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An H ∞ -based approach for robust sensor localization

In this paper, we consider the problem of sensor localization, i.e., finding the positions of an arbitrary number of sensors located in a Euclidean space, R m , given at least m+1 anchors with known locations. Assuming that each sensor knows pairwise distances in its neighborhood and that the sensors lie in the convex hull of the anchors, we provide a DIstributed LOCalization algorithm in Continuous-Time, named DILOC-CT, that converges to the sensor locations. This representation is linear and is further decoupled in the coordinates.

By adding a proportional controller in the feed-forward loop of each location estimator, we show that the convergence speed of DILOC-CT can be made arbitrarily fast. Since a large gain may result into unwanted transients especially in the presence of disturbance introduced, e.g., by communication noise in the network, we use H∞ theory to design local controllers that guarantee certain global performance while maintaining the desired steady-state. Simulations are provided to illustrate the concepts described in this paper.

I. INTRODUCTION

Localization is often referred to as finding the position of a point in a Euclidean space, R m , given a certain number of anchors, with perfectly known positions, and point-toanchor distances and/or angles. Traditionally, distance-based localization has been referred to as trilateration, whereas angle-based methods are referred to as triangulation. Trilateration is the process of finding a location in R m , given only the distance measurements to at least m + 1 anchors, see Fig. 1 (Left). With m + 1 sensor-to-anchor distances, the nonlinear trilateration problem is to find the intersection of three circles. Triangulation, Fig. 1 (Right), employs the angular information to find the unknown location.

The literature on localization is largely based on the triangulation and trilateration principles, or in some cases, a combination of both. Recent work may be broadly characterized into centralized and distributed algorithms, see [START_REF] Destino | Positioning in Wireless Networks: Non-cooperative and Cooperative Algorithms[END_REF] where a comprehensive coverage of cooperative and noncooperative strategies is provided. Centralized localization algorithms include: maximum likelihood estimators, [START_REF] Moses | A self-localization method for wireless sensor networks[END_REF], [START_REF] Patwari | Relative location estimation in wireless sensor networks[END_REF]; multi-dimensional scaling (MDS), [START_REF] Shang | Localization from mere connectivity[END_REF], [START_REF] Shang | Improved MDS-based localization[END_REF]; optimizationbased methods to include imprecise distance information, see [START_REF] Cao | Localization with imprecise distance information in sensor networks[END_REF]; for additional work, see [START_REF] Patwari | Manifold learning algorithms for localization in wireless sensor networks[END_REF]- [START_REF] Anderson | Formal theory of noisy sensor network localization[END_REF]. Optimization based techniques can be found in [START_REF] Biswas | Semidefinite programming based algorithms for sensor network localization[END_REF], [START_REF] Ding | Sensor network localization, Euclidean distance matrix completions, and graph realization[END_REF] and references therein, whereas, polynomial methods are described in [START_REF] Shames | Polynomial methods in noisy network localization[END_REF].
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Of significant relevance to this paper is Ref. [START_REF] Khan | Distributed sensor localization in random environments using minimal number of anchor nodes[END_REF], which describes a discrete-time algorithm, named DILOC, assuming a global convexity condition, i.e., each sensor lies in the convex hull of at least m + 1 anchors in R m . A sensor may find its location as a linear-convex combination of the anchors, where the coefficients are the barycentric coordinates; attributed to August F. Möbius, [23]. However, this representation may not be practical as it requires longdistance communication to the anchors. To overcome this issue, each sensor finds m + 1 neighbors, its triangulation set, such that it lies in their convex hull and iterates on its location as a barycentric-based representation of only the neighbors. Assuming that each sensor can find a triangulation set, DILOC converges to the true sensor locations. Ref. [START_REF] Khan | Distributed sensor localization in random environments using minimal number of anchor nodes[END_REF] analyzes the convergence and provides tests for finding triangulation sets with high probability in a small radius.

In this paper, we provide a continuous-time analog of DILOC-DT in [START_REF] Khan | Distributed sensor localization in random environments using minimal number of anchor nodes[END_REF], that we call DILOC-CT, and show that by using a proportional controller in each sensor's location estimator, the convergence speed can be increased arbitrarily. Since this increase may come at the price of unwanted transients especially when there is disturbance introduced by the network, we replace the proportional gain with a dynamic controller that guarantees certain performance objectives. We thus consider disturbance in the communication network that is incurred as zero-mean additive noise in the information exchange. In this context, we study the disturbance rejection properties of the local controllers and tune them to withstand the disturbance while ensuring some performance objectives. Our approach is based on H ∞ design principles and uses the input-output approach, see e.g., [START_REF] Moylan | Stability criteria for large-scale systems[END_REF]- [START_REF] Korniienko | Performance control for interconnection of identical systems: Application to pll network design[END_REF].

