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Phase IQC for the Hierarchical Performance Analysis of Uncertain
Large Scale Systems

Khaled Laib, Anton Korniienko, Gérard Scorletti and Florent Morel

Abstract— This paper investigates the performance analysis
of uncertain large scale systems. Due to their complexity, the
usual robustness analysis methods based on e.g; µ or Integral
Quadratic Constraints cannot be practically applied. In order
to address this problem, in [1], we propose to represent
a large scale system as an interconnection of sub-systems
and to perform a hierarchical analysis by propagating the
IQC characterization of each uncertain sub system through
the interconnection. For a given computational time, the
conservatism of the analysis dramatically depends on the
class of IQC under consideration. In this paper, we propose a
new class of IQC which characterizes the phase of uncertain
system. An application to the robustness analysis of a PLL
network reveal that the use of this class of IQC improves the
trade-off between conservatism and computation time.

Index Terms— Uncertain large scale systems, phase uncer-
tainty, cone sector, hierarchical approach

I. INTRODUCTION

Large scale systems (LSS) such as networks or inter-
connected systems have become important nowadays. With
the technological development and the miniaturization of
components, high complexity systems are designed in order
to achieve a high level of performance, see e.g. Phase Locked
Loop (PLL) networks in synchronous multi-core micropro-
cessor systems [2], [3]. However, during the fabrication
process, technological dispersions, system ageing, etc. could
dramatically affect the performance level: so it is crucial to a
priori ensure that the desired level of performance is obtained
when the system is realized. Since the first step of the
design is to obtain a mathematical model of the system, the
differences between the realized system and the model can
be expressed as an uncertain model. Ensuring a certain level
of performance then reduces to a worst case performance
analysis problem (robustness analysis). Robustness analysis
investigates the stability and the performance of uncertain
Linear Time Invariant (LTI) models. Within this framework,
even if the underlying problem is NP hard, many efficient
methods were developed based on relaxations as convex
optimization problem under Linear Matrix Inequality (LMI)
constraints [4], see e.g. the µ upper bound [5] in the µ-
analysis approach [6] or the Integral Quadratic Constraint
(IQC) approach [7].

Nevertheless, these methods can not be practically applied
to uncertain large scale systems, since the computation time
of the robustness analysis becomes dramatically important.
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In order to avoid the direct µ-analysis approach and to
reduce the computational load, many techniques are used
depending on the nature of the interconnection topology:
normal [8] or unitarily diagonalized [9] and [10] (with a nor-
mal adjacency matrix). In these works, the authors exploited
the particular structure of the interconnection topology and
IQC characterization of sub-systems and/or interconnections
to derive scalable robust stability conditions. In [11], the
authors propose scalable stability test based on Nyquist-
like conditions. However, it could be applied only for SISO
interconnected systems. An interesting approach is proposed
in [12] and [13] where the authors exploit the sparse structure
of the interconnection. Based on an IQC characterization
of the interconnection, a sparse frequency depended LMI
condition is obtained ensuring robust global stability. This
condition can be then solved efficiently based on Cholesky
factorization techniques [14] assuming a chordal patterns for
interconnection topology. However, it could be difficult, for
a given LSS, to model it with an interconnection which has
a chordal pattern especially if, besides the stability, global
system performance is under consideration.

In this paper we rather propose an alternative to [12]
and [13] approach for robust performance analysis of LSS
without any assumption on the interconnection topology:
Hierarchical approach. Initially introduced by Safonov [16],
it exploits the hierarchical structure of the interconnection
and splits the overall analysis problem into several low
dimensional problems. The coupling between these problems
is ensured by appropriate IQC conditions such that it implies
overall system robust analysis result including stability and
performance.

According to the hierarchical approach, a large scale
system is represented as a tree with leafs (an interconnection
of N systems). Each system j can be described as the
interconnection of sub-systems which are the leafs of system
j and so on until having sub-systems that can only be
described as the certain interconnection of parametric or
dynamical uncertainties. Since the effect of an uncertainty
and a level of (e.g. H∞) performance can be expressed as
Integral Quadratic Constraints on input-output signals, the
hierarchical approach consists on the recursive propagation
of the IQC of the uncertainties to the IQC which defines
the performance of the large scale system i.e. propagate the
local input-output behaviour evaluated using IQC through
the network layer by layer, see [1], [15] for the details.
Even if the hierarchical robustness analysis is possibly more
conservative than the usual one, the benefit is to reduce the
computational time. Furthermore, in order to perform the



