (Theorem 6 whose proof relies on Propositions 13 and 14). As a by-product, we considerably simplify the proofs of [START_REF] Goreac | Algebraic invariance conditions in the study of approximate (null-) controllability of Markov switch processes[END_REF]Criteria 3 and 4] (in Subsection 2.3). Second, we give some elements on the stronger notion of [START_REF] Goreac | A Kalman-type condition for stochastic approximate controllability[END_REF] showing that this is no longer the case for general switching systems. Furthermore, we show that the condition exhibited in [START_REF] Goreac | Algebraic invariance conditions in the study of approximate (null-) controllability of Markov switch processes[END_REF]Proposition 3] in connection to approximate null-controllability is actually su¢ cient for general approximate controllability (see Condition 10). The proof follows, once again, from the deterministic reduction inspired by [START_REF] Confortola | Backward stochastic di¤erential equations driven by a marked point process: an elementary approach, with an application to optimal control[END_REF]. The theoretical results are illustrated on a model derived from repressed bacterium operon (given in [START_REF] Krishna | Stochastic simulations of the origins and implications of long-tailed distributions in gene expression[END_REF] and reduced in [START_REF] Crudu | Hybrid stochastic simpli…cations for multiscale gene networks[END_REF]). We begin with presenting the problem, the standing assumptions and the main results: the duality abstract characterization in Theorem 2, the explicit criterion in Theorem 6. We give a considerably simpli…ed proof of the results in [START_REF] Goreac | Algebraic invariance conditions in the study of approximate (null-) controllability of Markov switch processes[END_REF] in Subsection 2.3. We discuss the di¤erence between null and full approximate controllability in Subsection 2.4, Example 9 and give a su¢ cient criterion for the stronger notion of approximate controllability (Criterion 10). Section 3 focuses on an example derived from [START_REF] Krishna | Stochastic simulations of the origins and implications of long-tailed distributions in gene expression[END_REF] (see also [START_REF] Crudu | Hybrid stochastic simpli…cations for multiscale gene networks[END_REF]). The proofs of the results and the technical constructions allowing to prove Theorem 6 are gathered in Section 4.

The Control System and Main Results

We brie ‡y recall the construction of a particular class of pure jump, non explosive processes on a space and taking their values in a metric space (E; B (E)) : Here, B (E) denotes the Borel -…eld of E: The elements of the space E are referred to as modes. These elements can be found in [START_REF] Davis | Markov models and optimization[END_REF] in the particular case of piecewise deterministic Markov processes (see also [START_REF] Brémaud | Point processes and queues : martingale dynamics[END_REF]). To simplify the arguments, we assume that E is …nite and we let p 1 be its cardinal. The process is completely described by a couple ( ; Q) ; where : E ! R + and the measure Q : E ! P (E), where P (E) stands for the set of probability measures on (E; B (E)) such that Q ( ; f g) = 0: Given an initial mode 0 2 E; the …rst jump time satis…es P 0; 0 (T 1 t) = exp ( t ( 0 )) : The process t := 0 ; on t < T 1 : The post-jump location 1 has Q ( 0 ; ) as conditional distribution. Next, we select the inter-jump time T 2 T 1 such that P 0; 0 T 2 T 1 t = T 1 ; 1 = exp t 1 and set t := 1 ; if t 2 [T 1 ; T 2 ) : The postjump location 2 satis…es P 0; 0 2 2 A = T 2 ; T 1 ; 1 = Q 1 ; A ; for all Borel set A E: And so on. To simplify arguments on the equivalent ordinary di¤erential system, following [4, Assumption (2.17)], we will assume that the system stops after a non-random, …xed number M > 0 of jumps i.e. P 0; 0 (T M +1 = 1) = 1. The reader is invited to note (see Remark 5) that, for large M; the criteria given in the main result (Theorem 6) no longer depend on M (due to the …nite dimension of the mode and state spaces).

