
HAL Id: hal-01266188
https://hal.science/hal-01266188v1

Submitted on 2 Feb 2016 (v1), last revised 3 Feb 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Evaluation of Top-k Temporal Joins
Julien Pilourdault, Vincent Leroy, Sihem Amer-Yahia

To cite this version:
Julien Pilourdault, Vincent Leroy, Sihem Amer-Yahia. Distributed Evaluation of Top-k Temporal
Joins. SIGMOD 2016, Jun 2016, San Francisco, United States. �10.1145/2882903.2882912�. �hal-
01266188v1�

https://hal.science/hal-01266188v1
https://hal.archives-ouvertes.fr

Distributed Evaluation of Top-k Temporal Joins

Julien Pilourdault, Vincent Leroy, Sihem Amer-Yahia
Université Grenoble Alpes - LIG, CNRS

Grenoble, France
Firstname.Lastname@imag.fr

ABSTRACT
We study a particular kind of join, coined Ranked Temporal
Join (RTJ), featuring predicates that compare time inter-
vals and a scoring function associated with each predicate
to quantify how well it is satisfied. RTJ queries are prevalent
in a variety of applications such as network traffic monitor-
ing, task scheduling, and tweet analysis. RTJ queries are
often best interpreted as top-k queries where only the best
matches are returned. We show how to exploit the nature
of temporal predicates and the properties of their associated
scoring semantics to design TKIJ , an efficient query evalu-
ation approach on a distributed Map-Reduce architecture.
TKIJ relies on an offline statistics computation that, given
a time partitioning into granules, computes the distribution
of intervals’ endpoints in each granule, and an online compu-
tation that generates query-dependent score bounds. Those
statistics are used for workload assignment to reducers. This
aims at reducing data replication, to limit I/O cost. Addi-
tionally, high-scoring results are distributed evenly to enable
each reducer to prune unnecessary results. Our extensive
experiments on synthetic and real datasets show that TKIJ
outperforms state-of-the-art competitors and provides very
good performance for n-ary RTJ queries on temporal data.

Keywords
Temporal data; Top-k; Join; Distributed processing

CCS Concepts
•Information systems→ Join algorithms; Query oper-
ators;

1. INTRODUCTION
Temporal data is pervasive. Store receipts, tweets, traf-

fic data, and temperature measures generated by weather
sensors or by wearables, are just some examples. Such data
is best represented as intervals with start and end times-
tamps. For instance, in a data center, large amounts of traf-

To appear in SIGMOD’16

fic requests in the form of [IP address,start timestamp,end
timestamp,. . .], are continuously generated by sensors. A
system administrator who wishes to monitor traffic emanat-
ing from different countries, would formulate a query that
returns pairs of requests (x, y) where x ends before y starts
and x and y originate from different countries. In tweet anal-
ysis where intervals represent the lifespan of a hashtag, the
query x meets y would find pairs of discussion topics where
one started when the other ended.

Chronological relations between intervals are typically ex-
pressed using the Allen interval algebra [2], which defines a
set of Boolean predicates such as before, meets, starts and
overlaps. In this work, we argue that the ability to eval-
uate interval predicates approximately and assign scores to
resulting interval pairs, appears as a natural requirement
to finding interesting results. Indeed, in monitoring traffic
causality, an (x, y) pair where x ends just before y, may be
preferred to those where x ends much earlier than the start
of y. Similarly, in tweet analysis, a Boolean interpretation
of x meets y is likely to return an empty result and will not
detect discussion topics that started roughly after another
ended.

In this paper, we formalize n-ary Ranked Temporal Join
(RTJ) queries that feature any number of temporal pred-
icates and return the k best results. To the best of our
knowledge, this is the first work that formalizes n-ary RTJ
queries and devises a general-purpose distributed evaluation
approach. RTJ queries raise a number of new challenges.
First, an appropriate ranked semantics needs to be devised
for a variety of temporal predicates in order to capture the
strength of relationship between intervals as a function of the
desired semantics for each predicate. Most related studies
focus on a common query that involves the intersects pred-
icate [7, 13, 21]. The idea is to retrieve tuples that share a
common period of validity, in order to combine events whose
time range has a non-empty intersection. Our semantics is
richer since we are interested in any temporal predicate be-
tween intervals. For instance, we aim to capture predicates
from the Allen algebra (see the three first columns of Fig-
ure 2). We illustrate that in the following example.

Network Traffic Monitoring. Consider the two inter-
val collections C1 and C2 in Figure 1. Assume that each col-
lection gathers requests from a different country. An analyst
interested in monitoring traffic between two countries would
seek (x, y) interval pairs, x ∈ C1, y ∈ C2, that form a se-
quence, i.e., where y starts as x ends. The best sequences are
those satisfying meets(x, y) reflecting strict equality between
the end of x and the beginning of y. In our example, only

x1

C1
x3

C2

y1 y2

5 10 15 20 25

y5

x4

x2

x5

y3
y4

Figure 1: Motivating Example

(x4, y4) qualifies for a Boolean interpretation. Yet, given
the uncertainty on clocks in different network equipments, a
small overlap or a short free period between two consecutive
tasks would be more realistic. In order to express that with
Boolean semantics, a query must evaluate a disjunction of
before, overlaps and meets and would build many useless in-
terval pairs. A ranked semantics on the other hand, would
build (x, y) pairs where x almost meets y, allowing a tol-
erance on intervals’ endpoints. For instance, tuples (x, y)
where x ends at most 2 timestamps before or after y starts,
could be considered high-scoring. Using such a semantics,
we can return the top-3 {(x4, y4), (x1, y3), (x1, y1)}.
A key observation we rely on is that an approximate in-

terpretation of a predicate amounts to approximating the
strength of relationship between its intervals’ endpoints. That
is compatible with the flexible scoring approach proposed
in [12] to approximate Allen predicates [2]. It is based on as-
sociating a degree of satisfaction with equality and inequal-
ity of 2 intervals’ endpoints. In this paper, we adapt this
framework to allow scoring any temporal predicate. We also
allow to use any monotone aggregation function to compute
the score of a query result for n-ary RTJ queries. Conse-
quently, a 3-way query involving the predicates starts(x, y)
and meets(y, z) would return (x, y, z) tuples and associate
to each tuple its degree of satisfaction of the query as an ag-
gregation of individual predicate-dependent scores for each
of starts(x, y) and meets(y, z).

It is important to note that, unlike existing work on re-
turning approximate answers [4], we focus on computing ex-
act answers of queries that make use of scored join predi-
cates. The second challenge we tackle is to devise an efficient
query evaluation strategy that guarantees to return the best
answers for a variety of temporal predicates. The key dif-
ficulty here is to develop a general-purpose algorithm that
works with a variety of predicates and ranked semantics and
yet, that is able to exploit the nature of those predicates to
devise an efficient evaluation.
The efficient processing of interval joins has been studied

before [5, 7, 13, 21]. The closest to our work is the recent
one by Chawda et al. [5] with a focus on processing queries
on Map-Reduce [6]. However, their algorithms focus on a
Boolean semantics and are not directly applicable in our
case. In our work, scores constitute both a challenge and an
opportunity. They are a challenge because, unlike Boolean
semantics, every combination of intervals is potentially an
answer. The opportunity lies in the ability to leverage statis-
tics on input data in order to avoid computing low-scoring
results. In this paper, we propose TKIJ , a 3-stage query
evaluation approach for RTJ queries on Map-Reduce. A first
offline process partitions time into granules and computes
the distribution of intervals’ endpoints in those granules. A
second online process leverages those statistics to compute

query-dependent score bounds. A third process assigns to
each reducer enough high-scoring results to enable pruning
unnecessary answers and hence balance the load between
reducers. Each reducer executes the input RTJ query lo-
cally on the data it receives. While this query processing
bears similarities to traditional top-k and rank-join process-
ing [14, 15, 16, 20, 22], it differs greatly due to the depen-
dence of score computation on query predicates. As a result,
partial predicate-dependent scores cannot be pre-computed
and each reducer relies on the score bounds produced in the
statistics collection phase to avoid unnecessary computation.
A final Map-Reduce job merges results obtained from each
reducer.

In summary, this paper makes the following contributions:

1. We formalize n-ary RTJ queries that combine inter-
val collections with any number of arbitrary temporal
predicates and return the k best results.

2. We design TKIJ , an efficient query evaluation approach
on Map-Reduce that leverages scores to avoid comput-
ing unnecessary results and to balance the load be-
tween reducers.

3. We run extensive experiments on synthetic and real
network traffic datasets. Our experiments show the ef-
ficiency of our pruning technique and the great benefit
of using scores to distribute the load between reducers.
Because TKIJ executes only combinations that ensure
to return the correct top-k answers, it scales to very
large collections (up to 5M tuples per collection) and
to high k values (up to 105).

Section 2 describes our data model and defines the prob-
lem of evaluating RTJ queries. TKIJ is presented in Sec-
tion 3. Experiments are detailed in Section 4. We summa-
rize the related work in Section 5 and conclude in Section 6.

2. DATA MODEL AND PROBLEM
We are given m collections of intervals C1, . . . , Cm. Each

interval x has a unique identifier, a start time x and an end
time x.

