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Abstract—Co-location information about users is increasingly available online. For instance, mobile users more and more frequently
report their co-locations with other users in the messages and in the pictures they post on social networking websites by tagging the
names of the friends they are with. The users’ IP addresses also constitute a source of co-location information. Combined with
(possibly obfuscated) location information, such co-locations can be used to improve the inference of the users’ locations, thus further
threatening their location privacy: As co-location information is taken into account, not only a user’s reported locations and mobility
patterns can be used to localize her, but also those of her friends (and the friends of their friends and so on). In this paper, we study
this problem by quantifying the effect of co-location information on location privacy, considering an adversary such as a social network
operator that has access to such information. We formalize the problem and derive an optimal inference algorithm that incorporates
such co-location information, yet at the cost of high complexity. We propose some approximate inference algorithms, including a
solution that relies on the belief propagation algorithm executed on a general Bayesian network model, and we extensively evaluate
their performance. Our experimental results show that, even in the case where the adversary considers co-locations of the targeted
user with a single friend, the median location privacy of the user is decreased by up to 62% in a typical setting. We also study the effect
of the different parameters (e.g., the settings of the location-privacy protection mechanisms) in different scenarios.

Index Terms—Location privacy; co-location; inference; social networks
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1 INTRODUCTION

SOCIAL networks, and in particular location-based social
networks, have become immensely popular. Every day,

millions of users post information, including their locations,
about themselves, but also about their friends. An emerg-
ing trend, which is the focus of this paper, is to report
co-locations with other users on social networks, e.g., by
tagging friends on pictures they upload or in the messages
they post.1 For instance, our preliminary survey involving
132 Foursquare users, recruited through Amazon Mechan-
ical Turk, reveals that 55.3% of the participants report co-
locations in their check-ins and that for the users who do
so, on average, 2.84%±0.06 of their check-ins contain co-
location information. In fact, co-location information can
be obtained in many different ways, such as automatic
face recognition on pictures (which contains the time and
location at which the picture was taken in their EXIF data,
e.g., Facebook’s Photo Magic [2]), Bluetooth-enabled device
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1. Note that the fact that a users tags one of her friends in a post does
not necessarily mean that they are co-located; our formalism takes this
fact into account. This is one of the novelty of our extended version.

sniffing and reporting neighboring devices. Similarly, users
who connect from the same IP address are likely to be
attached to the same Internet access point, thus providing
evidence of their co-location.

Attacks exploiting both location and co-location infor-
mation (as mentioned in [3]) can be quite powerful, as we
show in this paper. Figure 1 depicts and describes two
instances in which co-location can improve the performance
of a localization attack, thus degrading the location privacy
of the users involved. It is clear that the proper exploitation
of such information by an attacker can be complex because
he has to consider jointly the (co-)location information col-
lected about a potentially large number of users. This is due
to the fact that, in the presence of co-location information, a
user’s location is correlated with that of her friends, which
is in turn correlated to that of their own friends and so on.

This family of attacks and their complexity is precisely
the focus of this paper. More specifically, we make the
following four contributions: (1) We identify and formalize
the localization problem with co-location information, we
propose an optimal inference algorithm and analyze its
complexity. We show that, in practice, the optimal inference
algorithm is intractable due to the explosion of the state
space size. (2) We describe how an attacker can drastically
reduce the computational complexity of the attack by means
of well-chosen approximations. We present a polynomial-
time heuristic based on a limited set of considered users (i.e.,
optimal inference with the data of only two or three users)
and an approximation based on the belief propagation (BP)
algorithm executed on a general Bayesian network model
of the problem (approximate inference with the data of
all the users). (3) Using a mobility dataset, we extensively
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  : I’m in 
  : I’m with     

  : I’m in 

 10:00am 
   : I’m here 

11:00am 
   : I’m with 

10:00am 
   : I’m here 

(a) (b)

Fig. 1. Examples showing how co-location information can be detrimen-
tal to privacy. (a) A user reports being in a given area, and a second
user reports being in another (overlapping) area and that she is co-
located with the first user. By combining these pieces of information,
an adversary can deduce that both users are located in the intersection
of the two areas, thus narrowing down the set of possible locations for
both of them. (b) Two users (initially apart from each other, at 10am)
declare their exact individual location. Later (at 11am), they meet and
report their co-location without mentioning where they are. By combining
these pieces of information, the adversary can infer that they are at a
place that is reachable from both of the initially reported locations in the
amount of time elapsed between the two reports.

evaluate and compare the performance of the different
solutions in different scenarios, with different settings. The
belief propagation-based solution, which does not appear
in the first version of this work [1], gives significantly
better results (in terms of the performance of the infer-
ence) than the heuristic. (4) We propose and evaluate some
countermeasures (i.e., social-aware location-privacy protec-
tion mechanisms) including fake co-locations reporting and
coordinated location disclosure. This last contribution also
constitutes new content with respect to the first version
of this work [1]. In this revised and extended version, we
also update the formalism and the evaluation to take into
account the fact that users can report being co-located when,
in fact, they are not. Our experimental results show that,
even in the case where the adversary considers co-locations
with only a single friend of the targeted user, the median
location privacy of the user is decreased by up to 62% in
a typical setting. Even in the case where a user does not
disclose any location information, her privacy can decrease
by up to 21% due to the information reported by other users.
A paramount finding of our work is that users partially
lose control over their location privacy as co-locations and
individual location information disclosed by other users
substantially affect their own location privacy. Our experi-
mental results also show that a simple countermeasure (i.e.,
coordinated location disclosure) can reduce the privacy loss
by up to 50%. To the best of our knowledge, this is the first
attempt to quantify the effects of co-location information
that stems from social relationships, on location privacy;
thus making a connection between social networks and
location privacy.

The remainder of the paper is organized as follows. In
Section 2, we define and formalize the system model. In
Section 3, we present the optimal localization attack for N
users and assess its complexity. In Section 4, we show how
this complexity can be reduced by means of approximations.
In Section 5, we briefly analyze the co-location problem from
a differential privacy perspective. In Section 6, we report on
the experimental evaluation of the localization attack with
co-locations. In Section 7, we propose and evaluate some
countermeasures. In Section 8, we survey the related work.
In Section 9, we conclude the paper and suggest directions
for the future work.

2 SYSTEM MODEL AND FORMALIZATION

We consider a set of mobile users who move in a given
geographical area. While on the go, users make use of
some online services to which they communicate potentially
obfuscated location (i.e., where they are) and co-location
information (i.e., who they are with). Note that such in-
formation could be communicated unintentionally by the
users (e.g., leaked from their IP addresses) without their
even knowing it. We consider that a curious service provider
(referred to as the adversary) wants to infer the location of
the users from this information, hence tracking them over
time. In order to carry out the inference attack, based on
which the location privacy of the users is evaluated, the
adversary would model the users as described below. Our
model is built upon [4] and uses similar notations. Figure 2
gives an overview of the considered scenario and Table 1
summarizes the main notations used in our formalization
throughout the paper.

35 36 

26 27 

Find nearby restaurants 
@t=1 {r26,r27,r35,r36} 

    : I’m with  
↔t=4 

    : I’m with     
↔t=2 

Fig. 2. Scenario of (co-)location exposure. Three users move in a given
geographical area. They communicate their potentially obfuscated loca-
tions and accurate co-location information to a service provider (i.e., the
adversary) who wants to infer their locations.

2.1 Users
We consider a set U = {u1, . . . , uN} of N mobile users who
move within a given geographical area that is partitioned
into M regions (locations) R = {R1, . . . , RM}. Time is
discrete and we consider the state of the system (including
the locations of the users) at the successive time instants
{1, . . . , T}. The region in which a user u ∈ U is at time
instant t ∈ {1, . . . , T} is called the actual location of the
user and is denoted by au(t). The mobility of the users is
modeled by a first order time-homogeneous Markov chain.
We denote by pu(ρ, r) the probability that user u moves
from region ρ to region r during one time instant, and by
πu(r) the probability that user u is in region r at time t
(i.e., the stationary distribution of pu). We call a co-location
the fact that two users are at the same location at some point
in time. The fact that users u and v are co-located at time t
means that au(t) = av(t); we denote by u↔t v the fact that
a co-location between users u and v at time t is reported
(by either of them), and we consider an associated binary
variable cu,v(t); specifically, cu,v(t) = cv,u(t) = 1 if u ↔t v
and cu,v(t) = cv,u(t) = 0 otherwise. Note, however, that
the fact that a co-location is reported does not necessarily
mean that the users are really co-located. We consider the
process of users reporting co-location information to be
probabilistic. Specifically, for any pair of users u and v, the
probability of reporting a co-location, knowing both their
actual locations is denoted by

gu,v(r, r′) , Pr (u↔t v | au(t) = r, av(t) = r′) (1)
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This assumes that co-locations reported by a user at differ-
ent time instants are being reported independently of each
other and of those reported by other users. Additionally,
we assume that the reporting process for any user does
not depend on time. Intuitively, this co-location reporting
function can incorporate social ties (users report co-locations
on social networks only with their friends), selective re-
porting of co-location (not every time that Alice is with
Bob in the same location does she report that on their
favorite social network) as well as erroneous co-locations
(Alice might tag Bob in a picture, even though he is not
really in that picture). Examples of erroneous co-locations
also include the case where Alice and Bob have the same
IP address but they are not together (e.g., they make use
of the same proxy)–more generally it includes the false
positives of the underlying co-location detection technique
used by the adversary–as well as fake co-locations possibly
reported by users to protect their privacy. The probabilistic
co-location reporting function is assumed to be known to
the adversary; in practice, it could be learned from models
of the users’ (social) behaviors or from ground-truth data, or,
when applicable, from theoretical models of the underlying
technical co-location detection method. Concrete examples
of co-location reporting functions are given in Section 6. We
assume all user-reported co-locations are observed by an
adversary.

