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REFLECTED BROWNIAN MOTION: SELECTION, APPROXIMATION AND

LINEARIZATION

MARC ARNAUDON AND XUE-MEI LI

ABSTRACT. We constructed a family of SDEs with parameter a whose solutions converge

to a reflected Brownian flow as a approaches 0 in UCP. This selects a reflected Brown-

ian ‘flow’. We then prove the stochastic damped transports W a

t
along (Y a

t
) converge in

a suitable sense. This selects a damped stochastic parallel transport and a probabilistic

representation for the solution to the heat equation on differential 1-forms with absolute

boundary conditions. The limiting process can be described by its jumps and the standard

stochastic damped parallel transport equation with an additional shape operator driven by

the local time. It can be constructed by a family of tangent space valued stochastic pro-

cesses (W ε

t
), who evolves with the stochastic damped parallel transport equation in the

interior, and whose normal part is erased at the end of an excursion of size greater or equal

to ǫ. As ǫ → 0, this family of stochastic processes converge to a tangent space valued

process (Wt) with jumps, in the topology of uniform convergence. For the half space,

this is exactly the process constructed in N. Ikeda and S. Watanabe [21] by Poisson point

processes. This allow us to approximate the local time on the boundary in UCP, but not in

the semi-martingale topology. We also conclude Wt being the weak derivative of Yt with

respect to the starting point.

1. INTRODUCTION

A. Let M be a smooth connected d-dimensional Riemannian manifold with boundary

∂M and interior Mo. Both the interior and the boundary, not necessarily connected, are

smooth manifolds without boundary. Denote ∆ the Laplacian on functions and ∆1 =
−(d∗d+ dd∗) the Hodge-Laplace-Beltrami operator restricted to differential 1-forms. The

essentially self-adjoint operators satisfy d∆ = ∆1d on smooth functions with compact

supports.

Let us consider heat conduction in a perfect insulator. Let u : [0, T ] × M → R be a

solution to the following heat equation with initial value and Neumann boundary condition:

∂u

∂t
=

1

2
∆u in Mo, du|∂M (ν) = 0, u(0, ·) = f (1.1)

Then u(t, Y0) = Ef(Yt) where Yt is a reflected Brownian motion (RBM). How would we

simulate a RBM? We might want to select one with desired properties, which also solves

the heat equation for differential 1-forms. The spatial differential du(t, ·) solves the heat

equation on differential 1-forms:

∂φ

∂t
=

1

2
∆1φ, φ(t, ν) = 0, φ(0, ·) = df (1.2)

where ν denotes the unit inward pointing normal vector on the boundary. This equa-

tion is under determined. We impose the absolute boundary condition φ(ν) = 0 and

dφ|∂M (t, ν) = 0 where d denotes exterior differentiation. The absolute boundary con-

dition is automatically satisfied by φ = du, and is equivalent to ∇νφ − φ(∇ν) = 0
given the Dirichlet boundary condition φ(ν) = 0. Solving heat equation for differential
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1-forms helps us to understand differentiating solution to the heat equation for functions.

But heat equations for differential forms are interesting of their own rights. For example

de Rham cohomologies, defined by quotients of closed forms and exact forms are topo-

logical invariants. An L2 Hodge decomposition theorem would relate this to the space of

harmonic differential forms. The existence and vanishing of harmonic forms for manifolds

with boundary are naturally interesting questions. A study of heat equation on differential

forms for manifolds with boundary goes back to P. E. Conner [11]. P. Malliavin [24] and

H. Airault [2] studied harmonic forms using perturbations to a boundary operator, see also

A. Méritet [25] for a result on the vanishing of the first de Rham cohomology on manifolds

with boundary. See also I. Shigekawa, N. Ueki, and S. Watanabe [27] who gave a proof of

the Gauss-Bonnet-Chern Theorem on manifolds with boundaries.

To solve the heat equation on 1-forms with the absolute boundary condition, we seek

a tangent space valued process Wt such that φt(W0) = Eφ(0,Wt). An ansatz is the sto-

chastic covariant differential equation along a given RBM: D
dtWt = − 1

2Ric
#(Wt) where

for each ω, D
dt denotes covariant differentiation of Wt(ω) along the path Yt(ω) using the

Levi-Civita connection∇ on M , the parallel equation damped by the Ricci curvature. This

is the case for a manifold without a boundary and is essentially true for the half plane. As

we will explain, it is necessary to consider the shape of the boundary and add the shape

operator S:

D

dt
Wt = −1

2
Ric#Yt

(Wt) + SYt(Wt)dLt

where Lt is the boundary time of the RBM? We use Wt to stand both for the tangent

vector Wt ∈ TYtM and the linear map Wt : TY0M → TYtM , in the latter sense (Wt) are

‘damped parallel translations’. The solution of the equation is one of the solution, but our

approximation will select a different one: the minimal one.

The RBM spends Lebesgue measure zero time on the boundary and there is a great deal

of freedom in choosing a pathwise solution. Given a RBM (Yt) there is more than one

such process: if (Yt,Wt) solves the absolute boundary problem, so would (Yt,W
′
t ) if they

agree on the interior and their tangential parts agree on the boundary. Since we allow for

jumping on the boundary, the values of (Wt) at the boundary times do not determine the

value of the process in the interior and vice versa. Our approximation selects the ‘minimal’

damped parallel translation along our RBM, which for the half space is exactly the process

constructed by N. Ikeda and S. Watanabe using Poisson point processes where they did not

need the shape operator. Denote Rt the distance of Yt to the boundary. The Poisson point

process of Rt determines the frequency of the projection. The ‘local time’ or the boundary

time of the RBM is the local time of Rt at 0 which is essentially the δ-measure on the

boundary,
∫ t

0 δ∂M (Ys)ds.

B. In case of M having no boundary, stochastic parallel translation goes back to K. Itô

[22], J. Eells, D. Elworthy [12], P. Malliavin [24], H. Airault [2] and N. Ikeda and S. Watan-

abe [20]. The damped parallel translations along a Brownian motion xt are constructed us-

ing stochastic parallel translation. Together with xt it is an L(TM, TM)-valued diffusion

process along xt with Markov generator 1
2∆

1. It is well understood that Edf(Wt), where

f ∈ BC2(M), solves the heat equation for 1-forms. See e.g. D. Elworthy [13], J.-M.

Bismut [9], N. Ikeda and S. Watanabe [20], and P.-A. Meyer [26]. Furthermore if Pt is the

heat semi-group, the process dPT−tf(Wt) is a local martingale. See [23] for a systematic

study of probabilistic representations of heat semigroups on differential forms using both

the damped parallel translation and the derivative flow to a Brownian system. It is also well

known that (Wt) can be obtained from the derivative process dφt of a Brownian flow by
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conditioning, from which information on the derivative of the heat semigroup on functions

can be obtained. This method was used by M. Arnaudon, B. Driver, K. D. Elworthy, Y. Le-

Jan, X.-M. Li and A. Thalmaier [23, 15, 14, 16, 28, 5], and many other related works. This

plays also a role in the study of the regularity of finely harmonic maps, c.f. M. Arnaudon,

X.-M. Li and A. Thalmaier [8]. The stochastic Jacobi field point of view is developed in

M. Arnaudon and A. Thalmaier [6], leading to estimates for the derivatives of harmonic

maps between manifolds and to Liouville-type theorems.

The study of stochastic damped parallel transports on manifolds with boundary began

with the upper half plane preluding which the construction of the reflecting Brownian mo-

tion (Yt) by a canonical horizontal stochastic differential equation (SDE) with drift given

by the horizontal lift of the ‘reflecting’ vector field. See N. Ikeda [19], Watanabe [30],

and N. Ikeda and S. Watanabe [20]. The same SDE on the orthonormal frame bundle

defines also the stochastic parallel transport process //t(Y ), a sample continuous stochas-

tic process with values in the tangent bundle. Their construction of the damped parallel

translation is harder than that of the parallel translation. The latter reduces to solving a

‘reflected’ stochastic differential equation while the former is a stochastic process with

seemingly arbitrarily induced jumps. Our results shows that the introduction of the jumps

are not at all arbitrary.

Since a manifold with boundary can be transformed to the upper half plane by choices

of charts, as pointed out in N. Ikeda and the S. Watanabe [20], this implies the local exis-

tence of damped parallel transport on a general manifold. We note that H. Airault studied

Dirichlet Neumann problems [1, 2] using a different approach, multiplicative functionals,

which were followed up by E. Hsu [18] to give a neat treatment for the reflected SDE on

the orthonormal frame bundle. In Appendix C, we extend and explain Ikeda-Watanabe’s

construction [21] for damped parallel transport, the formulation involves an additional cur-

vature term, the shape operator of the normal vector ν. For the upper half plane, the shape

operator vanishes identically.

C. Our aim is to construct a nice family of SDEs whose solutions are smooth and stay

in the interior for all time, in particular there is no boundary time. The solutions Y a
t and

their derivative flows W a
t select a RBM and a damped stochastic parallel transport along

the RBM. Although Y a
t and W a

t are sample continuous, the process selected by (Y a
t ,W

a
t )

has jumps on the boundary.

Our construction is motivated by the following well known facts for manifold with-

out boundaries: (1) damped parallel translations can be obtained from perturbation of the

Brownian motion with respect to its initial data and (2) a formula for the derivative of the

heat semigroup follows naturally from differentiating a Brownian flow with respect to its

initial value. More precisely if dφt(v) is the derivative of a Brownian flow φt(x) with

respect to its initial data x, then Wt is the conditional expectation of dφt(v) with respect to

the filtration of the Brownian flow. From our construction it would be trivial to see the for-

mula dQtf(v) =
1
tEf(φt(x))Mt for manifolds with boundary, where (Mt) is a suitable

local martingale.

Let us recall that a Brownian system is a stochastic differential equations (SDE)

dxt =

m
∑

k=1

σk(xt) ◦ dBk
t + σ0(xt)dt,

with infinitesimal generator 1
2∆ where ◦ denotes Stratonovich integration. Such equations

always exist and is not unique. One particularly nice Brownian system is the gradient

Brownian system by which we mean σi are the gradient vector fields given by an isometric
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embedding. Formally a RBM is a solution to an SDE:

dYt = “dxt” + ν · δ∂M (Yt)dt.

Its approximations are given by

dY a
t = “dxt” +Aa(Y a

t )dt,

We hope that La
t =

∫ t

0 A
a(Y a

s )ds approximate ν · δ∂M (Yt)dt and the solutions to

D

dt
W a

t = −1

2
Ric#Y a

t
(W a

t ) + SY a
t
(W a

t )dL
a
t

will have a limit. Note that dLa
t and dLt has mutually singular supports and it is clear

not every choice of “dxt” yield an approximation. Our choice is rather natural which we

will elaborate later. Then W a
t converges, in a sense which we specify later, to a minimal

probability representation for the heat equation for one forms. This limits has jumps on the

boundary.

2. OUTLINE AND MAIN THEOREMS

The paper is organised as following. In Section 3 we construct a family of SDEs whose

smooth solution flows (Y a
t , a > 0) exist. Close to the boundary, they are Brownian mo-

tions with drift Aa(x), the gradient of ln tanh
(

R
a

)

where R(x) is the distance of x to the

boundary. Furthermore they satisfy the following properties.

Theorem 3.4.

(a) For each a > 0, (Y a
t ) remains in M0;

(b) As a → 0, (Y a
t ) converges to the reflected Brownian motion process (Yt), in the

topology of uniform convergence in probability (UCP).

The convergence is in Sp([0, T ]) if M is compact, and indeed if the boundary has a

tubular neighbourhood with a uniform lower bound and if suitable bounds on the curva-

tures are imposed. The notation concerning the convergence of stochastic processes on

manifolds is introduced in Appendix B where we also summarise the relevant estimates

for stochastic integrals in the Sp and Hp norm, as well as relating different notions of

convergences.

For M = R+, the solution to the Skorohod problem is selected while the solution given

by Tanaka’s formula is not, see Appendix A for detail where we illustrate the construction.

The main idea behind the construction is to ensure that R(Y a
t ) involves one single real

valued Brownian motion for all parameters a, and hence pathwise analysis is possible.

The construction involves a tubular neighbourhood of the boundary and the product metric

in this tubular neighbourhood is used for the estimation. By the construction, converges

in the other directions, when restricted to the tubular neighbourhood are trivial. Outside

of the tubular neighbourhood the drift Aa(x) vanishes while inside it converges to zero

exponentially fast as a → 0 for every positive x.

Furthermore, there exists a family of stochastic processes La
t converging to the local

time Lt in Sp([0, T ]) but not in the Hp([0, T ]) topology. The former convergence is a key

for the convergence of the damped parallel translations while the lack of convergence in

the latter makes it difficult to follow the standard methods for the convergence of solutions

of SDEs.

