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, we propose to represent a large scale system as an interconnection of sub-systems and to perform a hierarchical analysis by propagating the IQC characterization of each uncertain sub system through the interconnection. For a given computational time, the conservatism of the analysis dramatically depends on the class of IQC under consideration. In this paper, we propose a new class of IQC which characterizes the phase of uncertain system. An application to the robustness analysis of a PLL network reveal that the use of this class of IQC improves the trade-off between conservatism and computation time.

I. INTRODUCTION

Large scale systems (LSS) such as networks or interconnected systems have become important nowadays. With the technological development and the miniaturization of components, high complexity systems are designed in order to achieve a high level of performance, see e.g. Phase Locked Loop (PLL) networks in synchronous multi-core microprocessor systems [START_REF] Korniienko | Control law synthesis for distributed multi-agent systems: Application to active clock distribution networks[END_REF], [START_REF] Korniienko | Performance control for interconnection of identical systems: Application to PLL network design[END_REF]. However, during the fabrication process, technological dispersions, system ageing, etc. could dramatically affect the performance level: so it is crucial to a priori ensure that the desired level of performance is obtained when the system is realized. Since the first step of the design is to obtain a mathematical model of the system, the differences between the realized system and the model can be expressed as an uncertain model. Ensuring a certain level of performance then reduces to a worst case performance analysis problem (robustness analysis). Robustness analysis investigates the stability and the performance of uncertain Linear Time Invariant (LTI) models. Within this framework, even if the underlying problem is NP hard, many efficient methods were developed based on relaxations as convex optimization problem under Linear Matrix Inequality (LMI) constraints [START_REF] Boyd | Convex Optimization[END_REF], see e.g. the µ upper bound [START_REF] Fan | Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics[END_REF] in the µanalysis approach [START_REF] Doyle | Analysis of feedback systems with structured uncertainties[END_REF] or the Integral Quadratic Constraint (IQC) approach [START_REF] Megretski | System analysis via integral quadratic constraints[END_REF].

Nevertheless, these methods can not be practically applied to uncertain large scale systems, since the computation time of the robustness analysis becomes dramatically important.

In order to avoid the direct µ-analysis approach and to reduce the computational load, many techniques are used depending on the nature of the interconnection topology: normal [START_REF] Kao | Characterization of robust stability of a class of interconnected systems[END_REF] or unitarily diagonalized [START_REF] Jönsson | A popov criterion for networked systems[END_REF] and [START_REF] Jönsson | A scalable robust stability criterion for systems with heterogeneous LTI components[END_REF] (with a normal adjacency matrix). In these works, the authors exploited the particular structure of the interconnection topology and IQC characterization of sub-systems and/or interconnections to derive scalable robust stability conditions. In [START_REF] Letas | Scalabe decentralized robust stability certificates for networks of interconnected heterogenous dynamical systems[END_REF], the authors propose scalable stability test based on Nyquistlike conditions. However, it could be applied only for SISO interconnected systems. An interesting approach is proposed in [START_REF] Anderson | Distributed robust stability analysis of interconnected uncertain systetems[END_REF] and [START_REF] Anderson | Robust stability analysis of sparsely interconnected uncertain systems[END_REF] where the authors exploit the sparse structure of the interconnection. Based on an IQC characterization of the interconnection, a sparse frequency depended LMI condition is obtained ensuring robust global stability. This condition can be then solved efficiently based on Cholesky factorization techniques [START_REF] Blair | An introduction to chordal graphs and clique trees[END_REF] assuming a chordal patterns for interconnection topology. However, it could be difficult, for a given LSS, to model it with an interconnection which has a chordal pattern especially if, besides the stability, global system performance is under consideration.

In this paper we rather propose an alternative to [START_REF] Anderson | Distributed robust stability analysis of interconnected uncertain systetems[END_REF] and [START_REF] Anderson | Robust stability analysis of sparsely interconnected uncertain systems[END_REF] approach for robust performance analysis of LSS without any assumption on the interconnection topology: Hierarchical approach. Initially introduced by Safonov [START_REF] Safonov | Propagation of conic model uncertainty in hierarchical systems[END_REF], it exploits the hierarchical structure of the interconnection and splits the overall analysis problem into several low dimensional problems. The coupling between these problems is ensured by appropriate IQC conditions such that it implies overall system robust analysis result including stability and performance.