propagation, it is necessary to compute a set of IQCs satisfied
by the input and output of an interconnection whose sub-
systems are defined by a set of IQCs. A set of IQCs is
generated by combining elementary classes of IQC. In [1],
[15], we investigate the computation of different classes
of IQC. Nevertheless, these classes were not adapted for
describing (uncertain) phase which is crucial e.g. in vibration
control applications. In this paper, in order to improve the
trade-off between the conservatism and the computation time
of the hierarchical approach, we investigate the computation
of an IQC corresponding to the phase information of an
interconnection of sub-systems. If the phase of a Single
Input Single Output (SISO) system can be easily defined,
its definition for a Multiple Input Multiple Output (MIMO)
system is more difficult. To address this problem, researchers
had defined many concepts such as principal phases [17],
phase spread [18], phase matching [19], multi-variable phase
margin [20], phase envelope [21], phase sensitive structured
value [22] and structured phase margins [23].

In this paper, we reveal that the definition based on the
numerical range of a complex matrix Γ [18] is a nice
candidate to evaluate the uncertain phase since it can be
expressed as a quadratic constraint on z and w with z = Γw.
In [22], the authors considered that each uncertainty block
can be phase characterized inside a cone sector and then
investigate the stability according to those phase information.
The uncertainty phase characterization of [22] can be seen
as a special case of the phase characterization presented
in this paper in the sense that for the phase rotation a
matrix is used rather than a scalar in [22]. The advantage
of this rotation matrix is to allow to characterize the phase
uncertainty according to any point in the complex plane and
not just the origin as in [22]. In this paper, the problem
considered is different and more challenging than the robust
stability analysis with phase information considered in [22].

In the case of SISO transfer function, the proposed def-
inition reduces to the usual one. Furthermore, using the
separation of graph theorem [24], we reveal that an IQC
corresponding to the phase information of an interconnection
of sub-systems can be computed using quasiconvex optimiza-
tion involving LMI constraints. We then use the proposed
IQC in order to reduce the conservatism of the hierarchical
analysis of a PLL network.

This paper is organized as follows: section II presents the
problem formulation of the uncertain phase characterization.
Some preliminary background is presented followed by
the proposed approach in Section III. The main results are
presented in Section IV with some illustrative examples in
Section V. The advantage of using the phase uncertainty
to perform the hierarchical analysis on a PLL network is
illustrated in Section VI.

Notations RHn×m∞ denotes the set of matrices rational
transfer functions with m inputs and n outputs. A∗ (respec-
tively AT ) is the complex conjugate (respectively transpose)
of a the matrix A. Re(A) (respectively Re(x)) represents the
real part of a complex matrix A (respectively the complex

vector x) and Im(A) (respectively Im(x)) represents the
imaginary part. To simplify the notations, AR (respectively
xR ) will be used to denote the real part and AI (respectively
xI) for the imaginary part. In and 0n×n is the identity and
the zero matrices respectively, when their dimensions are not
specified, it is assumed they are know from the context. The
? denotes the Redheffer star product [25]. bdiag(A,B, . . . )
denotes the block diagonal matrix whose diagonal blocks are
A,B, . . . .

II. PROBLEM FORMULATION

Let be the uncertain system G = {M ?∆|∆ ∈∆}, that is,
an uncertain system is represented as the interconnection of a
certain part M ∈ RH(nz+nq)×(nw+np)

∞ and an uncertain part
∆ ∈∆ where ∆ denotes the set of uncertainties traditional
in robust analysis literature:

∆ =

∆

||∆||∞ < 1

∆ = bdiag(δr1In1
, . . . , δrnrInnr ,

δc1Ic1 , . . . , δ
c
ncIcnc ,∆1, . . . ,∆nf )


where
• δrj ∈ R is a real nj times repeated uncertainty
• δcj ∈ C is a complex nc times repeated uncertainty
• ∆j ∈ Ck

j
l×k

j
m is a a full bloc of complex uncertainties.

see Fig. 1. In the sequel, for the sake of briefness,
the uncertain system is denoted M ? ∆. Furthermore,
for a given frequency ω0, let us denote Gω0

the set
{M(jω0) ?∆(jω0) | ∆ ∈∆}.