We look at the process under P 0; 0 and denote by F 0 the …ltration F [0;t] := f r : r 2 [0; t]g t 0 : The predictable -algebra will be denoted by P 0 and the progressive -algebra by P rog 0 : As usual, we introduce the random measure q on (0; 1) E by setting q (!; A) = P k 1 1 (Tk(!); T k (!) (!))2A ; for all ! 2 ; A 2 B (0; 1) B (E) : The compensated martingale measure is denoted by e q. (For our readers familiar with [START_REF] Goreac | Algebraic invariance conditions in the study of approximate (null-) controllability of Markov switch processes[END_REF], we emphasize that the notation is slightly di¤erent, the counting measure q corresponds to p in the cited paper and the martingale measure e q replaces q in the same reference. Further details on the compensator are given in Subsection 4.1.)

We consider a switch system given by a process (X(t); (t)) on the state space R N E; for some N 1 and the family of modes E. The control state space is assumed to be some Euclidian space R d ; d

1. The component X(t) follows a controlled di¤erential system depending on the hidden variable . We will deal with the following model (A is implicitly assumed to be 0 after the last jump).

(1)

dX x;u s = [A ( s ) X x;u s + Bu s ] ds + Z E C ( s ; ) X x;u s e q (ds; d ) ; s 0; X x;u 0 = x:
The operators A ( ) 2 R N N , B 2 R N d and C ( ; ) 2 R N N , for all ; 2 E. For linear operators, we denote by ker their kernel and by Im the image (or range) spaces. Moreover, the control process u : R + ! R d is an R d -valued, F 0 progressively measurable, locally square integrable process. The space of all such processes will be denoted by U ad and referred to as the family of admissible control processes. The explicit structure of such processes can be found in [18, Proposition 4.2.1], for instance. Since the control process does not (directly) intervene in the noise term, the solution of the above system can be explicitly computed with U ad processes instead of the (more usual) predictable processes.

The Duality Abstract Characterization of Approximate Null-Controllability

We begin with recalling the following approximate controllability concepts. De…nition 1 The system (1) is said to be approximately controllable in time T > 0 starting from the initial mode 0 2 E; if, for every F [0;T ] -measurable, square integrable 2 L 2 ; F [0;T ] ; P 0; 0 ; R N , every initial condition x 2 R N and every " > 0, there exists some admissible control process u 2 U ad such that E 0; 0 h jX x;u T j 2 i ": The system (1) is said to be approximately null-controllable in time T > 0 if the previous condition holds for = 0 (P 0; 0 -a.s.).

At this point, let us consider the backward (linear) stochastic di¤erential equation ( 2)

( dY T; t = h A ( t ) Y T; t R E (C ( t ; ) + I) Z T; t ( ) ( t ) Q ( t ; d ) i dt + R E Z T; t ( ) q (dt; d ) ; Y T; T = 2 L 2 ; F [0;T ] ; P 0; 0 ; R N :
Classical arguments on the controllability operators and the duality between the concepts of controllability and observability lead to the following characterization (cf. [13, Theorem 1]).

Theorem 2 ([13, Theorem 1]) The necessary and su¢ cient condition for approximate null-controllability (resp. approximate controllability) of ( 1) with initial mode 0 2 E is that any solution Y T; Remark 3 Concerning the operator A; it is assumed to be a switched matrix but it could also depend on (t; t ) or on all the times and marks prior to t: This is why, we implicitly assumed that A = 0 after the last jump (M th ) occurs. Similar assertions are true for C (otherwise, the backward equation ( 2) should be written with the compensator b q replacing ( t ) Q ( t ; d ).) The reader may also look at the end of Subsection 4.1.

Main Result : An Iterative Invariance Criterion

Before stating the main result of our paper, we need the following invariance concepts (cf. [START_REF] Curtain | Invariance concepts in in…nite dimensions[END_REF], [START_REF] Schmidt | Invariance theory for in…nite dimensional linear control systems[END_REF]).