According to the hierarchical approach, a large scale system is represented as a tree with leafs (an interconnection of N systems). Each system j can be described as the interconnection of sub-systems which are the leafs of system j and so on until having sub-systems that can only be described as the certain interconnection of parametric or dynamical uncertainties. Since the effect of an uncertainty and a level of (e.g. H ∞ ) performance can be expressed as Integral Quadratic Constraints on input-output signals, the hierarchical approach consists on the recursive propagation of the IQC of the uncertainties to the IQC which defines the performance of the large scale system i.e. propagate the local input-output behaviour evaluated using IQC through the network layer by layer, see [START_REF] Dinh | Embedding of uncertainty propagation: application to hierarchical performance analysis[END_REF], [START_REF] Dinh | Convex hierrachical analysis for the performance of uncertain large scale systems[END_REF] for the details. Even if the hierarchical robustness analysis is possibly more conservative than the usual one, the benefit is to reduce the computational time. Furthermore, in order to perform the propagation, it is necessary to compute a set of IQCs satisfied by the input and output of an interconnection whose subsystems are defined by a set of IQCs. A set of IQCs is generated by combining elementary classes of IQC. In [START_REF] Dinh | Embedding of uncertainty propagation: application to hierarchical performance analysis[END_REF], [START_REF] Dinh | Convex hierrachical analysis for the performance of uncertain large scale systems[END_REF], we investigate the computation of different classes of IQC. Nevertheless, these classes were not adapted for describing (uncertain) phase which is crucial e.g. in vibration control applications. In this paper, in order to improve the trade-off between the conservatism and the computation time of the hierarchical approach, we investigate the computation of an IQC corresponding to the phase information of an interconnection of sub-systems. If the phase of a Single Input Single Output (SISO) system can be easily defined, its definition for a Multiple Input Multiple Output (MIMO) system is more difficult. To address this problem, researchers had defined many concepts such as principal phases [START_REF] Postlethwaite | Principal gains and principal phases in the analysis of linear multivariable feedback systems[END_REF], phase spread [START_REF] Owens | The numerical range : A tool for robust stability studies?[END_REF], phase matching [START_REF] Harshavardhana | Spectral factor reduction by phase matching: the continuous-time single-input single-output case[END_REF], multi-variable phase margin [START_REF] Bar-On | Phase margin for multivariable control systems[END_REF], phase envelope [START_REF] İftar | Modeling of uncertain dynamics for robust controller design in state space[END_REF], phase sensitive structured value [START_REF] Tits | Robustness under bounded uncertainty with phase information[END_REF] and structured phase margins [START_REF] Chellaboina | The structured phase margin for robust stability analysis of linear systems with phase and time delay uncertainties[END_REF].

In this paper, we reveal that the definition based on the numerical range of a complex matrix Γ [START_REF] Owens | The numerical range : A tool for robust stability studies?[END_REF] is a nice candidate to evaluate the uncertain phase since it can be expressed as a quadratic constraint on z and w with z = Γw. In [START_REF] Tits | Robustness under bounded uncertainty with phase information[END_REF], the authors considered that each uncertainty block can be phase characterized inside a cone sector and then investigate the stability according to those phase information. The uncertainty phase characterization of [START_REF] Tits | Robustness under bounded uncertainty with phase information[END_REF] can be seen as a special case of the phase characterization presented in this paper in the sense that for the phase rotation a matrix is used rather than a scalar in [START_REF] Tits | Robustness under bounded uncertainty with phase information[END_REF]. The advantage of this rotation matrix is to allow to characterize the phase uncertainty according to any point in the complex plane and not just the origin as in [START_REF] Tits | Robustness under bounded uncertainty with phase information[END_REF]. In this paper, the problem considered is different and more challenging than the robust stability analysis with phase information considered in [START_REF] Tits | Robustness under bounded uncertainty with phase information[END_REF].

In the case of SISO transfer function, the proposed definition reduces to the usual one. Furthermore, using the separation of graph theorem [START_REF] Scorletti | Robustness analysis with time delays[END_REF], we reveal that an IQC corresponding to the phase information of an interconnection of sub-systems can be computed using quasiconvex optimization involving LMI constraints. We then use the proposed IQC in order to reduce the conservatism of the hierarchical analysis of a PLL network.

