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An H∞-based approach for robust sensor localization

Usman A. Khan, Anton Korniienko, and Karl H. Johansson

Abstract— In this paper, we consider the problem of sensor
localization, i.e., finding the positions of an arbitrary number of
sensors located in a Euclidean space, Rm, given at least m+1 an-
chors with known locations. Assuming that each sensor knows
pairwise distances in its neighborhood and that the sensors lie
in the convex hull of the anchors, we provide a DIstributed
LOCalization algorithm in Continuous-Time, named DILOC-
CT, that converges to the sensor locations. This representation
is linear and is further decoupled in the coordinates.

By adding a proportional controller in the feed-forward loop
of each location estimator, we show that the convergence speed
of DILOC-CT can be made arbitrarily fast. Since a large gain
may result into unwanted transients especially in the presence
of disturbance introduced, e.g., by communication noise in the
network, we use H∞ theory to design local controllers that
guarantee certain global performance while maintaining the
desired steady-state. Simulations are provided to illustrate the
concepts described in this paper.

I. INTRODUCTION

Localization is often referred to as finding the position of
a point in a Euclidean space, Rm, given a certain number
of anchors, with perfectly known positions, and point-to-
anchor distances and/or angles. Traditionally, distance-based
localization has been referred to as trilateration, whereas
angle-based methods are referred to as triangulation. Tri-
lateration is the process of finding a location in Rm, given
only the distance measurements to at least m+ 1 anchors,
see Fig. 1 (Left). With m + 1 sensor-to-anchor distances,
the nonlinear trilateration problem is to find the intersection
of three circles. Triangulation, Fig. 1 (Right), employs the
angular information to find the unknown location.

The literature on localization is largely based on the
triangulation and trilateration principles, or in some cases,
a combination of both. Recent work may be broadly char-
acterized into centralized and distributed algorithms, see [1]
where a comprehensive coverage of cooperative and non-
cooperative strategies is provided. Centralized localization
algorithms include: maximum likelihood estimators, [2], [3];
multi-dimensional scaling (MDS), [4], [5]; optimization-
based methods to include imprecise distance information,
see [6]; for additional work, see [7]–[9]. Optimization based
techniques can be found in [10], [11] and references therein,
whereas, polynomial methods are described in [12].
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Fig. 1. Localization in R2, anchors: red triangles; unknown location:
blue circle. (Left) Trilateration–the unknown location is at the intersection
of three circles. (Right) Triangulation–the line segments, h, dc1, dc2, dh1,
and dh2, are computed from trigonometric operations.

Distributed localization algorithms can be characterized
into two classes: multilateration and successive refinements.
In multilateration algorithms, [13], [14], each sensor es-
timates its distance from the anchors and then calculates
its location via trilateration; multilateration implies that the
distance computation may require a multi-hop communi-
cation. Distributed multidimensional scaling is presented
in [15]. Successive refinement algorithms that perform an
iterative minimization of a cost function are presented in,
e.g., [16], which discusses an iterative scheme where they
assume 5% of the nodes as anchors. Reference [17] discusses
a Self-Positioning Algorithm (SPA) that provides a GPS-free
positioning and builds a relative coordinate system. Other
related work also consists of graph-theoretic approaches [18],
[19], and probabilistic methods, [20], [21].

Of significant relevance to this paper is Ref. [22], which
describes a discrete-time algorithm, named DILOC, assum-
ing a global convexity condition, i.e., each sensor lies in
the convex hull of at least m + 1 anchors in Rm. A
sensor may find its location as a linear-convex combination
of the anchors, where the coefficients are the barycentric
coordinates; attributed to August F. Möbius, [23]. However,
this representation may not be practical as it requires long-
distance communication to the anchors. To overcome this
issue, each sensor finds m + 1 neighbors, its triangulation
set, such that it lies in their convex hull and iterates on its
location as a barycentric-based representation of only the
neighbors. Assuming that each sensor can find a triangulation
set, DILOC converges to the true sensor locations. Ref. [22]
analyzes the convergence and provides tests for finding
triangulation sets with high probability in a small radius.

In this paper, we provide a continuous-time analog of
DILOC-DT in [22], that we call DILOC-CT, and show that
by using a proportional controller in each sensor’s location
estimator, the convergence speed can be increased arbitrarily.
Since this increase may come at the price of unwanted



transients especially when there is disturbance introduced by
the network, we replace the proportional gain with a dynamic
controller that guarantees certain performance objectives. We
thus consider disturbance in the communication network that
is incurred as zero-mean additive noise in the information
exchange. In this context, we study the disturbance rejection
properties of the local controllers and tune them to withstand
the disturbance while ensuring some performance objectives.
Our approach is based on H∞ design principles and uses the
input-output approach, see e.g., [24]–[27].