2.2 Location-Privacy Protection Mechanisms
In order to protect their privacy, we assume that users rely
on location-privacy protection mechanisms (LPPM) for ob-
fuscating their individual location information before they
communicate it to an online service provider. We denote by
u@t r

′ the fact that user u reports being at location r′ at time
t to the online service. The online service observes only the
obfuscated location of the users, which we denote by ou(t)
for user u at time t. We denote by R′ the set of obfuscated
locations; typically R′ is the power set of R, as LPPMs
can return a set of locations instead of only one location.
Typical LPPMs replace the actual location of a user with
another location (i.e., adding noise to the actual location)
or merge several regions (i.e., reducing the granularity of
the reported location). We model an LPPM by a function
that maps a user’s actual location to a random variable that
takes values in R′, that is, the user’s obfuscated location.
This means that the locations of a user at different time
instants are obfuscated independently of each other and of
those of other users. This also means that the way a user’s
locations are obfuscated does not depend on time. Formally,
an LPPM is defined by the function fu(r, r′) that denotes the
probability that the LPPM used by u obfuscates location r to
r′, i.e., Pr (ou(t) = r′ | au(t) = r). Excluding the co-location
information, our model corresponds to a hidden Markov
model (HMM) [5]. We assume that co-location information
is not obfuscated and users do not rely on pseudonyms.2

We denote by o(t) the vector of the observed locations
of all the users at time t. More generally, we use bold
notations to denote a vector of values of all users. We define
Ct = {cu,v(t)}u,v∈U and C =

⋃
t=1..T Ct.

2. Note that even if pseudonyms are used, the identity of the users
can be inferred by using their social network [6] or their locations [4].
We make this assumption because our main target scenario is users
posting information attached to their real identities on social networks.

2.3 Adversary
The adversary, typically an online service provider (or
an external observer who has access to this information,
e.g., another user of the social network), has access to the
observed locations and co-locations of one or several users
and seeks to locate users, at a given time instant, namely,
carry out a localization attack. Because of the co-location
information, the locations of the users are not independent,
thus when attacking the location of a given user, the ad-
versary takes into account information potentially about
all the users. The attack is performed a posteriori, meaning
that the adversary has access to the observed traces over
the complete period, namely {o(t)}t=1..T and C , at the
time of the attack. In addition to the observations during
the time period of interest (i.e., {1, . . . , T}), the adver-
sary has access to some of the users’ past location traces,
from which he builds individual mobility profiles for these
users, under the form of transition probabilities {pu}u∈U .
See [4] for more details about the knowledge construction,
in particular, on how the mobility profiles can be built
from obfuscated traces with missing locations. The mobility
and co-location reporting profiles constitute, together with
the knowledge of the LPPMs used by the users (includ-
ing their parameters), the adversary’s background knowledge
K = {pu(·, ·)}u∈U , {fu(·)}u∈U , {gu,v(·, ·)}u,v∈U .

The output of a localization attack that targets user u at
time instant t, is a posterior probability distribution over the set
R of locations.

hut (r) , Pr (au(t) = r | {o(t)}t=1..T , C,K) . (2)

2.4 Location-Privacy Metric
The location privacy LPu(t) of user u at time t, with respect
to a given adversary, is captured by the expected error of
the adversary when performing a localization attack [4].
Given the output hut (·) of the localization attack, the location
privacy writes

LPu(t) ,
∑
r∈R

hut (r) · d(r, au(t)) , (3)

where d(· , ·) denotes a distance function on the set R
of regions, typically the Haversine distance between the
centers of the two regions.

3 OPTIMAL LOCALIZATION ATTACK

Without co-location information (as in [4]) and under the as-
sumptions described in the previous section, the localization
problem translates to solving an HMM inference problem,
for which the forward-backward algorithm is a known solu-
tion. Essentially, the forward-backward algorithm defines
forward and backward variables that take into account
the observations before and after time t, respectively. The
forward variable is the joint probability of location of user
at time t and all the observations up to, and including, time
t. The backward variable is the conditional probability of all
observations after time t, given the actual location of user at
that time instant. Then, the posterior probability distribution
of the possible locations for the targeted user is obtained by
combining (i.e., multiplying and normalizing) the forward
and backward variables. With co-location information, the
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TABLE 1
Table of notations.

U Set of mobile users
R Set of regions that partition the whole area
N Number of users (N = |U|)
M Number of regions (M = |R|)
T Number of time instants

pu(·, ·) Mobility profile of user u
πu(·) The stationary distribution of pu
fu(·) Obfuscation function employed by user u

gu,v(·, ·) Co-location reporting function for users u and v
K Adversary’s background knowledge

au(t) Actual location of user u at time t
a(t) Actual locations of all the users at time t
u@t r User u reports being in r at time t
ou(t) Obfuscated location of user u at time t
o(t) Obfuscated locations of all the users at time t

u↔t v A co-location was reported between u and v at time t
cu,v(t) Binary variable incorporating whether u↔t v
Ct Set of all reported co-locations at time t
C Set of all reported co-locations

locations of the users are not mutually independent: as soon
as two users are co-located at some point in time t, their lo-
cations, before and after time t, become dependent. Actually,
the fact that two users meet a same third user (even if they
meet her at different time instants) suffices to create some
dependencies between their locations; this means that, to
perform the localization attack on a user, the adversary must
take into account the locations (i.e., the obfuscated location
information and the co-location information) of all the users
who are connected to u by a chain of co-location (i.e., the con-
nected component of u in the co-location graph). Formally
speaking, this means that the adversary cannot rely only
on the marginal distributions of the users’ location; instead
he must consider the joint distributions. In other words,
co-locations turn N disjoint inference problems (i.e., HMM
problems solved by the forward-backward algorithm) into
a joint inference problem.

pU(·, ·)

fU(·, ·) l1(·, ·)
o(1),C1 o(2),C2 o(3),C3

a(1) a(2) a(3) . . .

Fig. 3. Sample HMM for T = 3 time instants. States are represented by
red circles, and observations by blue-green rectangles. State transition
probabilities are specified by the joint user mobility profiles pU and
output probabilities are specified by a combination of fU (for individual
observations) and lt (for co-location observations).

To solve the localization problem, we consider the users
jointly and show that it translates to an HMM problem as
depicted in Figure 3. Note that more advanced learning
techniques, such as neural networks, could also be used.
We solve this problem by using the forward-backward algo-
rithm [7], [8]. For a set U of users and time t, we define the
following forward and backward variables:

αUt (r) , Pr (o(1) . . .o(t), C1 . . . Ct,a(t) = r | K)

βUt (r) , Pr (o(t+ 1) . . .o(T ), Ct+1 . . . CT |a(t) = r,K) (4)

where r denotes a vector of size N , i.e., r ∈ RN , and
represents the actual locations of all users at a single time
instant. These variables can be defined recursively (over t)

and, unlike in the case where no co-location observations
are available, their expressions involve the co-location infor-
mation. More specifically, we prove (in Appendix A) that for
all r ∈ RN , we have

αUt (r) =


πU (r) if t = 0

lt(r, C) · fU (r,o(t)) ·∑
ρ∈RN

αUt−1(ρ) · pU (ρ, r) if t > 0
(5)

and

βUt (r) =


∑

ρ∈RN

lt+1(ρ, C) · βUt+1(ρ)·

pU (r,ρ) · fU (ρ,o(t+ 1)) if t < T

1 if t = T

(6)

where r = (r1, . . . , rN ) ∈ RN, ρ = (ρ1, . . . , ρN ) ∈ RN,
r′ = (r′1, . . . , r

′
N ) ∈ R′N, πU (r) =

∏N
i=1 πui

(ri), fU (r, r′) =∏N
i=1 fui

(ri, r
′
i) , pU (ρ, r) =

∏N
i=1 pui

(ρi, ri), and lt(·, ·)
denotes the joint probability that the users report the set
of co-locations observed at time t, when the configuration
of their actual locations at t is given. That is, formally,

lt(r, C) , Pr (Ct|a(t) = r)

=
∏

ui,uj∈U

{
gui,uj (ri, rj) if (ui ↔t uj) ∈ Ct

1− gui,uj (ri, rj) otherwise
(7)

More specifically, this is a likelihood function that cap-
tures the probability that precisely the co-locations in Ct

are reported, taking into account the individual co-location
reporting function for every pair of users. As we assumed
that co-locations are reported independently of one another,
this likelihood can be expressed as a product of individual
co-location reporting functions for all pairs of users.