De…nition 4 We consider a linear operator A 2R N N and a family

C = (C i ) 1 i k R N N . (i) A set V R N is said to be A-invariant if AV V: (ii) A set V R N is said to be (A; C)-invariant if AV V + k P i=1 Im C i :
We construct a mode-indexed family of linear subspaces of R N denoted by V M;n 0 n M; 2E by setting

(3) A ( ) := A ( ) Z E (C ( ; ) + I) ( )Q( ; d ) and V M;M = ker B ;
for all 2 E; and computing, for every 0 n M 1;

(4) V M;n the largest A ( ) ;

h (C ( ; ) + I) V M;n+1 : 2 E; Q ( ; ) > 0 i invariant subspace of ker B :
Here, V denotes the orthogonal projection operator onto the linear space V R N . Whenever there is no confusion at risk, having …xed the maximal number of jumps M 1; we drop the dependency on M (i.e. we write V n instead of V M;n for all 0 n M ).

Remark 5 (i) A simple recurrence argument shows that V M;n V M;m , for every 0 n m M . Furthermore, V M;M n = V M 0 ;M 0 n ; for all 0 n M M 0 : Moreover, since the dimension of ker B cannot exceed

N; V M;0 = V min(M;N p );0 :
(ii) This spaces do not depend on the choice of the controllability horizon T > 0: Therefore, if the approximate (null-)controllability is described by these sets, it is independent of the time horizon.

The main result of the paper is the following.

Theorem 6 The switch system (1) is approximately null-controllable (in time T > 0) with 0 as initial mode, if and only if the generated set V 0 0 reduces to f0g : The proof is postponed to Section 4. This proof uses the reduction of backward equations with respect to Marked point processes to a system of ordinary di¤erential equations given in [START_REF] Confortola | Backward stochastic di¤erential equations driven by a marked point process: an elementary approach, with an application to optimal control[END_REF]. In order to formulate this system (see Proposition 12), we need to explain some concepts and notations in Subsection 4.1. To prove necessity of the condition, one uses convenient feedback controls and the equivalence between invariance and the concept of feedback invariance (see Proposition 13). Su¢ ciency (given by Proposition 14) follows from (time-) invariance of convenient linear subspaces with respect to ordinary di¤erential dynamics.

Comparison With [13]

We begin with giving a di¤erent (and simpler) proof of (some of) the results in [START_REF] Goreac | Algebraic invariance conditions in the study of approximate (null-) controllability of Markov switch processes[END_REF]. Besides the general (abstract) characterization of approximate and approximate null-controllability, explicit invariance criteria were given in two speci…c settings.

(i) In the case without multiplicative noise C = 0; one notes that the subspaces V n (for 0 n < M ) do not depend on n: They reduce, in fact, to the largest A ( )-invariant subspace of ker B : Moreover, in this framework, A ( )-invariance and A ( )-invariance coincide and Theorem 6 yields the following.

Criterion 7 ([13, Criterion 4]) The system ( 1) is approximately null-controllable (with initial mode 0 2 E) if and only if the largest subspace of ker B which is A ( 0 ) -invariant is reduced to the trivial subspace f0g for all 0 2 E:

(ii) In the case of Poisson-driven systems with mode-independent coe¢ cients A and C; one works with the mode-independent operator

A := A R E (C ( ) + I) Q(d ).
The reader familiar with [13, Criterion 3] will note that the necessary and su¢ cient criterion concerns a notion of strict invariance. We get the same condition provided the system has the possibility to stabilize (the maximal number of jumps M N + 1 is allowed to exceed the dimension of the state space). Moreover, without loss of generality, one assumes that E is the support of Q:

Criterion 8 ([13, Criterion 3]) Let us assume that A 2 R N N ; B 2 R N d are …xed and C ( ) 2 R N N ;
for all 2 E and that ( ) Q ( ; d ) is independent of 2 E: Moreover, we assume that M N + 1. Then the associated system is approximately null-controllable if and only if the largest subspace V 0 ker B which is

(A ; [C ( ) V0 : 2 E])-invariant is reduced to f0g.
Proof. The reader will note that the V n spaces in (4) no longer depend on 2 E: They are obviously nondecreasing in n (see Remark 5). Since ker B R N ; it follows that, provided that M N + 1; one has

V 0 = V 1 (indeed, V 0 V 1 ::: V M = ker B and, whenever V k = V k+1
; for some 0 k M 1, it follows (by de…nition), that V j = V k ; for all j k: On the other hand, the inclusions cannot always be strict if M N + 1 by recalling that the dimension of ker B cannot exceed N ). Moreover, this space V 0 is the largest subspace V 0 ker B which is (A ; [(C ( ) + I) V0 : 2 E])-invariant which is the same as (A ; [C ( ) V0 : 2 E])invariant. The proof is complete by invoking Theorem 6.