Corollary 3.6 and Lemma 7.8 Let M be compact. Then for any p > 1 and T > 0,

lim
a→0

‖La
t − Lt‖Sp([0,T ]) = 0.
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Despite of the above mentioned convergence, dLt and dLa
t are mutually singular mea-

sures. In particular the total variation norm |d(Lt − La
t )| → 2|dLt| as a approaches

zero. We observe also that |La
t |Hp([0,T ]) = |La

t |Sp[0,T ], |Lt|Hp[0,T ] = |Lt|Sp[0,T ] and

|Lt − La
t |Hp([0,T ]) = |dLt|Hp([0,T ]) + |dLa

t |Hp([0,T ]).

Below we state our main theorem whose proof is the content of Section 7. A preliminary

and easier result on the convergence of the stochastic parallel transport is given in §4. We

conclude that there exists a stochastic parallel transport process (Wt) along the reflected

Brownian motion (Yt) constructed in Theorem 3.4 such that the tangential parts of W a
t

converge to the tangential part of (Wt) in Sp([0, T ]) and the normal parts of W a
t converge

to the normal part of Wt in Sp([0, T ]).
If v ∈ TyM , where y is in the boundary, we denote vT and vν respectively its tangential

and normal component. Thus (W a,T
t ) is the tangential part of W a

t and

W a
t = W a,T

t + fa(t)ν(Y
a
t ).

Lemma 7.11, Lemma 7.12 and Theorem 5.6. Let M be a compact Riemannian

manifold. Let p ∈ [1,∞). Then

(1) lima→0 W
a,T
· = WT

· in UCP.

(2)

E

[

∫ T

0

|fa(t)− f(t)|p dt
]

→ 0.

(3) For any C2 differential 1-form φ such that 〈φ, ν〉 = 0 on boundary,

lim
a→0

sup
s≤t

E |φ(W a
s )− φ(Ws)|p = 0.

The family of sample continuous processes (W a
t ) cannot converges to the stochastic

process (Wt) with jumps, in the topology of uniform convergence in probability, nor in

the Sp norm nor in the Skorohod topology. The uniform distance between a contin-

uous path and a path with jumps is at least half of the size of the largest jump. Two

elementary results are the ideas behind the proof, Lemma 7.9 and Corollary 7.10. For

example, it will be proven that there exists a real continuous process ca(u) such that

dfa(t) = −ca(t)fa(t) dt + other terms, and the limit as a → 0 of −
∫ t

0 ca(u)fa(u) du
is the only one which creates jumps. More precisely, if αt = sups≤t{s ≤ t : Ys ∈ ∂M}
and t 6∈ R(ω), then for all s, t ∈ [0, S] satisfying s < t,

lim
a→0

e−
∫

t
s
ca(u) du = 1 if s > αt

lim
a→0

e−
∫

t
s
ca(u) du = 0 if s < αt.

Let us now explain the jumps in the limiting process Wt, see the Appendix for more

detail. Let ρ denote the distance function to the boundary. Viewed by the distance process

Rt = ρ(Yt, ∂M), the reflected Brownian motion reaches the boundary at a stopping time

ζ where it makes excursions into the interior. These excursions are similar to those made

by a real valued reflected Brownian motion. The compliment to the set of boundary points

of Rt are disjoint open intervals. Let R(ω) denote the set of the ‘right most points’ of the

excursions of the distance function Rt and Rǫ(ω) its subset coming from excursions of

length at least ǫ. Denote by Ric#x the Ricci curvature as a linear map from TxM to TxM
and S the second fundamental form of the level sets of R, see (C.5).
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The stochastic process Wt ∈ L(TY0M ;TYtM) is the unique càdlàg process along the

reflected Brownian motion (Yt) satisfying the following equation during an excursion to

the interior:

Wt(v) =v − 1

2
//t

∫ t

0

//−1
s Ric♯Ys−

(Ws−(v))ds − //t

∫ t

0

//−1
s SYs−(Ws−(v))dLs

−
∑

s∈R(ω)∩[0,t]

〈Ws−(v), ν(Ys))〉//s,tν(Ys),
(2.1)

where //s,t = //s,t(Y·) denotes the parallel transport process along (Y·) from TYsM to

TYtM . We abbreviate //0,t to //t. If we remove only the normal part of Wt on excursion

intervals equal or exceeding size ε, the above stated procedure makes sense and the result-

ing processes (W ε
t ) has a limit. The above equation is understood in this limiting sense.

More precisely, let W ε
t the solution to

DW ε
t = −1

2
Ric♯(W ε

t ) dt− S(W ε
t ) dLt − χ{t∈Rε(ω)}〈W ε

t−, νYt〉νYt ,

W ε
0 = IdTY0M

.
(2.2)

There exists an adapted right continuous stochastic process Wt such that limǫ→0 W
ǫ
t = Wt

in UCP and in S2 for M compact. Furthermore for any α ∈ T , the set of stochastic

processes with values in bounded 1-forms above Yt vanishing outside some compact set,

c.f. (C.6),

lim
ε→0

(∫ ·∧τD

0

αs(DW ε
s )

)

S2=

(∫ ·∧τD

0

αs(DWs)

)

.

This construction agrees with the derivative flow of the Skorohod reflected Brownian mo-

tion in the half line, extending stochastic damped parallel translation of Ikeda and Watan-

abe to general manifolds with boundary. This was further elaborated in Section 6 where

we prove damped parallel translation is a weak derivative of the reflected Brownian flow.

See also E. Hsu [18] and F. Wang [29] where two other constructions for damped paral-

lel translations are given. However the shape operators are not explicitly mentioned. In

Proposition 5.1 we explain that removing the normal part of the damped parallel transla-

tion at the beginning of excursions leads to the same object in the limit. In Theorem 5.3 we

observe that (Wt) has the local martingale property when composed with the differential

of a solution to the heat equation with Neumann boundary condition, c.f. [21]. A sto-

chastic representation for the semigroup on differential one forms with absolute boundary

conditions follows.

Theorem 5.2 Suppose that the tubular neighbourhood of the boundary has positive

radius, the curvatures Ric# and S are bounded. If φ(t, ·) is a solution to the heat equation

with absolute boundary conditions, then φ(t, ·) = Eφ(0,Wt(·)).
Finally we consider the problem of obtaining (W a

t ) by varying the initial value in a fam-

ily of stochastic flows. We have previously obtained a family of processes (Y a
t , 0 < a ≤ 1)

which converges as a → 0 in to a reflected Brownian motion in Lp. For a fixed we con-

sider a variation (Y a
t (u), u ∈ [0, 1]) satisfying Y a

0 (u) = ϕ(u) where ϕ(u) is a C1 curve

and ∂uY
a
t (u) = W a

t (u)ϕ̇(u), see [4] for the construction.

Proposition 6.1, Theorem 6.2 and Theorem 6.3 If M is compact, then the two param-

eter family of stochastic processes {Y a
· (u), a ∈ (0, 1], u ∈ [0, 1]} is tight. Furthermore if

Y ak· (u) converges weakly to {Yt(u), u ∈ [0, 1]} then

(1) for every u ∈ [0, 1], Yt(u) is a reflected Brownian motion on M started at ϕ(u);
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(2) for every p ∈ [1,∞) there exists a number C′(p, T ) s.t. for all 0 ≤ u1, u2 ≤ 1,

sup
0≤t≤T

E [ρp(Yt(u1), Yt(u2))] ≤ C′(p, T )‖ϕ̇‖∞(u2 − u1)
p. (2.3)

(3) For all f ∈ C2(M) with df |∂M (ν) = 0,

E

[

f(Yt(u2))− f(Yt(u1))−
∫ u2

u1

df
(

Wt(u)ϕ̇(u)
)

du

]

= 0.

The last identity implies that if φ̇(u) = v, then ∂
∂uYt(φ(u)) = Wt(u)(v). Thus the

damped parallel translation can be interpreted as a derivative of the RBM with respect to

the initial point, making connection with the study of K. Burdzy [10], and S. Anders [3].

for Euclidean domains.

3. A REFLECTED BROWNIAN FLOW

In [21], N. Ikeda and S. Watanabe constructed reflected Brownian motions by the

method of orthonormal frames. The local theorem is as following, which implies in partic-

ular that a non-sticky SDE on a manifold has a local solution, which is unique. Denote by

C0,1
b the space of bounded and Lipschitz continuous function in a domain D.

Theorem 3.1 ([21, Thm 7.2]). Let D = R
+
d = {(x1, . . . , x

d), xd ≥ 0}. For i = 1, . . . ,m,

let σi
k, b

i ∈ C0,1
b (D) and δ ∈ C0,1

b (∂D). Suppose that for some number C > 0,
∑m

k=1(σ
d
k(x))

2 ≥ C and δ(x) ≥ C. Then there is a pair of adapted stochastic processes,

(xt, Lt), s.t.

dxi
t =

m
∑

k=1

σi
k(xt)χD0(xt)dB

k
t + bi(xt)χxt∈D0dt, 1 ≤ i ≤ d− 1

dxd
t =

m
∑

k=1

σd
k(xt)χD0(xt)dB

k
t + bd(xt)χxt∈D0dt+ δ(xt)dLt

∫ t

0

χxs∈∂DdLs = Lt, ∀t ≥ 0 a.s.

(3.1)

Here (Lt) is continuous, increasing process and such that l0 = 0. Furthermore uniqueness

in law holds.

For the reflected problem in local coordinates, take δ ≡ 1. Other reflected stochastic

processes, with not necessarily normal reflection, can also be constructed. All reasonable

constructions should lead to the same essential quantity: the local time of the Brownian

motion on the boundary. This philosophy follows from the uniqueness to the associated

sub-martingale problem. Denote Cj(M) the space of real valued Cj smooth functions on

M and Cj
K(M) its subspace of Cj smooth functions with compact support. Let P be a

probability measure on C(M) and (Xt) the canonical process. A probability measure P
on C(M) is a sub-martingale problem associated with L = 1

2∆+Z with initial value x, if

Xf
t := f(Xt)− f(x)−

∫ t

0

Lf(Xs)ds

is a martingale for all f ∈ C∞
K (M0), and a sub-martingale for all f ∈ C∞

K (M) with

df(ν) ≥ 0.

We define a reflected Brownian motion as a solution to the Skorohod problem. A so-

lution to Skorohod problem is a sample continuous strong Markov process satisfying the
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following properties: (1) its Markov generatorL restricted to C2
K(M0) is 1

2∆; (2) it spends

almost all the time in the interior of the manifold (with respect to Lebesgue measure on

time set); and (3) its drift on the boundary is colinear with ν, the inward-pointing unit nor-

mal vector field on ∂M . By inward-pointing we mean the sign of ν is chosen so that the

exponential map, for sufficiently small t > 0, exp(tν) belongs to M0.

If {σ1, . . . σ(x)} is a family of vector fields spanning the tangent space at each point, we

associate to it a bundle map σ : M ×R
m → TM given by σ(x)(e) =

∑m
k=1 σk(x)〈ek, e〉

where {ei} is an orthonormal basis of Rm.

Definition 3.2. A stochastic flow is a Riemannian reflected Brownian flow if it solves the

Skorohod problem

dYt = σ(Yt) ◦ dBt + σ0(Yt)dt+A(Yt)dLt, (3.2)

where σ is a smooth bundle map, σ0 is a smooth vector field, A is a smooth vector field

extending the inward normal vector field, and Lt is the local time of Yt at ∂M , a non-

decreasing process satisfying that

∫ t

0

χ(∂M)c(Ys)dLs = 0.

Since dLt is supported on the boundary of M , Yt behaves exactly like a Brownian

motion in the interior.

The aim of the section is to construct a family of Brownian systems on M with large

drift Aa pushing away from the boundary, approximating a reflected Brownian motion in

the topology of uniform convergence in probability. Furthermore we wish the convergence

is ‘uniform’ and the limiting process is continuous with respect to the initial data.

3.1. We denote by ρ the Riemannian distance function on M and by R the distance

function to the boundary, R(x) = inf{ρ(x, y) : y ∈ ∂M}. By the tubular neigh-

bourhood theorem, there exists a continuous function δ : ∂M → (0,∞) such that for

E0 = {(x, t) : x ∈ ∂M, t < δ(x)}, the map

Φ : E0 → F0 := Φ(E0) ⊂ M

(x, t) 7→ expx(tνx)
(3.3)

is a diffeomorphism such that Ψ(y) = (π(y), R(y)) on F0 where π(y) is the boundary

point given by ρ(y, π(y)) = R(y) and Ψ = Φ−1. In other words, on F0, R
(

Φ(x, t)
)

= t

and the distance function R is smooth. For 0 ≤ c ≤ 1, define

Ec = {(x, t) : t < (1− c)δ(x)}, Fc = Φ(Ec).