Boolean temporal predicates. The general form of a tem-
poral predicate between two intervals x and y is denoted
p(x, y) and is expressed as a Boolean conjunction of equali-
ties and inequalities between their endpoints x, x, y, y. This
allows to capture a wide range of predicates among which the
seminal Allen algebra [2]. The first 3 columns of Figure 2
summarize Allen temporal predicates and their semantics.
For example, meets(x, y) imposes that y starts when x fin-
ishes while starts(x, y) requires that x and y start at the
same time and that x ends before y.
It is important to note that we aim to capture all Allen
predicates but also any predicate comparing interval’s end-
points. While we do not aim to provide a long list of new
predicates, we discuss examples that we are using in our
experiments. For example, in network traffic analysis, we
introduce justBefore(x, y) that is satisfied iff y > x and
y − x ≤ AVGz(z − z). The intuition is that the elapsed
time between x and y is no greater than the average inter-
val length. A special case is the predicate shiftMeets(x, y)
that is satisfied iff (y − x) = AVGz(z − z). In tweet analy-
sis, a possibly useful predicate would be sparks(x, y) which

before(x, y) x < y

equals(x, y) x = y ∧ x = y

meets(x, y) x = y

overlaps(x, y)
x < y ∧ x > y

contains(x, y) x < y ∧ x > y

starts(x, y) x = y ∧ x < y

finishedBy(x, y) x < y ∧ x = y

Temporal Boolean Valid answers

x

∧ x < y

Scored

greater(y, x)

Interpretation

x

x

x

x

x

x

y

y

y

y

y

y

y

min{equals(x, y),

equals(x, y)

min{greater(y, x),
greater(x, y),
greater(y, x)}

equals(x, y)}

min{greater(y, x),
greater(x, y)}

min{equals(x, y),
greater(y, x)}

min{greater(y, x),
equals(x, y)}

s-before(x, y) =

s-equals(x, y) =

s-meets(x, y) =

s-overlaps(x, y) =

s-contains(x, y) =

s-starts(x, y) =

s-finishedBy(x, y) =

Predicate Intepretation

Figure 2: The Allen Algebra with Boolean and
Scored Temporal Predicates.

is satisfied iff (y − y) > 10 ∗ (x − x) and y > x. As a re-
sult, the (x, y) pairs satisfying sparks(x, y) would identify
hashtag pairs where the preceding hashtag lasted 10 times
shorter that the following. That could be useful in determin-
ing causality of long-lasting events such as finding all short-
lasting hashtags before the long-lasting #JeSuisCharlie.

Scored temporal predicates. Since we are interested in
capturing the degree at which a temporal predicate is ver-
ified by a pair of intervals, we propose to associate a score
to each predicate. Here again, we aim to be general and we
adopt the flexible approach for scoring Allen predicates [12]
and adapt it to our settings. This approach relies on two
primitive approximation comparators on intervals’ endpoints.
Those comparators, equals(x, y) and greater(x, y), are used
to express the degree of equality or inequality of intervals’
endpoints x and y, where x ∈ {x, x}, y ∈ {y, y} as a graded
value in [0, 1]. They rely on two parameters λ and ρ that pro-
vide flexibility in controlling the tolerance degree when com-
paring intervals’ endpoints. Figure 3 shows how equals(x, y)
and greater(x, y) are used with λ and ρ to express that tol-
erance. For instance, by defining that whenever |x− y| ≤ λ,
equals(x, y) returns 1, λ sets a tolerance for exact endpoint
equality. ρ, on the other hand, is used to define score values.
A large ρ value defines a wide range of score values and a
small ρ produces a more abrupt curve and fewer possible
score values.

Since temporal predicates are expressed as equalities and
inequalities on intervals’ endpoints, their approximation can
be achieved using a conjunction of equals() and greater()
with appropriate λ and ρ values. This allows us to asso-
ciate a scored variant to each temporal predicate. We de-
note that variant s-p(x, y) and refer to it as scored temporal
predicate, abusing the term “predicate” to mean “function”.
Indeed, while p(x, y) returns a Boolean value, s-p(x, y), re-
turns a score in [0,1]. For example, we can define the scored
version of starts(x, y) as s-starts(x, y) = min{equals(x, y),
greater(y, x)}.

y y + λy − λ y + λ+ ρy − λ− ρ

1

0

equals(x, y)

greater(x, y)

x

equals(x, y): 0
λ+ρ−|x−y|

ρ 1
λ+ρ−|x−y|

ρ 0

greater(x, y): 0
x−y−λ

ρ 1

Figure 3: Approximating equals and greater . Here,
x ∈ {x, x}, y ∈ {y, y}.

shiftMeets(x, y) y = x+ avg

justBefore(x, y) x < y ∧

Temporal Boolean Valid

x

Scored
Interpretation

x

y

min{equals(x, y),
greater(y, x)}

s-shiftMeets(x, y) =

s-justBefore(x, y) =
Predicate Intepretation

avg

equals(x+ avg, y)

y

y − x ≤ avg λgreater = ρgreater = 0,
λequals = avg, ρequals ∈ R+

Answers
avg

sparks(x, y) x < y ∧
(y − y) >

10 ∗ (x− x)

x
ylx

> 10 ∗ lx

s-sparks(x, y) =
min{greater(y, x),
greater(y − y, 10 ∗ (x− x))}

Figure 4: Definition of s-shiftMeets, s-justBefore and
s-sparks. Here, avg = AVGz(z − z).

We also propose to allow different values of λ and ρ for
equals() and greater() for different predicates. That provides
a finer control of the score values produced by each predi-
cate. A Boolean interpretation of a predicate becomes a
special case of our scored interpretation. For example, strict
endpoint equality can be obtained by setting both λequals

and ρequals to 0. Thus, we can define, s-justBefore(x, y)
with λgreater and ρgreater set to 0, ρequals to any value and
λequals to AVGz(z − z) (Figure 4).

Temporal join queries. We are interested in expressing
n-ary join queries on interval collections C1, . . . , Cm. We
express a query Q as a weakly connected oriented simple
graph1 of the form (V,E). Each each vertex vi ∈ V is
mapped to a collection Ci. Each edge (i, j) ∈ E between
two vertices vi and vj is labeled with a scored temporal
predicate s-p(i,j)() between the two collections Ci and Cj

corresponding to vi and vj .
The evaluation of an n-ary join query Q returns a set of

tuples of the form (x1, . . . , xn) where xi ∈ Ci. The score of
each tuple in the query result is computed using a function S
that aggregates the partial scores assigned by each predicate
s-p(i,j)() associated with each query edge (i, j) ∈ E. S could
be any monotone function such as the weighted sum as it is
commonly the case in ranked aggregation [15, 16, 20, 22].

For example, we can express a 3-way query that returns
a tuple (x, y, z) where x ∈ C1, y ∈ C2 and z ∈ C3 and the
score of (x, y, z) is computed as an aggregation of its partial
scores for query predicates s-starts(x, y) and s-meets(y, z).

Although we use the term “join” to refer to our queries,
their expressivity goes beyond traditional relational joins.
Our queries are compositional in the sense of a relational join

1no self loops and (i, j) ∈ E =⇒ (j, i) ̸∈ E

Collect

Statistics

(a)

TopBuckets

(b)

Statistics
B1 . . .Bm

Ωk,S

DistributeTopBuckets

Reduce1

Reduce1

Reducer

7

g1,1

g
1
,1

4

g2,4

g
2
,3

2

g3,4

g
3
,2

8

g1,2

g
1
,2

2

g2,4

g
2
,4

2

g3,4

g
3
,2

8

g1,3

g
1
,2

g2,4

2

g
2
,4

7

g3,4

g
3
,4

. . .

. . .

. . .

. . .

. . .

. . .

local

..
.

top-k results

(c)

(d)
(e)

Map

Map

Map

Merge

(DTB)

top-k

x1
x2

x3

g1,1 g1,2 g1,3

7

0

2

8

2

0

0

4

b
e
g
in

s
in

ends in

g1,1 g1,2 g1,3 g1,4

g
1
,1

g
1
,2

g
1
,3

g
1
,4

7 6

8

7

6

8

4

7

06

B1

7

2

2

4

b
e
g
in

s
in

ends in

7

g1,1 g1,2 g1,3 g1,4

g
1
,1

g
1
,2

g
1
,3

g
1
,4

8

7

8

B1

x1
x2

x3

g1,1 g1,2 g1,3

C1 . . . Cm C1 . . . Cn

results

Figure 5: Overview of TKIJ

since their results are not intervals but tuples of any length
(corresponding to the number of vertices in the query). Our
queries can express any combination of interval collections
with any scored predicates including chain queries and queries
containing cycles.

Ranked Temporal Join (RTJ) problem. Given an n-ary
temporal join query Q= (V,E) expressed over a set of col-
lections C1, . . . , Cm corresponding to query vertices in V
and temporal predicates s-p(i,j)() associated to each edge
(i, j) ∈ E, our problem is to find a top-k set of tuples of the
form (x1, . . . , xn), xi ∈ Ci, ranked by (descending) order of
S(i,j)∈E(s-p(i,j)(xi, xj)).