This paper is organized as follows: section II presents the problem formulation of the uncertain phase characterization. Some preliminary background is presented followed by the proposed approach in Section III. The main results are presented in Section IV with some illustrative examples in Section V. The advantage of using the phase uncertainty to perform the hierarchical analysis on a PLL network is illustrated in Section VI.

Notations RH n×m ∞ denotes the set of matrices rational transfer functions with m inputs and n outputs. A * (respectively A T ) is the complex conjugate (respectively transpose) of a the matrix A. Re(A) (respectively Re(x)) represents the real part of a complex matrix A (respectively the complex vector x) and Im(A) (respectively Im(x)) represents the imaginary part. To simplify the notations, A R (respectively x R ) will be used to denote the real part and A I (respectively x I ) for the imaginary part. I n and 0 n×n is the identity and the zero matrices respectively, when their dimensions are not specified, it is assumed they are know from the context. The denotes the Redheffer star product [START_REF] Doyle | Review of LFTs, LMIs, and µ[END_REF]. bdiag(A, B, . . . ) denotes the block diagonal matrix whose diagonal blocks are A, B, . . . .

II. PROBLEM FORMULATION

Let be the uncertain system G = {M ∆|∆ ∈ ∆}, that is, an uncertain system is represented as the interconnection of a certain part M ∈ RH (nz+nq)×(nw+np) ∞ and an uncertain part ∆ ∈ ∆ where ∆ denotes the set of uncertainties traditional in robust analysis literature:

∆ =      ∆ ||∆|| ∞ < 1 ∆ = bdiag(δ r 1 I n1 , . . . , δ r nr I nn r , δ c 1 I c1 , . . . , δ c nc I cn c , ∆ 1 , . . . , ∆ n f )     
where

• δ r j ∈ R is a real n j times repeated uncertainty • δ c j ∈ C is a complex n c times repeated uncertainty • ∆ j ∈ C k j l ×k j
m is a a full bloc of complex uncertainties. see Fig. 1. In the sequel, for the sake of briefness, the uncertain system is denoted M ∆. Furthermore, for a given frequency ω 0 , let us denote G ω0 the set {M (jω 0 ) ∆(jω 0 ) | ∆ ∈ ∆}. The numerical range of a complex matrix Γ, denoted N (Γ), can be used to define the phase of MIMO systems. It is defined to be a compact and convex set of C given by [START_REF] Owens | The numerical range : A tool for robust stability studies?[END_REF]:

N (Γ) = {w * z | z = Γw, w ∈ C nw and w = 1} (1)
In the case of a MIMO system G, Γ represents the frequency response of G at the frequency ω 0 . In order to define the phase of an uncertain MIMO system M ∆, the numerical range is extended to the union of the numerical ranges N (G(jω 0 )) for any G ∈ G which will be referred to as union of numerical ranges. Let us define in the complex plane the cone sector as the sector containing all these numerical ranges. It is defined by a spread angle α and the angle γ measured between the bisectrix of α and the real axe direction, see Fig. II where a sampling of the union of numerical ranges, for a given frequency ω 0 , and the cone sector with a centre at the origin are represented. For any Fig. 2. Cone sector containing at a frequency ω 0 , N (G(jω 0 ) for any G ∈ G numerical range N (Γ) which is not contained in the right half plane, one can make N (Γ) rotated by an angle -γ such that the resulting numerical range N (e -jγ Γ) will be centred around the real axis in the right half plane with a new γ = 0. To improve the flexibility of the results, this rotation e -jγ can be generalized to be an homothetic transformation and a rotation using a scaling matrix Ω ∈ C nz×nw . The resulting numerical range is N (Ω * Γ) and it belongs to the sector centred at the origin with an angle spread α denoted sec(0, α). This scaling matrix is a generalization of the rotation introduced in [START_REF] Tits | Robustness under bounded uncertainty with phase information[END_REF]. The uncertain phase problem can then be formulated as follows.

Problem 2.1: Let G be an uncertain system. For a given frequency ω 0 , find the smallest α such that:

∃Ω ∈ C nz×nw , ∀Γ ∈ G ω0 , N (Ω * Γ) ⊂ sec(0, α).
Remark 2.1: For SISO LTI systems without uncertainty, the numerical range reduces to one point N (Γ) = G(jω 0 ); in this case α = 0 and Ω = e j arg(G(jω0)) .