Since ∂M is a Riemannian manifold of its own right, we may represent ∆∂M =
∑m

j=2 σ̄j as the sum of squares of vector fields, for example by taking {σ̄j, j = 2, . . . ,m}
to be a gradient system on ∂M .

In the tubular neighbourhood around a relatively compact set U of the boundary, the

width δ(x) can be taken to be a positive constant 3δ0. Let R be a real valued 1-Lipschitz

smooth function on M which on F1/3 agrees with the distance function to the boundary

and such that R ≥ δ0 on F c
1/3. This can be obtained by modifying the distance function to

the boundary.
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Proposition 3.3. Let r ≥ 1 and c ∈ (0, 1). Let {σ̄0, σ̄j , j = 2, . . . ,m} be a family of Cr

vector fields on ∂M with the property that

1

2

m
∑

j=2

Lσ̄jLσ̄j + Lσ̄0 =
1

2
∆∂M .

Suppose that E0 has strictly positive radius. Let δ0 be a positive number such that

δ ≥ 3δ0. Then there exist a finite number of Cr vector fields {σj , j = 0, . . . , N} on M
such that

(1) 1
2

∑N
j=1 LσjLσj + Lσ0 = 1

2∆,

(2) σ1 = ∇R on F0,

(3) For 2 ≤ j ≤ m, σj extends σ̄j ,

(4) For all p ∈ Φ(∂M × [0, δ0]), for all j ≥ 2: 〈σ1, σj〉p = 0.

In the sequel we denote A = σ1.

Proof. We first assume that there exist a family of locally defined vector fields σj , 1 ≤
j ≤ m in the tubular neighbourhood F0. Denote σ : M ×R

m → TM the corresponding

bundle map, as indicated earlier. Let us extend the construction to M and then return to

the local construction.

Let σ̃i,m+ 1 ≤ i ≤ m+m′ be a family of vector fields in M such that

m+m′

∑

i=m+1

Lσ̃iLσ̃i = ∆.

Let σ̃ be the corresponding bundle map from M ×R
m′ → TM and let N = m+m′. We

take a real valued function β ∈ C∞(M ; [0, 1]) with the property that
√
β and

√
1− β are

smooth, β|F2/3
= 1and β|M\F1/3

= 0. Let us define a new bundle map σ̂ : Rm ×R
m′ →

TM as following:

σ̂(e1, e2) =
√

β σ(e1) +
√

1− β σ̃(e2),

and prove that it is a surjection. Let

(σ̂)∗(v) = (
√

βσ∗(v),
√

1− β(σ̃)∗(v)).

Then (σ̂)∗ : TxM → R
N is the right inverse to σ̂. Indeed

σ̂σ̂∗ = βσσ∗ + (1− β)σ̃(σ̃)∗ = id,

and σ induces the Laplace-Beltrami operator.

Let us now construct σ on F0. If y ∈ m, let π(y) denote the projection of y to M , γy
the geodesic from π(y) to y, and //(γy) the parallel transport along γy which is a linear

map from Tπ(y)M to TyM . For j 6= 1, along a geodesic normal to the boundary, we may

extend σ̄j by parallel transport along the geodesic in the normal vector direction:

σj(y) = //(γy)σ̄j(π(y)).

In other words it is constant along the geodesic. It is clear that 〈σj(x), σ1(x)〉 = 0 for all

j > 1 and x ∈ F0.

From the assumption, 1
2

∑

k ∇∂
σ̄k
σ̄k+σ̄0 = 0 on ∂M and

∑m
j=2 σ̄j(x)σ̄

♭
j(x) = IdTx∂M .

Here σ̄♭
j(x) denotes the 1-form 〈σj(x), ·〉. Let us prove that for all x ∈ F0,

m
∑

j=1

σj(x)σ
♭
j(x) = IdTxM
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where σ♭
j(x) is defined in a similar way. Since the vectors {σk(x)} generate TxM , it is

sufficient to prove that for all k = 1, . . . ,m,




m
∑

j=1

σj(x)σ
♭
j(x)



 (σk(x)) = σk(x).

For k = 1:




m
∑

j=1

σj(x)σ
♭
j(x)



 (σ1(x)) = σ1(x)〈σ1(x), σ1(x)〉 = σ1(x).

For k ≥ 2:




m
∑

j=1

σj(x)σ
♭
j(x)



 (σk(x)) =

m
∑

j=2

σj(x)〈σj(x), σk(x)〉

=

m
∑

j=2

//(γx)σ̄j(π(x))〈σ̄j (π(x)), σ̄k(π(x))〉

= //(γx)σ̄k(π(x)) = σk(x).

To complete the construction, we take the drift vector with the following property:

σ0(x) = −1

2

m
∑

j=1

∇σj(x)σj = −1

2

m
∑

j=2

∇σj(x)σj , x ∈ F0.

This completes the proof. �

The vector field A = σ1, constructed in Proposition 3.3 extends the unit inward normal

vector field, defined on ∂M , and coincides with ∇R on F2/3. Off the cut locus of the R,

∇R exists almost everywhere. For the Skorohod problem, we will only need the informa-

tion of A on F := F2/3 and in particular we do not need to worry the effect of the cut

locus.

Next we take a family of additional drift vector fields converging to 0 in the interior of

M and to the local time on the boundary. We divide the manifold M into three regions:

inner tubular neighbourhood, the middle region and the outer region. The inner region, a

subset of E0 with the product metric is quasi isometric to its image, i.e. there is a constant

C > 0 such that for all x, y ∈ ∂M , for all s, t ∈ [0, δ0], denoting ρ̄ the distance in ∂M ,

1

C
(ρ̄(x, y) + |s− r|) ≤ ρ (Φ(x, s)Φ(y, r)) ≤ C (ρ̄(x, y) + |s− r|) .

Outside of the tubular neighbourhood the drifts will be chosen to be uniformly bounded and

to converge to zero uniformly. If xn is a sequence of points in the outer region with limit

x0, we need to assume that the solution with initial value xn converges in some sense. In

the first region we have convergence in probability and in the second we will need a control

on the rate of convergence that induces the property of a flow.

By the convergence of the manifold valued stochastic process (Y a
t ) to (Yt) we mean

that H(Y a
t ) converges to H(Yt) where H : M → R

k is an embedding, with the same

notion of convergence. We recall that (Y a
t ) converges to Yt in UCP implies that for any

ǫ > 0, the explosion times ξa of Y a
t and its exit times from relatively compact sets, for

sufficiently small a, are bounded below by the corresponding ones for Yt = Y 0
t minus ǫ

(in other words lim infa→0 ξ
a ≥ ξ0). Also, if we assume sufficient growth control on the
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curvatures and the shape of the tubular neighbourhood, the convergence will be in Sp. We

only discuss this aspect for a compact manifold.

Let R : M → R be a smooth function such that R|F is the distance to the boundary,

and R|F c ≥ δ̃ for some number δ̃, and R(x) is a constant on the complement of F c.

Theorem 3.4. Let a be a positive number. For σk, A satisfying properties stated in Propo-

sition 3.3, let F a
t (x) and Ft(x) denote respectively the maximal solution to the equations,

with initial value x,

dY a
t =

m
∑

k=1

σk(Y
a
t ) ◦ dBk

t + σ0(Y
a
t )dt+∇ ln

(

tanh

(

R(Y a
t )

a

))

dt, (3.4)

dYt =

m
∑

k=1

σk(Yt) ◦ dBk
t + σ0(Yt)dt+A(Yt)dLt. (3.5)

Let Y a
t = Ft(Y

a
0 ) and Yt = F a

t (Y0). Suppose that ρ(Y a
0 , Y0) converges to 0 in probability.

(1) Then lima→0 Y
a = Y , in the topology of uniform convergence in probability.

(2) If M is compact, then the SDEs do not explode and for all p ∈ [1,∞) and for all

T > 0, Y a converges to Y in Sp([0, T ]), i.e.

lim
a→0

E sup
0≤s≤T

ρ(Y a
s , Y )p → 0.

Proof. Since UCP convergence is local and is implied by local convergence in Sp, (1) is

a consequence of (2). See Corollary B.4. So we assume that M is compact and choose a

constant δ0 > 0 such that the function δ is bounded below by 3δ0.

We define ha(x) = ln
(

tanh
(

R(x)
a

))

and

Aa(x) = ∇ha(x) =
2∇R(x)

a sinh
(

2R(x)
a

) .

This is an approximation for a vector field that vanishes on M0 and exerts an ‘infinity’

force in the direction of ∇R = A on the boundary.

Let Ra
t = R(Y a

t ). Then

Ra
t = Ra

0 +
∑

k

∫ t

0

〈dR, σk(Y
a
s )〉dBk

s +
1

2

∫ t

0

∆R(Y a
s )ds+

∫ t

0

2

a sinh(
2Ra

s

a )
ds.

Let us denote by βa
t the stochastic term:

Ra
t = Ra

0 + βa
t +

1

2

∫ t

0

∆R(Y a
s )ds+

∫ t

0

2

a sinh(
2Ra

s

a )
ds.

For Y a
t ∈ F1/3 the tubular neighbourhood of ∂M , we have by Proposition 3.3 (2) that

dβa
t = dB1

t is independent of a and of Y a
t , which will be crucial for the sequel:

dRa
t = dB1

t +
1

2
∆R(Y a

t )dt+
2

a sinh(
2Ra

t

a )
dt. (3.6)

Note that on the boundary∇·(∇R) is the shape operator,HessR(v1, v2) = 〈S(v1), v2〉.
Since we assumed that M is compact, |∆R| is bounded, so the drift is essentially

2

a sinh(
2Ra

s

a )
and Ra

t never touches the boundary and the equation is well defined.

Recall that π is the map that sends a point x ∈ M to the nearest point on ∂M , it is

defined on F0. The tubular neighbourhood map Ψ : F0 → E0 splits into two parts, Ψ(x) =
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(π(x), R(x)). Since Ψ is a diffeomorphism onto its image, on {Yt ∈ F0}, the processes

Y a
t converges to Yt in the Riemannian metric on M if and only if Ψ(Y a

t ) converges to

Ψ(Yt) in the product metric of ∂M × [0, δ].
On any subset of M not intersecting the tubular neighbourhood that is distance cδ from

∂M for some c < 1, the functions |∇Aa| is uniformly bounded in a and converge to zero

as a → 0. The local time does not charge any real time if Yt is not on the boundary. For a

C3 embedding Φ : M → R,

Φ(Y a
t )− Φ(Yt) =Φ(Y a

0 )− Φ(Y0) +

∫ t

0

〈(σ∗∇Φ)(Y a
s )− (σ∗∇Φ)(Ys), dBs〉

+
1

2

∫ t

0

(∆Φ(Y a
s )−∆Φ(Ys)) ds.

By standard estimates, if Y a
0 → Y0 in probability, the processes Φ(Y a

t ) started outside the

closed tubular set F 1
3

and stopped at the first entrance time of F 2
3

converge to Φ(Yt) in

UCP. In particular this holds for isometric embeddings and since the intrinsic Riemannian

distance is controlled by the extrinsic distance function, we see that the stochastic process

ρ(Y a
t , Yt) converges in UCP.

Splitting in a proper way the times, for the UCP topology it is enough to prove that the

processes (Y a
t ) started inside the open set F 2

3
and stopped at exiting F 1

3
converge to (Yt)

whenever Y a
0 → Y0.

So we assume that Y a
0 and Y0 belong to F2/3 and ρ(Y a

0 , Y0) converges to 0 in probabil-

ity. We let

τ = inf{t ≥ 0, R(Yt) = 2δ0}, τa = inf{t ≥ 0, R(Y a
t ) = 2δ0}.

We first prove that for all T > 0,

∀T > 0, lim
a→0

E

[

sup
t≤τa∧τ∧T

ρ2(Y a
t , Yt)

]

= 0. (3.7)

Notice if (3.7) holds, sups≤t R(Ys) < 2δ0 implies that sups≤t R(Y a
s ) < 2δ0 for suffi-

ciently small a, consequently,

lim
a→0

E

[

sup
t≤τ∧T

ρ2(Y a
t , Yt)

]

= 0. (3.8)

This in turn shows that

lim inf
a→∞

τa ∧ T ≥ τ ∧ T (3.9)

and the convergence of Y a
t to Yt in the UCP topology follows.