Notation: The superscript, 'T ', denotes a real matrix transpose while the superscript, ' * ', denotes the complexconjugate transpose. The N × N identity matrix is denoted by I N and the n × m zero matrix is denoted by 0 n×m . The dimension of the identity or zero matrix is omitted when it is clear from the context. The diagonal aggregation of two matrices A and B is denoted by diag(A, B). The Kronecker product, denoted by ⊗, between two matrices, A and B, is defined as

A ⊗ B = [a ij B]. We use T x→y (s)
to denote the transfer function between an input, x(t), and an output, y(t). With matrix, G, partitioned into four blocks, G 11 , G 12 , G 21 , G 22 , G K denotes the Redheffer product, [START_REF] Doyle | Review of LFT's, LMI's and µ[END_REF], i.e.,

G K = G 11 + G 12 K (I -G 22 K) -1 G 21 .
Similarly,

K G = G 22 + G 21 K (I -G 11 K) -1 G 12 .
For a stable LTI system, G, G ∞ denotes the H ∞ norm of G. For a complex matrix, P : σ (P ) denotes its maximal singular; λ i (P ) denotes the ith eigenvalue; and ρ(P ) denotes its spectral radius. Finally, the symbols, '≥' and '>, denote positive semi-definiteness and positive-definiteness of a matrix, respectively. We now describe the rest of the paper. Section II describes the problem, recaps DILOC-DT, and introduces the continuous-time analog, DILOC-CT. Section III derives the convergence of DILOC-CT with a proportional gain and investigates disturbance-rejection. In Section IV, we describe dynamic controller design using the H ∞ theory according to certain objectives that ensure disturbance rejection. Section V illustrates the concepts and Section VI concludes the paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider a network of M sensors, in the index set Ω, with unknown locations, and N anchors, in the index set κ, with known locations, all located in R m , m ≥ 1; let Θ = Ω∪κ be the set of all nodes. Let x i * ∈ R m denote the true location of the ith sensor, i ∈ Ω; similarly, u j ∈ R m , j ∈ κ, is the true location of the anchors. We assume that each sensor is able to compute its distances to the nearby nodes (sensors and/or anchors) by using, e.g., the Received Signal Strength (RSS) or camera-based methods, [START_REF] Moses | A self-localization method for wireless sensor networks[END_REF], [START_REF] Kim | Localization of mobile robot based on fusion of artificial landmark and RF TDOA distance under indoor sensor network[END_REF]. The problem is to find the locations of the sensors in Ω. Below, we describe DILOC, which was originally introduced in [START_REF] Khan | Distributed sensor localization in random environments using minimal number of anchor nodes[END_REF].

A. DILOC-DT

DILOC-DT assumes that each sensor lies in the convex hull, denoted by C(κ), of the anchors. Using only the internode distances, each sensor, say i, finds a triangulation set, Θ i , of m+1 neighbors such that i ∈ C(Θ i ),

|Θ i | = m+1. A convex hull inclusion test is given by i ∈ C(Θ i ), if j∈Θi A Θi∪{i}\j = A Θi ,
where A Θi denotes the m-dimensional volume, area in R 2 or volume in R 3 , of C(Θ i ), see Fig. 2 in R 2 , and can be computed by Cayley-Menger determinant, [START_REF] Khan | Distributed sensor localization in random environments using minimal number of anchor nodes[END_REF], [START_REF] Manfred | Cayley-menger coordinates[END_REF], using only the pairwise distances of the nodes in {i, Θ i }.

i Given a triangulation set, Θ i , for every i ∈ Ω, each sensor updates its location estimate, x i k , as follows:

1 2 3 A i23 A i12 A i13
x i k+1 = j∈Θi∩Ω A Θi∪{i}\j A Θi pij x j k + j∈Θi∩κ A Θi∪{i}\j A Θi bij u j , (1) 
where k is discrete-time, the coefficients, p ij 's and b ij 's, are the barycentric coordinates that are positive and sum to 1. Let x k ∈ R M ×m be the vector of location estimates, x i k , i ∈ Ω; similarly, u for anchors; DILOC-DT is given by

x k+1 = P x k + Bu, (2) 
where P = {p ij } is an M ×M matrix of the sensor-to-sensor barycentric coordinates; similarly, B = {b ij } is M × N . The following result is from [START_REF] Khan | Distributed sensor localization in random environments using minimal number of anchor nodes[END_REF].