In the general case, one can define an offset characterized by C ∈ C nz×nw and seek the smallest sector with the corresponding notation sec(C, α). This problem can be solved by finding the cone sector containing all the numerical ranges of Γ -C. Hence, one can search for the smallest α such that the numerical range N (Ω * (Γ -C)) will be on the right half plane and centred at the origin.

Problem 2.2: Let G be an uncertain system. For a given frequency ω 0 and a given offset C, find the smallest α such that:

∃Ω ∈ C nz×nw , ∀Γ ∈ G ω0 , N (Ω * (Γ -C)) ⊂ sec(0, α).

III. PRELIMINARY AND PROPOSED APPROACH

A. Preliminary Definition 3.1: The stable system G is said to be {X(jω), Y (jω), Z(jω)} dissipative, with X(jω) = X * (jω) ∈ C nz×nz , Y (jω) ∈ C nz×nw and Z(jω) = Z * (jω) ∈ C nw×nw if for every z(jω) and w(jω) such that z(jω) = G(jω)w(jω):

z(jω) w(jω) * X(jω) Y (jω) Y (jω) * Z(jω) z(jω) w(jω) < 0 (2) 
Remark 3.1: Dissipativity properties define a set of relations describing the input-output behaviour of a system G. They represent a set of Quadratic Constraints (QC) involving the input-output signals in the case of LTI systems. In a more general framework for non linear systems, they can be generalized to a set of Integral Quadratic Constraints (IQC) [START_REF] Megretski | System analysis via integral quadratic constraints[END_REF]. Note that in the case of LTI systems, IQC are simplified to QC.

Without lost of generality, the frequency dependence will be dropped in the sequel. A frequency griding is defined and the different operations and ideas will be introduced for a given frequency ω 0 i.e. the {X(jω 0 ), Y (jω 0 ), Z(jω 0 )} dissipativity will be written as:

z w * X Y Y * Z z w < 0 (3) 
The following result is a direct application of a Theorem 4.1 of [START_REF] Scorletti | Robustness analysis with time delays[END_REF]. Theorem 3.1: The uncertain system M ∆ is {X, Y, Z} dissipative for every ∆ ∈ ∆ if and only if there exists an hermitian matrix Φ = Φ * such that:

1)

∆ I * Φ11 Φ12 Φ * 12 Φ22 Φ ∆ I > 0 ∀∆ ∈ ∆ and 2) M I *    Φ22 0 Φ * 12 0 0 X 0 Y Φ12 0 Φ11 0 0 Y * 0 Z    M I < 0
Remark 3.2: Theorem 3.1 presents necessary and sufficient conditions for the uncertain system M ∆ to be {X, Y, Z} dissipative. Testing these conditions can be expressed as the optimization problem of finding Φ such that conditions 1) and 2) are satisfied. However, condition 1) makes the optimization problem infinite dimensional since it has to be tested for all ∆ ∈ ∆, which is difficult from a computational point of view. The complexity can be reduced by introducing an affine set Φ ∆ such that for any Φ ∈ Φ ∆ , condition 1) is satisfied. The set Φ ∆ depends on the nature of ∆. In this case, Theorem 3.1 gives only sufficient conditions for all ∆ ∈ ∆ and the conditions of Theorem 3.1 define a finite dimensional LMI optimization problem that consists in finding one Φ ∈ Φ ∆ such that the second condition of Theorem 3.1 is satisfied. From a computational point of view, this problem can be efficiently solved. The consequence of this parametrization of Φ is a possible conservatism in the obtained results. However, this last can be reduced by an appropriate choice of Φ ∆ depending on the class of the uncertainties ∆.

Remark 3.3: If conditions 1) and 2) of Theorem 3.1 are satisfied for all ω and since ∆ is a connected set that contains 0 then the stability is guaranteed, see Theorem 4.1 of [START_REF] Scorletti | Robustness analysis with time delays[END_REF]. Furthermore, when ∆ is not a ball of center 0, conditions 1) and 2) still imply the results of Theorem 3.1 if ∆ is a connected set with ∆ 0 such that M ∆ 0 is stable.