Notation: The superscript, ‘T ’, denotes a real matrix
transpose while the superscript, ‘∗’, denotes the complex-
conjugate transpose. The N ×N identity matrix is denoted
by IN and the n × m zero matrix is denoted by 0n×m.
The dimension of the identity or zero matrix is omitted
when it is clear from the context. The diagonal aggregation
of two matrices A and B is denoted by diag(A,B). The
Kronecker product, denoted by ⊗, between two matrices, A
and B, is defined as A ⊗ B = [aijB]. We use Tx→y(s)
to denote the transfer function between an input, x(t),
and an output, y(t). With matrix, G, partitioned into four
blocks, G11, G12, G21, G22, G ? K denotes the Redheffer
product, [31], i.e.,

G ?K = G11 +G12K (I −G22K)
−1
G21.

Similarly, K ? G = G22 + G21K (I −G11K)
−1
G12. For

a stable LTI system, G, ‖G‖∞ denotes the H∞ norm
of G. For a complex matrix, P : σ̄ (P ) denotes its maxi-
mal singular; λi(P ) denotes the ith eigenvalue; and ρ(P )
denotes its spectral radius. Finally, the symbols, ’≥’ and ’>,
denote positive semi-definiteness and positive-definiteness of
a matrix, respectively.

We now describe the rest of the paper. Section II de-
scribes the problem, recaps DILOC-DT, and introduces the
continuous-time analog, DILOC-CT. Section III derives the
convergence of DILOC-CT with a proportional gain and
investigates disturbance-rejection. In Section IV, we describe
dynamic controller design using the H∞ theory according to
certain objectives that ensure disturbance rejection. Section V
illustrates the concepts and Section VI concludes the paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider a network of M sensors, in the index set Ω, with
unknown locations, and N anchors, in the index set κ, with
known locations, all located in Rm, m ≥ 1; let Θ = Ω∪κ be
the set of all nodes. Let xi∗ ∈ Rm denote the true location
of the ith sensor, i ∈ Ω; similarly, uj ∈ Rm, j ∈ κ, is the
true location of the anchors. We assume that each sensor is
able to compute its distances to the nearby nodes (sensors
and/or anchors) by using, e.g., the Received Signal Strength
(RSS) or camera-based methods, [2], [28]. The problem is
to find the locations of the sensors in Ω. Below, we describe
DILOC, which was originally introduced in [22].

A. DILOC-DT
DILOC-DT assumes that each sensor lies in the convex

hull, denoted by C(κ), of the anchors. Using only the inter-
node distances, each sensor, say i, finds a triangulation

set, Θi, of m+1 neighbors such that i ∈ C(Θi), |Θi| = m+1.
A convex hull inclusion test is given by

i ∈ C(Θi), if
∑
j∈Θi

AΘi∪{i}\j = AΘi ,

where AΘi denotes the m-dimensional volume, area in R2

or volume in R3, of C(Θi), see Fig. 2 in R2, and can be
computed by Cayley-Menger determinant, [22], [29], using
only the pairwise distances of the nodes in {i,Θi}.
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Fig. 2. R2: (Left) Agent i lies in the convex hull of three anchors. (Right)
Sensor 4, 6 and 7 form a triangulation set for sensor 5. Blue circles and
red triangles indicate agents and anchors, respectively.

Given a triangulation set, Θi, for every i ∈ Ω, each sensor
updates its location estimate, xik, as follows:

xik+1 =
∑

j∈Θi∩Ω

AΘi∪{i}\j

AΘi︸ ︷︷ ︸
,pij

xjk +
∑

j∈Θi∩κ

AΘi∪{i}\j

AΘi︸ ︷︷ ︸
,bij

uj , (1)

where k is discrete-time, the coefficients, pij’s and bij’s, are
the barycentric coordinates that are positive and sum to 1.
Let xk ∈ RM×m be the vector of location estimates, xik, i ∈
Ω; similarly, u for anchors; DILOC-DT is given by

xk+1 = Pxk +Bu, (2)

where P = {pij} is an M×M matrix of the sensor-to-sensor
barycentric coordinates; similarly, B = {bij} is M×N . The
following result is from [22].

Lemma 1: Let |κ| ≥ m+1 and i ∈ C(κ),∀i ∈ Ω. Assume
non-trivial configurations, i.e., Aκ 6= 0, AΘi 6= 0,∀i ∈ Ω.
Then, DILOC-DT, Eq. (2), is such that ρ(P ) < 1 and

lim
k→∞

xk = (I − P )−1Bu = x∗, (3)

where x∗ is the vector of true sensor locations.
Clearly, the proof relies on the fact that ρ(P ) < 1, which

can be shown with the help of an absorbing Markov chain
analogy1, see [22]. In particular, each transient state (sensor)
has a path (possibly over multiple links) to each absorbing
state (anchor); subsequently, the (transient) state-transition
matrix, P , is such that ρ(P ) < 1. That (I − P )−1Bu is
the desired steady-state can be verified as the true sensor
locations follow: x∗ = Px∗ +Bu.