3. TEMPORAL JOIN PROCESSING
We present TKIJ, our approach for evaluating Top-K In-

terval Joins, that efficiently finds the set of k best results
for an RTJ query Q. We first provide an overview of TKIJ ,
then we give each step in detail.

3.1 Overview of TKIJ
Figure 5 summarizes TKIJ . Given a set of interval col-

lections C1 . . . Cm, TKIJ executes a query-independent pre-
processing phase to collect statistics on intervals’ distribu-
tion. This phase partitions time into granules and computes
buckets for each collection (a). A bucket associated to a col-
lection Ci corresponds to a pair of granules, and contains
the number of intervals of Ci starting at one granule and
ending at another. Given a query Q, these statistics are
used to evaluate bucket combinations that should be pro-
cessed in order to obtain top-k results (b). TKIJ relies on
a constraint programming solver to compute score bounds
for each bucket combination and uses those bounds to prune
combinations that do not contain top-k results. The third
phase is the actual join processing which relies on two Map-
Reduce jobs. The first job assigns a subset of buckets to each
reducer rj (c) which then processes locally the RTJ query,
returning local top-k results (d). This assignment aims at
reducing data replication to limit I/O, and leverages score
bounds to distribute high-scoring results evenly so that each
reducer can quickly prune low-ranking results. The second
Map-Reduce job merges all local results into a single query
output (e).

3.2 Statistics collection
TKIJ pre-processes each dataset once in order to collect

statistics which are then used to optimize the execution of
any RTJ query on this dataset. These statistics maintain a
matrix Bi representing the distribution of endpoints of inter-
vals in each collection Ci. TKIJ partitions the time range of
each Ci into a set of contiguous granules. We adopt a uni-
form partitioning which has been shown to be appropriate
for temporal joins [5, 7, 18].

As illustrated in Figure 5a, each matrix entry records the
cardinality of a bucket, where a bucket bi,l,l′ = (gi,l, gi,l′)
contains all intervals of Ci that start in gi,l and end in gi,l′ :
Bi[l][l

′] = |bi,l,l′ | = |{x ∈ Ci, x ∈ gi,l ∧ x ∈ gi,l′}|. As an
example, given g1,1 = [10, 20] and g1,2 = [20, 30], the matrix
entry for b1,1,2 = (g1,1, g1,2) indicates 6 intervals starting in
[10, 20] and ending in [20, 30].

Range partitioning is a common approach in temporal join
processing [5, 7, 18, 21]. The rationale is that intervals hav-
ing similar endpoints are likely to satisfy similar join pred-
icates. For example, most previous studies, that focus on
intersection joins, leverage partitions to avoid pairs of inter-
vals that are guaranteed not to intersect. Similarly, TKIJ
relies on these statistics to obtain information on the dis-
tribution of intervals within buckets and prune the search
space of any RTJ query.
Statistics are computed in a single Map-Reduce phase.

Each mapper reads a fraction of the data and maintains a
local matrix per collection. Matrices are then aggregated in
the reduce phase, and the reducer responsible for collection
Ci outputs a final matrix Bi. While we focus in this paper
on the case of statistics computed from scratch for a new
dataset, we can easily handle updates by applying the same
process on the inserted/deleted data.

3.3 Selection of bucket combinations
We now describe how TKIJ uses pre-computed statistics

to estimate score bounds on candidate results. Then, we
present how score bounds are used to avoid computing un-
necessary results while we guarantee to return the exact top-
k results. We further develop several processing strategies
that aim to tackle computational costs raised by this prun-
ing step.

Estimating score bounds
Processing an RTJ query Q requires to return the top-k tu-
ples (x1, . . . , xn), xi ∈ Ci according to a scoring function
S. Since any tuple (x1, . . . , xn) is a potential answer, we in-
vestigate how to reduce the amount of data processed using
scores. We use ω = (b1,l1,l′1 , . . . , bn,ln,l′n) to denote a bucket

combination, ω.nbRes =
∏n

i=1 |bi,li,l′i | the total number of
results that can be obtained from a bucket combination ω,
and Ω the set of all combinations. We define score upper
and lower bounds in each ω, denoted ω.UB and ω.LB .

Definition 1. The score upper-bound (resp. lower-bound)
ω.UB (resp. ω.LB) of a bucket combination ω = (b1,l1,l′1 ,

. . . , bn,ln,l′n) is the upper-bound (resp. lower-bound) of
S(i,j)∈E(s-p(i,j)(xi, xj)) where xi ∈ gi,li , xi ∈ gi,l′i , ∀i ∈ 1 . . . n.

As an example, suppose that query Q features a predicate
s-meets(1,2)(x, y) where x∈C1 and y∈C2, using scoring pa-
rameters (λequals, ρequals)=(4, 8). Collected statistics show
6 intervals in bucket b1,1,2 = ([10, 20], [20, 30]) for C1 and 7
intervals in bucket b2,2,3=([20, 30], [30, 40]) for C2. We build
the bucket combination ω=(b1,1,2, b2,2,3). Then, we can de-
rive bounds on the score S(x, y) = s-meets(x, y) of a result
(x, y) ∈ ω. The maximum possible score is 1 (e.g. with
(x, y) = ([12, 25], [25, 35])), and the minimum score is 0.25
(with (x, y) = ([15, 20], [30, 35])). Hence, ω.UB= 1, ω.LB=
0.25. Thus, 42 results in ω have a score in [0.25, 1].

TKIJ relies on a constraint programming solver as a generic
approach to compute score bounds for any combination of
predicates. Computing score bounds for a bucket combina-
tion requires to solve the following problem:

Bounds Problem. Let ω = (b1,l1,l′1 , . . . , bn,ln,l′n). Find

(x1, . . . , xn) s.t.:
max (resp. min) S(i,j)∈E(s-p(i,j)(xi, xj))

s.t. xi ∈ gi,li ∀i ∈ 1 . . . n (1)

xi ∈ gi,l′i ∀i ∈ 1 . . . n (2)

Each xi ∈ Ci is mapped to a decision variable xi. For
each partial score s-p(i,j)(xi, xj), we create an intermediate
variable s-pij. For all (i, j) ∈ E, we impose that the vari-
ables xi, xj and s-pij satisfy the constraints {Cij : s-pij =
s-p(i,j)(xi, xj)}. Then, we create a variable score and im-
pose Cs : score = S(i,j)∈E(s-pij). The solver then maxi-
mizes (and minimizes in the case of a lower-bound) score

such that constraint Cs, all constraints Ci and all constraints
on decision variables (1)(2) are satisfied. While we virtually
allow any temporal predicates, in practice, predicate imple-
mentation depends on the range of constraints supported by
the server used in the implementation.

Pruning bucket combinations
TKIJ leverages computed score bounds to reduce computa-
tion cost by eliminating results that are guaranteed not to
be in the top-k. To do so, it computes Ωk,S ⊆ Ω, a subset of
the search space that is sufficient to guarantee correctness.
We define Ωk,S as follows:

Definition 2. The set of Top Buckets Ωk,S is a subset of
Ω satisfying the following conditions:

• ∀ω ∈ Ω \Ωk,S ∃Ψ ⊆ Ωk,S :

– ∀ω′ ∈ Ψ ω′.LB ≥ ω.UB

–
∑

ω′∈Ψ ω′.nbRes ≥ k

Algorithm 1 getTopBuckets

Input: k, Ω list of bucket combinations with UB and LB
Output: Ωk,S
1: Sort Ω by descending LB
2: collectedResults = 0
3: for ω ∈ Ω
4: collectedResults += ω.nbRes
5: kthResLB = ω.LB
6: if collectedResults ≥ k then break

7: Sort Ω by descending UB
8: Ωk,S ← ∅, collectedResults = 0
9: for ω ∈ Ω
10: if collectedResults≥k and ω.UB≤kthResLB
11: break
12: Ωk,S ← Ωk,S ∪ ω
13: collectedResults += ω.nbRes

return Ωk,S

This definition ensures that whenever a bucket combina-
tion ω is pruned, there are at least k results fromΩk,S with a
score higher than results generated from ω. Note that Ωk,S
is not unique: given a valid set of bucket combinations, any
super-set is also valid. To compute Ωk,S , we design the
getTopBuckets algorithm (Algorithm 1). Algorithm getTop-
Buckets uses as input a set of bucket combinations whose
score bounds are pre-computed. It first computes a lower
bound kthResLB on the score of the kth result (Lines 1-6).
Then, it keeps only bucket combinations whose score upper-
bound is greater than kthResLB (Lines 7-13). The process
safely stops in Line 11 since no bucket combination outside
the collected set has results with score above kthResLB.

Pruning unnecessary results is a two-step process, coined
TopBuckets. A first step computes score bounds for bucket
combinations using a solver. Then, a second step executes
getTopBuckets that uses those bounds to eliminate unneces-
sary results. In our setting, all (x1, . . . , xn) combinations
are potential answers, and we cannot employ traditional
top-k techniques to prune the search space. TopBuckets ad-
dresses this challenge using pre-computed statistics to locate
high-scoring answers. Still, a new challenge is to limit the
overhead of TopBuckets due to computing score bounds for
bucket combinations. In the following section, we discuss
this challenge and possible solutions.