B. Proposed approach

Find a cone sector sec(0, α) of Problem 2.1 (that contains N (Γ), ∀Γ ∈ G jω0 ) can be formulated as find b such that: . Please note that the matrix Ω is used to rotate all numerical ranges in the right half plane such that γ = 0, see Fig. 3. Inequalities (4) represent a couple of Quadratic Constraints For any other given C = 0 i.e. as defined in Problem 2.2, the cone sector sec(C, α) is given by:

Re(w * Ω * z) -βIm(w * Ω * z) > 0 β = ±b
z w * X Y Y * Z z w < 0 
Where:

X = 0 Y = Ω(-I + jβI) Z = -(Y * C + C * Y ) (6) 
With β = ±b, the inequalities of ( 6) define two dissipativity properties {X 1 , Y 

M I * Φ22i 0 Φ * 12i 0 0 Xi 0 Yi Φ12i 0 Φ11i 0 0 Y * i 0 Zi M I < 0 i = 1, 2
Where:

X 1 = 0, X 2 = 0 Y 1 = Ω(-I + j cot α 2 I), Z 1 = -(Y * 1 C + C * Y 1 ) Y 2 = Ω(-I -j cot α 2 I), Z 2 = -(Y * 2 C + C * Y 2 )
Then, the cone sector sec(0, α) contains all the numerical ranges of the uncertain system M ∆ -C scaled by Ω: . It proposes only sufficient conditions for the existence of a cone sector sec(0, α) containing all the numerical ranges. Testing them is a finite dimensional feasibility problem involving LMI which can be efficiently solved [START_REF] Boyd | Linear matrix inequalites in system and control theory[END_REF]. If a cone sector exists, it is possible to search for the smallest one. To this purpose, we introduce a size measure for the cone sector. The objective is to minimize α. Since tan( After defining the size measure of the cone sector sec(C, α), Problem 2.2 can be addressed such that an upper bound on the angle α can be computed efficiently. 

N (Ω * (M ∆ -C)) ⊂ sec(0, α) ∀∆ ∈ ∆ Proof: Theorem 4.
min λ, Ω D 1 , G 1 , D 1 , G 1 D 2 , G 2 , D 2 , G 2 λ 1) λ D1 0 0 D2 + D1 0 0 -D2 > 0 λ M 0 I 0 0 M 0 I * B 1 0 0 B 2 M 0 I 0 0 M 0 I + . . . • • • + M 0 I 0 0 M 0 I * A 1 0 0 A 2 M 0 I 0 0 M 0 I > 0 2) D1 0 0 D2 > 0 M 0 I 0 0 M 0 I * B 1 0 0 B 2 M 0 I 0 0 M 0 I > 0
with i = {1, 2}, B i and A i are given by:

B i = -Di 0 -G * i 0 0 0 0 Ω -Gi 0 Di 0 0 Ω * 0 -(Ω * C+C * Ω) A i =(-1) i-1   -Di 0 -G * i 0 0 0 0 -jΩ -Gi 0 Di 0 0 (-jΩ) * 0 -j(Ω * C-C * Ω)   Proof:
For the cone sector defined by the dissipativity inequality (6) and using Theorem 4.1, Problem 2.2 can be solved with finding a minimum upper bound α on α such that sec(C, α) ⊂ sec(C, α). Hence, Problem 2.2 becomes:

Find Φ i = {Φ 11i , Φ 12i , Φ 22i } ∈ Φ ∆ , X i , Y i , and Z i , i = {1, 2}, that maximize b such that: M I * -Φ22i 0 -Φ * 12i 0 0 -Xi 0 -Yi -Φ12i 0 -Φ11i 0 0 -Y * i 0 -Zi M I > 0 i = 1, 2 (7) 
where X i , Y i and Z i defined as in ( 6) for β = +b and β = -b. Let us define Φ 1 and Φ 2 as:

Φ 1 = Φ 1 + b Φ 1 Φ 2 = Φ 2 -b Φ 2 (8) 
where Φ i and Φ i are chosen in the form of DG scaling presented in [START_REF] Fan | Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics[END_REF]:

Φ i = -D i G i G * i D i Φ i = -D i G i G * i D i with: D i > 0.
In order to make sure that Φ i ∈ Φ ∆ , one needs to guarantee that:

D 1 + b D 1 > 0 D 2 -b D 2 > 0 (9)
Then, inequalities [START_REF] Megretski | System analysis via integral quadratic constraints[END_REF] become:

M I * -D i 0 -G * i 0 0 0 0 Ω -G i 0 D i 0 0 Ω * 0 -(Ω * C+C * Ω) + (-1) i-1 b   -D i 0 -G * i 0 0 0 0 -jΩ -G i 0 D i 0 0 (-jΩ) * 0 -j(Ω * C-C * Ω)     M I > 0 (10) 
Evaluating for i = {1, 2} and since b > 0, inequalities ( 9) and ( 10) become:

1 b D 1 + D 1 > 0 1 b D 2 -D 2 > 0 1 b M I * B 1 M I + M I * A 1 M I > 0 1 b M I * B 2 M I + M I * A 2 M I > 0 
The last inequalities can be combined together as it is shown in the first condition of Theorem 4.2. Hence, minimizing 1/b such that the last inequalities holds is a Generalized Eigenvalues Problem since condition 2) of Theorem 4.2 holds.