1Refs. [22], [30] further characterize the probability of successful triangu-
lation, imperfect communication, and noise on the distance measurements,
among many other refinements.



B. DILOC-CT

We now provide DILOC-CT, a continuous-time analog to
DILOC-DT. To this aim, let xi(t) denote the m-dimensional
row-vector of sensor i’s location estimate, where t ≥ 0 is
the continuous-time variable. Since the anchors’ locations
are known, we have uj(t) = uj ,∀t ≥ 0, j ∈ κ. Borrowing
notation from Section II-A, DILOC-CT is given by, where (t)
is dropped in the sequel for convenience:

ẋi = −xi + ri; ri ,
∑

j∈Θi∩Ω

pijxj +
∑

j∈Θi∩κ
bijuj , (4)

and Θi is the triangulation set at sensor i. Note that Θi may
not contain any anchor, in which case |Θi ∩ Ω| = m + 1,
and |Θi ∩ κ| = 0. In other words, a sensor may not have
any anchor as a neighbor and the barycentric coordinates are
assigned to the neighboring sensors, with unknown locations.

In order to improve the convergence rate, we may add
a proportional gain, α ∈ R, in the feed-forward loop of
each sensor’s location estimator, denoted by an identical
system, Ts, at each sensor:

Ts : ẋi = α(−xi + ri). (5)

We now assume that the received signal at each sensor incurs
a zero-mean additive disturbance, zi(t), whose frequency
spectrum lies in the interval, [ω−z , ω

+
z ]. With this disturbance,

the location estimator is given by

ẋi = α(−xi + ri + zi). (6)

Here, zi(t) can be thought of as communication noise that
effects the information exchange. Note that Eq. (4) is special
case of Eq. (6) with α = 1 and z = 0. Finally, we replace
the proportional gain, α, with a local controller, K(s). The
overall architecture is depicted in Fig. 3, where we separate
the desired signal, ri, and the disturbance, zi, as two distinct
inputs to each Ts.

1/sK(s)
xi(t)

ri(t)

Network
yi(t)εi(t)

zi(t)
Ts

Fig. 3. DILOC-CT architecture

The contributions of this paper are as follows: First, we
show that DILOC-CT converges to the true sensor locations
and characterize the range of gains that ensures this conver-
gence. We then study the disturbance rejection properties of
the proportional gain. This analysis is provided in Section III.
Second, we note that an arbitrary high proportional gain may
result in unwanted transients and disturbance amplification.
In order to add design flexibility and guarantee certain
performance objectives, we replace the proportional gain, α,
with local controllers, K(s). We use H∞ design procedure

to derive these local controllers meeting global objectives.
This analysis is carried out in Section IV. Finally, we study
the disturbance rejection properties of the local controllers
with the help of the H∞ design in Sections IV and V.

III. DILOC-CT WITH PROPORTIONAL GAIN

We now analyze the convergence properties of the propor-
tional gain controller without disturbance in Eq. (5). Let x(t)
collect the location estimates at the sensors and let u collect
the true locations of the anchors. Borrowing notation from
Section II-A, we use the matrices, P and B, to denote
the corresponding barycentric coordinates. Eq. (5) can be
equivalently written in the following matrix form:

ẋ = −α(I − P )x + αBu , Pαx +Bαu. (7)

We have the following result.
Lemma 2: If ρ(P ) < 1, then <{λi(Pα)} < 0,∀i, α > 0.

Proof: Let λi(P ) = ai +
√
−1bi for some ai, bi ∈ R,

and note that |ai| < 1,∀i, since ρ(P ) < 1, then

λi(I − P ) = 1− ai −
√
−1bi, (8)

and the lemma follows for any α > 0.
The following theorem studies the DILOC-CT convergence.

Theorem 1: DILOC-CT, Eq. (7), converges to the true
sensor locations, x∗, for all α > 0, i.e.,

lim
t→∞

x(t) = (I − P )−1Bu = x∗. (9)
Proof: From Lemma 2, we have <{λi(Pα)} < 0,∀i.

Starting from Eq. (7), we get

x(t) = ePαtx(0) +

∫ t

0

ePαταBu(t− τ)dτ,

= ePαtx(0) + P−1
α

(
ePαt − I

)
αBu,

which asymptotically goes to (since limt→∞ ePαt = 0)

lim
t→∞

x(t) = −P−1
α αBu = −(−α(I − P ))−1αBu,

and the theorem follows.
That the convergence speed is exponential in α > 0
can also be easily verified. In fact, the real part of the
eigenvalues of Pα move further into the left-half plane
as α increases. However, in the presence of network-based
disturbances, zi(t)’s, an arbitrarily large α also amplifies the
disturbance. To guarantee certain performance objectives, a
natural extension is to replace the proportional (static) gain
with a dynamic controller, K(s). We study this scenario
using H∞ design in Section IV.