The intuition behind Equation (5) is that the forward
variable at time t can be expressed recursively, with respect
to time, by combining, for all possible locations of the users
at time t − 1: (1) the joint probability that the users were
at location ρ at time t − 1 and reported the obfuscated
locations and co-locations observed by the adversary up to
time t− 1 (this is captured by αUt−1), (2) the joint probability
that the users move from the locations ρ to the locations
r (this is captured by pU ), (3) the joint probability that the
users obfuscate their locations r to those observed by the
adversary o(t) (this is captured by fU ) and (4) the joint
probability that the users report co-locations Ct observed by
the adversary, assuming their locations r (this is captured
by lt(r, C)). Because users obfuscate their locations inde-
pendently from each other, the joint obfuscation probability
is the product of the individual obfuscation probabilities
(hence the expression of fU ). The same applies to pU and
lt(r, C). A similar line of reasoning applies to Equation (6).

The function lt(·, ·) captures the likelihood of observing
a set of co-location information (or not) given the actual
users’ locations. Schematically speaking (with a determinis-
tic vision where only real co-locations are reported, for the
sake of clarity), the set of possible locations for a user ui (at
time t), co-located with a user uj , consists of the locations
that can be obfuscated into the location reported by ui at
time t and that can be reached (according to ui’s mobility
profile) from a possible location of ui at time t− 1 and that
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can be obfuscated into the location reported by uj at time t
and that can be reached (according to uj ’s mobility profile)
from a possible location of uj at time t− 1.

Finally, the posterior probability distribution of the
users’ locations can be computed based on the forward
and backward variables, by using the following formula,
for ui ∈ U and at time t:

hui
t (r) = Pr (aui(t) = r | {o(t)}t=1..T , C,K)

=

∑
r∈RN | ri=r

αUt (r) · βUt (r)

∑
r∈RN

αUt (r) · βUt (r)
(8)

In short, the probability that the users are at given
locations at time t is computed based on all the observations
before and at time t (αt) and the observations after time t
(βt). The denominator is a normalization factor.

We now evaluate the complexity of the joint localization
attack. The first observation is that the size of the state
space (i.e., the locations of all users) is MN . To attack a
user at time t, the adversary needs to compute the values
of α up to time t and the values of beta down to time
t (using dynamic programming for optimal performance).
At each time instant, the adversary needs to compute the
values of these two variables for all possible values of their
inputs r ∈ RN (there are MN possible values for r). The
computation of each of these values requires summing over
the MN possible locations ρ at time t − 1; for each of the
possible locations, the computation of one element of the
sum takes Θ(N2) operations (the complexity of the compu-
tation of l dominates for the computation of β). Therefore,
the computation of the forward and backward variables, at
all time instants, for all possible values of the localizations
is Θ(N2TM2N ) operations. Note that the complexity is the
same whether the adversary attacks one or all the users
at one or all time instants. In fact, the adversary can pre-
compute the hut for all u and all t with a complexity that
is dominated by that of the computations of the forward
and backward variables. In summary, the complexity of the
localization attack on one or all of the users in U is

copt(N,T,M) = Θ(N2TM2N ) . (9)

The complexity of the optimal localization attack is pro-
hibitively high and prevents its use for the entire set of users
of a mobile social network; the optimal localization attack is
tractable only for small values of N , i.e., 2-3. In the next
section, we propose low-complexity alternatives for per-
forming low-complexity approximate localization attacks.

4 APPROXIMATE LOCALIZATION ATTACK

We propose two low-complexity alternatives for performing
approximate localization attacks. Essentially, the first care-
fully selects a small set of users to consider when attacking
a target user and performs an optimal joint localization
attack on this small set of users (i.e., considering only the
co-locations between these users). The intuition behind this
heuristic is that the locations of a user are significantly corre-
lated with those of only a limited number of users (e.g., a few
co-workers during work hours, and her family and close

friends the rest of the time). The second alternative makes
use of all available location and co-location information
(from all users) but only performs an approximate infer-
ence attack to localize users. We formulate the localization
problem as a Bayesian network and apply a well-known
inference algorithm, namely belief propagation.

4.1 Limited User-Set Heuristic
As discussed in Section 3, the optimal localization attack can
be efficiently performed only on small sets of users. This is
because the location of a target user u depends on locations
of all other users that are connected to u in the co-location
graph (where there is an edge between two users u and
v if u′ ↔t v for some time t). The rationale of our first
approximation is to limit the number of users, to whom the
target user’s location depends on, and to consider only those
that have a high location correlation with u. Concretely, we
choose the user(s) that have the largest number of reported
co-locations with the targeted user, and we perform an
optimal localization attack on the resulting set of users. We
call these users the co-targets of the targeted user. Depending
on his computational power, the adversary can choose one
or two such users (i.e., N = 2 or N = 3) to attack the target
with. The co-targets of a user u are chosen as follows:

co-target1(u) , argmax
v∈U\{u}

|{t ∈ {1, . . . , T} |u↔t v}| (10)

co-target2(u) , argmax
v∈U\{u,u′}

[
|{t ∈ {1, . . . , T} |u↔t v}|+

|{t ∈ {1, . . . , T} |u′ ↔t v}|
]

(11)

where u′ = co-target1(u) and | · | denotes the cardinality
of the set. More specifically, the first co-target of a user u is
the user with whom u has the more reported co-locations
during the time interval considered for the localization
attack. The second co-target of u is chosen so as to maximize
the number of co-locations with u plus the number of
co-locations with u’s first co-target. Note that the set of
considered users can be different for every targeted user;
in particular v = co-target1(u) /=⇒ u = co-target1(v).
The complexity of this heuristic is Θ(TM4) for N = 2 and
Θ(TM6) for N = 3 (obtained by replacing N by its value in
the generic expression (9) of the complexity of the optimal
attack).

4.2 Bayesian Networks-Based Approximation
We propose using approximation algorithms on Bayesian
networks, as a low-complexity alternative solution to the
localization problem. A Bayesian network is a graphical
model that encodes the probabilistic dependencies between
different random variables of interest [8], [9]. More specif-
ically, a Bayesian network is a directed acyclic graph in
which nodes represent random variables and the edges
model conditional dependence between the variables cor-
responding to the nodes they connect. In addition to its
(graph) structure, a Bayesian network is also specified by its
parameters: Each node has an associated conditional prob-
ability distribution (CPD), which specifies the probability
that the corresponding variable will take a certain value,
given a combination of values of the variables associated
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pu1(·, ·)

fu2(·, ·)

ou1(1) ou1(2) ou1(3)

au1(1)πu1(·) au1(2) au1(3)

ou2(1) ou2(2) ou2(3)

au2(1) au2(2) au2(3)

ou3(1) ou3(2) ou3(3)

au3(1) au3(2) au3(3)

cu1,u2(1) cu1,u2(2) cu1,u2(3)

cu2,u3(1) cu2,u3(2) cu2,u3(3)

cu1,u3(1) cu1,u3(2) cu1,u3(3)

gu1,u3(·, ·)
1− gu1,u3(·, ·)

. . .

Fig. 4. Sample Bayesian network for N = 3 users and T = 3 time
instants. Actual location nodes are represented by red circles, observed
location nodes by blue rectangles and observed co-location nodes by
green rectangles with rounded corners. Probabilistic dependencies are
specified by edges and conditional probability distributions (CPD), e.g.,
a co-location observation depends only on the actual locations of the
two involved users and the probabilistic dependency is captured by g.

with its predecessor nodes. Modeling our problem as a
Bayesian network enables us to exploit existing approximate
inference algorithms, such as the belief propagation (BP)
algorithm [9], [10] (which we use in the evaluation). BP
is an algorithm that converges to the optimal solution by
iteratively updating the posterior of a random variable,
based on that of its neighbors and on its CPD, using values
of the observed variables. For Bayesian networks that do
not contain undirected loops, which is not the case of our
model, the BP algorithm converges to the optimal solution
in only one iteration. Because of its iterative aspect, it bal-
ances (through the number of iterations) execution time and
accuracy. Moreover, by running the BP-based solution, the
adversary can obtain coarse-grained estimates of the users’
locations after a few iterations and update them with more
precise estimates as BP progresses. The heuristic presented
in the previous sub-section makes the most out of a subset
of the available information (i.e., optimal inference on the
data of the target user and her co-targets), whereas the BP-
based solution only approximates the optimal solution but
exploits all the available information (approximate inference
on the data of all the users).

We build a Bayesian network as illustrated in Figure 4
(for N = 3): For any user u and any time instant t, a
node is associated with the variable au(t) and another with
the variable ou(t). To represent the fact that the observed
location depends only on her actual location at that time, an
edge connects the corresponding nodes and the correspond-
ing CPD is fu. Additionally, an edge connects the node
corresponding to a user u’s actual location at time t to her
actual location node at time t+ 1, with its CPD determined
by her mobility profile pu (following from the Markov
assumption). For any pair u, v of users and any time instant,
an observed co-location node is associated with variable
cu,v(t), with its CPD specified by gu,v (it depends on the
actual location of the two users involved). Our Bayesian
network consists of T · N actual/observed location nodes

and T · N(N − 1)/2 observed co-location nodes.3 Location
nodes have one incoming edge, and co-location nodes have
two. Consequently, the complexity for one iteration of the
belief propagation algorithm is O(N2 · T ·M2).