Approximate or Approximate Null-Controllability

Using Riccati techniques, one proves (see [START_REF] Goreac | Algebraic invariance conditions in the study of approximate (null-) controllability of Markov switch processes[END_REF]Criterion 3]) that, for Poisson-driven systems with mode-independent coe¢ cients, approximate controllability and approximate null-controllability properties coincide. However, in the case of actual switching systems, the two notions have no reason to and do not coincide. This is illustrated by the following example.

Example 9

We consider the space dimension N = 4; the control dimension d = 2; E = f0; 1g, a switching rate = 1 and a transition probability Q ( ; 1 ) = 1; for 2 E: Moreover, we consider, for 2 f0; 1g ;

B = 0 B B @ 1 0 0 1 0 0 0 0 1 C C A ; A ( ) = 0 B B @ 0 0 0 0 0 0 0 0 1 + 0 0 0 0 2 0 0 1 C C A ; C ( ; 1 ) = 0 B B @ 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1 C C A :
The reader is invited to note that ker B = span e 3 ; e 4 (standard vectors of the basis of R 4 ): Thus, simple

computations yield V 1 0 span e 4 ; V 1 
1 span e 3 : Hence, V 0 0 = V 0 1 = f0g and the system is approximately null-controllable starting from every initial mode (if M 2). However, if one considers 0 = 0; assumes the mode can jump twice M = 2 and sets := 1 T1 T <T2 e 3 1 T2 T e 3 ; then one easily notes that (Y t ; Z t ) := 1 T1 t T;t<T2 e 3 1 T2 t T e 3 ; (1 t T ^T1 2 1 T1<t T ) e 3 obey the equation (2). To this purpose, it su¢ ces to note that A ( t )Y t + (C ( t ; 1 t ) + I) Z t = 0 on [0; T ^T2 ] : For every u 2 U ad ; Itô's formula (e.g. [15, Chapter II, Section 5, Theorem 5.1]) applied to the inner product

D X 0;u ; Y E on [0; T ] yields E 0;0 hD X 0;u T ; Ei = E 0; 0 h R T 0 hu t ; B Y t i dt i = 0: In particular, this implies that E 0;0 X 0;u T 2 E 0;0 h j j 2 i
> 0 and, thus, the system (1) is not approximately controllable (towards ).

In fact, the reader may note that the null-controllability property strongly depends on the initial mode (through the computation of V 0 0 as last step). A su¢ cient criterion (already available in [START_REF] Goreac | Algebraic invariance conditions in the study of approximate (null-) controllability of Markov switch processes[END_REF]) is that the largest subspace of ker B which is (A ( 0 ) ; [(C ( 0 ; ) + I) ker B : 2 E; Q ( 0 ; ) > 0]) invariant should be reduced to f0g : It turns out that asking this condition to hold true for all 0 2 E actually implies approximate controllability. (The proof is postponed to Section 4.) Condition 10 Let us assume that the largest (A ( ) ; [(C ( ; ) + I) ker B : Q ( ; ) > 0])-invariant subspace of ker B is reduced to f0g, for every 2 E: Then, for every T > 0 and every 0 2 E, the system (1) is approximately controllable in time T > 0:

Remark 11 The reader is invited to note that the notion of (A ( ) ; [(C ( ; ) + I) ker B : Q ( ; ) > 0])invariance and that of (A ( ) ; [(C ( ; ) + I) ker B : Q ( ; ) > 0]) -invariance coincide for subspaces of ker B . Second, according to [13, Criterion 3], the notions of approximate and approximate null-controllability coincide in the context of Poisson-driven systems with mode-independent coe¢ cients. Then, a careful look at [13, Example 4] provides an example of system which is approximately controllable without satisfying the su¢ cient condition given before.