Lemma 1: Let |κ| ≥ m+1 and i ∈ C(κ), ∀i ∈ Ω. Assume non-trivial configurations, i.e., A κ = 0, A Θi = 0, ∀i ∈ Ω.
Then, DILOC-DT, Eq. ( 2), is such that ρ(P ) < 1 and

lim k→∞ x k = (I -P ) -1 Bu = x * , (3) 
where x * is the vector of true sensor locations.

Clearly, the proof relies on the fact that ρ(P ) < 1, which can be shown with the help of an absorbing Markov chain analogy1 , see [START_REF] Khan | Distributed sensor localization in random environments using minimal number of anchor nodes[END_REF]. In particular, each transient state (sensor) has a path (possibly over multiple links) to each absorbing state (anchor); subsequently, the (transient) state-transition matrix, P , is such that ρ(P ) < 1. That (I -P ) -1 Bu is the desired steady-state can be verified as the true sensor locations follow: x * = P x * + Bu.

B. DILOC-CT

We now provide DILOC-CT, a continuous-time analog to DILOC-DT. To this aim, let x i (t) denote the m-dimensional row-vector of sensor i's location estimate, where t ≥ 0 is the continuous-time variable. Since the anchors' locations are known, we have u j (t) = u j , ∀t ≥ 0, j ∈ κ. Borrowing notation from Section II-A, DILOC-CT is given by, where (t) is dropped in the sequel for convenience:

ẋi = -x i + r i ; r i j∈Θi∩Ω p ij x j + j∈Θi∩κ b ij u j , (4) 
and Θ i is the triangulation set at sensor i. Note that Θ i may not contain any anchor, in which case

|Θ i ∩ Ω| = m + 1, and 
|Θ i ∩ κ| = 0.
In other words, a sensor may not have any anchor as a neighbor and the barycentric coordinates are assigned to the neighboring sensors, with unknown locations.

In order to improve the convergence rate, we may add a proportional gain, α ∈ R, in the feed-forward loop of each sensor's location estimator, denoted by an identical system, T s , at each sensor:

T s : ẋi = α(-x i + r i ). (5) 
We now assume that the received signal at each sensor incurs a zero-mean additive disturbance, z i (t), whose frequency spectrum lies in the interval, [ω - z , ω + z ]. With this disturbance, the location estimator is given by

ẋi = α(-x i + r i + z i ). (6) 
Here, z i (t) can be thought of as communication noise that effects the information exchange. Note that Eq. ( 4) is special case of Eq. ( 6) with α = 1 and z = 0. Finally, we replace the proportional gain, α, with a local controller, K(s). The overall architecture is depicted in Fig. 3, where we separate the desired signal, r i , and the disturbance, z i , as two distinct inputs to each T s .
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The contributions of this paper are as follows: First, we show that DILOC-CT converges to the true sensor locations and characterize the range of gains that ensures this convergence. We then study the disturbance rejection properties of the proportional gain. This analysis is provided in Section III. Second, we note that an arbitrary high proportional gain may result in unwanted transients and disturbance amplification. In order to add design flexibility and guarantee certain performance objectives, we replace the proportional gain, α, with local controllers, K(s). We use H ∞ design procedure to derive these local controllers meeting global objectives. This analysis is carried out in Section IV. Finally, we study the disturbance rejection properties of the local controllers with the help of the H ∞ design in Sections IV and V.

III. DILOC-CT WITH PROPORTIONAL GAIN

We now analyze the convergence properties of the proportional gain controller without disturbance in Eq. ( 5). Let x(t) collect the location estimates at the sensors and let u collect the true locations of the anchors. Borrowing notation from Section II-A, we use the matrices, P and B, to denote the corresponding barycentric coordinates. Eq. ( 5) can be equivalently written in the following matrix form:

ẋ = -α(I -P )x + αBu P α x + B α u. (7) 
We have the following result.

Lemma 2: If ρ(P ) < 1, then {λ i (P α )} < 0, ∀i, α > 0. Proof: Let λ i (P ) = a i + √ -1b i for some a i , b i ∈ R, and note that |a i | < 1, ∀i, since ρ(P ) < 1, then λ i (I -P ) = 1 -a i - √ -1b i , (8) 
and the lemma follows for any α > 0.