TopBuckets Strategies
A first straightforward approach to find Ωk,S is to build all
possible bucket combinationsΩ, compute their score bounds
using a solver and then use getTopBuckets to prune useless
ones. In this strategy, coined brute-force, a large number
of n-tuples of buckets are assigned a score by the solver (with
g granules per collection, |Ω| is O(g2n)). Moreover, for each
combination, 2n decision variables need to be assigned by
the solver. Thus, as n or g increase, brute-force becomes
inefficient.
To tackle that, we propose the loose strategy (Algorithm 2
with the flag onePhase set true.) loose first builds all bucket
pairs (bi,li,l′i , bj,lj ,l′j) for each scored predicate (i, j)∈E (Line

1). Score bounds are then computed by the solver (Line 3)
for each pair. Then, loose builds n-tuples of buckets (Lines
4-5). For each ω = (b1,l1,l′1 , . . . , bn,ln,l′n), we obtain score

bounds using bounds computed for each pair (bi,li,l′i , bj,lj ,l′j).

Algorithm 2 Strategies loose, two-phase

Input: Boolean onePhase, Buckets {bi,li,l′i : i ∈ 1 . . . n}
Output: Ωk,S
1: L2 ← all bucket pairs (bi, bj) s.t. (i, j) ∈ E
2: for all ω in L2

3: Compute ω.UB, ω.LB using solver

4: for ω in Ω
5: Compute ω.UB, ω.LB using score bounds from

(bi, bj) ∈ L2

6: Lm ←TopBuckets(Ω)
7: if onePhase then return Lm

8: for ω ∈ Lm

9: Compute ω.UB, ω.LB using solver
return TopBuckets(Lm)

To calculate correct bounds, we rely on the monotonicity of
S. Without loss of generality, suppose that S is monoton-
ically increasing. In the expression of S, we replace each
partial score s-p(i,j)(xi, xj) with the upper bound of the
corresponding pair of bucket. Therefore S(i,j)∈E((bi,li,l′i ,

bj,lj ,l′j).UB) is a correct upper-bound for ω. Then, loose

runs getTopBuckets on the generated bucket combinations
(Line 6) and returns the selected combinations. The ratio-
nale behind loose is that processing time can decrease sig-
nificantly because (i) fewer bucket combinations need to be
assigned a score bound (their number is O(|E|·g4)) and (ii)
the solver needs to assign only 4 variables when computing
score bounds. A drawback of loose is that the aggregation
of bounds using S may result in loose bounds. We illustrate
that in the following example.

Example. Figure 6 depicts a dataset with three buckets
b1, b2, b3 from C1, C2, C3. We have b1=(g1, g2), b2=(g2, g3),
b3 = (g3, g3), where g1 = [10, 20], g2 = [20, 30], g3 = [30, 40].
Our query features scored predicates s-starts(1,2)(x, y) and
s-starts(2,3)(y, z) and our aggregation function is the normal-
ized sum. We use the scoring parameters {(λequals, ρequals),
(λgreater, ρgreater) = {(1, 3), (0, 4)}. loose first computes
bounds for ω1 = (b1, b2). We have ω1.UB = 1 (because
s-starts(1,2)(x1, y1)=1), and ω1.LB=0 (s-starts(1,2)(x1, y2)=
0). Then, loose computes bounds for ω1 = (b2, b3). We
have ω2.UB = 1 (s-starts(2,3)(y2, z1) = 1), and ω2.LB = 0
(s-starts(2,3)(y2, z2) = 0). Then, loose merges combina-
tions ω1, ω2 in ω3 = (b1, b2, b3), and computes ω3.UB =
S(1, 1) = 1, ω3.LB = S(0, 0) = 0. Yet, brute-force, com-
putes ω3.UB = 0.5 because there is no (x, y, z) such that
s-starts(1,2)(x, y) = s-starts(2,3)(y, z) = 1 given the buckets’
bounds: it is impossible to have both equals(x, y) = 1 and
equals(y, z) = 1 with x∈ g1, y ∈ g2 and z ∈ g3. Thus, in this
example, loose returns an exact lower-bound and a loose
upper-bound, while brute-force returns tight bounds.
These observations lead to propose a third strategy two-
phase, that combines brute-force and loose. two-phase
is executed by Algorithm 2 when the flag onePhase is set to
false. First, two-phase computes loose bounds to eliminate
some bucket combinations (Lines 1-7), identically to loose.
Then, two-phase refines the bounds of the remaining com-
binations (Lines 8-9) to obtain exact bounds. The rationale
behind two-phase is that its first phase may help reduce
the number of bucket combinations that need to be assigned
a score in the second phase, thus improving the solver’s run-
ning time. Unlike loose, two-phase returns tight bounds

x1

10 20 30 40
g1 g2 g3

x2

y1
y2

z1
z2

b1

b2

b3

Figure 6: Example of Bucket Combinations

thanks to the second phase of the solver.
When selecting bucket combinations, TKIJ runs TopBuck-
ets using one of the three strategies presented. Each strat-
egy (i) employs the solver and (ii) executes getTopBuckets
once or twice using loose or tight score bounds on bucket
combinations.

3.4 Distributed Top-k Join Processing
The TopBuckets process generates Ωk,S , a set of bucket

combinations that are sufficient to accurately compute the
top-k results. We now describe how TKIJ computes the
top-k results (Steps (c)-(d)-(e) in Figure 5). We imple-
ment TKIJ on Map-Reduce [6]. Given a set of r reducers,
TKIJ assigns each bucket combination ω ∈ Ωk,S to a sin-
gle reducer rj , j ∈ 1 . . . r, that processes results in ω. The
main challenge in distributed join processing is to devise an
efficient workload assignment function. When performing
large-scale joins, I/O often constitutes a major bottleneck.
We first review existing assignment algorithms, then we con-
sider the specifics of distributed top-k computation and show
that it is essential to take scores into account when dividing
the workload. We present DistributeTopBuckets, a novel
function that focuses on assigning high-scoring results to
each reducer, while minimizing I/O cost as a secondary ob-
jective. Finally, we present how an RTJ query is processed
using appropriate Map-Reduce algorithms.

Existing I/O optimizations
When different reducers require the same chunk of data,
this data is replicated in the shuffle phase of Map-Reduce,
which increases input cost. Several distributed join algo-
rithms, such as RCCIS [5] and the work of Afrati et al. [1]
specifically aim at reducing that cost. In TKIJ , this corre-
sponds to different reducers being assigned bucket combina-
tions involving the same bucket. Other approaches focus on
assigning a balanced load to each reducer [5, 24]. This en-
sures that the number of results generated by each reducer
is comparable, so that no reducer will have a larger workload
in output dominated tasks. Finally, some algorithms opti-
mize both input and output costs simultaneously [30]. All
these approaches are not directly applicable to our settings.
They achieve optimizations for specific queries (equi-join [1],
2-way θ-join [24], m-way θ-join [30]). One close related work
to ours [5] reduces I/O cost by leveraging the Boolean inter-
pretation of Allen predicates. That is not directly applicable
to scored predicates.

Top-k optimizations
TKIJ significantly differs from standard Map-Reduce-based
join processes due to its ranked semantics. In TKIJ , each
reducer processes a full RTJ query locally using the bucket
combinations it receives (Figure 5d). Hence, it is important

Algorithm 3 DistributeTopBuckets (DTB)

Input: Ωk,S
Output: M : assignments (bucket, reducer)
1: Sort Ωk,S by descending order of ω.UB

2: avgRes =

∑
ω∈Ωk,S

ω.nbRes

r
3: for all ω ∈ Ωk,S
4: rj = getReducer(avgRes, ω)
5: for all bucket b ∈ ω ▷ Assign buckets in ω to rj
6: M ←M ∪ (b, rj)

return M

to ensure that each reducer quickly identifies high-scoring
results as it is usually the case in top-k processing [14, 15,
16, 26]. Therefore, the assignment of bucket combinations to
reducers favors an even distribution of high-scoring results.

DTB algorithm
TKIJ relies on the DistributeTopBuckets algorithm (Algo-
rithm 3) to assign bucket combinations from Ωk,S to re-
ducers. Following the principles described above, DTB in-
creases the probability that each reducer receives a fair share
of high-scoring results. This step relies on the knowledge,
for each bucket combination, of the number of results gen-
erated, as well as their score bounds. DTB first sorts Ωk,S
by descending order of score upper-bound (Line 1) to ac-
cess them according to their likelihood of generating high-
scoring results. It then assigns each bucket combination to a
reducer using the getReducer function (Algorithm 4), which
returns a reducer among the ones that were assigned the
fewest bucket combinations so far.
Furthermore, DTB opportunistically optimizes I/O cost. First,
in the worst case, a reducer evaluates all the results it is as-
signed. If Ωrj is the set of bucket combinations assigned to
a reducer rj , then

∑
ω∈|Ωrj

| ω.nbRes would be computed.