Let Ra
t = R(Y a

t ) and Rt = R(Yt). Denote ρ̄ the Riemannian distance on ∂M . Using

the tubular neighbourhood map, proving (3.7) will be equivalent to prove the following

two limits:

lim
a→0

E

[

sup
t≤τa∧τ∧T

(Ra
t −Rt)

2

]

= 0, lim
a→0

E

[

sup
t≤τa∧τ∧T

(ρ̄)2(π(Y a
t ), π(Yt))

]

= 0.

(3.10)

For t ≤ τa ∧ τ we have by (3.6) and (3.2),

Ra
t −Rt = Ra

0−R0+

∫ t

0

ds

a sinh
(

2Ra
s

a

) −Lt+
1

2

∫ t

0

(∆R(Y a
s )−∆R(Ys)) ds. (3.11)
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We remark that in the above equation there is no martingale part. Let ε > 0, and

L̃a
t =

∫ t

0

ds

a sinh
(

2Ra
s

a

) − Lt.

We apply Itô-Tanaka formula to the convex function max(y, ε) to obtain:

ε ∨ |Ra
t −Rt| =|Ra

0 −R0| ∨ ε+

∫ t

0

χ{Ra
s−Rs>ε} dL̃a

s −
∫ t

0

χ{Ra
s−Rs<−ε} dL̃a

s

+
1

2

∫ t

0

χ{|Ra
s−Rs|>ε} (∆R(Y a

s )−∆R(Ys)) ds.

It is vital to remark that Ls > 0 if and only if Ra
s −Rs = Ra

s . Also Ra
s −Rs < −ε, if only

if Rs 6= 0, and so −dL̃a
s is a negative measure. We may ignore the third term on the right

hand side of the identity. For each α > 0 and ε > 0, there exists a number a(ε, α) > 0
such that for all a ≤ a(ε, α) and r ≥ ε, 1

a sinh( 2r
a )

< α. Hence,

∫ t

0

χ{Ra
s−Rs>ε,Rs=0}dL̃

a
s

≤
∫ t

0

1

a sinh
(

2(Ra
s−Rs)
a

)χ{Ra
s−Rs>ε,Rs=0}ds− Lt ≤ αt,

∫ t

0

χ{Ra
s−Rs>ε,Rs 6=0}dL̃

a
s =

∫ t

0

1

a sinh
(

2Ra
s

a

)χ{Ra
s−Rs>ε,Rs 6=0}ds

≤
∫ t

0

1

a sinh
(

2ε
a

)ds ≤ αt,

It follows that

ε ∨ |Ra
t −Rt| ≤ |Ra

0 −R0|+ ε+ 2αt+
1

2
‖∇∆R‖L∞(F0)

∫ t

0

sup
r≤s

ρ(Y a
r , Yr) ds. (3.12)

So

E

[

sup
t≤τ∧τa∧T

(Ra
t −Rt)

2

]

≤4E
[

(Ra
0 −R0)

2
]

+ 4ε2 + 8α2t2+

2‖∇∆R‖L∞(F0)

∫ T

0

E

[

sup
s≤τ∧τa∧t

ρ2(Y a
s , Ys)

]

dt.

(3.13)

Before continuing with the estimate above, we estimate ρ̄(π(Y a
t , π(Yt)). The distance

function ρ̄ is not smooth on ∂M × ∂M . So we will consider an isometric embedding

ı : ∂M → R
m′

(in fact since ∂M is compact any embedding would do) and instead of

proving the second limit in (3.10) we will prove that

lim
a→0

E

[

sup
t≤τa∧τ∧T

(ı(π(Y a
t ))− ı(π(Yt)))

2

]

= 0 (3.14)
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We extend ı to F0 to obtain ı̃(y) = (ı ◦ π)(y), then

ı̃(Y a
t )− ı̃(Yt) = ı̃(Y a

0 )− ı̃(Y0) +

∫ t

0

〈σ∗∇ı̃(Y a
s )− σ∗∇ı̃(Ys), dBs〉

+
1

2

∫ t

0

(∆ı̃(Y a
s )−∆ı̃(Ys)) ds+

∫ t

0

dı̃(Aa(yas ))ds −
∫ t

0

dı̃(A(ys))dLs.

(3.15)

Since dπ(A) = 0 and dπ(Aa) = 0, the last two terms vanish. By standard calculation,

E

[

sup
t≤T∧τ∧τa

‖ı̃(Y a
t )− ı̃(Yt)‖2

]

≤ 4E
[

‖ı̃(Y a
0 )− ı̃(Y0)‖2

]

+ 16 ‖∇σ∗∇ı̃‖2L∞(F0)

∫ T

0

E

[

sup
s≤t∧τ∧τa

ρ2(Y a
s , Ys)

]

dt

+ 2‖∇∆ı̃‖L∞(F0)

∫ T

0

E

[

sup
s≤τ∧τa∧t

ρ2(Y a
s , Ys)

]

dt.

(3.16)

Since ∂M is compact, F0 is compact. The quantities ∇σ∗ and ∇ĩ = ∇π(∇i) are bounded.

Similarly ‖∇∆ı̃‖L∞(F0) is finite. For x ∈ F0, set

H(x) = (̃ı(x), R(x)) ∈ R
m′+1. (3.17)

Let CH > 0 be a constant such that for all x, x′ ∈ F0,

1

CH
‖H(x)−H(x′)‖ ≤ ρ(x, x′) ≤ CH‖H(x)−H(x′)‖. (3.18)

Define

C =
(

16 ‖∇σ∗∇ı̃‖2L∞(F0)
+ 2‖∇∆H‖L∞(F0)

)

(CH)2. (3.19)

From (3.16), using Gronwall lemma that if a < a(ε),

E

[

sup
s≤T∧τ∧τa

‖H(Y a
s )−H(Ys)‖2

]

≤ 4
(

‖H(Y a
0 )−H(Y0)‖2 + ε2 + α2T 2

)

eCT .

(3.20)

Since ε and α can be chosen as small as we like and C is independent of ε, α, a, Y a
0 → Y0

and H is bounded, we obtain that

lim
a→0

E

[

sup
s≤T∧τ∧τa

‖H(Y a
s )−H(Ys)‖2

]

= 0. (3.21)

Together with (3.13), we see that

lim
a→0

E

[

sup
s≤T∧τ∧τa

ρ2(Y a
s , Ys)

]

= 0. (3.22)

This implies that τa ∧ τ → τ almost surely, and since the distance is bounded,

lim
a→0

E

[

sup
s≤T∧τ

ρ2(Y a
s , Ys)

]

= 0. (3.23)

This completes the proof for the convergence of Y a to Y in UCP, and also in Sp for

compact manifold M . �
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We emphasise that for any open relatively compact set U with τU (Y ) (resp. τU (Y a)),
the exit time of Y· (resp. Y a

· ) from U ,

lim inf
a→0

τU (Y a) ≥ τU (Y ).

Corollary 3.5. Let S1, S2 be stopping times such that S1 < S2 and a0 a positive constant.

Suppose that Y a
t ∈ F0 for a ∈ (0, a0] and t ∈ [S1, S2]. Then on the interval [S1, S2],

lima→0 π(Y
a
· ) = π(Y·). The convergence is in the semi-martingale topology. If moreover

M is compact and S2 is bounded, then the convergence hold in Hp for all p ∈ [1,∞).

Proof. Since the drifts A and Aa belong to the kernel of the differential Tπ, we obtain

with Itô formula the following equations:

d(π(Y a
t )) =

m
∑

k=1

Tπσk(Y
a
t ) ◦ dBk

t + Tπ ◦ σ0(Y
a
t ) dt

d(π(Yt)) =

m
∑

k=1

Tπ ◦ σk(Yt) ◦ dBk
t + Tπ ◦ σ0(Y

a
t ) dt.

Since 1
2

∑m
k=1 ∇σk

σk + σ0 = 0, we only need to be concerned with the following term

from the Itô correction: 1
2

∑m
k=1 ∇Tπ(·)(σk, σk). By Theorem 3.4, both Tπ◦σk(Y

a
t ) and

∇Tπ(Y a
t )(σk, σk) converge in the UCP topology, and they are locally uniformly bounded.

The limits are respectively Tπσk(Yt) and ∇Tπ(Yt)(σk, σk). By Theorem 2 in [17], see

[7] for the manifold case, π(Y a
· ) converges to π(Y·) in the semimartingale topology. �

Define La
t =

∫ t

0
ds

a sinh
(

2Ra
s

a

) . Then in the tubular neighbourhood,

Aa(Y a
t ) = ∇R(Y a

t )
d

dt
La
t .

Corollary 3.6. Suppose that M is compact. Then for all p ≥ 1 and T > 0,

lim
a→0

sup
s≤T

|La
s − Ls|p = 0.

Moreover, letting L0 = L, for all λ > 0, there exists C(T, λ) such that for all a ∈ [0, 1],

E

[

eλL
a
T

]

≤ C(T, λ). (3.24)

Proof. Firstly we take Y a
0 , Y0 in F2/3, the 2

3 tubular neighbourhood of the boundary. Let

τ = inf{R(Yt) = 2δ0} and τa = inf{R(Y a
t ) = 2δ0} be respectively the first exit times of

Y and Y a from {x : R(x) < 2δ0} ⊂ F 2
3

. On {t < τa ∧ τ} we have (3.11):

La
t − Lt = −Ra

0 +R0 +Ra
t −Rt −

1

2

∫ t

0

(∆R(Y a
s )−∆R(Ys)) ds. (3.25)

By the convergence of Y a to Y in Sp([0, T ]),

E sup
t<τa∧τ

|La
t − Lt|p < ∞.

Outside of the 2/3 tubular neighbourhood F 2
3

, 1

a sinh( 2R(x)
a )

converges to 0 uniformly in x

and Lt vanishes. Note that lima→0 A
a(r) → 0 for any r > 0. The required convergence

result follows.

To prove (3.24) we write for a ∈ [0, 1]

La
t = Ra

t −Ra
0 +

∫ t

0

αa
s dZ

a
s +

∫ t

0

βa
s ds
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where for all a, Za
t is a real valued Brownian motion, and |Ra

t − Ra
0 |, αa

t and βa
t are

uniformly bounded independently of a. The result immediately follows. �

4. CONVERGENCE OF THE PARALLEL TRANSPORTS

Let (Yt) and (Y a
t ) are respectively the solutions of (3.5) and (3.4). The parallel transport

along (Yt) and (Y a
t ) are respectively the solution to the canonical horizontal stochastic

differential equations on the orthonormal frame bundle with drift the horizontal lift of the

drift vector fields A and Aa respectively.

Denote by //at the parallel transport along Y a
t , //s the parallel transport along Yt. Recall

that σ∗
y : TyM → R

m is the right inverse to σy . Take va ∈ TY a
0
M and v ∈ TY0M with

the property that lima→0 σ
∗(Y a

t )(v
a) = σ∗(Y a

t )(v). Let U be a continuous vector field.

Then

〈//at va, U(Y a
t )〉 = 〈σ∗(Y a

t )(//
a
t v

a), σ∗(Y a
t )(U(Yt))〉

Since Y a
t → Yt as a → 0, so does σ∗(Y a

t )U(Y a
t ) to σ∗(Yt)U(Yt). We prove below that

σ∗(Y a
t )(//

a
t v

a) → σ∗(Yt)(//tv).

Proposition 4.1. Let va ∈ TY a
0
M and v ∈ TY0M . Suppose that σ∗

Y a
0
va converges to σ∗

Y0
v

in probability as a → 0. Then lima→0 σ
∗(Y a

t )(//
a
t v

a) = σ∗(Yt)(//tv), with convergence

in the semi-martingale topology. Also lima→0 //
a
t v

a UCP→ //tv.

If M is compact, the convergences hold respectively in Hp([0, T ]) and Sp([0, T ]) for

all T > 0 and p ≥ 1.

Proof. Since ∇◦dY a
t
(//at v

a) = 0 by the definition, the stochastic differential of //at v
a sat-

isfies the following equation:

d(σ∗(Y a
t )//

a
t v

a) = ∇◦dY a
t
σ∗(Y a

t )//
a
t v

a =

m
∑

j=2

(∇σj(Y a
t )σ

∗)//at v
a ◦ dBj

t

where we used the fact that ∇νσ
∗ = 0. Upon converting the Stratonovich integral on the

right hand side we see that

d(σ∗(Y a
t )//

a
t v

a) =

m
∑

j=2

(∇σj(Y a
t )σ

∗)//at v
adBj

t +
1

2

m
∑

j=2

d(∇σj(Y a
t )σ

∗)//at v
adBj

t

=

m
∑

j=2

(∇σj(Y a
t )σ

∗)//at v
adBj

t +
1

2

m
∑

j=2

(∇σj(Y a
t )∇σj(Y a

t )σ
∗)//at v

adt.