Remark 4.1: Theorem 4.2 is a Generalized Eigenvalues Problem, it has been proved that it is a quasiconvex optimization problem [START_REF] Boyd | Linear matrix inequalites in system and control theory[END_REF]. It can be solved efficiently using the projective method described in [START_REF] Nesterov | Interior Point Polynomial Methods in Convex Programming: Theory and Applications[END_REF]. Nevertheless, since the conditions are sufficient, Theorem 4.2 allows to compute a sector sec(C, α) which contains the smallest cone sector sec(C, α). The conservatism can be reduced by an appropriate choice of Φ ∆ depending on the nature of uncertainties: D scaling [START_REF] Doyle | Analysis of feedback systems with structured uncertainties[END_REF], DG scaling [START_REF] Fan | Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics[END_REF] or DGL scaling [START_REF] Scorletti | Improved efficient analysis for systems with uncertain parameters[END_REF]. Here the DG scaling is chosen to characterize Φ i for illustration purposes. Nevertheless, one can choose other types of scaling depending on the nature of uncertainties. In this case, the structure of parametrization matrices Φ i will be different but the idea remains the same i.e. decomposing Φ i into two parts: Φ i and Φ i . Remark 4.2: With respect to Theorem 4.1, Theorem 4.2 introduces an extra condition (condition 2) in order to obtain a Generalized Eigenvalues problem due to the advantage of this optimization problem. This condition has two nice justifications: first, it guarantees that the interconnection M ∆, ∀∆ ∈ ∆ is stable. Second, it guarantee that N (Ω * (Γ -C)) is located in the right half plane. Then, one needs to minimize the upper bound α:

α ∈ - π 2 , + π 2 s.t N (Ω * (Γ -C)) ⊂ sec(0, α)
On the other side, introducing this condition enforces more constraints on Φ 1 ∈ Φ ∆ and Φ 2 ∈ Φ ∆ if they are chosen as in [START_REF] Kao | Characterization of robust stability of a class of interconnected systems[END_REF] with Φ i = 0: they must satisfy that all the numerical ranges N (Ω * (Γ -C)) are in the right half plane and respect their dissipative properties at the same time. Hence, an extra conservatism may appear (besides that of Remark 4.1). To overcome this issue, Φ 1 and Φ 2 are chosen of the form [START_REF] Kao | Characterization of robust stability of a class of interconnected systems[END_REF].

Here, D i and G i ensure that the interconnection M ∆ is stable and N (Ω * (Γ-C)) is in the right half plane. While D i and G i introduce an additional degree of freedom to ensure that N (Ω * (Γ -C)) ⊂ sec(0, α). Hence, with this choice, the conservatism is reduced.

V. ILLUSTRATION EXAMPLES

In this section, we will show some examples that illustrate our results graphically.

A. SISO Uncertain Systems

The following example is inspired from [START_REF] Dinh | Embedding of uncertainty propagation: application to hierarchical performance analysis[END_REF]. Let us consider the following SISO example with structured scalar uncertainties: The sampling of the uncertain response presented in green dots is obtained for a griding of ω n and ω d equal to 0.01 and 0.001 respectively. The nominal response is equal to 21+45i and it is presented with a red dot. The cone offset C was fixed arbitrary at C = 60 + 80i. The obtained results shows very low conservatism and define a cone angle α = 49.52 • .

G SISO (jω 0 ) = -ω 2 0 + 2ξ n ω n (jω 0 ) + ω 2 n -ω 2 0 + 2ξ d ω d (jω 0 ) + ω 2

B. MIMO Uncertain Systems

For MIMO case, a simple example can be given by:

G M IM O (jω 0 ) = o dir × ×G SISO (jω 0 ) × i dir -C
with same frequency ω 0 = 1 rad/s, o dir = (1 -1.5) T , i dir = (1 2) and C = 50(1+5i)I 2 . Fig. 5 shows a sampling of the union of numerical ranges while Fig. 6. shows a sampling of the union of numerical ranges scaled by Ω * with the obtained cone sector.