DTB first computes the average number of results assigned
to reducers (Algorithm 3, Line 2). Then getReducer ensures
that reducers that are already assigned more than twice
the average number of results are discarded (Algorithm 4,
Lines 3, 7). This heuristic limits imbalance in a worst-case
scenario. In the case, where several reducers have received
the same number of bucket combinations, getReducer se-
lects the reducer that was already assigned the largest frac-
tion of current ω from previous overlapping bucket combi-
nations (Algorithm 4, Lines 8-10). For a given w, getRe-
ducer evaluates for each reducer rj the input cost of assign-
ing w to rj using inCost(rj , ω). We define inCost(rj , ω) =∑

bi,l,l′∈ω |bi,l,l′ | ·Φ(rj , bi,l,l′) where Φ(rj , bi,l,l′) returns 1 if

bi,l,l′ was already assigned to rj , else 0. This process favors
assignments that reduce replication cost. Having selected
the reducer rj that has to be assigned the current bucket
combination ω, DTB stores all the assignments (bi,l,l′ , rj)
where bi,l,l′ ∈ω (Algorithm 3, Lines 5-6). These assignments
determine to which reducers buckets are communicated, en-
suring both output correctness and join processing efficiency.

Join Processing
The final phase of TKIJ first runs DTB using Ωk,S to de-
termine data distribution among reducers. Then, a Map-
Reduce phase processes the RTJ query locally. For each

Algorithm 4 getReducer

Input: ω bucket combination to assign, avgRes average
number of results per reducer

Output: reducer to which ω has to be assigned
1: min ω assigned = +∞
2: for j = 1 to r ▷ Retrieve the minimum amount of

bucket combinations assigned
3: if rj .nbRes < 2× avgRes
4: min ω assigned = min{|Ωrj |,min ω assigned}
5: minCost = +∞
6: for j = 1 to r ▷ Find the best reducer wrt inCost(ω, rj)
7: if rj .nbRes < 2× avgRes ∧ |Ωrj |=min ω assigned
8: if inCost(rj , ω) < minCost
9: bestReducer=rj
10: minCost = inCost(rj , ω)

return bestReducer

input interval x, a mapper computes the bucket bix,lx,l′x in
which x falls. Then, x is communicated to all reducers rj
that received bix,lx,l′x . That way, each reducer rj receives
its share of input data, and a list of bucket combinations
Ωrj ⊆ Ωk,S whose results are potential top-k candidates.
Once each reducer has processed locally the RTJ query, we
run an additional Map-Reduce phase (Step (e) in Figure 5),
that merges local results and returns the final top-k answers.

4. EXPERIMENTS

Platform. We conduct experiments on an 8-node industrial
cluster with 6 workers. Each worker has 1 Intel Xeon E5-
2650L (8 cores), 32GB RAM, 5TB disk. Machines run Cen-
tos 6.6 with Cloudera 5.2.5 and Hadoop 2.5.0. All presented
results are averages of 5 consecutive runs.

Statistics collection. We use the same number of granules
g for each collection. We observed that only the number
of interval |Ci| per collection had a significant impact on
statistics collection time. Statistics collection lasted between
28s for |Ci| = 2×105 and 36s for |Ci| = 5×106. Since this
task is only executed once as a pre-processing for a given
dataset, we do not include it in query evaluation time.

Selection of bucket combinations. We implement a dis-
tributed and multi-threaded version of TopBuckets. We split
the set of buckets B1 into 6 equal-sized groups B1,j , j ∈
1 . . . 6. Then each worker j ∈ 1 . . . 6 runs a local version of
TopBuckets using buckets in B1,j and all buckets in Bi, i∈
2 . . . n. Thus, each worker has as input a disjoint set of pos-
sible bucket combinations. We use Choco [25], a software for
constraint programming to compute score bounds for each
bucket combination. Each execution of the solver is handled
in a separate thread. A second phase of TopBuckets merges
local TopBuckets results on a selected worker and returns
the set of best bucket combinations Ωk,S .

Distributed join processing. We run TKIJ using 24 re-
ducers. Local query execution accesses the received bucket
combinations by descending order of score upper-bounds. It
then uses R-Trees to access intervals in memory. For an
interval xi and a score value v, it queries the R-Tree and
returns only intervals xj s.t. s-p(i,j)(xi, xj)≥v.

Id
Scored Temporal Predicates In Q.

xi ∈ Ci ∀i ∈ 1 . . . n.

Qb,b s-before(x1, x2), s-before(x2, x3)

Qf,f s-finishedBy(x1, x2), s-finishedBy(x2, x3)

Qo,o s-overlaps(x1, x2), s-overlaps(x2, x3)

Qs,f,m s-starts(x1, x2), s-finishedBy(x2, x3), s-meets(x1, x3)

Qs,s s-starts(x1, x2), s-starts(x2, x3)

Qb* s-before(x1, x2), . . . , s-before(x1, xn)

Qo* s-overlaps(x1, x2), . . . , s-overlaps(x1, xn)

Qm* s-meets(x1, x2), . . . , s-meets(x1, xn)

Qf,b s-finishedBy(x1, x2), s-before(x2, x3)

Qo,m s-overlaps(x1, x2), s-meets(x2, x3)

Qs,m s-starts(x1, x2), s-meets(x2, x3)

QjB,jB s-justBefore(x1, x2), s-justBefore(x2, x3)

QsM,sM s-shiftMeets(x1, x2), s-shiftMeets(x2, x3)

Table 1: Queries

Id (λequals, ρequals) (λgreater, ρgreater)

P1 (4,16) (0,10)

P2 (0,16) (2,8)

P3 (4,12) (0,8)

PB (0,0) (0,0)

Table 2: Scored Predicates Parameters

Queries. Tables 1 and 2 summarize queries and score pa-

rameters. We use S =
∑

(i,j)∈E s-p(i,j)(xi,xj)

|E| to compute the

score of a query result (x1, . . . , xn). Unless otherwise speci-
fied, k=100.

4.1 Summary of Results
We show that TKIJ processes various RTJ queries ef-

ficiently on both synthetic data and real network traffic
logs. TKIJ scales to collections of up to 5 million intervals
(|Ci| ∈ [1M, 5M]) and efficiently returns the top-k results for
k ∈ [10, 105]. We show that our workload distribution ap-
proach, DistributeTopBuckets, that fairly distributes high-
scoring results, outperforms a more naive approach based on
the LPT algorithm. That is particularly useful for queries
that return few high-scoring results, such as those featur-
ing equality-based predicates (e.g starts). We observe that
the efficiency of DistributeTopBuckets decreases with coarser
statistics. We also show that as the number of collections
or the number of predicates in a query vary, TopBuckets ef-
ficiently prunes buckets combinations. Experiments on net-
work traffic data show that on queries featuring before or
overlaps, TopBuckets can select few bucket combinations
guaranteeing TKIJ to return high-scoring results. We ob-
serve that a higher number of granules g (finer statistics)
helps prune unnecessary results, which improves overall join
processing time. However, it also makes pruning computa-
tion with TopBuckets slower. Hence, we run experiments to
find a sweet-spot value for g.

4.2 Synthetic Data
To generate synthetic data, we use the same parameters as

in previous work [5]. We use a pseudo-random uniform gen-
erator to get intervals’ startpoints and lengths in specified
ranges (respectively s = [0, 105] and w = [1, 100]). Intervals’
endpoints are integers. We vary the number |Ci| of intervals
per collection, and the number n of collections. A collection
of 5M intervals measures ≈113MB (text format).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

S
c
o
re

Rank (x10
4
)

s−before
s−overlaps
s−meets
s−starts

Parameters: |Ci| = 104,P = P1

Figure 7: Synthetic Data - Score Distribution

4.2.1 Score Distribution
We conduct preliminary experiments to get an insight of

the score distribution of a set of results using scored tem-
poral predicates. Especially, we want to measure the share
of results that have a high score. We want to verify that
the fewer the number of high-scoring results, the less likely
a worker will receive high scoring results from DTB . We
compute all the combinations (x1, x2) ∈ C1 × C2 and we
evaluate each result with scored predicates s-before(x1, x2),
s-meets(x1, x2), s-overlaps(x1, x2) and s-starts(x1, x2).

On Figure 7, we plot scores for the top-50000 results.
s-before is the predicate with the largest number of high-
scoring results (scores of top-50000 results equal 1.0), since
a single inequality on endpoints is required. More high-
scoring results can be found with s-overlaps (≈ 18,000 re-
sults), that evaluates only inequality on endpoints, than
with s-meets (≈9000), where an equality is required. Fewer
results are assigned a high score when s-starts is used since
it requires both equality and inequality on endpoints. Thus,
we can expect a faster join processing on queries using only
inequality-based predicates where more high-scoring results
can be found, since high-scoring results favor early termina-
tion of local top-k processing.

4.2.2 Workload Distribution
We conduct experiments to validate our workload distri-

bution approach. We analyze executions of TKIJ using
DTB , our workload distribution algorithm, and using a more
straightforward algorithm.