This can be rewritten as

d(σ∗(Y a
t )//

a
t v

a) =

m
∑

j=2

(

∇σj(Y a
t )σ

∗)σ(Y a
t ) (σ∗(Y a

t )//
a
t v

a) dBj
t

+
1

2

m
∑

j=2

(

∇σj(Y a
t )∇σj(Y a

t )σ
∗)σ(Y a

t ) (σ∗(Y a
t )//

a
t v

a) dt.

Since the coefficients of the SDE converges as a → 0 uniformly in probability, we get that

σ∗(Y a
t )//

a
t v

a converges to σ∗(Yt)//tv in semi-martingale topology, see Theorem 2 in [17].

Finally, since the linear maps σ(Y a
t ) : Rm → TY a

t
M converge to σ(Yt) : R

m →
TYtM in UCP topology and //at = σ(Y a

t )σ
∗(Y a

t )//
a
t , we see that //at converges to //t in the

same topology.

�
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5. CONVERGENCE OF THE DAMPED PARALLEL TRANSLATIONS

Let (Yt) be the reflected Brownian motion and (Y a
t ) the approximate reflected Brownian

motions, constructed by (3.5) and (3.4) respectively. Let Aa = ∇ ln tanh(Ra ). Denote

(W a
t ) the damped parallel translations (Y a

t ), solving the equation

DW a
t

dt
= −1

2
Ric#(W a

t )dt+∇Wa
t
Aa, W a

0 = Id. (5.1)

Let (Wt) the the damped parallel translation along (Yt). We take the version constructed by

Theorem C.3 so (Wt) is an adapted right continuous stochastic process such that lim
ε→0

W ε
t =

Wt in UCP where (W ε
t ) are solutions to the equations (2.2).

Our aim is to prove that W a
t converges to Wt. It is fairly easy to see the convergence

when Y a
t and Yt are in M0. When they are in a a neighbourhood of ∂M , we use the

pathwise construction for W . Let (εn)n≥0 be a sequence of positive numbers converging

to 0. As soon as a continuous version of (Yt) and parallel translations along (Yt) are

chosen, each W εn is constructed pathwise. Moreover W εn converges to W locally in S2

and there exists a subsequence of εnk
such that W εnk (ω) converges locally uniformly for

almost surely all ω.

Denote L(ω) the set of times Yt spend on the boundary. Let F0 be a tubular neighbour-

hood of ∂M . On {Yt ∈ F0}, we write

Wt = WT
t + f(t) νYt , (5.2)

where νYt is its component along νYt and WT
t its orthogonal complement.

The proposition below is a local result. We prove the following two ways of removing

the normal part from the damped parallel translation are equivalent. (1) During an excur-

sion (lα, rα), evolve (Wt) with the continuous damped parallel translation equation, then

remove the normal part at the touching down time rα; (2) at the beginning of every ex-

cursion remove the normal part of Wt and then evolve (Wt) with the continuous damped

parallel translation equation during an excursion. This equivalence is due to the fact that

every beginning of excursion is the right limit of ends of excursions and every end of ex-

cursion is the left limit of beginning of excursions. Notice the integral with respect to the

local time is well explained by the approximation by W ε
t and later by the approximation

by W a
t , but is absent of the description here.

Proposition 5.1. Let S1, S2 be stopping times and t ∈ [S1(ω), S2(ω)]. Let ζ = inf{t >
0 : Yt ∈ ∂M}. We assume the following conditions.

(1) The Ricci curvature and the shape operator are bounded on Eδ .

(2) Yt(ω) ∈ F0 whenever t ∈ [S1(ω), S2(ω)].

Then for almost surely all ω, Wt = WT
t + f(t) νYt where f(t, ω) is a right continuous

real-valued process vanishing on [S1(ω), S2(ω)] ∩ L(ω). Furthermore,

f(t) =

{

rt if t < ζ
rt − rαt if t ≥ ζ,

(5.3)

where αt(ω) = sup{s ≤ t, Ys(ω) ∈ ∂M} = sup ([S1(ω), t ∧ S2(ω)) ∩ L(ω)), and

rt = 〈WS1 , ν(YS1)〉 −
1

2

∫ t

S1

Ric(Ws, νYs) ds+

∫ t

S1

〈Ws, DνYs〉, (5.4)
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on [S1(ω), S2(ω)]. Furthermore,

DWT
t =− 1

2
Ric♯(Wt)

T dt− S(WT
t ) dLt − 〈Wt, DνYt〉νYt

− 〈Wt, νYt〉DνYt −
1

2

m
∑

k=2

〈Wt,∇σk(Yt)ν(Yt)〉∇σk(Yt)νdt.
(5.5)

Conversely, if a right-continuous L(TY0M,TYtM)-valued process W ′
t satisfies (5.2-5.5),

then it satisfies (C.7).

This is a local result, hence can be reduced to the half plane model, which was dealt with

in [21]. The proof we give below will be used for our approximation result (Theorem 5.6

and Corollary 5.7).

Proof. Denote ft = f(t) = 〈Wt, νYt〉. The formulas below in the proof are interpreted

and obtained as following: we first prove the corresponding identity for W ε
t and then take

ε → 0. Firstly we compute the stochastic differential of ft:

dft = −1

2
〈Ric♯(Wt), νYt〉dt+ 〈Wt, DνYt〉 − χ{t∈R(ω)}〈Wt−, νYt〉,

for which we used the fact that S(WT
t ) = S(Wt) is orthogonal to νYt . Then from WT

t =
Wt − ftνYt ,

DWT
t = DWt − dftνYt − ftDνYt −

1

2
D[f·, νY·

]t

where the covariant square bracket D[f·, νY·
]t is the martingale bracket including the jump

part. The jump part of the bracket disappears since νYt is a sample continuous process.

Thus

DWT
t = −1

2
(Ric♯(Wt))

T dt− S(WT
t ) dLt − 〈Wt, DνYt〉νYt − ftDνYt −

1

2
D〈f·, νY·

〉t,

where D〈f·, νY·
〉t is the continuous part of the martingale bracket. The martingale part of

ν(yt) is
∑m

k=2 ∇σk(Yt)ν dB
k
t ; while the martingale part of 〈Wt, DνYt〉 is

m
∑

k=2

〈Wt,∇σk(Yt)ν(Yt)〉dBk
t .

This means that

D〈f·, νY·
〉t =

m
∑

k=2

〈Wt,∇σk(Yt)ν(Yt)〉∇σk(Yt)νdt,

concluding (5.5).

For t < ζ, (5.3) clearly holds. We proves it holds also for t > ζ. If t ∈ R(ω) ≡
{rα(ω)}, ft = 0 by the definition. This agrees with (5.3): αt = t and rt − rαt = 0.

On [S1, S2] the process Rt is equivalent in law to a reflected Brownian motion. So for

every t ∈ L(ω)\R(ω), there exists an increasing sequence (tn)n∈N of elements of R(ω)
converging to t. For all n ∈ N we have f(tn) = 0 and

f(t) = f(tn) +

∫ t

tn

df(s) = 0 +

∫ t

tn

〈DWs, νYs〉+
∫ t

tn

〈Ws, DνYs〉.

Notice that this formula makes sense by choosing a continuous version of the integral
∫ ·
S1
〈Ws, DνYs〉 and by remarking that (Wt) is the pathwise solution to equation (C.7).
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So we have

f(t)2 =

∫ t

tn

2f(s) df(s) +

∫ t

tn

df(s) df(s)

=

∫ t

tn

2f(s) (〈DWs, νYs〉+ 〈Ws, DνYs〉) +
∫ t

tn

trace〈Ws,∇·ν〉〈Ws,∇·ν〉

+
∑

s∈]tn,t]∩R(ω)

〈Ws, νYs〉2

=

∫ t

tn

2f(s)

(〈

−1

2
Ric♯(Ws)ds− S(Ws)dLs, νYs

〉

+ 〈Ws, DνYs〉
)

+

∫ t

tn

trace〈Ws,∇·ν〉〈Ws,∇·ν〉 −
∑

s∈]tn,t]∩R(ω)

f(s)2.

Notice that the last term combines the jump term from 〈DWs.νYs〉 and from 〈Ws, νYs〉2.

It is the sum:

−2
∑

s∈]tn,t]∩R(ω)

f(s)〈Ws, νYs〉+
∑

s∈]tn,t]∩R(ω)

〈Ws, νYs〉2.

Since the jumps are all non-positive and 〈S(Ws), νYs〉 = 0, we get

f(t)2 ≤
∫ t

tn

2f(s)

(

−1

2
Ric♯(WsνYs)ds+ 〈Ws, DνYs〉

)

+

∫ t

tn

trace〈Ws,∇·ν〉〈Ws,∇·ν〉.

But Ws is pathwise bounded in compact intervals, and

∫ t

u

f(s)〈Ws, DνYs〉,
∫ t

u

trace〈Ws,∇·ν〉〈Ws,∇·ν〉

are continuous in u. So the right hand side converges to 0 as n → ∞.

This implies that f(t) = 0 for all t ∈ L(ω). In particular for all t > ξ, f(αt) = 0 and

the second equality of (5.3) is valid.

Conversely let W ′
t be a right-continuous process satisfying the conditions of Proposi-

tion 5.1. Clearly W ′
t satisfies (C.7) when Yt ∈ M0. On the other hand f(t) vanishes on

left hand sides of excursion, it is right continuous, and all right hand times of excursions

are limits of decreasing sequences of left hand times of excursions, again by Lemma C.1.

So it also vanishes on R, and consequently W ′
t = Wt.

�

We can now state the representation theorem for the heat equation on differential 1-

forms, c.f.to (1.2), with the absolute boundary conditions φ(ν) = 0 and dφ(ν) = 0.

Theorem 5.2. Suppose that the tubular neighbourhood of ∂M has positive radius, the

curvature − 1
2Ric

# −S is bounded from below on M0. Then if φt is a solution to the heat

equation on 1-forms with the absolute boundary conditions, then φt = Eφ(Wt).
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Proof. It is clear that the reflected Brownian motion (Yt) is globally defined. Since φx(v)
is linear in v, 1

2

∑m
k=1 ∇σk

σk + σ0 = 0. Let φ be a C2 differentiate 1-form. We see that

φ(Wt) =φ(W0) +

m
∑

k=1

∫ t

0

(∇σk(Ys)φ)(Ws−)dB
k
s +

1

2

∫ t

0

∆1φ(Ws−)ds

+

∫ t

0

∇ν(Ys−)φ(Ws−)dLs −
∫ t

0

φ (S(Ws−)) dLs

−
∑

s∈R(ω)∩[0,t]

(

φ (νYs) 〈Ws, νYs〉 − φ
(

νYs−

)

〈Ws−, νYs〉
)

.

This equation should be interpreted by first applying W ε
t . For each ε fixed, νYs− = νYs ,

hence the jump terms vanish. Then taking ε → 0.

We have again used Weitzenböck formula ∆1φ = trace∇2φ − φ(Ric#). By Palais’s

formula for two vector fields ν and V :

dφ(ν, V ) = Lv(φ(ν)) − Lν(φ(V ))− φ([ν, V ]) = (∇νφ)(V )− φ(∇V ν). (5.6)

Since φ(ν) = 0 and dφ(ν, ·) = 0 on the boundary, (∇ν)φ(·) − φ(S(·)) = 0. Since Ls

increases only on the boundary the terms in the second line vanishes. Since φ(ν) = 0 and

Ys is continuous, φ(νYs−) = 0 at the ends of an excursion, the last line vanishes. If Qtφ is

the solution to the heat equation on 1-forms with absolute boundary conditions and initial

value φ, on a neighbourhood of the boundary,

φ(Wt) =Qtφ(W0) +

m
∑

k=1

∫ t

0

(∇σk(Ys)Qt−sφ)(Ws−)dB
k
s . (5.7)

Note that φ is bounded and E sup
s≤t

|Ws|2 is finite, c.f. Proposition 5.1, we take expectations

of both sides of (5.7) to obtain Qtφ(W0) = φ(Wt). �

Let T > 0. If F (t, x) is a real valued function on [0, T ]×M , we denote by dF (t, x) its

differential in the second variable and ∇F (t, x) the corresponding gradient.

Theorem 5.3. Let (Wt) be the solution of (C.7). If F : [0, T ]×M → R is a C1,2 function

such that F (t, Yt) is a continuous local martingale, then so is dF (t, Yt)(Wt).

Remark 5.4. The statements in Theorem 5.3, also in Corollary 5.5 and Theorem 5.2, are

valid with Wt replaced by W ε
t . But they are more powerful (and more intrinsic) with Wt,

for the reason that |Wt| is expected to be smaller than |W ε
t |.