3 Towards Applications A model. We will explain how the previous method can be applied in the study of stochastic gene networks. To this purpose, we consider the following reaction system describing a repressed bacterium operon model introduced in [ It is known ([5, Page 21]) that "RBS presents infrequent bursts of activity leading to rapid production of ElRib" and "RBS rapidly switches to 0 by the reaction RBS ! ?". To take into account these elements and keep the conservation law, we proceed as follows :

(1) as RBS switches to 0; D will be reset to 1 (hence, D + T rRN AP + RBS = 1);

(2) bursts (given by the reaction having k 7 as speed) will be considered as part of the stochastic updating of the continuous species and will have null-mean (i.e. they will multiply the martingale measure generated by the mode switching mechanism). In our toy-model, as RBS switches to 1, stochastic bursts on ElRib will a¤ect (in multiplicative way) the synthesis of P rotein (i.e. the reaction ElRib k8 ! P rotein): A toy mathematical system. The …rst condition leads to a mode space E = e 1 ; e 2 ; e 3 consisting of the standard vector basis of R 3 ; with a jump intensity and a transition measure Q e i ; e j = Q i;j 1 i;j 3 given by ( 6)

( ) = * 0 @ k 3 k 3 + k 4 k 5 1 A ; + > 0; for all 2 E; Q = 0 B @ 0 1 0 k 3 k 3 +k 4 0 k 4 k 3 +k 4 1 0 0 1 C A :
We are going to assume that the positive reaction speeds k 7 ; k 8 ; k 9 and k 11 depend on the mode (note that RBS is part of and intervenes to get ElRib) and, maybe, of external one-dimensional control parameters (temperature or catalysts). Since all the reactions concerning continuous components have one reactant, the resulting ODE will be linear (see [5, Eq. ( 28)]). A …rst order model for the control will give dx t = [A ( t ) x t + Bu t ] dt; where A is given by [START_REF] Davis | Markov models and optimization[END_REF]. Furthermore, in our toy model, let us assume that the external control focuses on regulation of ElRib (i.e. B = 1 0 0 t = e 1 ). We add to that the bursts (see item (2) above) to …nally get a (toy-)model of type [START_REF] Barbu | Carleman estimates and controllability of linear stochastic heat equations[END_REF] for which, for every ; 2 E;

(7) B = e 1 ; A ( ) = 0 @ k 8 ( ) 0 0 k 8 ( t ) k 9 ( ) 0 0 k 9 ( t ) k 11 ( ) 1 A ; C ( ; ) = 0 @ 0 0 0 k 7 ( ) 0 0 0 0 0 1 A ; k 7 ( ) = 1 e 3 ( ) :
Approximate null-controllability. The largest subspace of ker B which is A e 2 e 2 I; ker Binvariant reduces to span e 3 and the largest subspace of ker B which is A e 1 e 1 I; span(e 3 ) invariant is f0g (recall that k 8 and k 9 are reaction speeds and, thus, are strictly positive and so is ): Due to the structure of the transition measure Q, as soon as M 2, the system is approximately null-controllable starting from e 1 : Nevertheless, the space ker B being A e 3 k 8 e 3 k 5 C e 3 ; e 1 + I -invariant, constructions similar to Example 9 show that, provided e 3 is reachable in M jumps, the system is not approximately controllable.

Proof of the Results

Technical Preliminaries

Before giving the reduction of our backward stochastic equation to a system of ODE, we need to introduce some notations making clear the stochastic structure of several concepts : …nal data, predictable and càdlàg adapted processes and compensator of the initial random measure. The notations in this subsection follow the ordinary di¤erential approach from [START_REF] Confortola | Backward stochastic di¤erential equations driven by a marked point process: an elementary approach, with an application to optimal control[END_REF]. Since we are only interested in what happens on [0; T ] ; we introduce a cemetery state (1; ) which will incorporate all the information after T ^TM : It is clear that the conditional law of T n+1 given (T n ; Tn ) is now composed by an exponential part on [T n ^T; T ] and an atom at 1: Similarly, the conditional law of Tn+1 given (T n+1 ; T n ; Tn ) is the Dirac mass at if T n+1 = 1 and given by Q otherwise. Finally, under the assumption P 0; 0 (T M +1 = 1) = 1, after T M ; the marked point process is concentrated at the cemetery state.