Fig. 1. Uncertain linear system

The numerical range of a complex matrix Γ, denoted
N (Γ), can be used to define the phase of MIMO systems.
It is defined to be a compact and convex set of C given by
[18]:

N (Γ) = {w∗z | z = Γw,w ∈ Cnw and ‖w‖ = 1} (1)

In the case of a MIMO system G, Γ represents the frequency
response of G at the frequency ω0. In order to define the
phase of an uncertain MIMO system M ?∆, the numerical
range is extended to the union of the numerical ranges
N (G(jω0)) for any G ∈ G which will be referred to as
union of numerical ranges. Let us define in the complex
plane the cone sector as the sector containing all these
numerical ranges. It is defined by a spread angle α and the
angle γ measured between the bisectrix of α and the real
axe direction, see Fig. II where a sampling of the union of



numerical ranges, for a given frequency ω0, and the cone
sector with a centre at the origin are represented. For any

Fig. 2. Cone sector containing at a frequency ω0, N (G(jω0) for any
G ∈ G

numerical range N (Γ) which is not contained in the right
half plane, one can make N (Γ) rotated by an angle −γ
such that the resulting numerical range N (e−jγΓ) will be
centred around the real axis in the right half plane with a new
γ̃ = 0. To improve the flexibility of the results, this rotation
e−jγ can be generalized to be an homothetic transformation
and a rotation using a scaling matrix Ω ∈ Cnz×nw . The
resulting numerical range is N (Ω∗Γ) and it belongs to the
sector centred at the origin with an angle spread α denoted
sec(0, α). This scaling matrix is a generalization of the

rotation introduced in [22]. The uncertain phase problem can
then be formulated as follows.

Problem 2.1: Let G be an uncertain system. For a given
frequency ω0, find the smallest α such that:

∃Ω ∈ Cnz×nw ,∀Γ ∈ Gω0 ,N (Ω∗Γ) ⊂ sec(0, α).

Remark 2.1: For SISO LTI systems without uncertainty,
the numerical range reduces to one point N (Γ) = G(jω0);
in this case α = 0 and Ω = ej arg(G(jω0)).

In the general case, one can define an offset characterized
by C ∈ Cnz×nw and seek the smallest sector with the corre-
sponding notation sec(C,α). This problem can be solved by
finding the cone sector containing all the numerical ranges
of Γ−C. Hence, one can search for the smallest α such that
the numerical range N (Ω∗(Γ−C)) will be on the right half
plane and centred at the origin.

Problem 2.2: Let G be an uncertain system. For a given
frequency ω0 and a given offset C, find the smallest α such
that:

∃Ω ∈ Cnz×nw ,∀Γ ∈ Gω0
,N (Ω∗(Γ− C)) ⊂ sec(0, α).

III. PRELIMINARY AND PROPOSED APPROACH

A. Preliminary

Definition 3.1: The stable system G is said to be
{X(jω), Y (jω), Z(jω)} dissipative, with X(jω) =

X∗(jω) ∈ Cnz×nz , Y (jω) ∈ Cnz×nw and Z(jω) =
Z∗(jω) ∈ Cnw×nw if for every z(jω) and w(jω) such that
z(jω) = G(jω)w(jω):(

z(jω)
w(jω)

)∗(
X(jω) Y (jω)
Y (jω)∗ Z(jω)

)(
z(jω)
w(jω)

)
< 0 (2)

Remark 3.1: Dissipativity properties define a set of rela-
tions describing the input-output behaviour of a system G.
They represent a set of Quadratic Constraints (QC) involving
the input-output signals in the case of LTI systems. In a
more general framework for non linear systems, they can be
generalized to a set of Integral Quadratic Constraints (IQC)
[7]. Note that in the case of LTI systems, IQC are simplified
to QC.

Without lost of generality, the frequency dependence will
be dropped in the sequel. A frequency griding is defined
and the different operations and ideas will be introduced
for a given frequency ω0 i.e. the {X(jω0), Y (jω0), Z(jω0)}
dissipativity will be written as:(

z
w

)∗(
X Y
Y ∗ Z

)(
z
w

)
< 0 (3)

The following result is a direct application of a Theorem 4.1
of [24].

Theorem 3.1: The uncertain system M ? ∆ is {X,Y, Z}
dissipative for every ∆ ∈ ∆ if and only if there exists an
hermitian matrix Φ = Φ∗ such that:

1) (
∆
I

)∗(
Φ11 Φ12

Φ∗
12 Φ22

)
︸ ︷︷ ︸

Φ

(
∆
I

)
> 0 ∀∆ ∈∆

and
2)