In the following, we analyze the disturbance rejection with
the proportional controller. To proceed, we use the fact that
DILOC-CT is decoupled in the coordinates. Hence, each
local system, Ts, see Eq. (5) and Fig. 3, can be analyzed per
coordinate and the same analysis can be extended to other
coordinates. Recall that the network location estimate, x(t),
is a M × m matrix where each column is associated to a
location coordinate in Rm. We let x to be an arbitrarily
chosen column of x corresponding to one chosen dimen-
sion. Similarly, we let z, r, ε, and y (signals in Fig. 3) to
represent M -dimensional vectors; for any of such vectors,
the subscript i denotes the chosen coordinate at sensor i.



A. Rejection vs. Localization tradeoff, M = 1

We first consider the simplest case of DILOC-CT in R2,
with static controller, K(s) = α, N = 3 anchors and one
sensor, M = 1, see Fig. 2 (Left). In this case, the dynamics
of the overall network is equivalent to the dynamics, Ts
in Eq. (5), of one sensor and a constant input ri defined
by Eq. (4) with pij = 0. Since the H∞ design approach
used in the next sections is frequency-based, the localization
performance will be expressed thereafter in the frequency
domain. Since P = 0, we have ri =

∑
bijuj , where uj is

the true location of the anchors and the performance (steady-
sate error, convergence speed) is defined by the tracking
performance of the dynamics, Ts. Let us define a transfer
function, S(s), between the reference input, ri, and tracking
error, defined as εrefi , x∗i − xi, which for K = α is

S(s) = (1 +K(s) 1
s )−1 = s(s+ α)−1. (10)

For all α > 0, S(s) is stable with a zero at the origin imply-
ing 0 steady-state error for constant inputs. It is important to
note that the cutoff frequency, ωS , for which |S(jωS)| =

√
2

2 ,
is ωS = α. The magnitude of S is close to zero in the
Low Frequency (LF) range (ω � ωS) and approaches 1 in
the High Frequency (HF) range (ω � ωS). Increasing α
increases the cutoff frequency of S implying an increase in
the convergence speed, which follows Theorem 1.

To proceed with the subsequent analysis, note that

Tzi→xi(s) = Tri→xi(s) = α
s+α = 1− S(s) , T (s),

Tzi→yi(s) = Tri→yi(s) = αs
s+α = K(s)S(s) , KS(s).

(11)

The cutoff frequency, ωT , of T (s) is equal to the cutoff
frequency, ωS , of S(s). Increasing α increases both ωT
and ωS , and thus the bandwidth of T (s). Since the magnitude
of T (s) is equal to 1 in the LF range and decreases in the
HF range, increasing α implies the transmission of a broader
frequency range of disturbance, zi, on the output, xi. It is
therefore not possible to increase the convergence speed and
disturbance rejection at the same time. This is also true for
the dynamic controller, K(s); we may, however, impose a
larger slope of magnitude decay in T (s). Let us now consider
the transfer function, KS(s). In the HF range, |KS(s)| = α,
and thus an increase in α amplifies the disturbance. A logical
extension is to consider a dynamic controller, K(s), which
is frequency-dependent such that it has a high gain in the
LF range, for a good tracking performance; and a low gain
in the HF range for a better disturbance rejection.

B. Rejection vs. Localization tradeoff, M > 1

To study the general case, let us define the global transfer
function, S̃g

u→εref , as an M×N matrix between the input, u
(anchors positions), and the network tracking error, defined
by εref , x∗ − x. Note that we can write the input as u =
u
‖u‖ ‖u‖ , where ‖u‖ is the Euclidean norm of u. In this case,
the tracking performance of the network could be evaluated
by the M × 1 transfer function:

Sg‖u‖→εref = S̃g
u→εref

u

‖u‖
, Sg, (12)

whose j-th component, Sgj , is the transfer function between
the constant, ‖u‖, and j-th sensor’s tracking error, εrefj . Let
us define additional global transfer functions as follows:

Tz→x(s) , T g(s), Tz→y(s) , KSg(s). (13)

The transfer functions T g and KSg are M ×M matrices,
components of which, T gij and KSgij , represent transfer
functions between j-th sensor disturbance, zj , and i-th sensor
location estimate, xi, and control signals, yi, respectively.