We compare the approximate localization attack to the
optimal localization attack, and we measure its accuracy by
the average Hellinger and statistical distance between their
output region distributions (details in Appendix D).

5 DIFFERENTIAL-PRIVACY PERSPECTIVE

In this section, we complement our inferential approach to
privacy quantification, presented in the previous sections,
with a brief analysis of the effect of co-locations on users’
location privacy from a differential-privacy perspective. In
the geo-indistinguishability framework [12], [13] (i.e., the
application of differential privacy to geo-location), each
observation has a privacy cost that depends on the level
of noise added by the mechanism used (typically drawn
from a planar Laplace distribution). For instance, in order to
guarantee ε-differential privacy, one must introduce noise
with an amplitude such that the expected distance between
the actual location and the reported location is proportional
to 1/ε. Consider the case of a single time instant. If two
co-located users each report one obfuscated version of their
actual locations, the adversary has access to two observa-
tions of the same variable, i.e., the users’ common location.
Following the composability property of differential privacy,
this means that, to guarantee ε-differential privacy for the
users’ location, each individual reported obfuscated location
should satisfy (ε/2)–differential privacy (unless the two
users agree on reporting the same obfuscated location, as
discussed in Section 7 dedicated to countermeasures). This
means that the expected distance between the users’ actual
locations and the obfuscated locations they report is dou-
bled, thus causing a substantial utility loss. This reasoning
can be generalized to an arbitrary number of co-located
users: At every time instant, the level of noise a user must
introduce (and thus the utility loss she faces), in order to
retain the same level of privacy in the presence of co-location
information, is proportional to the number of co-located
users.

A more complex analysis of the effect of co-locations,
from a differential-privacy perspective, could be carried
out by leveraging on the Putterfish framework [14] (or
more recently [15]) which enables taking into account the
correlation between entries in a differential-privacy analysis.
We leave this research direction to future work.

6 EXPERIMENTAL EVALUATION

Using a dataset of mobility traces, we evaluate the effect of
co-locations on users’ privacy, with respect to the various
localization attacks presented in the previous sections.

3. Note that when the probability of two users reporting a co-location
between them is null (e.g., non-friend users in a social network),
the corresponding nodes can be removed. As suggested by Dunbar’s
number [11], a user has a limited number of friends. Therefore, in many
contexts, the number of co-location nodes grows linearly with N .
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Fig. 5. Illustration of the dataset used in the evaluation. Most traces are
located in the region of Beijing (left); we focus on a small active area
that corresponds to the campus of Tsinghua University and we partition
it by using a 5× 5 square grid (middle). The heat-map (right) shows the
number of samples in each region (logscale).

6.1 Dataset, Methodology and Experimental Setup
The dataset was collected by Microsoft Research Asia, in the
framework of the GeoLife project [16]. It comprises the GPS
traces (i.e., sequences of time-stamped latitude-longitude
couples, sampled at a rate of one point every 1-5 seconds)
of 182 users, collected over a period of over three years. The
GPS traces are scattered all over the world; but most of them
are located in the region of Beijing, China. We processed the
data as follows, in order to fit in our formalism.

Space discretization. We select the area of ∼ 4.4 km ×
4.4 km, within Beijing, that contains the largest number of
GPS samples, and we filter out GPS samples that are outside
of this area. This geographic area corresponds to the campus
of Tsinghua University (longitude ranging from 116.3 to
116.35 and latitude ranging from 39.97 to 40.01, see Figure 5).
We partition the selected area into 25 regions by using a
5×5 square grid. The GPS coordinates of each sample are
translated into the region (i.e., the grid cell) they fall into.

Time discretization. We split the continuous time interval
into one-hour time sub-intervals that correspond to time
instants in our formalism. For each time sub-interval t and
for each user u, we set the user’s actual location in that time
interval (i.e., au(t)) to the region corresponding to the sam-
ple that is the closest to the midpoint of the considered time
sub-interval. If a user’s trace does not contain any samples
in a given time sub-interval, the user’s actual location is set
to a dummy region r⊥, leaving us with partial user traces.

Co-location generation. As the dataset does not contain
explicit co-location information reported by the users, we
use synthetic co-locations that we generate as follows: At
each time instant, we generate a co-location between two
users according to the probabilistic co-location reporting
function g·,·(·, ·), based on their discretized actual locations
(if they are different from r⊥). We consider a special case of
the co-location reporting function (Equation (1)) as follows:

g·,·(ru, rv) =

{
ν if ru = rv
µ if ru 6= rv

(12)

As stated in the model, the adversary is assumed to
know the values of µ and ν. Intuitively, µ represents the
probability a fake co-location is reported, and ν represents
the probability a true co-location is reported. This model
assumes that for any user, reporting a co-location does not
depend on the actual location where she and her friend are
and that the user chooses to report their co-location with
a fixed probability. In order to simplify the evaluation, we
assume that the co-location reporting function is the same

among any pair of users, as in the case of a Bluetooth
scenario. We could relax this assumption and make ν and
µ functions of the particular pair of users; for example, if a
social graph of relationships between users were available,
we could consider ν, µ > 0 only for pairs of users for which
a social relationship exists, and 0 for all other user pairs, as
users typically report co-locations on social networks only
with their friends. Regarding the values of ν and µ, several
cases can also be considered: ν = 1 and µ = 0 would
correspond, for example, to an ideal Bluetooth scenario, in
which devices discover each other automatically and report
co-locations with all neighboring devices; ν < 1 and µ = 0,
could also correspond to a Bluetooth scenario, where co-
locations are reported with only some of the neighboring
devices. In our evaluation, we will consider both cases.

For each user, we compute the number of real co-
locations4 she has with every other user in the dataset,
across the full user traces. We keep only the users for which
there exists another user with whom they have at least 200
co-locations. For these users, we consider their common time
interval (i.e., the longest time interval during which all these
users have at least one sample); we obtained an interval
of ∼6000 hours. Within the common interval, we sample
10 short traces of 300 continuous hours such that (1) all
users have at least 10% of valid samples (i.e., , different from
r⊥) and (2) all users have at least 20 co-locations with their
co-target1 (as defined in Equation (11)). This leaves us with
a total of 5 users.

User mobility profiles construction. We build the mobility
profiles {pu}u∈U of the users based on their entire dis-
cretized traces by counting the transitions from any region
to any region (in R) in one time instant.

Obfuscation. We consider that users report a single (or
none), potentially obfuscated, location at each time instant.5

This means that the set R′ in which the obfuscated location
ou(·) takes values is R∪{r⊥}. We consider, for each user u,
that two location-privacy protection mechanisms are used
together: First, the location is hidden (i.e., obfuscated to
r⊥) with a probability λu and then, if the location has not
been hidden, it is replaced by a region (chosen uniformly at
random) at a distance of at most du from the user’s actual
discretized location (i.e., a region). If the actual location of
a user is not known (i.e., set to r⊥), the LPPM returns r⊥
with probability 1. In our evaluation, we vary λu from 0 to
1 and we set du to the size of one grid cell; this means that,
if it is not hidden, a user’s location is obfuscated either to
its actual value (with probability 0.2) or to one of the four
adjacent regions (e.g., 2, 6, 8 and 12 for region 7 in Figure 5),
each with probability 0.2.

Privacy Evaluation. We evaluate the location privacy of
the users based on the metric defined in (3). For each user
and for each short trace, we generate 20 random obfuscated
traces (remember that obfuscation is a random process),
and we perform a localization attack on each of them. We
compute the average location privacy of each user across
the different obfuscated traces and across the different time
instants. Time instants for which the location of a user is

4. Note that by real co-locations, we mean that the users are at the
same location (i.e., their actual locations at a given time instant are the
same), regardless of the fact that the co-location is reported or not.

5. We assume this because of the limited size of the considered grid
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not known (i.e., set to r⊥) are not taken into account in the
computation of their average over time.

Limitations. Unfortunately, we could not obtain real
datasets from online social networks containing both
(coarse-grained) location and co-location data. Due to the
synthetic nature of the reported location and co-location
information in our data source, our experimental setup
does not perfectly reflect a real usage case. Therefore, the
results presented in this section should be taken with a
pinch of salt as they cannot directly be interpreted as the
magnitude of the threat in real life. Yet, we believe that they
are significant enough for understanding the effect of co-
locations on location privacy, the sources of privacy loss,
and the relative performance of the proposed heuristics.
Also, the number of users considered in most of our evalu-
ations (i.e., 5) is relatively small. In order to overcome the
aforementioned shortcomings, we intend to collect a large-
scale dataset from an existing social network. We also intend
to run experiments on large grids (i.e., larger than the 5×5
grid we used).