(
M
I

)∗
 Φ22 0 Φ∗

12 0
0 X 0 Y
Φ12 0 Φ11 0
0 Y ∗ 0 Z

(MI
)
< 0

Remark 3.2: Theorem 3.1 presents necessary and suffi-
cient conditions for the uncertain system M ? ∆ to be
{X,Y, Z} dissipative. Testing these conditions can be
expressed as the optimization problem of finding Φ such
that conditions 1) and 2) are satisfied. However, condition 1)
makes the optimization problem infinite dimensional since
it has to be tested for all ∆ ∈ ∆, which is difficult from a
computational point of view. The complexity can be reduced
by introducing an affine set Φ∆ such that for any Φ ∈ Φ∆,
condition 1) is satisfied. The set Φ∆ depends on the nature of
∆. In this case, Theorem 3.1 gives only sufficient conditions
for all ∆ ∈ ∆ and the conditions of Theorem 3.1 define a
finite dimensional LMI optimization problem that consists
in finding one Φ ∈ Φ∆ such that the second condition of
Theorem 3.1 is satisfied. From a computational point of view,
this problem can be efficiently solved. The consequence of
this parametrization of Φ is a possible conservatism in the
obtained results. However, this last can be reduced by an



appropriate choice of Φ∆ depending on the class of the
uncertainties ∆.

Remark 3.3: If conditions 1) and 2) of Theorem 3.1 are
satisfied for all ω and since ∆ is a connected set that contains
0 then the stability is guaranteed, see Theorem 4.1 of [24].
Furthermore, when ∆ is not a ball of center 0, conditions
1) and 2) still imply the results of Theorem 3.1 if ∆ is a
connected set with ∆0 such that M ?∆0 is stable.

B. Proposed approach

Find a cone sector sec(0, α) of Problem 2.1 (that contains
N (Γ),∀Γ ∈ Gjω0

) can be formulated as find b such that:

Re(w∗Ω∗z)− βIm(w∗Ω∗z) > 0 β = ±b
∀z, w such that ∃∆ ∈∆ and z = M ?∆w

(4)

b > 0 defines a slope of two lines forming the cone

sector and is related to α by tan
(α

2

)
=

1

b
. Please note

that the matrix Ω is used to rotate all numerical ranges
in the right half plane such that γ = 0, see Fig. 3.
Inequalities (4) represent a couple of Quadratic Constraints

Fig. 3. Illustration of N (Γ) and the cone sector sec(0, α)

(QC) characterizing the input output behaviour of the system
G with its input and output signals w and z. The cone sector
can hence be formulated as:(

z
w

)∗(
0 Ω(−I + jβI)

(Ω(−I + jβI))∗ 0

)(
z
w

)
< 0 (5)

For any other given C 6= 0 i.e. as defined in Problem 2.2,
the cone sector sec(C,α) is given by:(

z
w

)∗(
X Y
Y ∗ Z

)(
z
w

)
< 0

Where:
X = 0 Y = Ω(−I + jβI) Z = −(Y ∗C + C∗Y )

(6)

With β = ±b, the inequalities of (6) define two dissipativity
properties {X1, Y1, Z1} for β = +b and {X2, Y2, Z2} for
β = −b.

IV. MAIN RESULTS

Theorem 4.1: For a given C, given α and for the uncertain
system M ? ∆. If there exist: Ω, (Φ111,Φ121,Φ221) ∈ Φ∆

and (Φ112,Φ122,Φ222) ∈ Φ∆ such that:(
M
I

)∗( Φ22i 0 Φ∗
12i 0

0 Xi 0 Yi
Φ12i 0 Φ11i 0
0 Y ∗

i 0 Zi

)(
M
I

)
< 0 i = 1, 2

Where:

X1 = 0, X2 = 0

Y1 = Ω(−I + j cot
(α

2

)
I), Z1 = −(Y ∗1 C + C∗Y1)

Y2 = Ω(−I − j cot
(α

2

)
I), Z2 = −(Y ∗2 C + C∗Y2)

Then, the cone sector sec(0, α) contains all the numerical
ranges of the uncertain system M ?∆− C scaled by Ω:

N (Ω∗(M ?∆− C)) ⊂ sec(0, α) ∀∆ ∈∆

Proof: Theorem 4.1 is a direct application of Theo-
rem 3.1, with {X,Y, Z} dissipativity (6) for b = cot

(α
2

)
and by choosing some particular structure defined by Φ∆,
see Remark 3.2.

Theorem 4.1 defines an optimization problem. The deci-
sion variables are: Ω, Φ111, Φ121, Φ221, Φ112, Φ122, and
Φ222. It proposes only sufficient conditions for the existence
of a cone sector sec(0, α) containing all the numerical
ranges. Testing them is a finite dimensional feasibility prob-
lem involving LMI which can be efficiently solved [26].
If a cone sector exists, it is possible to search for the
smallest one. To this purpose, we introduce a size measure
for the cone sector. The objective is to minimize α. Since
tan(α2 ) = 1

b and b > 0:

min
α

α ⇔ min
α

tan(α/2)

⇔ min
b

1/b

Then, 1/b represents a size measure for the cone. Since
the conditions of Theorem 4.1 are only sufficient, minimizing
1/b such that they are satisfied implies the minimization of
an upper bound α̃ on the spread angle α. Nevertheless, how
this upper bound is close to real spread depends on the choice
of Φ∆, see Remark 3.2.