The following theorem studies the DILOC-CT convergence. Theorem 1: DILOC-CT, Eq. ( 7), converges to the true sensor locations, x * , for all α > 0, i.e.,

lim t→∞ x(t) = (I -P ) -1 Bu = x * .
(9) Proof: From Lemma 2, we have {λ i (P α )} < 0, ∀i. Starting from Eq. ( 7), we get That the convergence speed is exponential in α > 0 can also be easily verified. In fact, the real part of the eigenvalues of P α move further into the left-half plane as α increases. However, in the presence of network-based disturbances, z i (t)'s, an arbitrarily large α also amplifies the disturbance. To guarantee certain performance objectives, a natural extension is to replace the proportional (static) gain with a dynamic controller, K(s). We study this scenario using H ∞ design in Section IV.

x(t) = e Pαt
In the following, we analyze the disturbance rejection with the proportional controller. To proceed, we use the fact that DILOC-CT is decoupled in the coordinates. Hence, each local system, T s , see Eq. ( 5) and Fig. 3, can be analyzed per coordinate and the same analysis can be extended to other coordinates. Recall that the network location estimate, x(t), is a M × m matrix where each column is associated to a location coordinate in R m . We let x to be an arbitrarily chosen column of x corresponding to one chosen dimension. Similarly, we let z, r, ε, and y (signals in Fig. 3) to represent M -dimensional vectors; for any of such vectors, the subscript i denotes the chosen coordinate at sensor i.

A. Rejection vs. Localization tradeoff, M = 1

We first consider the simplest case of DILOC-CT in R2 , with static controller, K(s) = α, N = 3 anchors and one sensor, M = 1, see Fig. 2 (Left). In this case, the dynamics of the overall network is equivalent to the dynamics, T s in Eq. ( 5), of one sensor and a constant input r i defined by Eq. ( 4) with p ij = 0. Since the H ∞ design approach used in the next sections is frequency-based, the localization performance will be expressed thereafter in the frequency domain. Since P = 0, we have r i = b ij u j , where u j is the true location of the anchors and the performance (steadysate error, convergence speed) is defined by the tracking performance of the dynamics, T s . Let us define a transfer function, S(s), between the reference input, r i , and tracking error, defined as

ε ref i x * i -x i , which for K = α is S(s) = (1 + K(s) 1 s ) -1 = s(s + α) -1 . ( 10 
)
For all α > 0, S(s) is stable with a zero at the origin implying 0 steady-state error for constant inputs. It is important to note that the cutoff frequency, ω S , for which |S(jω

S )| = √ 2 
2 , is ω S = α. The magnitude of S is close to zero in the Low Frequency (LF) range (ω ω S ) and approaches 1 in the High Frequency (HF) range (ω ω S ). Increasing α increases the cutoff frequency of S implying an increase in the convergence speed, which follows Theorem 1.

To proceed with the subsequent analysis, note that

T zi→xi (s) = T ri→xi (s) = α s+α = 1 -S(s) T (s), T zi→yi (s) = T ri→yi (s) = αs s+α = K(s)S(s) KS(s). (11) 
The cutoff frequency, ω T , of T (s) is equal to the cutoff frequency, ω S , of S(s). Increasing α increases both ω T and ω S , and thus the bandwidth of T (s). Since the magnitude of T (s) is equal to 1 in the LF range and decreases in the HF range, increasing α implies the transmission of a broader frequency range of disturbance, z i , on the output, x i . It is therefore not possible to increase the convergence speed and disturbance rejection at the same time. This is also true for the dynamic controller, K(s); we may, however, impose a larger slope of magnitude decay in T (s). Let us now consider the transfer function, KS(s). In the HF range, |KS(s)| = α, and thus an increase in α amplifies the disturbance. A logical extension is to consider a dynamic controller, K(s), which is frequency-dependent such that it has a high gain in the LF range, for a good tracking performance; and a low gain in the HF range for a better disturbance rejection.

B. Rejection vs. Localization tradeoff, M > 1

To study the general case, let us define the global transfer function, Sg u→ε ref , as an M ×N matrix between the input, u (anchors positions), and the network tracking error, defined by ε ref x * -x. Note that we can write the input as u = u u u , where u is the Euclidean norm of u. In this case, the tracking performance of the network could be evaluated by the M × 1 transfer function:

S g u →ε ref = Sg u→ε ref u u S g , (12) 
whose j-th component, S g j , is the transfer function between the constant, u , and j-th sensor's tracking error, ε ref j . Let us define additional global transfer functions as follows:

T z→x (s) T g (s), T z→y (s) KS g (s). (13) 
The transfer functions T g and KS g are M × M matrices, components of which, T g ij and KS g ij , represent transfer functions between j-th sensor disturbance, z j , and i-th sensor location estimate, x i , and control signals, y i , respectively.