In general, the components of Sg , T g , and KSg are
different form the local dynamics, S, T , and KS. How-
ever, increasing α has the same consequences as discussed
before in the simple case. We illustrate this numerically2

in Fig. 4, which shows the maximal singular value, σ̄(·),
of frequency responses of Sg , T g , and KSg for a network
of M = 20 sensors with P 6= 0 and for α varying form 1
to 104. Briefly, σ̄(·) is a generalization of gain for MIMO
systems, [32], and its maximum value for a given frequency
is the maximum amplification between the Euclidean norms
of input-output vectors (over all directions of applied input
vector). We observe that similar to the local case, M = 1,
an increase of α increases the convergence speed but also
increases HF disturbance amplification.
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Fig. 4. Maximal singular value of Sg , T g , and KSg vs. α

As in the case with M = 1, in order to reduce the HF
disturbance amplification, it is possible to use a dynamic
controller, K(s), that decreases the maximum HF singular
value of T g and KSg . However, the design of such controller
in the general case of M > 1 is a non-trivial problem
and could result in poor performance (low speed, high
oscillations) and a global system instability for some choice
of K(s). In fact, it is a special case of the decentralized
control problem, which is proved to be NP-hard even in the
LTI case, [33]. However, since the sensors are identical it is
possible to link the global network to the local dynamics and
then perform a local design by the traditional H∞ approach.
This method is proposed in [26], [27] and is applied, with
some changes, to DILOC-CT in the next section.

2It is possible to compute the closed-form expressions of Sg , T g ,
and KSg , e.g., by using the Lower Fractional Transformation algebra
(LFT), [31], but this computation is beyond the scope of this paper.



IV. DILOC-CT: H∞ DESIGN

We now consider DILOC-CT introduced earlier in Sec-
tion II-B with local controllers. We assume that the barycen-
tric matrices, P and B, are given3. Our objective is to
design identical (local) controllers, K(s), to achieve, besides
the global system stability, certain performance objectives,
summarized in Table I. We note that the location estimator
at each sensor is identical and define the following global
system description for each coordinate, recall Eq. (11):

x = (IM ⊗ T (s)) rz, (14)

where rz = r + z = Px+Buu0 + z, and u0 = ‖u‖ , Bu =
B u
u0

. Next note that εref = x∗−x = (IM −P )−1Buu0−x,
and ε = rz−x, from Fig. 3. We have the following relation: rz

εref

ε

 =

 P Bu IM
−IM (IM − P )

−1
0

P − IM Bu IM


︸ ︷︷ ︸

H

 x
u0

z

 .
(15)

The local transfer function, T (s), identical at each sensor, is

T (s) =
K(s) 1

s

1 +K(s) 1
s

(16)

Given the representation in Eqs. (14) and (15), we have

T
[u0
z ]→

[
εref

ε

] = (IM ⊗ T (s)) ? H, (17)

and Tu0→εref (s) = Sg(s), see Eq. (12). Furthermore, T g(s)
and KSg(s) can be written in terms of Tz→ε(s) as

T g(s) =
K(s)

s
Tz→ε(s), KSg(s) = K(s)Tz→ε(s). (18)

We formulate the following control design problem:
Problem 1 (Control problem): Given the global system in

Eqs. (14) and (15), find the local controller, K(s), such
that the global system is stable and satisfies the following
frequency constraints:

σ (Sg (jω)) ≤ ΩS (ω) , in LF range,
σ (T g (jω)) ≤ ΩT (ω) , in HF range,

σ (KSg (jω)) ≤ ΩKS (ω) , in HF range.
(19)

We now briefly explain the frequency constraints. The first
constraint, ΩS , ensures zero steady-state error and provides
a handle on the speed of convergence. The second con-
straint, ΩT , imposes a maximum bandwidth on T g , which, in
turn, limits the disturbance amplification in high-frequency.
The last constraint, ΩKS , reduces the amplification of noise
on the local input, y, to each sensor’s local dynamics in
high-frequency. Specifics on these constraints are tabulated
in Table I and are further elaborated in Section V.

3Note that the controller design requires the knowledge of all barycentric
coordinates, P and B, which may be restrictive. However, we stress that the
resulting controller is local and the procedure described here is critical to any
future work on decentralized design. In addition, computing the locations at
a central location from the matrices, P and B, and then transmitting them
to the sensors incurs noise in the communication that is not suppressed;
this procedure is further susceptible to cyber attacks revealing the sensor
locations to an adversary.

TABLE I
DILOC-CT DESIGN SPECIFICATIONS

Performance specs. Frequency constraint Range
Zero steady-state Slope of +20 dB/dec for σ̄ (Sg (jω)) LF
Conv. speed Cutoff freq. of σ(Sg) ≥ 10 rad/sec LF
Disturbance −60 dB/dec slope for σ̄ (T g (jω)) HF
reduction −40 dB/dec slope for σ̄ (KSg (jω)) HF

In order to solve the above control problem, we will use
the well-known input-output approach, which was introduced
to deal with interconnected systems, see [24]–[27] for details.