After defining the size measure of the cone sector
sec(C,α), Problem 2.2 can be addressed such that an upper
bound on the angle α can be computed efficiently.

Theorem 4.2: An upper bound on the angle α defined in
Problem 2.2 can be obtained by finding Ω, D̂1, Ĝ1, D̃1,
G̃1, D̂2, Ĝ2, D̃2, and G̃2 that minimize λ in the following
Generalized Eigenvalues Problem (GEVP):

min
λ,Ω

D̂1, Ĝ1, D̃1, G̃1

D̂2, Ĝ2, D̃2, G̃2

λ



1)

λ
(
D̂1 0

0 D̂2

)
+
(
D̃1 0

0 −D̃2

)
> 0

λ

(
M 0
I 0
0 M
0 I

)∗(
B1 0
0 B2

)(
M 0
I 0
0 M
0 I

)
+ . . .

· · ·+
(
M 0
I 0
0 M
0 I

)∗(
A1 0
0 A2

)(
M 0
I 0
0 M
0 I

)
> 0

2) (
D̂1 0

0 D̂2

)
> 0

(
M 0
I 0
0 M
0 I

)∗(
B1 0
0 B2

)(
M 0
I 0
0 M
0 I

)
> 0

with i = {1, 2}, Bi and Ai are given by:

Bi =

(
−D̂i 0 −Ĝ∗

i 0
0 0 0 Ω
−Ĝi 0 D̂i 0

0 Ω∗ 0 −(Ω∗C+C∗Ω)

)

Ai =(−1)i−1

−D̃i 0 −G̃∗
i 0

0 0 0 −jΩ
−G̃i 0 D̃i 0

0 (−jΩ)∗ 0 −j(Ω∗C−C∗Ω)


Proof: For the cone sector defined by the dissipativity

inequality (6) and using Theorem 4.1, Problem 2.2 can be
solved with finding a minimum upper bound α̃ on α such
that sec(C,α) ⊂ sec(C, α̃). Hence, Problem 2.2 becomes:
Find Φi = {Φ11i,Φ12i,Φ22i} ∈ Φ∆, Xi, Yi, and Zi, i =
{1, 2}, that maximize b such that:(
M
I

)∗( −Φ22i 0 −Φ∗
12i 0

0 −Xi 0 −Yi
−Φ12i 0 −Φ11i 0

0 −Y ∗
i 0 −Zi

)(
M
I

)
> 0 i = 1, 2 (7)

where Xi, Yi and Zi defined as in (6) for β = +b and
β = −b. Let us define Φ1 and Φ2 as:

Φ1 = Φ̂1 + bΦ̃1 Φ2 = Φ̂2 − bΦ̃2 (8)

where Φ̂i and Φ̃i are chosen in the form of DG scaling
presented in [5]:

Φ̂i =

(
−D̂i Ĝi
Ĝ∗i D̂i

)
Φ̃i =

(
−D̃i G̃i
G̃∗i D̃i

)
with: D̂i > 0. In order to make sure that Φi ∈ Φ∆, one
needs to guarantee that:

D̂1 + bD̃1 > 0 D̂2 − bD̃2 > 0 (9)

Then, inequalities (7) become:(
M
I

)∗
[(

−D̂i 0 −Ĝ∗
i 0

0 0 0 Ω
−Ĝi 0 D̂i 0

0 Ω∗ 0 −(Ω∗C+C∗Ω)

)

+ (−1)i−1b

−D̃i 0 −G̃∗
i 0

0 0 0 −jΩ

−G̃i 0 D̃i 0

0 (−jΩ)∗ 0 −j(Ω∗C−C∗Ω)

(M
I

)
> 0

(10)

Evaluating for i = {1, 2} and since b > 0, inequalities (9)
and (10) become:

1

b
D̂1 + D̃1 > 0

1

b
D̂2 − D̃2 > 0

1

b

(
M
I

)∗
B1

(
M
I

)
+

(
M
I

)∗
A1

(
M
I

)
> 0

1

b

(
M
I

)∗
B2

(
M
I

)
+

(
M
I

)∗
A2

(
M
I

)
> 0

The last inequalities can be combined together as it is
shown in the first condition of Theorem 4.2. Hence, minimiz-
ing 1/b such that the last inequalities holds is a Generalized
Eigenvalues Problem since condition 2) of Theorem 4.2
holds.