6.2 Experimental Results
We experimentally evaluate the algorithms, presented in
Section 4, in different scenarios, with different settings.
For the solution based on belief propagation, we relied on
the implementation provided in the Bayes Net Toolbox for
Matlab (https://code.google.com/p/bnt/); for the optimal
inference algorithm, we used our own JAVA implementa-
tion. The purpose of our evaluation is to assess the raw
performance of our algorithms, but also to compare their
results. In addition, we analyze the effect of the different
parameters of the model (including the individual LPPM
settings of the users and the differences between the individ-
ual LPPM settings of the users) and of the set of co-locations
considered in the localization attack.

Effects of true co-locations and LPPM settings. We begin
our evaluation by analyzing the effect of (1) the amount of
reported true co-locations and (2) the LPPM settings (i.e., w/
or w/o obfuscation and the location hiding probability λ, as-
sumed to be the same across users) in the case of two users,
i.e., the target user and her first co-target are considered
jointly in an optimal localization attack, namely the limited
user set approximation with N = 2. For this evaluation, we
consider the case where no fake co-locations are reported.
The results are depicted in Figure 6. The top sub-figure
shows the case where no obfuscation is used (i.e., the users
disclose their actual locations with probability 1 − λ and
hide them otherwise), and the bottom sub-figure shows the
case where obfuscation is used (i.e., the users disclose their
obfuscated locations, specifically a region chosen uniformly at
random among the actual location and the four immediate
neighboring regions, with probability 1 − λ and hide them
otherwise). The top graphs show a box-plot representation
(i.e., first quartile, median, third quartile and outliers) of the
users’ location privacy expressed in terms of the expected
error of the adversary, in kilometers (left axis) and in pro-
portion of the size of the considered geographic area (right
axis). For each couple of values (λ, ν), we draw one box-plot
to aggregate the data-points obtained for all users and for
all the 20 randomly generated obfuscated versions of each
of the considered actual traces.
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(b) With obfuscation

Fig. 6. Privacy (top), absolute privacy loss (middle) and relative privacy
loss (bottom) for the limited user set attack with N = 2 users, when
users do not report fake co-locations (µ = 0). The privacy loss is
expressed w.r.t. the case where no co-locations are available (ν = 0,
µ = 0); the histograms show median values.



9

Note that without obfuscation, the case λ = 0 leads to
zero privacy as users always disclose their actual locations.
It can be observed that the proportion of reported true
co-locations consistently decreases the location privacy of
the users. To quantify this decrease, we plot (middle and
bottom graphs) the privacy loss caused by the use of co-
location information, with respect to the case where no true
co-locations are reported, i.e., ν = 0. We show both the
median absolute privacy loss (in kilometers, middle graph)
and the median relative privacy loss (in percentage of the
privacy in the case ν = 0, bottom graph). Note that the
median privacy loss is equal to the median of the differences
(w.r.t. the case ν = 0) and not to the difference of the
median privacy. Consider for example, the case λ = 0.4 and
ν = 0.5: In the case without obfuscation the median privacy
loss is approximately 80m, which corresponds to a decrease
of approximately 21%. The median absolute privacy loss
can go up to 260m (λ = 0.8, ν = 1) and the median
relative privacy loss up to 62% (λ = 0.2 and ν = 1). We
observe the same trend, with a more modest loss, in the
case where obfuscation is used. We emphasize that when
there is an obfuscated location observation, the adversary
has only 5 choices of cells to locate the user: the cell of her
actual location and 4 neighboring cells of the actual location.
Hence, an upper bound for privacy in this case is given
by the inter-cell distance (0.87km). It can be observed in
Figure 5(b) that when all observations are available (λ = 0),
this upper bound is indeed respected.

As a complementary experiment, we also studied the
effect of co-location information when users employ spatial
cloaking instead of obfuscation. The same trend is apparent
in this case. Detailed results are presented in Appendix B.

In the next few sections, we focus on the case where
users obfuscate their locations, report their true co-location
information with probability ν = 0.5 and do not report fake
co-locations (µ = 0).

Effects of the differences of individual LPPM settings. We
provide an analysis of the effect of the differences, in the
users’ LPPM settings, on the users’ location privacy in
Appendix C of the supplemental material (see also [1]).

Comparison of the proposed low-complexity alterna-
tives. Here, we compare, through experimentation, the
proposed inference algorithms for the localization attack,
by taking into account different scenarios, as depicted in
Figure 7. We assume all users use the same LPPM settings,
i.e., same value for λ and disclose only their obfuscated lo-
cations. In Scenario (a), we consider, in turn, all target users
in our set and perform an individual localization attack
on each of them, using only their own reported locations
and no co-locations. This corresponds to the baseline case
ν = 0, which was presented in detail in Figure 6b. We then
consider the case of an adversary that exploits co-locations.
We assume users report only a limited proportion of their
true co-locations, with probability ν = 0.5, and no fake co-
locations (µ = 0). Scenario (b) corresponds to the case of
an adversary that, in order to attack a target user, performs
an optimal joint inference attack on the target and her co-
target, as described in Section 3. This scenario corresponds
to the case ν = 0.5 in Figure 6b. Scenarios (c) and (d)
correspond to the case of an adversary that performs an
optimal joint attack on the target and her two co-targets.

We distinguish two cases, (c) – in which the co-locations
between the co-targets are ignored and (d) – in which all
co-locations between any of the three users are considered.
We make this distinction solely to quantify the privacy loss
that stems from the use of co-locations that do not directly
involve the target. In practice, an adversary would always
consider Scenario (d) because it takes into account more in-
formation at no extra cost. Finally we consider Scenario (e),
that corresponds to an adversary that uses all reported co-
locations but solves an approximate joint inference problem,
as described in Section 4.2. We set the maximum number of
iterations of the BP algorithm to 20.

Figure 8 shows the results of our comparison. The top
graph shows a box-plot representation of users’ privacy, for
each of scenarios (a)-(e). To quantify the different effects on
the users’ privacy of the set of considered co-locations and of
the inference algorithm used, we show (bottom) the absolute
and relative privacy loss, with respect to Scenario (a), for
each of the scenarios (b)-(e). It can be observed by compar-
ing scenarios (a)-(d) that, unsurprisingly, the users’ privacy
decreases with the amount of considered co-locations. The
comparison between scenarios (c) and (d) shows that co-
locations between the target’s co-targets improve the per-
formance of the localization attack, but not as much as co-
locations that directly involve the target user (Scenario (b)
and Scenario (c)). Finally, we observe that the approximation
based on belief propagation (Scenario (e)), which takes into
account all co-locations and the location information of all
the users, outperforms the first heuristic (N ≤ 3), at a low
computational cost. In this scenario, the median absolute
privacy loss can go up to 182m (λ = 0.8) and the median
relative privacy loss up to 27% (λ = 0), when ν = 0.5
and µ = 0. We can thus conclude that, when using belief
propagation instead of joint optimal inference, the loss in
inference accuracy is far smaller than the gain that stems
from using all of the available co-location information and
the location information of all the users.

In order to assess the performance of the belief prop-
agation algorithm, we also compared it with the optimal
inference algorithm, for all scenarios (a)-(d). For each of
these scenarios, we computed the Hellinger distance be-
tween the BP algorithm and the optimal inference. We
obtained the following distances: 3.79E-4 for Scenario (a),
5.18E-3 for Scenario (b), 1.79E-2 for Scenario (c) and 3.31E-
2 for Scenario (d). Similarly, we computed the statistical
distances and obtained the following: 1.86E-4 for Scenario
(a), 3.79E-3 for Scenario (b), 1.84E-2 for Scenario (c) and
3.10E-2 for Scenario (d). These very small values for both
the Hellinger and statistical distance, for all scenarios, show
that the BP algorithm converges in about 20 iterations. In
fact, we observe that the approximation provided by the BP
algorithm is already quite close to the optimal after a very
small number of iterations (i.e., 2-3) which suggests that the
attack can be carried out efficiently by the adversary.

To further analyze and compare the performance of the
different inference algorithms, we measured their execution
times in a typical setting (λ = 0.2, ν = 0.5 and µ = 0, for a
single user) on an 8-core Intel(R) Xeon(R) CPU E3-1270 V2 @
3.50GHz with 16GB of RAM. We obtained the following re-
sults: Scenario (a): 1.82±0.0471s; Scenario (b): 3.87±0.0498s;
Scenario (d): 2,555±73.6s; Scenario (e): 2.66±0.0151s. These
results demonstrate the practicality of the BP-based attack.
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Fig. 7. Co-locations considered in the evaluation: (a) no co-locations
(also referred to as No co-target), (b) only co-locations between the
target and co-target1 (heuristic, N = 2), (c) only co-locations between
the target and co-target1 and between the target and co-target2 (heuris-
tic, N = 3), (d) all co-locations between the target, co-target1 and co-
target2 (heuristic, N = 3), (e) all co-locations (belief propagation in our
proposed Bayesian network formalization depicted in Figure 4).
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Fig. 8. Comparison of the different localization attacks for the scenarios
(a)-(e) depicted in Figure 7, with obfuscation. The privacy loss (middle
and bottom) is evaluated w.r.t. Scenario (a). In scenarios (b)-(e), we
consider users report true co-locations with probability ν = 0.5 and that
they do not report fake co-locations (µ = 0).