A. Input-output Approach

We now describe the input-output approach over which
we will formulate the DILOC-CT controller design problem.
We use the concept of dissipitavity taken from [24]–[27], a
simplified version of which is defined below.

Definition 1 (Dissipativity): An LTI, stable, and causal
operator, H , is strictly {X,Y, Z}-dissipative, where X =
XT , Y, Z = ZT , are real matrices such that[

X Y
Y T Z

]
is full-rank; if ∃ ε > 0 such that for almost all ω > 0[

I
H(jω)

]∗ [
X Y
Y T Z

] [
I

H(jω)

]
≤ −εI. (20)

If the inequality in Eq. (20) is satisfied with ε = 0, the
operator is said to be {X,Y, Z}-dissipative.

Consider a large-scale system represented as an intercon-
nection, H̃ , of identical subsystems, Ts:

p = (I ⊗ Ts) (q) ,

[
q
z̃

]
= H̃

([
p
w̃

])
, (21)

where
H̃ =

[
H̃11 H̃12

H̃21 H̃22

]
is a finite-dimensional, stable LTI system, Ts = G?K, w̃(t)
is the input vector, z̃(t) is the output vector, and q(t), p(t),
are internal signals. The LTI systems, G and K, are finite-
dimensional and are referred to as the local plant and
controller. The global transfer function between external
input, w̃, and output, z̃, is

Tw̃→z̃ = (I ⊗ Ts) ? H̃,

and its H∞ norm is ensured by the local controller, K, by
the following theorem.

Theorem 2: Given η > 0, a stable LTI system, H̃ , a local
plant, G, and real matrices, X = XT ≥ 0, Y , Z = ZT , if
there exist

(i) a positive-definite matrix, Q, such that H̃ is
{diag(Q⊗X,−η2I), diag (Q⊗ Y, 0) , diag (Q⊗ Z, I)}-
dissipative, and

(ii) a local controller, K, such that Ts = G ? K is strictly
{−Z,−Y T ,−X}-dissipative,



then the local controller, K, ensures that the global sys-
tem, (INs ⊗ Ts) ? H̃ , is stable and

‖ (I ⊗ Ts) ? H̃‖∞ ≤ η. (22)

The proof of Theorem 2 can be found in [26], [27], and
it relies on a version of the graph-separation theorem used
in [24] for global stability and an S-procedure, [34], for
global performance. It can also be seen as a generalization
of the Kalman-Yakubovich-Popov lemma, [35].

B. Local Control for Global Performance

Note that based on the properties of the H∞ norm:∥∥∥∥ T11 T12

T21 T22

∥∥∥∥
∞
≤ η ⇒ ‖T11‖∞ ≤ η,

‖T22‖∞ ≤ η,

⇔ σ (T11 (jω)) ≤ η
σ (T22 (jω)) ≤ η ,∀ω ∈ R+,

(23)

Theorem 2 is applicable to the system in Eqs. (14) and (15) to
find a controller, K, ensuring a global bound, η, on the H∞
norm of, in this case, T11 = Sg and T22 = Tz→ε. However,
such imposed constraints are frequency-independent. We
now present a result allowing to impose frequency-dependent
bounds, Eq. (19), constructed with the help of local transfer
functions, KS, S, or T , and constant gains. Consider the
following augmented localization system:[

x
x

]
= (IM+1 ⊗ T (s))

[
r
r

]
,[

r
r

εref

ε

]
=

[ l 0 g1l 0
lBu P g1lBu g3I

g−1
1 lP −g−1

1 I lP 0

g2lBu g2(P−IM ) g2g1lBu g2g3I

]
︸ ︷︷ ︸

H

[
x
x
u
z

]
,

(24)
with real positive scalars, g1, g2, g3, l = 1

1+β , 0 < β �
1, P = (IM − P )

−1
Bu, and one additional local sensor

dynamics, T (s), with additional input, r, and output, x.
The main result of this paper is now provided in the

following theorem that solves Problem 1 following a similar
argument as in Section IV-A.

Theorem 3 (Control Design): Given η > 0, the system
described in Eq. (24), and real scalars, X ≥ 0, Y, Z ≤ 0, if
there exists a positive-definite matrix, Q ∈ R(M+1)×(M+1),
such that

(i) H is
{

diag
(
XQ,−η2I

)
, diag (Y Q, 0), diag (ZQ, I)}-

dissipative,
and a local controller, K, such that:
(ii) T (s) is strictly {−Z,−Y,−X}-dissipative with
‖T̂ (s)‖∞ < 1, and T̂ (s) =

(
T (s) + Y

X

)√
X2

Y 2−XZ ;
(iii) |S (jω)| ≤ η−1ΩS (ω) , in the LF range;
(iv) |KS (jω) | ≤ η−1g2g3 min {ΩKS (ω) , ωΩT (ω)} , in

the HF range;

then the local controller K solves the Problem 1.