We set E T : = ([0; T ] E) [ f(1; )g. For every n 1; we let E T;n E T n+1 be the set of all marks of type e = ((t 0 ; 0 ) ; :::; (t n ; n )) ; where (8) t 0 = 0; (t i ) 0 i n are non-decreasing;

t i < t i+1 ; if t i T ; (t i ; i ) = (1; ) , if t i > T; 80 i n 1;
and endow it with the family of all Borel sets B n . For these sequences, the maximal time is denoted by jej := t n . Moreover, by abuse of notation, we set jej := n : Whenever T t > jej ; we set we get an E T;n valued random variable, corresponding to our mode trajectories.

The …nal data is F [0;T ] measurable and, thus, for every n 0; there exists a B n =B R N measurable function E T;n 3 e 7 ! n (e) 2 R N such that: [START_REF] Goreac | A note on the controllability of jump di¤usions with linear coe¢ cients[END_REF] If jej = 1; then n (e) = 0: Otherwise, on T n (!) T < T n+1 (!) ; (!) = n (e n (!)) :

A càdlàg process Y continuous except, maybe, at switching times T n is given by the existence of a family of B n B ([0; T ]) =B R N -measurable functions y n such that, for all e 2 E T;n ; y n (e; ) is continuous on [0; T ] and constant on [0; T ^jej] and :

Let us now concentrate on the speci…c form of the jump contribution Z (to the BSDE (2)). We consider a càdlàg process Y continuous except, maybe, at switching times T n . Then, as explained before, this can be identi…ed with a family (y n ) : We construct, for every n 0; and Y Tn+1 can be obtained by simple integration of the previous quantity with respect to the conditional law of T n+1 ; Tn+1 knowing F Tn : Then, Z is given by z n (e; t; ) := b y n+1 (e; t; ) y n (e; t) : The coe¢ cient function A ( t ) is adapted and can be seen as follows: if jej = 1; then A = 0; otherwise, one works with A jej : Similar constructions hold true for C: In fact, the results of the present paper can be generalized to more general path-dependence of the coe¢ cients.

Reduction to a System of Linear ODEs

We consider the family of (ordinary) di¤erential equations ( 16)

8 > > > > < > > > > : y M (e M (!) ; ) = M (e M (!)) . For n M 1; y n (e n (!) ; T ) = n (e n (!)) ; dy n (e n (!) ; t) = A jen(!)j y n (e n (!) ; t) dt R E C
jen(!)j ; + I b y n+1 (e n (!) ; t; ) y n (e n (!) ; t) b q n en(!) (dt; d ) (= A jen(!)j y n (e n (!) ; t) dt P 2E ( jen(!)j )Q( jen(!)j ; ) C jen(!)j ; + I y n+1 (e n (!) (t; ) ; t) dt);

where we have used the notation (3). The following result adapts [4, Lemma 7] to our case.

Proposition 12 A càdlàg adapted process Y given by a family of functions (y n ) as in ( 12) is solution to (2) if and only if, for P-almost all ! and all 0 n M; it satis…es the system [START_REF] Jacob | On controllability of diagonal systems with one-dimensional input space[END_REF].

The proof is quasi-identical to the one of [4, Lemma 7]. The only di¤erence in our case is the presence of the term A jen(!)j y n (e n (!) ; t) dt which is, of course, classical. The results of [4, Lemma 7] apply directly if one assumes that ( ) > 0 for all 2 E (that is if there exists no absorbing state). Otherwise, we actually get an ODE of type dy n (e n (!) ; t) = A jen(!)j y n (e n (!) ; t) dt:

An Iterative Invariance-Based Criterion (Proof of Theorem 6)

As already hinted in [START_REF] Goreac | Algebraic invariance conditions in the study of approximate (null-) controllability of Markov switch processes[END_REF], the (approximate) controllability properties can be expressed with respect to invariance conditions. The equivalence between the dual (backward) stochastic equation ( 2) and the (backward) ordinary di¤erential system (16) yields the following approximate controllability criterion.