Remark 4.1: Theorem 4.2 is a Generalized Eigenvalues
Problem, it has been proved that it is a quasiconvex
optimization problem [26]. It can be solved efficiently
using the projective method described in [27]. Nevertheless,
since the conditions are sufficient, Theorem 4.2 allows to
compute a sector sec(C, α̃) which contains the smallest
cone sector sec(C,α). The conservatism can be reduced by
an appropriate choice of Φ∆ depending on the nature of
uncertainties: D scaling [6], DG scaling [5] or DGL scaling
[28]. Here the DG scaling is chosen to characterize Φi for
illustration purposes. Nevertheless, one can choose other
types of scaling depending on the nature of uncertainties. In
this case, the structure of parametrization matrices Φi will
be different but the idea remains the same i.e. decomposing
Φi into two parts: Φ̂i and Φ̃i.

Remark 4.2: With respect to Theorem 4.1, Theorem 4.2
introduces an extra condition (condition 2) in order to obtain
a Generalized Eigenvalues problem due to the advantage
of this optimization problem. This condition has two nice
justifications: first, it guarantees that the interconnection
M ? ∆,∀∆ ∈ ∆ is stable. Second, it guarantee that
N (Ω∗(Γ−C)) is located in the right half plane. Then, one
needs to minimize the upper bound α̃:

α̃ ∈
[
−π

2
,+

π

2

]
s.t N (Ω∗(Γ− C)) ⊂ sec(0, α̃)

On the other side, introducing this condition enforces more
constraints on Φ1 ∈ Φ∆ and Φ2 ∈ Φ∆ if they are chosen as
in (8) with Φ̃i = 0: they must satisfy that all the numerical
ranges N (Ω∗(Γ−C)) are in the right half plane and respect
their dissipative properties at the same time. Hence, an extra
conservatism may appear (besides that of Remark 4.1). To
overcome this issue, Φ1 and Φ2 are chosen of the form (8).
Here, D̂i and Ĝi ensure that the interconnection M ? ∆ is
stable and N (Ω∗(Γ−C)) is in the right half plane. While D̃i

and G̃i introduce an additional degree of freedom to ensure
that N (Ω∗(Γ − C)) ⊂ sec(0, α̃). Hence, with this choice,
the conservatism is reduced.



V. ILLUSTRATION EXAMPLES

In this section, we will show some examples that illustrate
our results graphically.

A. SISO Uncertain Systems

The following example is inspired from [1]. Let us con-
sider the following SISO example with structured scalar
uncertainties:

GSISO(jω0) =
−ω2

0 + 2ξnωn(jω0) + ω2
n

−ω2
0 + 2ξdωd(jω0) + ω2

d

with ω0 = 1 rad/s, ξn = 0.7 and ξd = 0.01. The
uncertainties are parametric and they are defined by: ωn ∈
[0.1, 0.5] and ωd ∈ [9, 10]. The results are illustrated in Fig.4.

Fig. 4. Visualisation of cone sector for SISO example

The sampling of the uncertain response presented in green
dots is obtained for a griding of ωn and ωd equal to 0.01 and
0.001 respectively. The nominal response is equal to 21+45i
and it is presented with a red dot. The cone offset C was fixed
arbitrary at C = 60 + 80i. The obtained results shows very
low conservatism and define a cone angle α̃ = 49.52◦.

B. MIMO Uncertain Systems

For MIMO case, a simple example can be given by:

GMIMO(jω0) = odir ××GSISO(jω0)× idir − C

with same frequency ω0 = 1 rad/s, odir = (1 − 1.5)T ,
idir = (1 2) and C = 50(1+5i)I2. Fig. 5 shows a sampling
of the union of numerical ranges while Fig. 6. shows a
sampling of the union of numerical ranges scaled by Ω∗

with the obtained cone sector.
As it can be seen in Fig 5 and Fig 6, the numerical range

Γ(N−C) which was located in the left half plane was rotated
and scaled in size by Ω∗. Once it is in the right half plane,
a cone sector sec(0, α̃) is found: α̃ = 25◦. See Fig. 6 for
illustration purposes, please note that in the imaginary and
the real axe scales are not equal.

Fig. 5. Visualisation of the nominal and the uncertain numerical ranges

Fig. 6. Visualisation of the scaled nominal and the uncertain numerical
ranges

VI. LARGE SCALE SYSTEM HIERARCHICAL ANALYSIS

Let us consider the example of the performance analysis
of the active clock distribution network of [2]. It is composed
of N = 16 mutually synchronized Phase Locked Loop
(PLL) delivering the clock signals to the chip. In order to
synchronize all the network, the PLLs exchange information
through an interconnection structure. This example is suitable
for illustration of the proposed hierarchical analysis approach
as the performance is naturally evaluated in the frequency
domain [15].