Proof: Let us define weighted version of input-output
signals of the original system in Eq. (15) as:

εref = g−1
1 εref ,

ε = g2ε,

z = g−1
3 z,

u = g−1
1 (S + β)u0.

Based on this notation, one can define the following relation:

T
[uz ]→

[
εref

ε

] = W1T[u0
z ]→

[
εref

ε

]W2,

with4 W1 =
[
g−1
1 0
0 g2IM

]
and W2 =

[
g1(S(s)+β)−1 0

0 g3IM

]
.

Since S(s) = T (s) − 1, the matrix transfer function, W2,
can be represented in the form of an interconnection (LFT)
of one system T (s):

W2 = T (s) ? HW ,

with HW =

 l g1l 0
l g1l 0
0 0 g3

 .
The global transfer function, Eq. (15), is an LFT of M
systems, T (s), and is defined by

T
[u0
z ]→

[
εref

ε

] = (T (s)IM ) ? H.

The augmented system, T
[uz ]→

[
εref

ε

] = (IM+1 ⊗ T (s))?H ,

is an LFT of M + 1 systems, T (s), representing a series
connection of W1T[u0

z ]→
[
εref

ε

] and W2, and is given in

Eq. (24). The corresponding expression of H is computed
based on the LFT algebra, see Section 2.4 in [31], .

Note that the first two conditions of Theorem 3 correspond
to the two conditions of Theorem 2. Applying Theorem 2,
a controller that ensures second condition of Theorem 3,
therefore, ensures the global transfer function bound:∥∥(T (s)IM+1) ? H

∥∥
∞ =

∥∥∥∥W1T[u0
z ]→

[
εref

ε

]W2

∥∥∥∥
∞
≤ η.

Using Eq. (23), the last inequality implies ∀ω:

σ (Tu0→εref (jω)) ≤ η |S (jω) + β| ,

σ (Tz→ε (jω)) ≤ η (g2g3)
−1
.

(25)

For frequency range where β can be neglected compared
to |S (jω)|, condition (iii) of the Theorem 3 ensures the first
condition of Problem 1. Note that in the HF range:

|KS (jω)| = |K (jω)|∣∣1− j
ωK (jω)

∣∣ ≈ |K (jω)| .

Therefore, together with Eq. (18), the condition (iv) implies
the second and third conditions of the Problem 1.

4The reason of using parameter β is that in order to properly define
the H∞ norm, the weighting filters Wi should be stable transfer functions.
Since S has zero at zero, Eq. (10) (because of presence of integrator in
local sensor dynamics, see Fig 3), the weighting filter W2 would contain
integrator and thus be unstable with β = 0. This is a classical problem in
the H∞ design, [32], which is practically solved by perturbing the pure
integrator, 1

s
, by a small real parameter, β : 1

s
→ 1

s+β
.



Remark 1: Theorem 3 can be applied to efficiently design
a controller, K, that solves Problem 1, if X , Y , and Z, are
fixed. In this case, the first condition of Theorem 3 is a
Linear Matrix Inequality (LMI) with respect to the decision
variables, η and Q, and thus, convex optimization can be
applied to find the smallest η such that it is satisfied. The
conditions, (ii)-(iv), are ensured by the local traditional H∞
design. However, if X , Y , and Z, are the decision variables,
the underlying optimization becomes bilinear. In this case, a
quasi-convex optimization problem for finding X , Y , and Z,
that satisfy the condition (i) and relaxes the condition (ii) of
Theorem 3 is proposed in [26], [27] and is used thereafter.

Remark 2: The weighting filters, W1 and W2, are used to
impose frequency-dependent bounds on the global transfer
function magnitudes, Eq. (19), in a relative fashion, i.e.,
global performance in Eq. (19) is ensured by the local
system performance, see conditions (iii)-(iv) of Theorem 3.
The reason for using different gains, gi, is to impose the
constraint on diagonal blocks, Tu0→εref and Tz→ε, while re-
ducing this constraint on the cross transfer functions, Tu0→ε
and Tz→εref , if such constraints are not needed from appli-
cation point of view.

V. NUMERICAL EXAMPLES

We consider a network of M = 20 sensors and N =
m + 1 = 3 anchors in R2. The sensors lie in the convex
hull (triangle) formed by the anchors, see Fig. 5 (Left) for
a candidate deployment where the DILOC-CT trajectories,
with arbitrary initial conditions marked by ‘?’, are shown
for four randomly chosen sensors. Each sensor is connected
to three neighbors such that it lies in their convex hull. Fig. 5
(Right) shows the normalized sum of squared error (averaged
across all sensors and all dimensions) for different values of
the proportional gain without disturbance, z.
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Fig. 5. DILOC-CT: Network and convergence speed