In general, the components of S g , T g , and KS g are different form the local dynamics, S, T , and KS. However, increasing α has the same consequences as discussed before in the simple case. We illustrate this numerically 2 in Fig. 4, which shows the maximal singular value, σ(•), of frequency responses of S g , T g , and KS g for a network of M = 20 sensors with P = 0 and for α varying form 1 to 10 4 . Briefly, σ(•) is a generalization of gain for MIMO systems, [START_REF] Skogestad | Multivariable Feedback Control, Analysis and Design[END_REF], and its maximum value for a given frequency is the maximum amplification between the Euclidean norms of input-output vectors (over all directions of applied input vector). We observe that similar to the local case, M = 1, an increase of α increases the convergence speed but also increases HF disturbance amplification. As in the case with M = 1, in order to reduce the HF disturbance amplification, it is possible to use a dynamic controller, K(s), that decreases the maximum HF singular value of T g and KS g . However, the design of such controller in the general case of M > 1 is a non-trivial problem and could result in poor performance (low speed, high oscillations) and a global system instability for some choice of K(s). In fact, it is a special case of the decentralized control problem, which is proved to be NP-hard even in the LTI case, [START_REF] Blondel | NP-hardness of some linear control design problems[END_REF]. However, since the sensors are identical it is possible to link the global network to the local dynamics and then perform a local design by the traditional H ∞ approach. This method is proposed in [START_REF] Korniienko | Control law design for distributed multi-agent systems[END_REF], [START_REF] Korniienko | Performance control for interconnection of identical systems: Application to pll network design[END_REF] and is applied, with some changes, to DILOC-CT in the next section.

IV. DILOC-CT: H ∞ DESIGN

We now consider DILOC-CT introduced earlier in Section II-B with local controllers. We assume that the barycentric matrices, P and B, are given3 . Our objective is to design identical (local) controllers, K(s), to achieve, besides the global system stability, certain performance objectives, summarized in Table I. We note that the location estimator at each sensor is identical and define the following global system description for each coordinate, recall Eq. ( 11):

x = (I M ⊗ T (s)) r z , ( 14 
)
where r z = r + z = P x + B u u 0 + z, and

u 0 = u , B u = B u u0 . Next note that ε ref = x * -x = (I M -P ) -1 B u u 0 -
x, and ε = r zx, from Fig. 3. We have the following relation:

  r z ε ref ε   =   P B u I M -I M (I M -P ) -1 0 P -I M B u I M   H   x u 0 z   .
(15) The local transfer function, T (s), identical at each sensor, is

T (s) = K(s) 1 s 1 + K(s) 1 s ( 16 
)
Given the representation in Eqs. ( 14) and ( 15), we have

T [ u0 z ]→ ε ref ε = (I M ⊗ T (s)) H, (17) 
and T u0→ε ref (s) = S g (s), see Eq. ( 12). Furthermore, T g (s) and KS g (s) can be written in terms of T z→ε (s) as

T g (s) = K(s) s T z→ε (s), KS g (s) = K(s)T z→ε (s). ( 18 
)
We formulate the following control design problem: Problem 1 (Control problem): Given the global system in Eqs. ( 14) and ( 15), find the local controller, K(s), such that the global system is stable and satisfies the following frequency constraints:

σ (S g (jω)) ≤ Ω S (ω) , in LF range, σ (T g (jω)) ≤ Ω T (ω) , in HF range, σ (KS g (jω)) ≤ Ω KS (ω) , in HF range. ( 19 
)
We now briefly explain the frequency constraints. The first constraint, Ω S , ensures zero steady-state error and provides a handle on the speed of convergence. The second constraint, Ω T , imposes a maximum bandwidth on T g , which, in turn, limits the disturbance amplification in high-frequency. The last constraint, Ω KS , reduces the amplification of noise on the local input, y, to each sensor's local dynamics in high-frequency. Specifics on these constraints are tabulated in Table I and are further elaborated in Section V. In order to solve the above control problem, we will use the well-known input-output approach, which was introduced to deal with interconnected systems, see [START_REF] Moylan | Stability criteria for large-scale systems[END_REF]- [START_REF] Korniienko | Performance control for interconnection of identical systems: Application to pll network design[END_REF] for details.

A. Input-output Approach

We now describe the input-output approach over which we will formulate the DILOC-CT controller design problem. We use the concept of dissipitavity taken from [START_REF] Moylan | Stability criteria for large-scale systems[END_REF]- [START_REF] Korniienko | Performance control for interconnection of identical systems: Application to pll network design[END_REF], a simplified version of which is defined below.

Definition 1 (Dissipativity): An LTI, stable, and causal operator, H, is strictly {X, Y, Z}-dissipative, where X = X T , Y, Z = Z T , are real matrices such that

X Y Y T Z is full-rank; if ∃ ε > 0 such that for almost all ω > 0 I H(jω) * X Y Y T Z I H(jω) ≤ -εI. (20) 
If the inequality in Eq. ( 20) is satisfied with ε = 0, the operator is said to be {X, Y, Z}-dissipative.