Proof. It is clear that, on {Yt ∈ M0}, d(〈∇F (t, Yt),Wt〉) is the differential of a local

martingale, hence we only need to prove the result on {Yt ∈ F0}. We write the Itô formula

for F (t, Yt), the Itô differential d(F (t, Yt)) satisfies the following identity:

d(F (t, Yt)) =〈∇F (t, Yt), σ(Yt) dBt〉

+

(

∂t +
1

2
∆

)

F (t, Yt) dt+ 〈dF (t, Yt), νYt〉 dLt.
(5.8)

By the local martingale property of F (t, Yt) the last two terms vanishes and
(

∂t +
1

2
∆

)

F (t, y) = 0, (t, y) ∈ [0, T ]×M0,

νy ∈ kerdF (t, y), (t, y) ∈ [0, T ]× ∂M.

(5.9)
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Since Wt has finite variation on the set {Yt 6∈ ∂M} there is no covariation term between

dF (t, Yt) and Wt. Writing an Itô formula for 〈dF (t, Yt),Wt〉 yields

d 〈∇F (t, Yt),Wt〉 = ∇dF (t, Yt)(σ(Yt)dBt,Wt) +∇dF (t, Yt)(νYt ,Wt) dLt

+

(

∂t +
1

2
trace∇2

)

dF (t, Yt)(Wt) dt

− 1

2

〈

∇F (t, Yt),Ric
♯(Wt)

〉

dt− 〈∇F (t, Yt)S(Wt)〉 dLt.

where in the last term we used (5.9). We note that ∆1 = trace∇2− 1
2Ric

♯ and ∆1d = d∆.

This together with (5.9),
(

∂t +
1
2∆

1
)

dF (t, y) = 0, yields

d〈∇F (t, Yt),Wt〉 =∇dF (t, Yt)(σ(Yt)dBt,Wt)

+∇dF (t, Yt)(νYt ,Wt−) dLt − 〈∇F (t, Yt),S(Wt)〉 dLt.

Now for y ∈ ∂M and w ∈ TyM , since ν(y) ∈ ker dF (t, y) ∈ Ty∂M we have

−〈∇F (t, y),S(w)〉 = 〈∇F (t, y),∇wν〉
= −〈∇wdF (t, y), νy〉 = −∇dF (t, y)(νy, w).

For the second equality we used the fact that ν(y) ∈ ker dF (t, y). Putting all the calcula-

tions together we finally get

d〈dF (t, Yt),Wt〉 = ∇dF (t, Yt)(σ(Yt)dBt,Wt),

which proves that 〈∇F (t, Yt),Wt〉 is a continuous local martingale.

�

Applying this theorem to F (t, y) = E[f(YT−t(y))] where (Y (y)) is reflected Brownian

motion started at y ∈ M , f is a smooth function on M with df(ν) = 0 on the boundary,

(under this condition F is C1,2, see e.g. [29]), we immediately get the following Bismut

type formula:

Corollary 5.5. Assume that M is compact. Let f : M → R a smooth bounded function

with 〈df, ν〉 = 0 on the boundary and T > 0. Let Qt be the semi-group associated to the

reflected Brownian motion on M . Let y ∈ M , v ∈ TyM and (Yt) a reflected Brownian

motion started at y ∈ M , constructed as in Theorem 3.4. Then

d(QT f)(v) =
1

T
E

[

f(YT )

∫ T

0

〈Ws(v), σ(Ys)dBs〉
]

.

Let T and a be positive numbers. Recall that the damped parallel translation along

a sample continuous stochastic process (Y a
t ) is the solution to the stochastic covariant

differential equation with initial value W a
0 = IdTY a

0
M ,

DW a
t =

(

∇Wa
t
Aa − 1

2
Ric♯(W a

t )

)

dt. (5.10)

Theorem 5.6. Let M be a compact Riemannian manifold. Let

Aa(x) = ∇ ln tanh

(

R(x)

a

)

.



22 MARC ARNAUDON AND XUE-MEI LI

Let (Y a
t , t ∈ [0, T ]) and (Yt, t ∈ [0, T ]) be the stochastic processes defined in Theorem 3.4.

Let W a
t denote the damped parallel translation along Y a

t . Then for all p ∈ [1,∞) and for

any C2 differential 1-form φ vanishing on the normal bundle ν(∂M),

lim
a→0

sup
s≤t

E [|φ(W a
s )− φ(Ws)|p] = 0.

For a non-compact manifold, we have the following result, see Section B.

Corollary 5.7. Let M be a Riemannian manifold, not necessarily compact. Then for any

C2 differential 1-form φ such that φ(ν) = 0 in ∂M , φ(W a) converges to φ(W ) in UCP

topology.

6. DAMPED PARALLEL TRANSLATION AS A DERIVATIVE FLOW

In this section we M is a smooth compact manifold with boundary and prove that the

damped parallel translationWt along reflected Brownian motion has the property of a weak

derivative flow.

Let ϕ : [0, 1] → Mo be a C1 map. Here again for a > 0, Aa(x) = ∇ ln tanh

(

R(x)

a

)

.

We will built a family of Brownian flows with drift Aa starting at ϕ(u) whose derivative

with respect to u is locally uniformly bounded for a.s. ω. Let us return to (3.4).

dY a
t =

m
∑

k=1

σk(Y
a
t ) ◦ dBk

t + σ0(Y
a
t )dt+Aa(Y a

t ) dt.

Let us consider its solution flow Ψa. Let Y a
t (u) = Ψa(ϕ(u)). Let us use a short hand for

the above equation :
{

dY a
t (0) = σ(Y a

t (0)) dBt +Aa(Yt(0)) dt
Y a
0 (0) = ϕ(0).

(6.1)

For u ∈ (0, 1], let Y a
t (u) solve

{

dY a
t (u) = //0,u(Y

a
t (·)) (σ(Y a

t (0)) dBt) +Aa(Yt(u)) dt
Y a
0 (u) = ϕ(u)

(6.2)

where //0,u(Y
a
t (·)) denotes parallel translation along the C1 path u 7→ Y a

t (u). The ex-

istence of a solution should follow from an iteration method. A proof is given in M.

Arnaudon, K. A. Coulibaly and A. Thalmaier [4], where an approximation procedure with

iterated parallel couplings is used to obtain a Cauchy sequence in H2. The advantage is

that at each step and each value of u we have a diffusion with the same generator 1
2∆+Aa,

and as the mesh goes to 0 that all problems with cut locus disappear. The solution curves

u 7→ Y a
t (u) are almost surely differentiable and that their derivatives ∂uY

a
t (u) is locally

uniformly bounded for almost surely all ω and

∂uY
a
t (u) = W a,u

t (ϕ̇(u)). (6.3)

where W a,u
t (ϕ̇(u)) = Wt(Y

a(u)) is the damped parallel translation along Y a(u). This

is, to our knowledge, the only known construction for ∂uY
a
t (u) a.s. locally uniformly

bounded. Our aim is to obtain a similar property for reflected Brownian motion. For this

we will let a → 0 in (6.3) and obtain a limiting identity in a weak sense. However we

believe that our construction indeed yields (6.3) for a = 0 in a strong sense.

Proposition 6.1. The two parameter family of stochastic processes {Y a
t (u), 0 ≤ u ≤

1, a ∈ (0, 1]} on [0, T ] is tight.



23

Proof. We will use the Kolmogorov criterion. For t1, t2, u1, u2 satisfying 0 ≤ t1 < t2 ≤ T
and 0 ≤ u1 < u2 ≤ 1 and p ≥ 1,

E
[

ρp
(

Y a
t1(u1), Y

a
t2(u2)

)]

≤ 2p−1
(

E
[

ρp
(

Y a
t1(u1), Y

a
t2(u1)

)]

+E
[

ρp
(

Y a
t2(u1), Y

a
t2(u2)

)])

≤ 2p−1

(

E
[

ρp
(

Y a
t1(u1), Y

a
t2(u1)

)]

+E

[(∫ u2

u1

|W a
t2(u)| · |ϕ̇(u)| du

)p])

≤ 2p−1

(

E
[

ρp
(

Y a
t1(u1), Y

a
t2(u1)

)]

+ (u2 − u1)
p−1‖ϕ̇‖∞

∫ u2

u1

E
[

|W a
t2(u)|

p
]

du

)

≤ 2p−1

(

E
[

ρp
(

Y a
t1(u1), Y

a
t2(u1)

)]

+ (u2 − u1)
p‖ϕ̇‖∞ sup

u∈[0,1], t∈[0,T ]

E [|W a
t (u)|p]

)

≤ 2p−1
(

E
[

ρp
(

Y a
t1(u1), Y

a
t2(u1)

)]

+ C′(p, T )(u2 − u1)
p‖ϕ̇‖∞

)

,

where C′(p, T ) is a constant. We used an estimate on |wa,u
t given in (7.13) below. Here

and several time in the sequel, we use the equality in law of the processes (Y a(u),W a(u)),
for each fixed u, and (Y a,W a). The latter process was constructed in Sections 3 and 5.

For the first term on the right hand side we again use the fact that u1 is fixed and use es-

timates for Y a, from Theorem 3.4. Since M is compact we can replace the distance ρ(x, y)
on M by the equivalent distance ‖H(x) −H(y)‖ where H : M → R

d is an embedding.

We can also assume that H = (ı, R) is an extension of the construction in (3.17) around the

boundary. In particular we can assume that the image of ∂M by H is included in {R = 0},

the drift of ı̃(Y a
t (u1)) is bounded, the drift of

(

R(Y a
t (u1))−R(Y a

t1(u1))
)4

is bounded in

{R ≥ δ0} and that it is positive and bounded above by 4
(

R(Y a
t (u1))−R(Y a

t1(u1))
)2

+ b
in {0 < R < δ0} where b > 0 is independent of a (this is a consequence of (3.6)). This

implies,by a standard calculation, that for some constant C′ > 0,

E

[

∥

∥H(Y a
t2(u1))−H(Y a

t1(u1))
∥

∥

4
]

≤ C′|t2 − t1|2. (6.4)

Finally, for some positive constant C,

E
[

ρ4
(

Y a
t1(u1), Y

a
t2(u2)

)]

≤ 8C|t2 − t1|2 + 8C′(4, T )(u2 − u1)
4‖ϕ̇‖∞. (6.5)

This concludes the required tightness. �

With this result at hand we construct our limiting process.

Theorem 6.2. There is a family of continuous stochastic process Yt(u) indexed by 0 ≤
u ≤ 1 with the following properties:

(1) for every u ∈ [0, 1], Yt(u) is a reflected Brownian motion on M started at ϕ(u);
(2) for every p ∈ [1,∞) there exists a number C′(p, T ) s.t. for all 0 ≤ u1, u2 ≤ 1,

sup
0≤t≤T

E [ρp(Yt(u1), Yt(u2))] ≤ C′(p, T )‖ϕ̇‖∞(u2 − u1)
p. (6.6)

Proof. By Proposition 6.1, there exists a sequence ak → 0 such that the two parameter

family of stochastic processes Y ak· (u) converges in law whose limit we denote by Y·(u).
Since u is fixed and the convergence considered in weak convergence, we are allowed to

use another construction of Y a
t (u) and part (2) in Theorem 3.4, in which the convergenceis

stronger. In the computation for tightness we take t1 = t2 = t, Proposition 6.1, then take

k → ∞ to obtain (2). �



24 MARC ARNAUDON AND XUE-MEI LI

For each u ∈ [0, 1] fixed, the stochastic processes Y ak
t (u) converges in law to Yt(u). So

the damped parallel translations W ak
t (u), as stochastic processes on [0, T ], converge in law

to Wt(u) in the following sense: if φ is a C2 differential 1-form such that φ|∂M(ν) = 0,

thenφ(W ak,u
t ) converges in law to φ(Wt(u)). This is due to the fact thatW a is a functional

of Y a, W is a functional of Y , so we can apply Corollary 5.7.

Unfortunately this argument does not allow us to prove the convergence of W ak,u
t con-

verges to Wt(u), which would yield ∂uYt(u) = Wt(u)ϕ̇(u). However the following theo-

rem asserts this equality in a weak sense.

Theorem 6.3. Let M be compact. For all f ∈ C2(M) satisfying 〈df, ν〉 = 0 on the

bundary,

E

[

f(Yt(u2))− f(Yt(u1))−
∫ u2

u1

〈df(Yt(u)),Wt(u)ϕ̇(u)〉 du
]

= 0. (6.7)

Proof. By (6.3),

f(Y ak
t (u2))− f(Y ak

t (u1))−
∫ u2

u1

〈df(Y ak
t (u)),W ak

t (u)ϕ̇(u)〉 du = 0.