As it can be seen in In order to synchronize all the network, the PLLs exchange information through an interconnection structure. This example is suitable for illustration of the proposed hierarchical analysis approach as the performance is naturally evaluated in the frequency domain [START_REF] Dinh | Convex hierrachical analysis for the performance of uncertain large scale systems[END_REF].

A. PLL network description

In this application, all the PLLs are homogeneous i.e. have the same description and uncertainty set ∆. Due to the manufacturing process, technological dispersions are inevitable. They can be presented as parametric uncertainties belonging to the same set ∆. Then, the description of the N PLLs is:

T i (jω 0 ) = k i (jω 0 + a i ) -ω 2 + k i jω 0 + k i a i ∀i ∈ {1, . . . , N }
Where k i ∈ [0.76, 6.84] × 10 4 , a i ∈ [91. 1, 273.3] and ω 0 is the current frequency defined by griding. Furthermore, T i (jω 0 ) can written as the interconnection of certain and uncertain part:

T i (jω 0 ) = ∆ i M P LL ∆ i ∈ ∆
With ∆ i is given by:

∆ = ∆ i = δ ki 0 0 δ ai ||∆ i || ∞ ≤ 1
The exchange of information between PLLs is modelled by an interconnection matrix defined in [START_REF] Dinh | Embedding of uncertainty propagation: application to hierarchical performance analysis[END_REF] (see equation ( 13)). The performance of this network can be characterized by its global input and output w g and z g using the global frequency response magnitude bound. (See more details in [START_REF] Dinh | Embedding of uncertainty propagation: application to hierarchical performance analysis[END_REF] and [START_REF] Dinh | Convex hierrachical analysis for the performance of uncertain large scale systems[END_REF]).

B. Hierarchical Approach

For the PLL network, the hierarchical approach consists of two steps:

1) Local step: Characterize the input-output behaviour of each PLL using dissipativity properties. In addition to the cone sector, one can use other quadratic constraints that can be interpreted by simple geometric forms: disc and band, see [START_REF] Dinh | Embedding of uncertainty propagation: application to hierarchical performance analysis[END_REF] and [START_REF] Dinh | Convex hierrachical analysis for the performance of uncertain large scale systems[END_REF]) for more details. Since all the PLLs are homogeneous, the dissipativity properties obtained for one PLL are valid for all the 16 PLL.

2) Global step: Evaluate the performance of the network by finding a minimal upper bound on its frequency response magnitude using the dissipativity properties describing the PLLs and obtained in the local step. See [START_REF] Safonov | Propagation of conic model uncertainty in hierarchical systems[END_REF], [START_REF] Dinh | Embedding of uncertainty propagation: application to hierarchical performance analysis[END_REF] and [START_REF] Dinh | Convex hierrachical analysis for the performance of uncertain large scale systems[END_REF] for more details. In this step, one can combine the different dissipativity properties of each PLL: disc, disc+band, disc+cone, etc. and propagate this input-output characterization of each sub-system to investigate the performance of the network.

C. The PLL network performance analysis

The performance analysis results of the PLL network presented in Fig. 7 and summarized in TABLE I. The direct µ-analysis approach presents the less conservative results with a maximum peak of 6.01dB comparing to the different hierarchical approaches. However, computation time is significant: 346.7s. To overcome the time issue, the authors of [START_REF] Dinh | Embedding of uncertainty propagation: application to hierarchical performance analysis[END_REF] and [START_REF] Dinh | Convex hierrachical analysis for the performance of uncertain large scale systems[END_REF] introduced the hierarchical approach for the PLL network performance analysis with two sub-system characterizations: disc and band QCs. The results of the disc [START_REF] Dinh | Embedding of uncertainty propagation: application to hierarchical performance analysis[END_REF] and of the disc+band [START_REF] Dinh | Convex hierrachical analysis for the performance of uncertain large scale systems[END_REF] characterizations are presented in Fig. 7. It is clear that the performance analysis is much faster but also more conservative. This paper introduces a new QC: cone sector which considers the phase information. The cone sector is used in combination with the disc QC obtained in [START_REF] Dinh | Embedding of uncertainty propagation: application to hierarchical performance analysis[END_REF]. Namely, in the PLL application example, the cone sector offset is fixed as C = c disc + ir disc where c disc and r disc are the disc centre and radius respectively obtained from the disc QC [START_REF] Dinh | Embedding of uncertainty propagation: application to hierarchical performance analysis[END_REF]. It is clear that this combination is more suitable for the PLL network where the obtained result is almost the same as the result of direct µ-analysis approach but in much less time, see Fig. 7.