LPT. In the context of task scheduling, the LPT (Longest
Processing Time) heuristic aims to minimize scheduling time
on parallel machines [11]. LPT executes tasks in descend-
ing order of processing time. In our context, a naive ap-
proach would minimize the maximum number of candidate
join results that a reducer has to process, so as to reduce
the duration of the longest task. With LPT , bucket combi-
nations are analogous to tasks that we want to assign to a
set of reducers. We sort the set of bucket combinations by
descending order of number of results (ω.nbRes) and assign
each one to the least loaded reducer.

Results. Figure 8a presents the running time of the join
phase on all queries, where |Ci| varies from 1× 106 to 1.6×
106. On Qb,b, running time is identical for LPT and DTB ,
since a single bucket combination is selected and a large
number of results with maximum score can be quickly found
during the join phase. On other queries, DTB outperforms

 0

 50

 100

 150

 200

 250

 300

LPT
D
TB

LPT
D
TB

LPT
D
TB

LPT
D
TB

R
u
n
n
in

g
 t
im

e
 (

s
)

(j
o
in

 o
n
ly

) Qb,b
Qo,o

Qf,f
Qs,s

Qs,f,m

|Ci|=1.6M|Ci|=1.4M|Ci|=1.2M|Ci|=1M

(a) Running Time

 0

 20

 40

 60

 80

 100

 120

Q
o,o

Q
f,f

Q
s,s

Q
s,f,m

Q
o,o

Q
f,f

Q
s,s

Q
s,f,m

Q
o,o

Q
f,f

Q
s,s

Q
s,f,m

Q
o,o

Q
f,f

Q
s,s

Q
s,f,m

M
a
x
.
T

im
e
 R

e
d
u
c
e
r

(s
) LPT DTB

|Ci|=1.6M|Ci|=1.4M|Ci|=1.2M|Ci|=1M

(b) Max Running Time of Reducers

 0.85

 0.9

 0.95

 1

Q
o,o

Q
f,f

Q
s,s

Q
s,f,m

Q
o,o

Q
f,f

Q
s,s

Q
s,f,m

Q
o,o

Q
f,f

Q
s,s

Q
s,f,m

Q
o,o

Q
f,f

Q
s,s

Q
s,f,m

M
in

.
S

c
o
re

 o
f
k
−

th
 R

e
s
u
lt LPT DTB

|Ci|=1.6M|Ci|=1.4M|Ci|=1.2M|Ci|=1M

(c) Minimum Score of k-th Result

Parameters: g = 20, k = 1000, P = P2, TopBuckets : loose

Figure 8: Synthetic Data - Workload Distribution

 0

 20

 40

 60

 80

 100

 120

 140

brute−force

tw
o−phase

loose

brute−force

tw
o−phase

loose

brute−force

tw
o−phase

loose

R
u
n
n
in

g
 t
im

e
 (

s
)

>1
h

TopBuckets
DTB

Join
Merge

n=5n=4n=3

(a) Qb*

 0

 500

 1000

 1500

 2000

 2500

brute−force

tw
o−phase

loose

brute−force

tw
o−phase

loose

brute−force

tw
o−phase

loose

>1
h

>1
h

>1
h

TopBuckets
DTB

Join
Merge

n=5n=4n=3

(b) Qo*

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

brute−force

tw
o−phase

loose

brute−force

tw
o−phase

loose

brute−force

tw
o−phase

loose

>1
h

>1
h

TopBuckets
DTB

Join
Merge

n=5n=4n=3

(c) Qm*

Parameters: g = 15, k = 100, |Ci| = 2 × 105, P = P1

Figure 9: Synthetic Data - Detailed execution time, all TopBuckets strategies

LPT for two reasons. Firstly, LPT incurs a higher shuffle
cost (on average 43% higher). When assigning a bucket com-
bination to a reducer, DTB favors assignments that lessen
shuffle cost. LPT favors the assignment of bucket combi-
nations with a large number of results to the least loaded
reducers. Hence, buckets have a higher probability to be
sent to several reducers with LPT than with DTB . Secondly,
LPT does not necessarily give a fair share of high-scoring
results to each reducer. Figure 8b shows the running time
of the longest reducer task (we omit Qb,b where LPT and
DTB perform equally for the reason exposed above). DTB
always outperforms LPT because it increases the probability
that all reduce tasks terminate early since they can all find
high-scoring results. This difference is exacerbated on query
Qs,f,m with |Ci|=1M . Here, the few results that satisfy best
all 3 predicates featured in Qs,f,m are better distributed us-
ing DTB . On Figure 8c, we represent the minimum score of
the kth result among the results returned by reducers. These
results support our observation: the score of returned results
is higher when distribution is defined using DTB , while un-
necessary results with lower scores are returned with LPT .

4.2.3 TopBuckets Strategies
We conduct experiments on the TopBuckets strategies ex-

posed in Section 3.3. We vary the number of collections n
using queries Qb*, Qo* and Qm*.

Figure 9 summarizes the results. We do not report re-
sults where running time exceeds 1 hour. Experiments show
the inefficiency of brute-force and two-phase. On these

strategies, n-tuples of buckets, where n ∈ 3 . . . 5, are as-
signed a score bound by the solver. With brute-force, the
running time of TopBuckets quickly increases (solid black
box on Figure 9) with n, because the solver needs to compute
score bounds for a large number of bucket combinations,
each one requiring to assign 2n variables. The two-phase
strategy only beats brute-force on Qb* (Figure 9a) where
its first phase prunes a large share (more than 99% for any n)
of possible bucket combinations, thus limiting the running
time of the second phase, that computes exact bounds us-
ing a smaller set of bucket combinations. On others queries,
two-phase does not improve running time: the first phase
does not prune enough combinations (e.g. 52% on Qm* for
n = 4) to lessen the cost of the second phase where remain-
ing combinations need to be assigned tight score bounds.
The loose strategy is the most efficient: (i) loose bounds
do not impact significantly join processing time as a large
share of potential results (e.g. 81% on Qo* for n = 4) re-
mained pruned and (ii) TopBuckets scales with the number
of collections n. In the remainder of our experiments, we
use loose as the TopBuckets strategy.

4.2.4 Number of Granules
Since the second phase of TKIJ relies on collected statis-

tics to prune the input space and distribute the workload,
we expect TKIJ to depend on the granularity of statistics
(e.g. coarse or fine-grained). We conduct experiments to
validate this intuition, varying the number of granules g.

We present respectively on Figures 10a, 10b and 10c the

3600

 100

 1000

 0 20 40 60 80 100 120 140 160

R
u
n
n
in

g
 t
im

e
 (

s
)

g

Run. Time >1h:

(g=5, Qo,m)
(g=5, Qo,o)

(g=5, g>140, Qs,f,m)

Qb,b
Qf,b

Qo,o
Qo,m

Qs,f,m

(a) Running Time

 1

 3

 5

 7

 9

 0 20 40 60 80 100 120 140 160

Im
b
a
la

n
c
e

g

Run. Time >1h:

(g=5, Qo,m)

(g=5, Qo,o)

(g=5, g>140, Qs,f,m)

Qb,b
Qf,b

Qo,o
Qo,m

Qs,f,m

Qs,f,m

(g=15: 13.26)

(b) Imbalance

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100 120 140 160

 50

 60

 70

 80

 90

 100

R
u
n
n
in

g
 t
im

e
 (

s
)

%
 r

e
s
u
lt
s
 p

ru
n
e

d

g

TopBuckets
Distribution

Join
Merge

%results pruned

(c) Detailed Running Time for Qo,m

Parameters: k = 100, |Ci| = 2 × 106, P = P1, TopBuckets: loose

Figure 10: Synthetic Data - Effect of number of granules g

 80

 90

 100

 110

 120

 130

 1 2 3 4 5

R
u
n
n
in

g
 t
im

e
 (

s
)

|Ci| (x10
6
)

AllMatrix−PB
TKIJ−PB
TKIJ−P1

(a) Qb,b

 100

 200

 300

 400

 500

 1 2 3 4 5

|Ci| (x10
6
)

RCCIS−PB
TKIJ−PB
TKIJ−P1

(b) Qo,o

 100

 200

 300

 400

 500

 1 2 3 4 5

|Ci| (x10
6
)

RCCIS−PB
TKIJ−PB
TKIJ−P1

(c) Qs,m

Parameters: g = 40, k = 100, TopBuckets: loose

Figure 11: Synthetic Data - Scalability

total running time of a range of queries, the load imbalance
of the join phase computed using Max Time Reducer

Average Time Reducer
and the

detailed running time for query Qo,m. We do not report
results for executions where the total running time exceeds
1 hour. On queries that return the fewest high-scoring re-
sults (Qo,m, Qs,f,m), we observe on Figure 10a that with a
lower g (coarse statistics), running time degrades. TKIJ suf-
fers here from poor workload distribution. This is expected
as with fewer granules, we have fewer bucket combinations
and especially fewer high-scoring ones. As TKIJ relies on
a round-robin distribution of high-scoring buckets combina-
tions, there is a lower probability to provide each reducer
high-scoring results. Hence, we can observe on Figure 10b
the imbalance that is more variable when g decreases. As
illustrated on Figure 10c, when g increases, the local join
processing is faster, thanks to a better workload distribu-
tion and to a larger pruning of unnecessary results. 81% of
potential results are pruned for g = 20, while it is 96% for
g = 100 (grey filled curve on Figure 10c). Yet, the prun-
ing process TopBuckets is slower when g increases and thus
worsen the overall response time. Note that because it fea-
tures more predicates, queryQs,f,m requires to evaluate more
bucket pairs during the TopBuckets process. Thus, Top-
Buckets running time increases faster with g than on others
queries, hence the impact on the overall response time.
For queries Qb,b and Qo,o, coarse statistics have nearly no ef-
fect since a large number of high-scoring results can be found
during the join phase (except when g = 5 where workload
distribution fails for query Qo,o: a reducer does not quickly

find high-scoring results). Finally, we observe that a number
of granules g≈40 provides the best trade-off for the various
queries that we experimented. Future investigations include
the design of benchmark approaches or the adaptation of
optimization techniques [7] to compute the optimal number
of granules that minimizes execution time of TKIJ .