Since all the terms are integrable we can take the expectation, So

E [f(Y ak
t (u2))]−E [f(Y ak

t (u1))]−
∫ u2

u1

E [〈df(Y ak
t (u)),W ak

t (u)ϕ̇(u)〉] du = 0.

Now by Theorem 3.4 and Corollary 5.7 and dominated convergence theorem:

E [f(Yt(u2))]−E [f(Yt(u1))]−
∫ u2

u1

E [〈df(Y ak
t (u)),Wt(u)ϕ̇(u)〉] du = 0.

Finally we use Fubini-Tonelli Theorem to obtain (6.7). �

7. PROOF OF THEOREM 5.6

We first reduce the proof of Theorem 5.6 to the class of C2 differential 1-forms φ
vanishing in a neighbourhood of the boundary, this is the content of Section 7.1. We then

prove the convergence of the tangential part of the parallel transport in the topology of

UCP, followed by the convergence of its normal part fa
t . By the latter we mean that for all

smooth φ : M → R+ vanishing in a neighbourhood of ∂M , φ(Y a
t )fa(t) → φ(Yt)f(t) in

the UCP topology. See Sections 7.4 and 7.5.

We describe briefly the strategy and the main difficulties. Thanks to the convergence

of parallel transports established in Proposition 4.1 we only need to prove that wa
t → wt,

more precisely that, writing

wa
t = wa,T

t + fa(t)n
a
t (7.1)

with na
t = (//at )

−1ν(Y a
t ) and wa,T

t orthogonal to na
t , wa,T

t → wT
t and for any C2 map

φ : M → Rvanishing in a neighbourhood of ∂M , φ(Y a
t )fa(t)n

a
t → φ(Yt)f(t)nt.

Firstly, the integral equation for (fa, w
a,T ) has the following form

(

fa(t)

wa,T
t

)

=

(

fa(0)

wa,T
0

)

+

∫ t

0

dMa
s

(

fa(s)
wa,T

s

)

+

(

fa(0)e
−C̃a(t)

0

)

, (7.2)

where (Ma
t ) is a matrix valued process for the following form

Ma
t =

(

0 ũa
t

va,Nt va,Tt

)

(7.3)
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whose components are to be specified later. Also,
(

f(t)
wT

t

)

=

(

f(0)
wT

0

)

+

∫ t

0

dMs

(

f(s)
wT

s

)

+

(

f(0)e−C̃(t)

0

)

(7.4)

where Mt is of the following form:

Mt =

(

0 ũt

vNt vTt

)

. (7.5)

If (Vt) is a vector valued stochastic process, denote

‖V ‖Sp([0,T ]) = E

(

sup
0≤s≤T

E|Vs|p
)

.

We will see that the components of Ma converge to the corresponding components of

M in Hp([0, T ]) for all p ≥ 1, T > 0, with the exception ũa which contains e−C̃a(t)

and vTt which contains local time of the distance to boundary. The main difficulty is the

convergence of fa(0)e
−C̃a(t) to f(0)e−C̃(t). The convergence is only in Lp(dt × P), see

Corollary 7.10. Also the convergence of La
t to Lt: it is in Sp([0, T ]) but not in Hp([0, T ])

and will require several integrations by parts. We note in the last term in equation (7.2),

the tangential and the normal part decouples. The matrix (7.3) is in the lower triangular

form. It is therefore possible to split the proof into the convergence of wa,T to wT and the

convergence of fa(t) to f(t). This procedure is essential for our proof to work.

7.1. Localisation.

Lemma 7.1. Let S1 and S2 be stopping times such that for a sufficiently small, Yt ∈ E0

and Y a
t ∈ E0 on {ω : S1(ω) ≤ t ≤ S2(ω)].

(1) If Theorem 5.6 holds for the class of C2 differential 1-forms φ with φ(ν) vanishing

in a neighbourhood of the boundary, then it holds for all C2 1-form φ such that

φ(ν) = 0 on ∂M .

(2) It is sufficient to prove that for t ∈ [S1, S2], φ(W
a) converges to φ(W ) in UCP.

(3) If φ(W a) converges to φ(W ) in the UCP topology and M is compact, then

lim
a→0

E sup
s≤t

|φ(W a)− φ(W )|p → 0.

Without loss of generality we will assume that S1 = 0 and let S2 = S.

Proof. Let φ be a C2 differential 1-form such that φ(ν) = 0 on ∂M . Then there exists a

family of C2 differential 1-forms φε such that 〈φε, ν〉 = 0 in a neighbourhood of ∂M and

supx∈M ‖φε(x) − φ(x)‖ < ε: choose for instance φε(u) = φ(u) − 〈u, ν〉f ε(π(u))φ(ν)
where f ε is a smooth function on M satisfying

• f ε = 0 on {R ≥ α},

• f ε = 1 on {R ≤ α/2},

• 0 ≤ f ≤ 1 on M ,

and α ∈ (0, δ0) is chosen in such a way that |φ(ν)| < ε on {R < α}.

By the assumption, φε(W a) → φε(W ) in Sp([0, T ]). On the other hand

|φ(W a
t )− φ(Wt)| ≤ |φ(W a

t )− φε(W a
t )|+ |φε(W a

t )− φε(Wt)|+ |φε(Wt)− φ(Wt)|
≤ ε|W a

t |+ |φε(W a
t )− φε(Wt)|+ ε|Wt|.

If a is sufficiently small then ‖φε(W a) − φε(W )‖Sp([0,T ]) < ε by Theorem 5.6. Using

lemma 7.5 we get

‖φ(W a)− φ(W )‖Sp([0,T ]) < ε(1 + 2C)
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for a sufficiently small. Taking ε → 0 we obtain ‖φ(W a)− φ(W )‖Sp([0,T ]) → 0.

(2) We note that Y a
t converges to Yt in UCP topology and inside M0 the coefficients for

W a
t converge smoothly and uniformly to the coefficients of the equation for Wt. If for any

t ∈ [S1, S2] where S1, S2 are stopping times such that for all t ∈ [S1, S2] and a sufficiently

small, Yt ∈ E0 and Y a
t ∈ E0, then φ(W a) converges to φ(W ) in UCP.

(3) By Lemma 7.8 below,
∫ t

0
2

a sinh
(

2R(Y a
s )

a

) ds converges to Lt in Sp for all p ∈ [1,∞).

Let t > 0. Since M is compact, by corollary B.5 and lemma 7.5, if φ(W a) converges to

φ(W ) in UCP topology,

lim
a→0

E

(

sup
s≤t

|φ(W a
s )− φ(Ws)|p

)

= 0.

�

7.2. Preliminary Computations. Let a > 0. The damped parallel translation along Y a
t

satisfies the following equations:

DW a
t =∇Wa

t
Aa dt− 1

2
Ric♯Y a

t
(W a

t ) dt.

In the tubular neighbourhoodF0 on which the approximating SDEs were constructed, take

y ∈ M0 and w ∈ TyM . Then

∇wA
a =∇w∇ ln tanh

(

R

a

)

= ∇w

(

2∇R

a sinh
(

2R
a

)

)

=− 4

a2
cosh

sinh2

(

2R

a

)

〈w, νy〉νy −
2

a sinh
(

2R
a

)S(w),

Let us define Ra
t = R(Y a

t ), Rt = R(Yt),

ca(t) =
4

a2
cosh

sinh2

(

2Ra
t

a

)

, (7.6)

and

fa(t) = 〈wa
t , n

a
t 〉 = 〈W a

t , ν(Y
a
t )〉. (7.7)

We also denote W a,T
t the tangential part of W a

t :

W a,T
t = W a

t − fa(t)ν(Y
a
t ). (7.8)

Definition 7.2. Let

La
t =

∫ t

0

2

a sinh
(

2R(Y a
s )

a

) ds. (7.9)

Below //−1
t is shorthand for //−1

t (Y a
· ). For x ∈ M , denote ‖∇ν(x)‖2 =

∑

k ‖∇σk
ν‖2x.

The latter is the Hilbert-Schmidt norm of the linear operator ∇ν : TxM → TxM . In the

following formulas we should consider the integrals are in Itô form. Hence the equation

for W a,T
t should be interpreted as for //−1

t W a,T
t .

Lemma 7.3. In the tubular neighbourhood the following formulae hold.

DW a
t = −1

2
Ric♯(W a

t ) dt− ca(t)fa(t)ν(Y
a
t ) dt− S(W a

t ) dL
a
t ,

d//−1
t ν(Y a

t )dt = //−1
t

∑

k

∇σk
ν(Y a

t )dB
k
t +

1

2
//−1
t trace∇2ν(Y a

t )dt,
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Finally the stochastic differential of the tangential part of W a
t has the following tangential

and normal decomposition

DW a,T
t =− 1

2

(

Ric♯(W a,T
t )

)T

dt− 1

2
fa(t)

(

Ric♯(ν(Y a
t ))
)T

dt− S(W a
t ) dL

a
t

− fa(t)∇σk
ν(Y a

t )dB
k
t − 1

2
fa(t) trace∇2ν(Y a

t )dt

− 1

2
〈W a,T

t ,∇σk
ν(Y a

t )〉∇σk
ν(Y a

t ) dt

−
∑

k

〈W a,T
t ,∇σk

ν(Y a
t )〉ν(Y a

t )dBk
t − 〈W a,T

t , trace∇2ν(Y a
t )〉ν(Y a

t )dt

+ fa(t)‖∇ν(Y a
t )‖2ν(Y a

t )dt,

dfa(t) = −ca(t)fa(t)dt−
1

2
Ric(W a

t , ν(Y
a
t ))dt+

∑

k

〈W a,T
t ,∇σk

ν(Y a
t )〉 dBk

t

+
1

2
〈W a,T

t , trace∇2ν(Y a
t )〉dt−

1

2
fa(t)‖∇ν(Y a

t )‖2.

Proof. The first formula is clear, the second is straight forward after applying Itô’s formula

to the equation for (Y a
t ):

(//at )
−1Dν(Y a

t ) = (//at )
−1

(

〈∇ν, ◦dY a
t 〉+

1

2
trace∇2ν(Y a

t ) dt

)

.

Since 〈∇ν,Aa〉 = 0, this yields

(//at )
−1Dν(Y a

t ) =(//at )
−1

(

∑

k

〈∇ν, σk(Y
a
t )〉 dBk

t +
1

2
trace∇2ν(Y a

t ) dt

)

+ (//at )
−1∇Aa(Y a

t )νdt.

Note that ν = ∇R. If γt is the geodesic from x to π(x) then γ̇(t) = ∇R(γ(t)) and hence

∇νν = 0 and the second formula follows. We note also that

〈W a
t , ◦D(ν(Y a

t ))〉 =
∑

k

〈W a
t ,∇σk

ν(Y a
t )〉dBk

t + 〈W a
t ,

1

2
trace∇2ν(Y a

t )〉dt

=
∑

k

〈W a
t ,∇σk

ν(Y a
t )〉dBk

t − 1

2
ft‖∇ν(Y a

t )‖2

+
1

2
〈W a,T

t , trace∇2ν(Y a
t )〉dt.

Note that the left hand side is in Stratonovich form and the right hand side in Itô form. We

work on the third equation:

dft =〈DW a
t , ν(Y

a
t )〉+ 〈W a

t , D(ν(Y a
t ))〉

=− ca(t)fa(t)dt −
1

2
Ric(W a

t , ν(Y
a
t ))dt+

∑

k

〈W a
t ,∇σk

ν(Y a
t )〉 dBk

t

+
1

2
〈W a

t , trace∇2ν(Y a
t )〉dt.
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All stochastic integrals in the above formula are in Itô form. The required identity follows

from the observation below:

〈
∑

k

∇2ν(σk, σk), ν〉 = −
∑

k

〈∇σk
ν,∇σk

ν〉 = −‖∇ν‖2.

Next we compute the tangential part of the damped parallel translation.

DW a,T
t = DW a

t −D(ftν(Y
a
t ))

=− 1

2
Ric♯(W a

t ) dt− ca(t)fa(t)ν(Y
a
t ) dt− S(W a

t ) dL
a
t −D(ftν(Y

a
t )).

For the normal part of the damped parallel transport, we use product rule

D(ftν(Y
a
t )) =ν(Y a

t )dft + ftD(ν(Y a
t )) + dftD(ν(Y a

t ))

=ν(Y a
t )

(

−ca(t)fa(t)dt−
1

2
Ric(W a

t , ν(Y
a
t ))dt

)

+ ν(Y a
t )

(

∑

k

〈W a
t ,∇σk

ν(Y a
t )〉 dBk

t +
1

2
〈W a

t , trace∇2ν(Y a
t )〉dt.