Consider a large-scale system represented as an interconnection, H, of identical subsystems, T s :

p = (I ⊗ T s ) (q) , q z = H p w , (21) 
where

H = H11 H12 H21 H22
is a finite-dimensional, stable LTI system, T s = G K, w(t) is the input vector, z(t) is the output vector, and q(t), p(t), are internal signals. The LTI systems, G and K, are finitedimensional and are referred to as the local plant and controller. The global transfer function between external input, w, and output, z, is

T w→ z = (I ⊗ T s ) H,
and its H ∞ norm is ensured by the local controller, K, by the following theorem.

Theorem 2: Given η > 0, a stable LTI system, H, a local plant, G, and real matrices,

X = X T ≥ 0, Y , Z = Z T , if there exist (i) a positive-definite matrix, Q, such that H is {diag(Q⊗X, -η 2 I), diag (Q ⊗ Y, 0) , diag (Q ⊗ Z, I)}- dissipative, and (ii) a local controller, K, such that T s = G K is strictly {-Z, -Y T , -X}-dissipative,
then the local controller, K, ensures that the global system, (I Ns ⊗ T s ) H, is stable and

(I ⊗ T s ) H ∞ ≤ η. (22) 
The proof of Theorem 2 can be found in [START_REF] Korniienko | Control law design for distributed multi-agent systems[END_REF], [START_REF] Korniienko | Performance control for interconnection of identical systems: Application to pll network design[END_REF], and it relies on a version of the graph-separation theorem used in [START_REF] Moylan | Stability criteria for large-scale systems[END_REF] for global stability and an S-procedure, [START_REF] Yakubovich | The S-procedure in non-linear control theory[END_REF], for global performance. It can also be seen as a generalization of the Kalman-Yakubovich-Popov lemma, [START_REF] Rantzer | On the Kalman-Yakubovich-Popov lemma[END_REF].

B. Local Control for Global Performance

Note that based on the properties of the H ∞ norm:

T 11 T 12 T 21 T 22 ∞ ≤ η ⇒ T 11 ∞ ≤ η, T 22 ∞ ≤ η, ⇔ σ (T 11 (jω)) ≤ η σ (T 22 (jω)) ≤ η , ∀ω ∈ R + , (23) 
Theorem 2 is applicable to the system in Eqs. ( 14) and ( 15) to find a controller, K, ensuring a global bound, η, on the H ∞ norm of, in this case, T 11 = S g and T 22 = T z→ε . However, such imposed constraints are frequency-independent. We now present a result allowing to impose frequency-dependent bounds, Eq. ( 19), constructed with the help of local transfer functions, KS, S, or T , and constant gains. Consider the following augmented localization system:

x x = (I M +1 ⊗ T (s)) r r , r r ε ref ε = l 0 g1l 0 lBu P g1lBu g3I g -1 1 lP -g -1 1 I lP 0 g2lBu g2(P -I M ) g2g1lBu g2g3I H x x u z , (24) 
with real positive scalars, g 1 , g 2 , g 3 , l = 1 1+β , 0 < β 1, P = (I M -P )

-1 B u , and one additional local sensor dynamics, T (s), with additional input, r, and output, x.

The main result of this paper is now provided in the following theorem that solves Problem 1 following a similar argument as in Section IV-A.

Theorem 3 (Control Design): Given η > 0, the system described in Eq. ( 24), and real scalars, X ≥ 0, Y, Z ≤ 0, if there exists a positive-definite matrix, Proof: Let us define weighted version of input-output signals of the original system in Eq. ( 15) as:

Q ∈ R (M +1)×(M +1) , such that (i) H is diag XQ, -η 2 I , diag (Y Q, 0), diag (ZQ, I)}-
ε ref = g -1 1 ε ref , ε = g 2 ε, z = g -1 3 z, u = g -1 1 (S + β) u 0 .
Based on this notation, one can define the following relation:

T [ u z ]→ ε ref ε = W 1 T [ u0 z ]→ ε ref ε W 2 , with 4 W 1 = g -1 1 0 0 g2I M and W 2 = g1(S(s)+β) -1 0 0 g3I M .
Since S(s) = T (s) -1, the matrix transfer function, W 2 , can be represented in the form of an interconnection (LFT) of one system T (s):

W 2 = T (s) H W , with H W =   l g 1 l 0 l g 1 l 0 0 0 g 3   .
The global transfer function, Eq. ( 15), is an LFT of M systems, T (s), and is defined by