Proposition 13 If the system ( 1) is approximately null-controllable with 0 as initial mode, then the generated set V 0 0 reduces to f0g : Proof. Using classical results on the di¤erent notions of invariance (e.g. [START_REF] Schmidt | Invariance theory for in…nite dimensional linear control systems[END_REF]Theorem 3.2], see also [START_REF] Curtain | Invariance concepts in in…nite dimensions[END_REF]Lemma 4.6]), invariance is equivalent to feedback invariance. Thus, one gets the existence of a family of operators

F n ; 2 L V n ; V n+1 such that A ( ) + P 2E; Q( ; )>0 (C ( ; ) + I) F n ; V n
V n ; for all n 0: We begin with picking (an arbitrary) v 0 2 V 0 0 and de…ne 0 (t 0 ; 0 ) = v 0 : We proceed by setting, for every n 1 and e n 2 E T;n , n;en to be the unique solution of the ordinary di¤erential system 8 > > > > > < > > > > > : 16) with the particular choice of the …nal data such that n (e n ) = n;en (T ) : Since we have assumed the system (1) to be approximately null-controllable, Theorem 2 and Proposition 12 yield v 0 = 0: The proof is complete by recalling that v 0 2 V 0 0 is arbitrary.

d n;en (t) = A jenj + P 2E, Q( n ; )>0
At this point, the reader may want to note that these considerations involve one equation at the time. The invariant space obtained is then employed for the next equation and gives a coherent character to the system. The basic idea is to provide some kind of local in time invariance of the sets concerned. In [START_REF] Goreac | Algebraic invariance conditions in the study of approximate (null-) controllability of Markov switch processes[END_REF], this is done using Riccati techniques. But, except for special cases, the solvability of these stochastic schemes is far from obvious. Due to the ordinary di¤erential structure of the equivalent system [START_REF] Jacob | On controllability of diagonal systems with one-dimensional input space[END_REF], we are able to elude these techniques and work directly on the deterministic systems.

Proposition 14 Conversely, if the generated set V 0 0 reduces to f0g ; then the system ( 1) is approximately nullcontrollable with 0 as initial mode.

Proof. We begin with a solution of (2) for which Y belongs to ker B : We prove by descending recurrence that y n (e; t) 2 V n jej ; for all t 2 [0; T ] and all e 2 E T;n (starting from 0 ), where we use the structure ( 12): The assertion is obvious for n = M since, by notation, V M = ker B : We assume it to hold true for n + 1 M and prove it for n 0: By equation ( 16 (recall that y n is continuous). One recalls that V n is A ( ) ;

h (C ( ; ) + I) V n+1 : Q ( ; ) > 0 i -invariant,
for every 2 E. Hence, a fortiori, V n jej is A jej ; C ( jej ; ) + I ker B : Q jej ; > 0 -invariant. Our assumption implies that V n jej = f0g and approximate controllability follows.

  the dual system (2) for which Y T; t 2 ker B ; P 0; 0 Leb almost everywhere on [0; T ] should equally satisfy Y T; 0 = 0; P 0; 0 almost surely (resp. Y T; t = 0; P 0; 0 Leb a:s:).

5 ! ?; RBS k 7 !

 57 Partitioning and simplifying. The authors of[START_REF] Crudu | Hybrid stochastic simpli…cations for multiscale gene networks[END_REF] propose a partition of "species" according to which only ElRib; P rotein and F oldedP rotein are continuous. The averaging procedures in[5, Figure 4] simplify the model to ElRib + RBS ; ElRib k8 ! P rotein; P rotein k9 ! F oldedP rotein; P rotein k10 ! ?; F oldedP rotein k11 ! ?: Due to the conservation law of [D; R; DR; RN AP; DRN AP; T rRN AP ] one should have something like D + T rRN AP ' 1:

( 9 )

 9 e (t; ) := ((t 0 ; 0 ) ; :::; (t n ; n ) ; (t; )) 2 E T;n+1 : By de…ning[START_REF] Goreac | Approximate controllability for linear stochastic di¤erential equations in in…nite dimensions[END_REF] e n := ((0; 0 ) ; (T 1 ; T1 ) ; :::; (T n ; Tn )) ;