4.2.5 Scalability
We vary the size of collections |Ci| to evaluate the scala-

bility of TKIJ . We compare TKIJ to state-of-the-art com-
petitors.
As a baseline, we borrow algorithms from related work on
processing interval joins on Map-Reduce [5]. In this work,
algorithms RCCIS and All-Matrix are designed to process
interval joins using Allen predicates. In our settings, we use
these algorithms to return only results that satisfy all the
Boolean predicates of a RTJ query (i.e. a subset of top-k
results). We also impose reducers to stop join processing if
k results are found. Then, we merge and sort local results
using a final Map-Reduce phase, identically to TKIJ .
RCCIS handles only colocation predicates where intervals
intersect (e.g. overlaps, meets). All-Matrix handles only
sequence predicates (before, after). RCCIS and All-Matrix
also partition the temporal range using contiguous granules.
For RCCIS , we set the number of granules to 24 which im-
plies that 24 reducers are used. For All-Matrix , the number
of reducers depends on the number of granules and of col-
lections. We used 4 granules with n=3, yielding 20 reduc-
ers. For TKIJ , we conduct a first set of experiments with

 0.1

 1

 10

 100

 0 20 40 60 80 100

#
tu

p
le

s
 (

%
)

Start Point (%Max.)

(a) Start Point

 1e−05
 0.0001
 0.001
 0.01
 0.1

 1
 10

 100

 0 20 40 60 80 100

#
tu

p
le

s
 (

%
)

Length (%Max.)

(b) Length

Figure 12: Network Traffic Data Distribution

score parameters PB ={(0, 0), (0, 0)} (see Table 2). We are
hence using a Boolean interpretation of predicates. Because
TKIJ must return k results, if only k′ < k results satisfy the
Boolean predicates (with S(t)=1.0), k−k′ other results that
do not satisfy at least one predicate will be returned (with
S(t)< 1.0). Thus, TKIJ may need to return more results
than All-Matrix or RCCIS , that only return results fully
satisfying all Boolean predicates. Hence, results of each al-
gorithm are not directly comparable. For TKIJ , we conduct
a second set of experiments using scored predicates with the
score parameters P1.

Results. We present total running times on Figure 11. For
queryQb,b (Figure 11a), TKIJ remains nearly constant since
TopBuckets returns only 1 bucket combination. Thus, TKIJ
processes only a small share of input data. All-Matrix shuf-
fles intervals belonging to all possible results, hence running
time increases with |Ci|. For query Qo,o (Figure 11b), Top-
Buckets selects more combinations to process. As the num-
ber of intervals per bucket increases with |Ci|, more data is
shuffled and processed during the local join processing, hence
the running time increases linearly with |Ci|. Figure 11b also
shows that TKIJ outperforms RCCIS on |Ci|>3.5×106. In
RCCIS, a first Map-Reduce phase builds intermediate re-
sults to determine which intervals need to be replicated to
ensure output correctness in the join phase. Thus, its run-
ning time increases with |Ci|. Meanwhile, TKIJ decides
which tuples should be combined on the basis of TopBuck-
ets, which does not depend on |Ci| and is on average 93%
faster than the first phase of RCCIS. On Qs,m (Figure 11c),
we do not observe this phenomenon anymore: RCCIS first
phase is faster (there are fewer intermediate results), while
TKIJ ’s join phase is longer (there are fewer high-scoring re-
sults). We observe a notable difference on query Qs,m with
scored and with Boolean predicates. The local join process-
ing explains this difference. In the Boolean case, TKIJ fo-
cuses on building results where join conditions are satisfied
(whose score is strictly positive), thus limiting the search
space. With the approximate interpretation of predicates,
more combinations need to be considered because tolerance
on endpoints incurs a higher number of results with a strictly
positive score. Thus, more intermediate results are com-
puted. On query Qo,o, a large number of results have the
highest score (Figure 7) which incurs major pruning. That
justifies the absence of a significant difference between the
scored and Boolean cases.

4.2.6 Effect of k
We conducted experiments where k varies in [10, 105] on

a range of queries (Qb,b, Qo,o, Qs,f,m, Qf,b, Qo,m) with |Ci|=
2×106. We observed that TKIJ is almost constant on all

 500

 4500

 100

 1000

 0.5 1 1.5 2 2.5

R
u
n
n
in

g
 t
im

e
 (

s
)

|Ci| (x10
6
)

Qb,b
Qf,b

Qo,o
Qo,m

Qs,f,m
QjB,jB

QsM,sM

Parameters: g = 40, k = 100,P = P3, TopBuckets: loose

Figure 13: Network Traffic Data - Scalability

queries and all values of k. Actually, a large number (>1013)
of potential results fall in each bucket combination. Thus,
the set of selected bucket combinations remains the same
for k∈ [10, 105] since we can always guarantee to return the
correct top-k results.

4.3 Network Traffic Data

4.3.1 Data
We use network traffic data collected on firewall logs of a

data hosting company. Each log contains packets exchanged
between servers and clients (≈ 5GB, 100M packets per day).
Each packet has a timestamp (seconds). We selected one
log and built a list of connections by grouping packets ex-
changed between a pair (server, client). Only consecutive
packets whose timestamps are within a time interval [0, 60]
are grouped. A connection [client, server, start, end] repre-
sents the activity of client on server, where the first packet
was sent or received at timestamp start and the last one at
timestamp end. The dataset obtained includes 3,636,814 in-
tervals (≈ 83MB), whose minimum, maximum, and average
length are respectively 1, 86,459 and 54 seconds. Figure 12
shows the distribution of start points and lengths. Then,
we copy each list of connections 3 times and process 3-way
queries. We are interested in real-life scenarios occurring
in network traffic analysis, hence we process queries QjB,jB

and QsM,sM (Table 1). Query QjB,jB returns the sequences
of connections that closely follow each other, while QsM,sM

returns sequences where a delay was observed between two
connections.

4.3.2 Scalability
We verify that TKIJ scales with various dataset sizes.

When generating connections, we use various randomly se-
lected samples on the log file used. We pick from 5% to 35%
of input data. We obtain collections of connections whose
number of intervals varies from 0.58×106 to 2.31×106.

We present total running times on Figure 13. We note
that running time increases faster than what was observed
on synthetic data. Here, when we use larger samples on in-
put data, we have more buckets containing at least an inter-
val. When |Ci|=0.58×106, there are 151 buckets containing
at least an interval, while there are 296 for |Ci|=2.31×106.
Thus, TopBuckets has to process more bucket combinations
with higher |Ci|. On query Qs,f,m, that features more predi-
cates, the time taken by TopBuckets is dominant (e.g. 82%
of overall response time for |Ci|=1.38×106). Hence, overall
response time increases faster on query Qs,f,m than on all

 500

 100

 1000

 10 100 1000 10000 100000

R
u
n
n
in

g
 t
im

e
 (

s
)

k

Qb,b
Qf,b

Qo,o
Qo,m

Qs,f,m
QjB,jB

QsM,sM

Param.: |Ci| = 1.03 × 106, g = 40, P = P3, TopBuckets: loose

Figure 14: Network Traffic Data - Effect of k

other queries. We also observe that while Qo,o lasts longer
on synthetic data, TKIJ performs similarly on Qb,b and Qo,o

on real data. That can be explained by the fact that the
real dataset contains long intervals (Figure 12). These in-
tervals fall into buckets built with granules that are far apart
(e.g. b1=([2160, 4320], [19440, 21600]) or b2=([8640, 10800],
[38880, 41040])). Thus, we can find bucket combinations
(e.g. ω = (b1, b2)) whose results (x, y) are guaranteed to
have a high score s-overlaps(x, y). Then, TopBuckets re-
turns less bucket combinations, reducing the search space
while guaranteeing correctness.

4.3.3 Effect of k
We verify TKIJ on various values of k. We present run-

ning times on Figure 14. For all queries except Qo,o, we
observe that TKIJ remains nearly constant when k≤5000.
Then, the running time increases slowly when k> 5000: as
more results need to be returned, more intermediate results
are built before termination especially with queries having
fewer high-scoring results. On Qo,o we observe that TKIJ
increases slightly between k = 1000 and k = 5000. That is
explained by an increase (from 643 to 41,272) in the num-
ber of bucket combinations |Ωk,S | necessary to return the
correct top-k results, which in turn increases the number of
intermediate results.