T [ u0 z ]→ ε ref ε = (T (s)I M ) H. The augmented system, T [ u z ]→ ε ref ε = (I M +1 ⊗ T (s)) H, is an LFT of M + 1 systems, T (s), representing a series connection of W 1 T [ u0 z ]→ ε ref ε
and W 2 , and is given in Eq. [START_REF] Moylan | Stability criteria for large-scale systems[END_REF]. The corresponding expression of H is computed based on the LFT algebra, see Section 2.4 in [START_REF] Doyle | Review of LFT's, LMI's and µ[END_REF], . Note that the first two conditions of Theorem 3 correspond to the two conditions of Theorem 2. Applying Theorem 2, a controller that ensures second condition of Theorem 3, therefore, ensures the global transfer function bound:

(T (s)I M +1 ) H ∞ = W 1 T [ u0 z ]→ ε ref ε W 2 ∞ ≤ η.
Using Eq. ( 23), the last inequality implies ∀ω:

σ (T u0→ε ref (jω)) ≤ η |S (jω) + β| , σ (T z→ε (jω)) ≤ η (g 2 g 3 ) -1 . (25) 
For frequency range where β can be neglected compared to |S (jω)|, condition (iii) of the Theorem 3 ensures the first condition of Problem 1. Note that in the HF range:

|KS (jω)| = |K (jω)| 1 -j ω K (jω) ≈ |K (jω)| .
Therefore, together with Eq. ( 18), the condition (iv) implies the second and third conditions of the Problem 1.

Remark 1: Theorem 3 can be applied to efficiently design a controller, K, that solves Problem 1, if X, Y , and Z, are fixed. In this case, the first condition of Theorem 3 is a Linear Matrix Inequality (LMI) with respect to the decision variables, η and Q, and thus, convex optimization can be applied to find the smallest η such that it is satisfied. The conditions, (ii)-(iv), are ensured by the local traditional H ∞ design. However, if X, Y , and Z, are the decision variables, the underlying optimization becomes bilinear. In this case, a quasi-convex optimization problem for finding X, Y , and Z, that satisfy the condition (i) and relaxes the condition (ii) of Theorem 3 is proposed in [START_REF] Korniienko | Control law design for distributed multi-agent systems[END_REF], [START_REF] Korniienko | Performance control for interconnection of identical systems: Application to pll network design[END_REF] and is used thereafter.

Remark 2: The weighting filters, W 1 and W 2 , are used to impose frequency-dependent bounds on the global transfer function magnitudes, Eq. ( 19), in a relative fashion, i.e., global performance in Eq. ( 19) is ensured by the local system performance, see conditions (iii)-(iv) of Theorem 3. The reason for using different gains, g i , is to impose the constraint on diagonal blocks, T u0→ε ref and T z→ε , while reducing this constraint on the cross transfer functions, T u0→ε and T z→ε ref , if such constraints are not needed from application point of view. ] rad/sec. To reduce the contribution of this noise on the location estimate, x, and the control command, y, i.e., the input to the integrator in the local dynamics, T s , see Fig. 3, while ensuring the imposed tracking performance, see Table I, we add the frequency constraints, Ω S (ω), Ω T (ω), Ω KS (ω) in Problem 1, shown as red dotted lines in Fig. 6. We define the augmented system, Eq. ( 24), with g 1 = 1, g 2 = 14, g 3 = 1.7 and β = 10 -3 . Using the quasi-convex optimization problem proposed in [START_REF] Korniienko | Control law design for distributed multi-agent systems[END_REF], [START_REF] Korniienko | Performance control for interconnection of identical systems: Application to pll network design[END_REF], the sensor dissipativity characterization is defined by X = -4.99, Y = 1.99, and Z = 1. First condition of Theorem 3 is ensured with minimum η = 48.85 by convex LMI optimization. The local controller, K(s), is then computed using standard H ∞ design [START_REF] Skogestad | Multivariable Feedback Control, Analysis and Design[END_REF] to ensure conditions (ii)-(iv) of Theorem 3:

K(s) =
3.71 • 10 9 (s + 2094)(s + 6712) . As expected, the local controller is a low-pass filter with high gain, G K ≈ 264, in the LF range, and the negative slope (-40 dB/dec) in the HF range. According to the Theorem 3, the designed controller solves the Problem 1, i.e., it ensures the frequency constraints, Eq. ( 19), as can be verified in Fig. 6. Furthermore, the performance of this controller is compared to the static (proportional) gain with α = 264, which ensures the same convergence speed, see red dashed lines in Fig. 6. It is interesting to note that the LF gain of the dynamic controller is the same as with the static gain, α = 264; however, in the HF range, the dynamic controller allows to significantly reduce the maximum singular values of T g and KS g , which subsequently results in disturbance reduction. All these frequency domain observations are confirmed by temporal simulations presented in Fig. 7 where mean estimation error, ε ref , and command signals, y i 's, are presented for both cases.