Next consider the disturbance, z, each component of which
is a realization of a band-limited noise with amplitude, A <
5, in frequency range, [ω−z ω+

z ] = [600 105] rad/sec.
To reduce the contribution of this noise on the location
estimate, x, and the control command, y, i.e., the input to
the integrator in the local dynamics, Ts, see Fig. 3, while
ensuring the imposed tracking performance, see Table I, we
add the frequency constraints, ΩS(ω),ΩT (ω),ΩKS(ω) in
Problem 1, shown as red dotted lines in Fig. 6. We define
the augmented system, Eq. (24), with g1 = 1, g2 = 14,
g3 = 1.7 and β = 10−3. Using the quasi-convex optimization

problem proposed in [26], [27], the sensor dissipativity
characterization is defined by X = −4.99, Y = 1.99,
and Z = 1. First condition of Theorem 3 is ensured with
minimum η = 48.85 by convex LMI optimization. The
local controller, K(s), is then computed using standard H∞
design [32] to ensure conditions (ii)-(iv) of Theorem 3:

K(s) =
3.71 · 109

(s+ 2094)(s+ 6712)
.

Fig. 6. Singular value of Sg , T g and KSg for different frequencies and
for dynamic K(s) (solid blue line) and static α (red dashed line) cases
together with corresponding frequency constraints (red dotted line).

As expected, the local controller is a low-pass filter with
high gain, GK ≈ 264, in the LF range, and the negative slope
(−40 dB/dec) in the HF range. According to the Theorem 3,
the designed controller solves the Problem 1, i.e., it ensures
the frequency constraints, Eq. (19), as can be verified in
Fig. 6. Furthermore, the performance of this controller is
compared to the static (proportional) gain with α = 264,
which ensures the same convergence speed, see red dashed
lines in Fig. 6. It is interesting to note that the LF gain of the
dynamic controller is the same as with the static gain, α =
264; however, in the HF range, the dynamic controller
allows to significantly reduce the maximum singular values
of T g and KSg , which subsequently results in disturbance
reduction. All these frequency domain observations are con-
firmed by temporal simulations presented in Fig. 7 where
mean estimation error, εref , and command signals, yi’s, are
presented for both cases.

VI. CONCLUSIONS

In this paper, we describe a continuous-time LTI algo-
rithm, DILOC-CT, to solve the sensor localization problem
in Rm with at least m+1 anchors who know their locations.
Assuming that each sensor lies in the convex hull of the an-
chors, we show that DILOC-CT converges to the true sensor
locations (when there is no disturbance) and the convergence
speed can be increased arbitrarily by using a proportional
gain. Since high gain results into unwanted transients, large
input to each sensors internal integrator, and amplification
of network-based disturbance, e.g., communication noise;
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Fig. 7. Temporal simulations: (Left) Static, α; (Right): Dynamic, K(s).
Note the high values of the control command, yi(t)’s, with the proportional
controller, that could overexcite the local system, integrator, at each sensor.

we design a dynamic controller with frequency-dependent
performance objectives using the H∞ theory. We show that
this dynamic controller does not only provide disturbance
rejection but is also able to meet certain performance objec-
tives embedded in frequency-dependent constraints. Finally,
we note that although the design requires the knowledge of
the entire barycentric matrices, the approach described in this
paper serves as the foundation of future investigation towards
decentralized design of dynamic controllers.
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[23] August Ferdinand Möbius, Der barycentrische calcul, 1827.
[24] P. J. Moylan and D. J. Hill, “Stability criteria for large-scale systems,”

IEEE Trans. Aut. Control, vol. AC-23, no. 2, pp. 143–149, Apr. 1978.
[25] G. Scorletti and G. Duc, “An LMI approach to decentralized H∞

control,” Int. J. Control, vol. 74, no. 3, pp. 211–224, 2001.
[26] A. Korniienko, G. Scorletti, E. Colinet, and E. Blanco, “Control law

design for distributed multi-agent systems,” Tech. Rep., Laboratoire
Ampère, Ecole Centrale de Lyon, 2011.

[27] A. Korniienko, G. Scorletti, E. Colinet, and E. Blanco, “Performance
control for interconnection of identical systems: Application to pll
network design,” International Journal of Robust and Nonlinear
Control, Dec. 2014.

[28] Yoon-Gu Kim, Jinung An, and Ki-Dong Lee, “Localization of mobile
robot based on fusion of artificial landmark and RF TDOA distance
under indoor sensor network,” International Journal of Advanced
Robotic Systems, vol. 8, no. 4, pp. 203–211, September 2011.

[29] Manfred J Sippl and Harold A Scheraga, “Cayley-menger coordi-
nates,” Proceedings of the National Academy of Sciences, vol. 83, no.
8, pp. 2283–2287, 1986.

[30] Usman A Khan, Soummya Kar, Bruno Sinopoli, and José MF Moura,
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