A. PLL network description

In this application, all the PLLs are homogeneous i.e.
have the same description and uncertainty set ∆. Due
to the manufacturing process, technological dispersions are
inevitable. They can be presented as parametric uncertainties
belonging to the same set ∆. Then, the description of the N
PLLs is:

Ti(jω0) =
ki(jω0 + ai)

−ω2 + kijω0 + kiai
∀i ∈ {1, . . . , N}

Where ki ∈ [0.76, 6.84] × 104, ai ∈ [91.1, 273.3] and
ω0 is the current frequency defined by griding. Furthermore,
Ti(jω0) can written as the interconnection of certain and
uncertain part:

Ti(jω0) = ∆i ? MPLL ∆i ∈∆

With ∆i is given by:

∆ =

{
∆i =

(
δki 0
0 δai

)
||∆i||∞ ≤ 1

}



The exchange of information between PLLs is modelled
by an interconnection matrix defined in [1] (see equation
(13)). The performance of this network can be characterized
by its global input and output wg and zg using the global
frequency response magnitude bound. (See more details in
[1] and [15]).

B. Hierarchical Approach

For the PLL network, the hierarchical approach consists
of two steps:

1) Local step: Characterize the input-output behaviour of
each PLL using dissipativity properties. In addition to the
cone sector, one can use other quadratic constraints that can
be interpreted by simple geometric forms: disc and band,
see [1] and [15]) for more details. Since all the PLLs are
homogeneous, the dissipativity properties obtained for one
PLL are valid for all the 16 PLL.

2) Global step: Evaluate the performance of the network
by finding a minimal upper bound on its frequency response
magnitude using the dissipativity properties describing the
PLLs and obtained in the local step. See [16], [1] and [15] for
more details. In this step, one can combine the different dissi-
pativity properties of each PLL: disc, disc+band, disc+cone,
etc. and propagate this input-output characterization of each
sub-system to investigate the performance of the network.

C. The PLL network performance analysis

The performance analysis results of the PLL network
presented in Fig. 7 and summarized in TABLE I. The direct
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Direct approach: 346.7 sec

Hierarchical approach disc: 16 sec

Hierarchical approach disc+band orientation: 46.4 sec

Hierarchical approach disc+cone: 43.1 sec

Fig. 7. The PLL network performance analysis

µ-analysis approach presents the less conservative results
with a maximum peak of 6.01dB comparing to the differ-
ent hierarchical approaches. However, computation time is
significant: 346.7s.

Approach Maximum peak Computation time
µ-analysis 6.01dB 347.6s

Hierarchical: disc 13.44dB 16s
Hierarchical: disc+band 12.97dB 46.4s
Hierarchical: disc+cone 6.45dB 43.1s

TABLE I
COMPARISON BETWEEN THE DIFFERENT APPROACHES

To overcome the time issue, the authors of [1] and [15]
introduced the hierarchical approach for the PLL network

performance analysis with two sub-system characterizations:
disc and band QCs. The results of the disc [1] and of the
disc+band [15] characterizations are presented in Fig. 7. It
is clear that the performance analysis is much faster but
also more conservative. This paper introduces a new QC:
cone sector which considers the phase information. The cone
sector is used in combination with the disc QC obtained in
[1]. Namely, in the PLL application example, the cone sector
offset is fixed as C = cdisc + irdisc where cdisc and rdisc
are the disc centre and radius respectively obtained from the
disc QC [1]. It is clear that this combination is more suitable
for the PLL network where the obtained result is almost the
same as the result of direct µ-analysis approach but in much
less time, see Fig. 7.

In a general way, the conservatism of the hierarchical
approach can be reduced by combining multiple dissipativity
properties from the local step: disc+bands+cones. However,
to obtain precise result it is better to combine the dissipativity
properties of different nature. Of course, the computation
time will increase with the number of dissipativity properties
used, however since they are used in local step, and thus
potentially for a system of small dimensions (local sub-
system), this increase is limited within a reasonable time.
The contribution of this paper, is an introduction of a new
QCs that take into account the information on uncertain sub-
system phase. One can thus better define a trade-off between
conservatism and efficiency.

VII. CONCLUSION

In this paper, the performance analysis of uncertain large
scale systems is considered. In order to reduce the complex-
ity and the computation time, the hierarchical approach is
used to investigate the performance of a PLL network. A
new IQC is proposed for the local step which is the phase
uncertainty characterization. SISO and MIMO examples are
used to illustrate the efficiency of this characterization.
This new IQC confirmed its advantage in obtaining less
conservative results in the hierarchical approach comparing
with the already existing IQCs in literature. For the future
work, it would be interesting to investigate the appropriate
decomposition of the network into sub-networks in order to
have the less conservative results in a reasonable time i.e. add
an additional indicator defining conservatism/computation
time trade-off.