In a general way, the conservatism of the hierarchical approach can be reduced by combining multiple dissipativity properties from the local step: disc+bands+cones. However, to obtain precise result it is better to combine the dissipativity properties of different nature. Of course, the computation time will increase with the number of dissipativity properties used, however since they are used in local step, and thus potentially for a system of small dimensions (local subsystem), this increase is limited within a reasonable time. The contribution of this paper, is an introduction of a new QCs that take into account the information on uncertain subsystem phase. One can thus better define a trade-off between conservatism and efficiency.

VII. CONCLUSION

In this paper, the performance analysis of uncertain large scale systems is considered. In order to reduce the complexity and the computation time, the hierarchical approach is used to investigate the performance of a PLL network. A new IQC is proposed for the local step which is the phase uncertainty characterization. SISO and MIMO examples are used to illustrate the efficiency of this characterization. This new IQC confirmed its advantage in obtaining less conservative results in the hierarchical approach comparing with the already existing IQCs in literature. For the future work, it would be interesting to investigate the appropriate decomposition of the network into sub-networks in order to have the less conservative results in a reasonable time i.e. add an additional indicator defining conservatism/computation time trade-off.
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 1 Fig. 1. Uncertain linear system

  ∀z, w such that ∃∆ ∈ ∆ and z = M ∆w (4) b > 0 defines a slope of two lines forming the cone sector and is related to α by tan α 2 = 1 b

Fig. 3 .

 3 Fig. 3. Illustration of N (Γ) and the cone sector sec(0, α)

  Then, 1/b represents a size measure for the cone. Since the conditions of Theorem 4.1 are only sufficient, minimizing 1/b such that they are satisfied implies the minimization of an upper bound α on the spread angle α. Nevertheless, how this upper bound is close to real spread depends on the choice of Φ ∆ , see Remark 3.2.

Theorem 4 . 2 :

 42 An upper bound on the angle α defined in Problem 2.2 can be obtained by finding Ω, D 1 , G 1 , D 1 , G 1 , D 2 , G 2 , D 2 , and G 2 that minimize λ in the following Generalized Eigenvalues Problem (GEVP):

d

  with ω 0 = 1 rad/s, ξ n = 0.7 and ξ d = 0.01. The uncertainties are parametric and they are defined by: ω n ∈ [0.1, 0.5] and ω d ∈[START_REF] Jönsson | A popov criterion for networked systems[END_REF][START_REF] Jönsson | A scalable robust stability criterion for systems with heterogeneous LTI components[END_REF]. The results are illustrated in Fig.4.
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 4 Fig. 4. Visualisation of cone sector for SISO example

Fig 5 and

 5 Fig 6, the numerical range Γ(N -C) which was located in the left half plane was rotated and scaled in size by Ω * . Once it is in the right half plane, a cone sector sec(0, α) is found: α = 25 • . See Fig.6for illustration purposes, please note that in the imaginary and the real axe scales are not equal.
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 56 Fig. 5. Visualisation of the nominal and the uncertain numerical ranges
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 7 Fig. 7. The PLL network performance analysis

  For a given C, given α and for the uncertain system M ∆. If there exist: Ω, (Φ 111 , Φ 121 , Φ 221 ) ∈ Φ ∆ and (Φ 112 , Φ 122 , Φ 222 ) ∈ Φ ∆ such that:

	IV. MAIN RESULTS
	Theorem 4.1:

1 , Z 1 } for β = +b and {X 2 , Y 2 , Z 2 } for β = -b.

  1 is a direct application of Theorem 3.1, with {X, Y, Z} dissipativity (6) for b = cot α 2 and by choosing some particular structure defined by Φ ∆ , see Remark 3.2. Theorem 4.1 defines an optimization problem. The decision variables are: Ω, Φ 111 , Φ 121 , Φ 221 , Φ 112 , Φ 122 , and Φ 222
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