Effects of users’ behavior of reporting fake co-
locations. Here, we analyze the effect of reporting fake co-
locations. We focus on the case of two users, a target and her
first co-target, who both obfuscate their locations and use
the same location hiding probability. We present the case
where λ = 0.2, but we mention that we observe the same
trend for all values of λ. We vary ν – the probability to report
true co-locations, as well as µ – the probability to report fake
co-locations. We perform a joint optimal localization attack.
The results are depicted in Figure 9. The top graph shows
a box-plot representation of users’ privacy, and the middle
and bottom graphs show the median absolute and relative
privacy loss, with respect to Scenario (a) (where no co-
location information is considered). We observe that when
all the true co-location information between the target and
her co-target is reported (ν = 1), the users’ privacy increases
as there are more fake co-locations reported (as µ increases).
However, when none of the true co-locations are reported

(ν = 0), we observe that the users’ privacy decreases with the
increase of available fake co-location information. In other
words, an adversary can exploit the absence of a reported
fake co-location at some time instant to infer that the users
must, in fact, be co-located (for large values of µ).6 This
is an interesting observation, that shows an adversary can
learn not only from available co-location information but
also from the absence of co-location information. Finally, in
the case where only some of the true co-location information
is reported (ν = 0.5), we observe the largest users’ privacy
for values of µ which lead to a high uncertainty for the
adversary (these are middle values of µ). We emphasize that
users’ privacy in the case where ν = µ = 0 (users never
report co-location regardless of whether they are co-located
or not) is the same as that where ν = µ = 1 (users always
report co-location regardless of whether they are co-located
or not). Finally, an important observation is that regardless
of the amount of available co-location information (true or
fake), users’ privacy is never larger than that in the case
where no co-locations are considered. This means that an
adversary cannot be significantly confused by misleading
co-location information, so reporting such fake co-locations
would not be an effective privacy protection practice.
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Fig. 9. Privacy (top), absolute privacy loss (middle) and relative privacy
loss (bottom) for the limited user set attack with N = 2 users, with
obfuscation, λ = 0.2 and ν ∈ {0, 0.5, 1}. The privacy loss is expressed
w.r.t. the case where no co-locations are available; the histograms show
medians. We observed similar results for other values of λ (not shown).

Co-location Information on a Larger Scale. We evaluate
the Bayesian network-based approximation on a set of 38
users. We compare it with the optimal individual localiza-
tion attack (where no co-location information is used) and
observe the same trend that co-location information further

6. This is similar to the case of the entropy of a binary variable that is
flipped with a given probability. The entropy increases with the flipping
probability if it is lower than 0.5 and decreases beyond 0.5.
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reduces location privacy (detailed results are available in
Appendix E).

7 COUNTERMEASURES

So far, we presented and analyzed a localization attack
that exploits co-location information. In this section, we
propose two countermeasures that mitigate the (negative)
effect of co-locations on the users’ location privacy. These
countermeasures apply to the case where users explicitly
report their co-locations, typically on a social network. For
co-location information leaked by the underlying technolo-
gies, such as IP addresses and Bluetooth and Wi-Fi scans
of neighboring devices, technology-dependent techniques
should be used. For instance, a user can hide her IP address
from the service provider by using a proxy, a VPN or a
peer-to-peer anonymization network such as Tor. Note that
countermeasures are not limited to those presented in this
section. Altering the individual LPPM settings (the value
of λ, µ and ν, using obfuscation or cloaking) would also
reduce, to some extent, the privacy risk. Unfortunately there
is not much else a user can do to protect herself, other than
hide or generalize co-location information or prevent it from
being inferred. In practice, this would translate to hiding IP
addresses, disabling Bluetooth, or blurring faces in pictures
posted on online social networks, as proposed in [17]. Sim-
ply put, the proposed countermeasures operate as follows:
The first consists in making co-located users report the same
(obfuscated) location and the second consists in generalizing
time and/or user information contained in the reported co-
locations.

7.1 Coordinated LPPMs
In order to make the inference attacks we described in
previous sections less effective, we propose a simple coun-
termeasure: user coordination. This means that if users report
being co-located at some time instant and also want to
report obfuscated individual check-ins, they should coordi-
nate them (i.e., report the same obfuscated location). Such a
mechanism requires collaboration between users, which can
be challenging to achieve in practice. A possible solution,
in the case of explicitly reported co-locations, is that a user
who posts a co-location information embeds her obfuscated
location so that all the co-located users report the same
obfuscated location (if they do report their locations). Col-
laboration could also be achieved by means of short-range
ad-hoc communication technologies such as Wi-Fi Direct or
Bluetooth, as the co-located users are physically close. We
emphasize that this does not mean that co-located users
have to also report individual check-ins, but rather that if
they want to report individual check-ins, they agree to make
them the same. We argue this would bring no detriment
to users’ utility of individual check-ins, as the obfuscation
mechanism selects a random neighboring location to the
actual location, which users have no control or preference
over. Intuitively, reporting single co-locations in a coordi-
nated fashion should give an adversary less information,
because it maximizes the set of possible locations co-located
users could be in. As described in Figure 1, based on
individual check-ins of co-located users, an adversary can
infer that both users should be located in the intersection
of possible locations of each of the co-located users. With

coordination, the possible locations of users are the same,
thus maximizing their intersection. Note that this counter-
measure has an effect only if both users use obfuscation.
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Fig. 10. Localization attack with and without coordination for scenario (e)
depicted in Figure 7, with obfuscation, ν = 0.5 and µ = 0. The privacy
loss (middle and bottom) is evaluated w.r.t. scenario (a).

We present the effect of using coordination for Sce-
nario (e), where all available co-location is used. We infer
the user location by using the BP algorithm for Scenario
(e) and optimal inference for Scenario (a). We focus on the
case where all users use obfuscation and have the same
location hiding probability, λ. We assume users report true
co-location information with probability ν = 0.5 and no fake
co-location information. We consider both the case where
all users use coordination and the case where no users co-
ordinate. We compare these with Scenario (a), where no co-
location information is observed. Figure 10 shows the results
of our experiment–a box plot representation of user privacy
in the top graph, and median privacy loss with respect to
Scenario (a) in the bottom graphs. We observe that when
users coordinate, their privacy can still decrease compared
to the case where no co-locations are used, but there is a
privacy gain with respect to the case where co-locations are
reported in an uncoordinated fashion. This privacy gain is
higher, as λ decreases. For instance, when λ = 1, users
always hide their individual location and there is nothing to
coordinate, so coordination has no effect on users’ location
privacy. However, as users report more individual check-ins
(λ decreases), the privacy gain stemming from coordination
increases, with a peak for λ = 0 (where users’ privacy loss is
reduced by half when coordinating). We can conclude that,
by coordinating their individual check-ins with their friends
at times where users also report being co-located, users can
limit the privacy loss caused by the co-location information.
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7.2 Generalization of Co-locations

We propose another countermeasure for reducing the effec-
tiveness of inference attacks that make use of co-location
information. In the case of single location observations, a
recommended privacy-protection technique is obfuscation
by generalization (i.e., report a large area that contains the
user’s actual location). Similarly, we propose that users gen-
eralize co-location information, in a coarse-grained fashion;
specifically, this implies generalizing the time component
of a co-location, and/or the co-located user(s) component.
Generalizing the time component in a co-location informa-
tion means reporting a time range instead of the exact time
(e.g., use “morning” instead of “10am”). Generalizing the
user component means excluding the names of the friends
a user is with and only reporting the number of friends
(e.g., instead of reporting being with her friend Alice, a user
would just report being with a friend). More generally, in the
case where a user u is co-located with k friends u′1, u′2, . . . ,
u′k he would no longer report k pairwise co-locations with
each of them (u↔t u

′
1, . . . , u↔t u

′
k), but instead report one

generalized co-location u ↔t k friends. The user component
of the co-location could also contain social ties information
such as “with two colleagues”, or “with some friends”.

We analyze in more depth the case of generalizing the
co-located user(s) component of a co-location. Intuitively, if
this mechanism is employed by the users, it is harder for
the adversary to exploit a co-location information because
he has to explore all possible combinations of real users a
user is with and assign a likelihood to each of them. This
leads to

(N colleagues
u
k

)
possible choices to explore for the gener-

alized co-location “with k colleagues”, where N colleagues
u is

the number of user u’s colleagues in the social networks,
and 2N

friends
u +N family

u choices for the generalized co-location
“with some friends and family”. More specifically, the joint
variables αU· (·) and βU· (·) (Equation (5) and Equation (6))
would include a summation in the computation of the
likelihood of observing the obfuscated co-locations (l·(·, C))
for all possible instantiations of all reported co-locations at
time t (for α) or t + 1 (for β) by all users. This would
drastically increase the complexity of the optimal inference
attack. Note that generalizing the user component of the
co-locations would also drastically increase the complexity
of the BP-based solution; the current Bayesian network
(Figure 4) could not be used anymore. We will investigate
this as part of future work. In summary, this countermea-
sure protects the users’ privacy by making the inference
prohibitively computationally expensive for the adversary.