VI. CONCLUSIONS

In this paper, we describe a continuous-time LTI algorithm, DILOC-CT, to solve the sensor localization problem in R m with at least m + 1 anchors who know their locations. Assuming that each sensor lies in the convex hull of the anchors, we show that DILOC-CT converges to the true sensor locations (when there is no disturbance) and the convergence speed can be increased arbitrarily by using a proportional gain. Since high gain results into unwanted transients, large input to each sensors internal integrator, and amplification of network-based disturbance, e.g., communication noise; Note the high values of the control command, y i (t)'s, with the proportional controller, that could overexcite the local system, integrator, at each sensor.

we design a dynamic controller with frequency-dependent performance objectives using the H ∞ theory. We show that this dynamic controller does not only provide disturbance rejection but is also able to meet certain performance objectives embedded in frequency-dependent constraints. Finally, we note that although the design requires the knowledge of the entire barycentric matrices, the approach described in this paper serves as the foundation of future investigation towards decentralized design of dynamic controllers.

Fig. 1 .

 1 Fig. 1. Localization in R 2 , anchors: red triangles; unknown location: blue circle. (Left) Trilateration-the unknown location is at the intersection of three circles. (Right) Triangulation-the line segments, h, d c1 , d c2 , d h1 , and d h2 , are computed from trigonometric operations.

Fig. 2 .

 2 Fig. 2. R 2 : (Left) Agent i lies in the convex hull of three anchors. (Right) Sensor 4, 6 and 7 form a triangulation set for sensor 5. Blue circles and red triangles indicate agents and anchors, respectively.
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 0 x(0) + t Pατ αBu(tτ )dτ, = e Pαt x(0) + P -1 α e Pαt -I αBu, which asymptotically goes to (since lim t→∞ e Pαt = 0) lim t→∞ x(t) = -P -1 α αBu = -(-α(I -P )) -1 αBu, and the theorem follows.
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 4 Fig. 4. Maximal singular value of S g , T g , and KS g vs. α

2 Y 2

 22 dissipative, and a local controller, K, such that:(ii) T (s) is strictly {-Z, -Y, -X}-dissipative with T (s) ∞ < 1, andT (s) = T (s) + Y X X -XZ ; (iii) |S (jω)| ≤ η -1 Ω S (ω) , in the LF range; (iv) |KS (jω) | ≤ η -1 g 2 g 3 min {Ω KS (ω) , ωΩ T (ω)} , in the HF range;then the local controller K solves the Problem 1.

Fig. 5 .

 5 Fig. 5. DILOC-CT: Network and convergence speed

Fig. 6 .

 6 Fig. 6. Singular value of S g , T g and KS g for different frequencies and for dynamic K(s) (solid blue line) and static α (red dashed line) cases together with corresponding frequency constraints (red dotted line).

Fig. 7 .

 7 Fig. 7. Temporal simulations: (Left) Static, α; (Right): Dynamic, K(s).Note the high values of the control command, y i (t)'s, with the proportional controller, that could overexcite the local system, integrator, at each sensor.

Refs.[START_REF] Khan | Distributed sensor localization in random environments using minimal number of anchor nodes[END_REF],[START_REF] Usman A Khan | Distributed sensor localization in euclidean spaces: Dynamic environments[END_REF] further characterize the probability of successful triangulation, imperfect communication, and noise on the distance measurements, among many other refinements.

It is possible to compute the closed-form expressions of S g , T g , and KS g , e.g., by using the Lower Fractional Transformation algebra (LFT),[START_REF] Doyle | Review of LFT's, LMI's and µ[END_REF], but this computation is beyond the scope of this paper.

Note that the controller design requires the knowledge of all barycentric coordinates, P and B, which may be restrictive. However, we stress that the resulting controller is local and the procedure described here is critical to any future work on decentralized design. In addition, computing the locations at a central location from the matrices, P and B, and then transmitting them to the sensors incurs noise in the communication that is not suppressed; this procedure is further susceptible to cyber attacks revealing the sensor locations to an adversary.

The reason of using parameter β is that in order to properly define the H∞ norm, the weighting filters W i should be stable transfer functions. Since S has zero at zero, Eq. (10) (because of presence of integrator in local sensor dynamics, seeFig 3), the weighting filter W 2 would contain integrator and thus be unstable with β = 0. This is a classical problem in the H∞ design,[START_REF] Skogestad | Multivariable Feedback Control, Analysis and Design[END_REF], which is practically solved by perturbing the pure integrator,[START_REF] Destino | Positioning in Wireless Networks: Non-cooperative and Cooperative Algorithms[END_REF] s , by a small real parameter, β : 1 s → 1 s+β .