REFERENCES

[1] M. Dinh, A. Korniienko, and G. Scorletti, “Embedding of uncertainty
propagation: application to hierarchical performance analysis,” IFAC
Symposium on System, Structure and Control, vol. 5, no. 1, pp. 190–
195, 2013.

[2] A. Korniienko, G. Scorletti, E. Colinet, E. Blanco, J. Juillard, and
D. Galayko., “Control law synthesis for distributed multi-agent sys-
tems: Application to active clock distribution networks,” IEEE Amer-
ican Control Conference, pp. 4691–4696, 2011.

[3] A. Korniienko, G. Scorletti, E. Colinet, and E. Blanco, “Performance
control for interconnection of identical systems: Application to PLL
network design,” International Journal of Robust and Nonlinear
Control, no. DOI: 10.1002/rnc.3285, 2014.

[4] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.



[5] M. K. H. Fan, A. L. Tits, and J. C. Doyle, “Robustness in the presence
of mixed parametric uncertainty and unmodeled dynamics,” IEEE
Transactions on Automatic Control, vol. 63, pp. 25–38, Jan. 1991.

[6] J. Doyle, “Analysis of feedback systems with structured uncertainties,”
IEEE Proceddings, vol. 129-D, p. 242:250, nov 1982.

[7] A. Megretski and A. Rantzer, “System analysis via integral quadratic
constraints,” IEEE Transaction On Automatic Control, vol. 42, jun
1997.

[8] C. Y. Kao, U. Jönsson, and H. Fujioka, “Characterization of robust
stability of a class of interconnected systems,” Automatica, vol. 45,
no. 1, pp. 217–224, 2009.

[9] U. Jönsson, C. Y. Kao, and H. Fujioka, “A popov criterion for
networked systems,” Systems and Control Letters, vol. 56, pp. 603–
610, 2007.

[10] U. Jönsson and C. Y. Kao, “A scalable robust stability criterion for
systems with heterogeneous LTI components,” IEEE Transactions on
Automatic Control, vol. 55, no. 10, pp. 2219– 2234, 2010.

[11] I. Letas and G. Vinnicombe, “Scalabe decentralized robust stability
certificates for networks of interconnected heterogenous dynamical
systems,” IEEE Transaction on Automatic Control, vol. 51, pp. 1613–
1626, oct 2006.

[12] M. Anderson, A. Hanson, S. Pakazad, and A. Rantzer, “Distributed
robust stability analysis of interconnected uncertain systetems,” IEEE
Conference on Decision and Control, pp. 1584–1553, dec 2012.

[13] M. Anderson, S. Pakazad, A. Hanson, and A. Rantzer, “Robust
stability analysis of sparsely interconnected uncertain systems,” IEEE
Transactions on Automatic Control, vol. 59, pp. 2151–2156, aug 2014.

[14] J. R. S. Blair and B. W. Peyton, “An introduction to chordal graphs
and clique trees,” in Graph Theory and Sparse Matrix Computation
(J. R. G. J. A. George and J. W. H. Liu, eds.), vol. 56 of The IMA
Volumes in Mathematics and its Applications, pp. 1–29, Springer New
York, 1993.

[15] M. Dinh, A. Korniienko, and G. Scorletti, “Convex hierrachical
analysis for the performance of uncertain large scale systems,” IEEE
Conference on Decision and Control, pp. 5979– 5984, 2014.

[16] M. G. Safonov, “Propagation of conic model uncertainty in hierar-
chical systems,” IEEE Transactions on Automatic Control, vol. 28,
pp. 701–709, jun 1983.

[17] I. Postlethwaite, J. M. Edmunds, and A. G. J. Macfarlane, “Principal
gains and principal phases in the analysis of linear multivariable
feedback systems,” IEEE Transactions on Automatic Control, vol. 26,
pp. 32–46, feb 1981.

[18] D. H. Owens, “The numerical range : A tool for robust stability
studies?,” Systems and Control Letters, pp. 153–158, 1984.

[19] P. Harshavardhana and E. A. Jonckheere, “Spectral factor reduction by
phase matching: the continuous-time single-input single-output case,”
International Journal of Control, vol. 42, no. 1, pp. 43–63, 1985.

[20] J. R. Bar-On and E. A. Jonckheere, “Phase margin for multivariable
control systems,” International Journal of control, vol. 52, no. 2,
pp. 485–498, 1990.
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