5. RELATED WORK
Three research areas relate to our work, however none of

them addresses the RTJ problem.

Interval Joins. The closest work to ours [5] addresses the
processing of multi-way joins on Map-Reduce for Allen Boolean
predicates [2]. The first algorithm, RCCIS, solves coloca-
tion queries, where all predicates require intervals to have
a non-empty intersection. RCCIS reduces the amount of
data shuffled in Map-Reduce by sending to the same re-
ducer intervals that are most likely to be colocated. The
second algorithm, All-Matrix handles sequence queries. Be-
cause such queries imply unavoidable replication, All-Matrix
focuses on load balancing. None of those algorithms is ap-
plicable to solving the RTJ problem as they do not handle
scored results.
Although flexible interpretations of Allen predicates were
proposed in approximate reasoning [12, 23, 27], none of
them designed join algorithms. A series of work on spatio-
temporal data focused on efficiently retrieving overlapping
objects with Boolean semantics. Objects are stored in parti-

tions [7, 21], or tree structures [13], such as the R-Tree [3, 19]
or the quadtree [17]. A more recent investigation proposed
a compound index structure using segment trees to find in-
tervals that intersect a query-interval in a key-value cloud-
store [28]. In summary, these studies focus on reducing I/O
and support only Boolean overlaps and intersections.

Top-k Processing. Instance-optimal algorithms [14, 15] were
proposed for rank-joins ranging from centralized implemen-
tations for HRJN [20] and Pull-Bound Rank Join [26] in [16],
to distributed ones in [10, 22]. Specifically, in NoSQL databases,
the BFHM algorithm [22] places each tuple in a bucket that
depends on its score. Tuples are compressed using Bloom-
filters allowing to select the best buckets first then retrieve
tuples to be joined from the database. Because a Bloom-
filter yields false positives, BFHM may require several iter-
ations. Our work differs in two aspects. First, our scores
are predicate-dependent and are not known a priori. Sec-
ond, reiterating join processing in our case would incur too
high an overhead.

Load Balancing. Load balancing is a common concern in
parallel top-k processing. RanKloud [4] computes data statis-
tics to retrieve an estimation of the kth join score. Then,
only the part of input data whose score is above the esti-
mated one is uniformly distributed and processed in par-
allel on a set of workers. Similarly, we rely on comput-
ing statistics to avoid processing useless data. However,
while RanKloud outputs approximate results, our algorithm
guarantees to return exact top-k results. Another work [8]
proposes a partitioning scheme on Map-Reduce based on
partitioning for parallel skyline query processing [29]. The
angle-based partitioning distributes evenly the volume that
contains points near the best possible point, increasing the
probability that skyline points will fall evenly in each par-
tition. This idea is reintroduced in the context of top-k
joins [8] and is shown to be superior to a cardinality-based
partitioning. Although we share the same intuition, we can-
not directly apply this technique since it assumes that par-
tial scores are known a priori while in our case they are
predicate-dependent.

6. CONCLUSION
In this paper, we introduce RTJ queries using scoring

functions reflecting the degree of satisfaction of a join pred-
icate. We design TKIJ , a parallel multi-way top-k interval
join algorithm on Map-Reduce. TKIJ relies on an offline
collection of statistics to prune the search space and a work-
load distribution scheme appropriate to top-k processing.
We conduct experiments on synthetic data that validate our
approach and show the efficiency of TKIJ on various queries.
We observe the same effectiveness of TKIJ on real network
traffic logs. Future investigations include the integration of
interval attributes (e.g. IP address for a connection) in the
join conditions, to build hybrid queries, similarly to previous
work [5]. We also plan to pursue investigations on various
distributed platforms. Although robust and scalable, Map-
Reduce suffer from limitations on complex queries [9]. For
instance, a field of investigation is the design of algorithms
that take advantage of communication between workers.

7. ACKNOWLEDGMENTS
This work was partially funded by the Datalyse PIA project.

8. REFERENCES
[1] F. N. Afrati and J. D. Ullman. Optimizing joins in a

map-reduce environment. In EDBT, pages 99–110,
2010.

[2] J. F. Allen. Maintaining knowledge about temporal
intervals. Commun. ACM, 26(11):832–843, 1983.

[3] N. Beckmann, H. Kriegel, R. Schneider, and
B. Seeger. The r*-tree: An efficient and robust access
method for points and rectangles. In SIGMOD, pages
322–331, 1990.

[4] K. S. Candan, J. W. Kim, P. Nagarkar, M. Nagendra,
and R. Yu. Rankloud: Scalable multimedia data
processing in server clusters. IEEE MultiMedia,
18(1):64–77, 2011.

[5] B. Chawda, H. Gupta, S. Negi, T. A. Faruquie, L. V.
Subramaniam, and M. K. Mohania. Processing
interval joins on map-reduce. In EDBT, pages
463–474, 2014.

[6] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In OSDI, pages
137–150, 2004.

[7] A. Dignös, M. H. Böhlen, and J. Gamper. Overlap
interval partition join. In SIGMOD, pages 1459–1470,
2014.

[8] C. Doulkeridis and K. Nørv̊ag. On saying ”enough
already!” in mapreduce. In Cloud-I, 2012.

[9] C. Doulkeridis and K. Nørv̊ag. A survey of large-scale
analytical query processing in mapreduce. VLDB J.,
23(3):355–380, 2014.

[10] C. Doulkeridis, A. Vlachou, K. Nørv̊ag, Y. Kotidis,
and N. Polyzotis. Processing of rank joins in highly
distributed systems. In ICDE, pages 606–617, 2012.

[11] M. Drozdowski. Scheduling for Parallel Processing.
Computer Communications and Networks. Springer,
2009.

[12] D. Dubois, A. HadjAli, and H. Prade. Fuzziness and
uncertainty in temporal reasoning. J. UCS, 9(9):1168,
2003.

[13] J. Enderle, M. Hampel, and T. Seidl. Joining interval
data in relational databases. In SIGMOD, pages
683–694, 2004.

[14] R. Fagin. Combining fuzzy information from multiple
systems. In PODS, pages 216–226, 1996.

[15] R. Fagin, A. Lotem, and M. Naor. Optimal
aggregation algorithms for middleware. In PODS,
pages 102–113, 2001.

[16] J. Finger and N. Polyzotis. Robust and efficient
algorithms for rank join evaluation. In SIGMOD,
pages 415–428, 2009.

[17] R. A. Finkel and J. L. Bentley. Quad trees: A data
structure for retrieval on composite keys. Acta Inf.,
4:1–9, 1974.

[18] D. Gao, C. S. Jensen, R. T. Snodgrass, and M. D.
Soo. Join operations in temporal databases. VLDB J.,
14(1):2–29, 2005.

[19] A. Guttman. R-trees: A dynamic index structure for
spatial searching. In SIGMOD, pages 47–57, 1984.

[20] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid.
Supporting top-k join queries in relational databases.
In VLDB, pages 754–765, 2003.

[21] H. Lu, B. C. Ooi, and K. Tan. On spatially partitioned
temporal join. In VLDB, pages 546–557, 1994.

[22] N. Ntarmos, I. Patlakas, and P. Triantafillou. Rank
join queries in nosql databases. PVLDB, 7(7):493–504,
2014.

[23] H. J. Ohlbach. Relations between fuzzy time intervals.
In TIME, pages 44–51, 2004.

[24] A. Okcan and M. Riedewald. Processing theta-joins
using mapreduce. In SIGMOD, pages 949–960, 2011.

[25] C. Prud’homme, J.-G. Fages, and X. Lorca. Choco3
Documentation. TASC, INRIA Rennes, LINA CNRS
UMR 6241, COSLING S.A.S., 2014.

[26] K. Schnaitter and N. Polyzotis. Evaluating rank joins
with optimal cost. In PODS, pages 43–52, 2008.

[27] S. Schockaert, M. D. Cock, and E. E. Kerre.
Fuzzifying allen’s temporal interval relations. IEEE T.
Fuzzy Systems, 16(2):517–533, 2008.

[28] G. Sfakianakis, I. Patlakas, N. Ntarmos, and
P. Triantafillou. Interval indexing and querying on
key-value cloud stores. In ICDE, pages 805–816, 2013.

[29] A. Vlachou, C. Doulkeridis, and Y. Kotidis.
Angle-based space partitioning for efficient parallel
skyline computation. In SIGMOD, pages 227–238,
2008.

[30] X. Zhang, L. Chen, and M. Wang. Efficient multi-way
theta-join processing using mapreduce. PVLDB,
5(11):1184–1195, 2012.

	Introduction
	Data Model and Problem
	Temporal Join Processing
	Overview of TKIJ
	Statistics collection
	Selection of bucket combinations
	Distributed Top-k Join Processing

	Experiments
	Summary of Results
	Synthetic Data
	Score Distribution
	Workload Distribution
	TopBuckets Strategies
	Number of Granules
	Scalability
	Effect of k

	Network Traffic Data
	Data
	Scalability
	Effect of k

	Related Work
	Conclusion
	Acknowledgments
	References