Obfuscating the time component of co-locations would
also lead to a drastic increase in complexity because the
adversary would have to consider all combinations of exact
time instances when users are co-located (which makes the
computation of the joint α, β variables nontrivial). Nat-
urally, obfuscating both components of co-location infor-
mation would result in the greatest complexity increase.
We leave the design and in-depth analysis of inference
algorithms when a combination of the proposed counter-
measures is employed by users to future work. We intend to
analytically evaluate the inference complexity and empiri-
cally evaluate the users’ privacy gain and potential utility loss
in different scenarios of employed countermeasures.

8 RELATED WORK

Location is identity. Even if the set of locations shared by
a user is anonymized, and her true identity is hidden from
the location-based service provider, the observed trajectories
can be re-identified [18]–[21]. This attack is made by linking
available information about users’ mobility in the past with
their observed traces. To protect against such attacks, many
location obfuscation mechanisms have been proposed in the
literature; they suggest users hide their locations at certain
locations, or reduce the accuracy or granularity of their re-
ported locations [22]–[24]. These techniques increase users’
privacy by making it more difficult for an adversary to de-
anonymize users and localize or track them over time. The
location privacy of users in such settings can be computed
using the expected error of an adversary in estimating their
locations [4]. In such an inference framework, an adversary
has some background knowledge on users’ mobility models.

The adversary’s information, however, is not limited to
mobility models. With most users being members of social
networks, an adversary can de-anonymize location traces
by matching the graph of co-traveler users with their social
network graph [25]. Co-travelers are those who have been in
each others’ physical proximity for a considerable number
of times. Researchers have extensively studied the problem
of inferring social ties between users based on their physical
proximity [26], [27]. Recent revelations about NSA surveil-
lance programs also show that this type of information is
of great use for tracking and identifying individuals [28].
The dual problem, i.e., inferring location from social ties,
has also been studied by the research community [29]–[31].
In [32], the authors exploit proximity information detected
via Bluetooth, which is similar to co-location, to build an
opportunistic ad-hoc localization algorithm by using inter-
section techniques similar to what we use in our attack.

The correlation between different users’ information also
opens the door to a new type of privacy threat. Even if a user
does not reveal much information about herself, her privacy
can be compromised by others. In [33], the authors study
how information revealed, from pictures, by a user’s friends
in social networks can be used to infer private information
about her location. Private information about, for example,
user profile and her age can also be inferred from shared
information on online social networks [34], [35]. Mobile
users, connecting to location-based services from a same
IP address, can also compromise the privacy of those who
want to keep their location private [36]. The loss in privacy,
due to other users, has also been shown in other contexts
such as genomics [37], [38]. Finally, interdependent privacy
risks have been studied by using game-theoretic models
for predicting the optimal behavior of rational users, in
the context of social networks [39], [40] and genomics [41].
Other game-theoretic interdependence models for security
and privacy have been surveyed in [42].

Extracting co-location information about users, i.e., who
is with whom, is becoming increasingly easier. More specifi-
cally, with the proliferation of mobile social networks, where
users can check-in with others at various locations, the
threat of available co-location information on users’ location
privacy is clear (as pointed out in [3]). Despite the men-
tioned works on quantifying the location privacy and the
privacy of users in social networks, as well as the extensive
research on privacy loss due to others, there has not been a
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study on evaluating location privacy where co-location in-
formation is considered. We bridge the gap between studies
on location privacy and social networks, and we propose
the first analytical framework for quantifying the effects of
co-location information on location privacy, where users can
also make use of obfuscation mechanisms.

9 CONCLUSION

In this paper, we have studied the effect on users’ location
privacy when co-location information is available, in addi-
tion to individual (obfuscated) location information. To the
best of our knowledge, this is the first paper to quantify
the effects of co-location information that stems from social
relationships between users on location privacy; as such it
constitutes a first step towards bridging the gap between
studies on location privacy and social networks. Indeed,
most studies on geo-location and social networks look at
how social ties can be inferred from co-locations between
individuals and how social ties can be used to de-anonymize
mobility traces. We have shown that, by considering the
users’ locations jointly, an adversary can exploit co-location
information to better localize users, hence decreasing their
individual privacy. Although the optimal joint localization
attack has a prohibitively high computational complexity,
the polynomial-time approximate inference algorithms that
we propose provide good localization performance. An im-
portant observation from our work is that a user’s location
privacy is no longer entirely in her control, as the co-
locations and the individual location information disclosed
by other users significantly affect her own location privacy.

The message of this work is that protection mechanisms
must not ignore the social aspects of location information.
Because it is not desirable to report dummy lists of co-
located users (as this information is displayed on the users’
profiles on social networks), a location-privacy preserving
mechanism needs instead to generalize information about
co-located users or to generalize the time of a social gath-
ering, as well as the locations of users at other locations, in
order to reduce the effectiveness of the attacks we suggested
in this paper. As a first attempt to mitigate the privacy
risks stemming from co-location information, we proposed
a simple countermeasure that relies on cooperation between
users and have demonstrated its effectiveness. We intend to
address the design of social-aware location-privacy protec-
tion mechanisms (running on the users’ mobile devices) to
help the users assess and protect their location privacy when
co-location information is available. An important aspect of
generalization techniques is the tension between utility and
privacy: For a user, reporting to be with “some friends”
might not be sufficiently informative, and the generalized
co-location information would fail to serve the user’s pur-
pose. Usability is also a crucial aspect for the adoption of
technical protection mechanisms. We plan to investigate
both the utility and usability aspects of such protection
mechanisms through targeted user surveys.

As part of future work, we also plan to investigate the
case where co-locations are not explicitly reported by the
users, instead the adversary has access to the social ties
between the users (e.g., friends, family, colleagues). Such ties
can be associated with probabilistic co-location patterns, for
instance, the fact that the locations of work-colleagues are
often correlated during office hours.
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APPENDIX A
PROOF OF EQUATIONS (5) AND (6)
As the adversary does not have knowledge about con-
ditional mobility profiles for the users, their mobil-
ity profiles are independent of each other – formally,
Pr (au(t) = r|au′(t) = r′) = Pr (au(t) = r), for any users
u and u′. Using Bayes’ rule it follows that, for any r ∈ RN

Pr (a(t) = r) =
N∏
i=1

Pr (aui
(t) = ri) (A.1)

We start the proof of Equation (5) by proving its base case:
t = 0.

αU0 (r) = Pr (a(0) = r | K) (A.2)
= Pr (au1

(0) = r1 | K)× · · · ×
Pr (auN

(0) = rN | K) (A.3)
= πu1

(r1) . . . πuN
(rN ) (A.4)

= πU (r) (A.5)

In step (A.2)→(A.3) of the derivation, we use the indepen-
dence assumption (A.1); in step (A.3)→(A.4), we use the fact
that the probability of a user u being in some region r at time
t = 0, given her mobility profile, is captured by the steady
state vector, i.e., πu(r), as there are no observations at, or
before, t = 0. We now complete the proof for any t > 0.

αUt (r) = Pr (o(1) . . .o(t), C1 . . . Ct,a(t) = r | K) (A.6)
= Pr (Ct |o(1) . . .o(t), C1 . . . Ct−1,a(t) = r,K) ·

Pr (o(1) . . .o(t), C1, . . . , Ct−1,a(t) = r | K) (A.7)
= Pr (Ct |a(t) = r,K) ·

Pr (o(1) . . .o(t), C1 . . . Ct−1,a(t) = r | K) (A.8)
= lt(r, C) ·

Pr (o(1) . . .o(t), C1 . . . Ct−1,a(t) = r | K) (A.9)
= lt(r, C) · Pr (o(t) |a(t) = r,K) ·

Pr (o(1) . . .o(t− 1), C1 . . . Ct−1,a(t) = r | K)

(A.10)
= lt(r, C) · fU (r,o(t)) ·

Pr (o(1) . . .o(t− 1), C1 . . . Ct−1,a(t) = r | K)

(A.11)
= lt(r, C) · fU (r,o(t)) ·∑

ρ∈RN

Pr (o(1) . . .o(t− 1), C1 . . . Ct−1,

a(t) = r,a(t− 1) = ρ | K) (A.12)
= lt(r, C) · fU (r,o(t)) ·∑

ρ∈RN

Pr (o(1) . . .o(t− 1), C1 . . . Ct−1,

a(t− 1) = ρ | K) ·
Pr (a(t) = r |a(t− 1) = ρ,K) (A.13)

= lt(r, C) · fU (r,o(t)) ·∑
ρ∈RN

αUt−1(ρ) · pU (ρ, r) (A.14)

In step (A.6)→(A.7) of the derivation, we apply the chain
rule. In step (A.7)→ (A.8), we use conditional independence:
given a(t) = r, the probability that the locations r can

represent the reported Ct depends neither on the observa-
tions, nor on K. In step (A.8)→(A.9), we use Definition (7).
In step (A.9)→(A.10), we apply the chain rule and use
conditional independence: given a(t) = r, o(t) does not
depend on the past observations. In step (A.10)→(A.11),
we use the fact that the location obfuscation process is
applied independently for each user. In step (A.11)→(A.12),
we apply the law of total probability, conditioning over all
the possible actual locations ρ users could have been at, at
time t− 1. In step (A.12)→(A.13), we use the chain rule and
conditional independence: given a(t− 1) = ρ, a(t) does not
depend on the past observations. In step (A.13)→(A.14), we
use Definition (4).
The proof of Equation (6) follows the same line of reasoning.