( 12 )(

 12 If jej = 1; then y n (e; ) = 0: Otherwise, on T n (!) t < T n+1 (!) ; Y t (!) = y n (e n (!) ; t) ; t T . Similar, an R N valued F-predictable process Z de…ned on [0; T ] E is given by the existence of a family of B n B ([0; T ]) B (E) =B R N measurable functions z n satisfying (13) If jej = 1; then z n (e; ; ) = 0: On T n (!) < t T n+1 (!) ; Z t (!; ) = z n (e n (!) ; t; ) ; for t T , 2 E. To deduce the form of the compensator, one simply writes b q (!; dt; d ) := X If n M; then b q n e (dt; d ) = (d ) 1 (dt) . If n M 1; b q n e (dt; d ) := ( jej )Q( jej ; d )1 jej<1;t2[jej;T ] Leb (dt) + (d ) 1 (dt) 1 (jej<1;t>T )[jej=1 ;

  e; t; ) := y n+1 (e (t; ) ; t) 1 jej<t

for every m 0 :

 0 Then, W := \ 0 m N W m is an A jej ; h C jej ; + I V n+1 : Q jej ; > 0 i invariantsubspace of the (at most N -dimensional) space ker B : Therefore, we have proven that y n (e; t) 2 V n jej : To complete our argument, one only needs to recall that, by assumption, V 0 0 = f0g and use Theorem 2 and Proposition 12.

4. 4

 4 Proof of Su¢ ciency Condition 10 for Approximate ControllabilityProof of Condition 10. In light of the Theorem [13, Theorem 1] and Proposition 12, one only needs to show that the only solution of (16) remaining in ker B is constant 0: One proceeds as in the Proof of Proposition 14 starting with a solution of[START_REF] Brémaud | Point processes and queues : martingale dynamics[END_REF] for which Y belongs to ker B and showing that y n (e; t) 2 V n jej ker B ; for all t 2 [0; T ]

  While the notions of approximate and approximate null-controllability are known to coincide for Poisson-driven systems with mode-independent coe¢ cients, we give an example (Example
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  One also sets n;en (t) = n;en (je n j _ t) to extend the solution for t 2 [0; T ]. Then, one easily notes that n;en (t) 2 ker B ; for all 1 n M , all e n 2 E T;n and all t 2 [0; T ] : Moreover, a simple glance at the construction shows that by setting y n (e n ; t) := n;en (t), for 1 n M , all e n 2 E T;n and all t 2 [0; T ] ; one gets the solution of (

C ( jenj ; ) + I F n jenj ; n;en (t) dt; je n j t T n;en (je n j) = n (e n ) ; if je n j < 1, 0; otherwise. and n+1 (e n (t; )) = 1 ( jen j )Q( jen j ; ) F n jen j ; n (e n ; t) 1 T t>jenj ; if ( jenj )Q( jenj ; ) > 0; 0; otherwise

  ), one has dy n (e; t) = A

	W m+1 :=	: 8 <	v 2 W

jej y n (e; t) X 2E ( jej )Q( jej ; ) C jej ; + I y n+1 (e (t; ) ; t) ! dt: We have assumed that y n (e; t) 2 ker B and, thus, [I ker B ] y n (e; t) = 0: We infer that A jej y n (e; t) + X 2E ( jej )Q( jej ; ) C jej ; + I y n+1 (e (t; ) ; t) 2 ker B : Hence, using the recurrence assumption, y n (e; t) is (for almost all t 2 [0; T ]); an element of the linear space W 0 := 8 < : v 2 ker B : 9w 2 V n+1 ; for all 2 E s.t. Q jej ; > 0 satisfying A jej v + P 2E; Q( jej ; )>0 C jej ; + I w 2 ker B 9 = ; : By repeating our argument, we prove that y n (e; t) is (for almost all t 2 [0; T ]); an element of the linear space m : 9w 2 V n+1 ; for all 2 E s.t. Q jej ; > 0 satisfying A jej v + P 2E; Q( jej ; )>0 C jej ; + I w 2 W m