APPENDIX B
EFFECTS OF TRUE CO-LOCATIONS AND SPATIAL
CLOAKING
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Fig. 11. Privacy (top), absolute privacy loss (middle) and relative privacy
loss (bottom) for the limited user set attack with N = 2 users, when
users do not report fake co-locations (µ = 0) and use spatial cloaking or
location hiding as protection mechanisms. The privacy loss is expressed
w.r.t. the case where no co-locations are available (ν = 0, µ = 0); the
histograms show median values.

Similarly to our experimental setup presented in Fig-
ure 6b, we evaluate user privacy for a different LPPM,
namely location hiding (with probability λ) or spatial cloak-
ing (with probability 1 − λ). When using cloaking, a user
does not report the region corresponding to her actual lo-
cation, but instead a meta-region consisting of four regions,
one of which is the actual location. In Figure 11 we present
our results. We conclude that the proportion of reported true
co-locations consistently decreases the location privacy of
the users (as was the case for the other LPPM based on
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location hiding and location obfuscation), but in this case
the privacy loss is more evident. This could be explained by
the fact that in the case of cloaking, when observing a meta-
region of size four regions, the adversary has to explore four
possible regions as candidates for the user’s actual location;
whereas in the case of obfuscation, five possible candidates
for the actual location have to be explored (one of the four
neighboring regions of the observed (obfuscated) region and
the observed region itself).

APPENDIX C
EFFECTS OF THE DIFFERENCES OF INDIVIDUAL
LPPM SETTINGS

In this section, we analyze the effect of the differences, in the
users’ LPPM settings, on the location privacy (loss) due to
co-locations. To do so, we focus on the case of two users, a
target and her co-target, both who obfuscate their locations
but with different hiding probabilities λtarget and λco-target.
We perform a joint optimal localization attack. The results
are depicted in Figure 12 under the form of heat-maps that
represent the target user’s location privacy (a) as well as her
absolute (b) and relative (c) privacy loss (with respect to the
case ν = 0) as functions of the respective LPPM settings
λco-target (x-axis) and λtarget (y-axis).

A first observation is that co-locations always decrease
the privacy of the target (i.e., all values in Figure 12b
are positive) and that the more information the co-target
discloses, the worse the privacy of the target is (i.e., the cells
of the heat-map depicted in Figure 12a become lighter, when
going from right to left on a given row).

The diagonals of the heat-maps correspond to the case
λco-target = λtarget, which is depicted in more detail in
Figure 6. The region of the heat-map above the diagonal
corresponds to the case where the target is more conser-
vative, in terms of her privacy attitude, than her co-target
(i.e., λco-target < λtarget). It can be observed that the in-
formation disclosed by the target herself compromises her
privacy more than the information disclosed by her co-
target, e.g., the cell (0.6,0) is lighter (which means that the
target’s privacy is lower) than the cell (0,0.6).

By comparing the columns “λco-target = 1” and “no co-
target” (two right-most columns in Figure 12a), we can
observe the privacy loss stemming from the use, through the
co-location information, of the co-target’s mobility profile
alone (as the co-target never discloses her location). This is
substantial. The intuition behind this result is that co-located
users are likely to be at a place that is often visited by both
of them, which narrows down the choice of locations the
adversary needs to explore when localizing both users.

Finally, in the extreme case where the target never dis-
closes location information and her co-target always does so
(top-left cell of the heat-maps in Figures 12b and 12c), the
privacy loss for the target is 190m, which corresponds to a
decrease of 18%. This case (and in general the cases where
the target never discloses location information, i.e., the top
row of the heat-maps) highlights the fact that, as reported
co-locations involve two users, users lose some control
over their privacy: Without revealing any information about
herself, a user can still have her privacy decreased by other
users, due to co-location information.
For the rest of the evaluation, we focus on the case where all
users have the same LPPM settings (i.e., same values of λ).
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Fig. 12. Median values of the target’s location privacy (loss), for the
limited user set attack with N = 2 users, when the target and her co-
target have different values of λ (with obfuscation, ν = 0.5, µ = 0). The
diagonals correspond to the values of Figure 6b.

APPENDIX D
COMPARISON METRICS FOR THE ACCURACY OF
THE DIFFERENT INFERENCE ALGORITHMS

We compare the approximate localization attack to the
optimal localization attack, and we measure its accuracy
by the average Hellinger and statistical distance between
their output region distributions. Specifically, if h denotes
the output of the optimal localization attack ĥ that of the
approximate localization attack, then

1

N · T
∑
u∈U

∑
t∈{1,...,T}

1√
2

√√√√∑
r∈R

(√
hut (r)−

√
ĥut (r)

)2

1

N · T
∑
u∈U

∑
t∈{1,...,T}

1

2

∑
r∈R

∣∣∣hut (r)− ĥut (r)
∣∣∣.
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APPENDIX E
CO-LOCATION INFORMATION ON A LARGER SCALE

In Section 6 and Section 7, we considered a small dataset of
users, due to the high complexity of the optimal solution. We
denote this small dataset by Us. Here, we evaluate our belief
propagation solution on a larger dataset, in order to quantify
location privacy loss when co-locations from a larger set of
users are available. To this end, we select a subset Ul of
users in the GeoLife dataset, such that each selected user
must have at least one real co-location7 with any other user
in Ul (across their full traces). This results in 38 users being
selected. Note that Us ⊂ Ul. We emphasize that due to the
low availability of real co-locations across the GeoLife users,
this represents a weaker constraint of minimum desired co-
locations, compared to that which we use when sampling
the users in our small dataset Us. The low availability of co-
locations, coupled with the sparsity of the location informa-
tion available, also motivates sampling 10 short individual
collections of actual traces in the following way: For each
u, a target user in Ul, we generate actual traces for all the
users in Ul such that (1) u has at least 10% of valid samples
(i.e., different from r⊥) and u has at least 1 co-location with
her co-target1.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

P
ri

v
ac

y
 [

k
m

]

N
o
rm

al
iz

ed
 p

ri
v

ac
y

Scenario (a)
Scenario (e)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

P
ri

v
ac

y
 l

o
ss

 [
k

m
]

 0

 20

 40

 60

 80

0.0 0.2 0.4 0.6 0.8 1.0

P
ri

v
ac

y
 l

o
ss

 [
%

]

Location hiding probability (λ)

Fig. 13. Comparison of the localization attacks for target users in Ul
on Scenarios (a) and (e), as depicted in Figure 7, with obfuscation.
The privacy loss (middle and bottom) is evaluated w.r.t. Scenario (a). In
Scenario (e), we consider users report true co-locations with probability
ν = 0.5 and that they do not report fake co-locations (µ = 0).

We perform an individual localization attack by optimal
inference for Scenario (a), considering, in turn, each user
in the set Ul as the target user (using only their own
reported locations and no co-locations). We then consider

7. Note that by real co-locations, we mean that the users are at the
same location (i.e., their actual locations at a given time instant are the
same), regardless of the fact that the co-location is reported or not.

Scenario (e), the case of an adversary that exploits co-
locations between any of the users in Ul. We assume users
report only a limited proportion of their true co-locations,
with probability ν = 0.5, and no fake co-locations (µ = 0).
We perform an approximate joint inference algorithm, by
using the belief propagation algorithm with at most 20
iterations. We then compare the privacy in Scenario (e) to
that in Scenario (a), in the case where all users use the
same LPPM settings, i.e., same value for λ and disclose
only their obfuscated locations. Figure 13 shows the results
of our comparison. It can be observed that, unsurprisingly,
the users’ privacy decreases with the amount of considered
co-locations. The privacy loss can seem somewhat modest,
in comparison to the one observed in our previous experi-
ments using Us. This can be explained by the fact that users
in Us have more real co-locations than those in Ul (a user has
a median number of real co-locations in their actual traces
of 5.5 and 2, respectively). We further compare the privacy
of only the target users from Us (but still using all the co-
locations in the larger dataset Ul) with that when using co-
locations among users from Us. Figure 14 shows the results
of this comparison. It can be observed that the availability
of co-locations with a larger number of users can further
reduce privacy (privacy loss is as much as 31% when λ = 0).
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Fig. 14. Comparison of the localization attacks for target users in Us on
Scenario (a), Scenario (e) considering co-locations only with and among
users in Us and Scenario (e) considering co-locations with and among
all users in Ul. The privacy loss (middle and bottom) is evaluated w.r.t.
Scenario (a). We consider users report true co-locations with probability
ν = 0.5, do not report fake co-locations (µ = 0) and use obfuscation.