)

+ ft

(

∑

k

∇σk
ν(Y a

t )dB
k
t +

1

2
//−1
t trace∇2ν(Y a

t )dt

)

+
∑

k

〈W a
t ,∇σk(Y a

t )ν〉∇σk(Y a
t )ν dt

Since 〈∇·ν, ν〉 vanishes, 〈∇Wa
t
Aa, ν(Y a

t )〉dt = S(W a
t )dL

a
t . Finally, we bring the above

formula back to the equation for W a,T
t and observe that the cancellation of the term in-

volving fa(t).

DW a,T
t =− 1

2
Ric♯(W a

t ) dt− S(W a
t ) dL

a
t +

1

2
Ric(W a

t , ν(Y
a
t ))ν(Y

a
t )dt

−
∑

k

〈W a
t ,∇σk

ν(Y a
t )〉ν(Y a

t )dBk
t +

1

2
ft‖∇ν‖2ν(Y a

t )

− 1

2
〈W a,T

t , trace∇2ν(Y a
t )〉ν(Y a

t )dt− ft
∑

k

∇σk
ν(Y a

t )dBk
t

− 1

2
ft trace∇2ν(Y a

t )dt−
∑

k

〈W a
t ,∇σk(Y a

t )ν〉∇σk(Y a
t )ν dt.

Following this up and observing that

−1

2
Ric♯(W a

t ) +
1

2
Ric(W a

t , ν(Y
a
t ))ν(Y

a
t ) = −1

2
(Ric♯(W a

t ))
T ,

we see

DW a,T
t =− 1

2
(Ric♯(W a

t ))
T dt− S(W a

t ) dL
a
t −

∑

k

〈W a,T
t ,∇σk

ν(Y a
t )〉dBk

t

+
1

2
ft‖∇ν‖2 − 1

2
〈W a,T

t , trace∇2ν(Y a
t )〉dt− ft

∑

k

∇σk
ν(Y a

t )dBk
t

− ft trace∇2ν(Y a
t )dt−

∑

k

〈W a
t ,∇σk(Y a

t )ν〉∇σk(Y a
t )ν dt.
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This completes the proof.

�

Lemma 7.4. Let na
t = (//at )

−1ν(Y a
t ). Then lima→0 n

a = n, in the topology of semi-

martingales.

Proof. By the definition, (7.15), the stochastic differential Dν(Y a
t ) is essentially na

t :

dna
t = (//at )

−1

(

〈∇ν, σk(Y
a
t )〉 dBk

t +
1

2
trace∇2ν(Y a

t ) dt

)

. (7.10)

By the same computation,

dnt = (//t)
−1

(

〈∇ν, σk(Yt)〉 dBk
t +

1

2
trace∇2ν(Yt) dt

)

. (7.11)

We recall that Y a → Y and //a(Y a) → //(Y ). Let

∆∂Mν := trace∇2ν,

where the trace is taken in the vector space orthogonal to ν. It follows that

∇ν(Y a) → ∇ν(Y ), σ(Y a) → σ(Y ), ∆∂Mν(Y a) → ∆∂Mν(Y ),

all in the topology of UCP. This implies that na converges to n in the topology of semi-

martingales.

�

Let us define

Ric(x) = inf
v∈TxM,|v|=1

{Ric(v, v)} , x ∈ M and Ric = inf
x∈M

Ric(x).

We also define

S(x) = inf
v∈TxM,|v|=1,〈v,∇R〉=0

{S(v, v)} , x ∈ M and S = inf
x∈M

S(x).

Lemma 7.5. For any t > 0 and a,

|W a
t |2 ≤ |W a

0 |2 e−
∫ t
0
Ric(Y a

s ) ds−2
∫ t
0
S(Y a

s )dLa
s . (7.12)

Suppose that Ric and S are bounded. Then supa ‖W a‖Sp([0,T ]) is finite. Furthermore

E sup
t≤T

|W a
t |p ≤ |W a

0 |pe−pRicTC(T,−pS) (7.13)

where C(T, λ) is defined in (3.24)

Proof. We begin with W a. Firstly,

|W a
t |2 =|W a

0 |2 −
∫ t

0

〈Ric♯(W a
s ),W

a
s 〉 ds− 2

∫ t

0

〈S(W a
s ),W

a
s 〉 dLa

s

−
∫ t

0

cas〈W a
s , νY a

s
〉2 ds

where cas is the scalar normal part of W a
t , see (7.6). It is easy to see that cas > 0. So

|W a
t |2 ≤|W a

0 |2 −
∫ t

0

Ric(W a
s ,W

a
s ) ds− 2

∫ t

0

〈S(W a
s ),W

a
s 〉 dLa

s

≤|W a
0 |2 −

∫ t

0

|W a
s |2Ric(Y a

s ) ds− 2

∫ t

0

|W a
s |2S(Y a

s )dL
a
s .

This implies (7.12) and (7.13) immediately follows.
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�

Lemma 7.6. We also have

‖W‖p
Sp([0,T ]) ≤ |W0|pe−pTRicC(T,−pS) (7.14)

Proof. Since W ε converges to W , a similar computation holds for W ε, the conclusion for

(Wt) follows. �

7.3. The Local Time. Let us recall the notation

na
t = (//at )

−1ν(Y a
t ), ric

a
t = (//at )

−1Ric♯(//at (·)), sat = (//at )
−1S(//at (·)). (7.15)

Denote wa
t = //−1

t (Y a)W a
t . Then

dwa
t = −ca(t)fa(t)n

a
t dt− sat (w

a
t )dL

a
t −

1

2
ricat (w

a
t ) dt.

Recall ca is a real valued stochastic process defined in (7.6). Let us define a new sto-

chastic process

c̃a(t) = ca(t) +
1

2
‖∇ν(Y a

t )‖2H.S. +
1

2
〈ricat (na

t ), n
a
t 〉, (7.16)

and also

Ca(t) =

∫ t

0

ca(s) ds, C̃a(s, t) =

∫ t

s

c̃a(s) ds. (7.17)

In the tubular neighbourhood, the following holds.

Lemma 7.7. For 0 ≤ s < t ≤ S, define

r̃at =

∫ t

0

〈wa,T
s ,∇σk(Y a

s )ν〉dBk
s − 1

2

∫ t

0

〈ricas(wa,T
s ), na

s〉 ds

+
1

2

∫ t

0

〈wa,T
s , (//as )

−1 trace∇2ν(Y a
s )〉 ds

(7.18)

Then

fa(t) = fa(0)e
−

∫

t
0
c̃a(r)dr +

∫ t

0

e−
∫

t
s
c̃a(r)dr dr̃as . (7.19)

Proof. By Lemma 7.3, the function fa(t) is a solution to the following equation,

dft = −ca(t)fa(t)dt −
1

2
Ric(W a

t , ν(Y
a
t ))dt+

∑

k

〈W a,T
t ,∇σk

ν(Y a
t )〉 dBk

t

+
1

2
〈W a,T

t , trace∇2ν(Y a
t )〉dt−

1

2
fa(t)‖∇ν(Y a

t )‖2.

Split the W a
t terms into its tangential and normal parts:

dft =− ca(t)fa(t)dt−
1

2
fa(t)Ric(ν(Y

a
t ), ν(Y a

t ))dt−
1

2
fa(t)‖∇ν‖2dt

− 1

2
Ric(W a,T

t , ν(Y a
t ))dt +

∑

k

〈W a,T
t ,∇σk(Y a

t )ν〉dBk
t

+
1

2
〈W a,T

t , trace∇2ν(Y a
t )〉dt.

The required identity follows from the variation of constant method .

�
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Lemma 7.8. Define for t ∈ [0, S],

La
t =

∫ t

0

2 ds

a sinh
(

2Ra
s

a

) . (7.20)

Let p, q ∈ [1,∞] and r defined by
1

r
=

1

p
+

1

q
. Let Za

t and Zt be continuous real

semimartingales defined on [0, S]. Then
∥

∥

∥

∥

∫ ·

0

Za
s · La

s −
∫ ·

0

ZsdLs

∥

∥

∥

∥

Sr

≤ ‖Za − Z‖
Sp

‖La
S‖q + ‖La − L‖

Sp

(

‖Z‖Sq + ‖Z‖Hq

)

.

(7.21)

Proof. We have for t ∈ [0, S]

∫ t

0

Za
s dLa

s −
∫ t

0

Zs dLs

=

∫ t

0

(Za
s − Zs) dL

a
s +

∫ t

0

Zs d(L
a
s − Ls)

=

∫ t

0

(Za
s − Zs) dL

a
s +

∫ t

0

(La
s − Ls) dZs + Zt(L

a
t − Lt).

Since La is nondecreasing we have

‖La
· ‖qHq([0,t])

= E

(

sup
s≤t

|La
s |q
)

= ‖La
· ‖qSq([0,t])

,

so we get by (B.2),
∥

∥

∥

∥

∫ ·

0

(Za
s − Zs) dL

a
s

∥

∥

∥

∥

Hr([0,t])

≤ ‖Za
· − Z·‖Sp([0,t])‖La

· ‖qSq([0,t])
.

Similar estimates holds for the last two terms on the right hand side of the identity. This

concludes the proof. �

Let S be a stopping time such that Yt ∈ F0 on {t < S}.

Lemma 7.9. Let αt = sups≤t{s ≤ t : Ys ∈ ∂M}. Suppose that t 6∈ R(ω). For all

s, t ∈ [0, S] satisfying s < t,

lim
a→0

e−
∫ t
s
ca(u) du = 1 if s > αt

lim
a→0

e−
∫

t
s
ca(u) du = 0 if s < αt.

(7.22)

The convergence is in probability. As a consequence, for all p ≥ 1,

lim
a→0

E

[

∫ S

0

∣

∣

∣e−Ca(t) − χ{s>αt}

∣

∣

∣

p

dt

]

= 0; (7.23)

lim
a→0

E

[

∫ S

0

(∫ t

0

∣

∣

∣e−
∫ t
s
ca(u) du − χ{s>αt}

∣

∣

∣

p

ds

)

dt

]

= 0. (7.24)
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Proof. From (7.22) it is easy to get (7.23) and (7.24) using the fact that e−
∫

t
s
ca(u) du and

χ{s>αt} are uniformly bounded and Fubini-Tonelli theorem.

So let us prove (7.22). Write

∫ t

s

ca(u) du =

∫ t

s

2 cosh
(

2Ra
u

a

)

a sinh
(

2Ra
u

a

) × 2

a sinh
(

2Ra
u

a

) du.

If s > αt then there exists ε(ω) > 0 such that for u ∈ [s, t], Ru > ε(ω). Since Ra →
R in UCP topology, supu∈[s,t] ca(u) converges to 0 in probability, and this implies that

e−
∫ t
s
ca(u) du → 1.

If s < αt then Lt − Ls > 0. Indeed, this would be true if Rt was a reflected Brownian

motion. But by Girsanov transform we obtain that the law of Rt is equivalent to the one of

a reflected Brownian motion (Lemma C.1). So this is true.

Now we have

∫ t

s

2 cosh
(

2Ra
u

a

)

a sinh
(

2Ra
u

a

) × 2

a sinh
(

2Ra
u

a

) du >

∫ t

s

2

a
× 2

a sinh
(

2Ra
u

a

) du

=
2

a
(La

t − La
s).

Since Ra → R in UCP topology we have that La → L in UCP topology. So for all a0 > 0

the lim inf of the right hand side is larger than
2

a0
(Lt − Ls). This yields

lim sup
a→0

e−
∫

t
s
ca(u) du < e

− 2
a0

(Lt−Ls)

in probability. Letting a0 → 0 we get

lim
a→0

e−
∫

t
s
ca(u) du = 0 in probability.

�

From this result we get the following

Corollary 7.10. Define

c̃(t) = −1

2
‖∇ν(Yt)‖2H.S. −

1

2
〈rict(nt), nt〉 (7.25)

where rict is defined in (C.9). For s, t ∈ [0, S] satisfying s < t we define

C̃(s, t) =

{
∫ t

s
c̃(s) ds, if s > αt

+∞, if s ≤ αt
(7.26)

Then the following convergence holds in probability for C̃a(s, t) defined in (7.17):

lim
a→0

e−C̃a(s,t) = e−C̃(s,t). (7.27)

Consequently, for all p ≥ 1,

lim
a→0

E

[

∫ S

0

∣

∣

∣e−C̃a(t) − e−C̃(t)
∣

∣

∣

p

dt

]

= 0, (7.28)

lim
a→0

E

[

∫ S

0

(∫ t

0

∣

∣

∣e−C̃a(s,t) − e−C̃(s,t)
∣

∣

∣

p

ds

)

dt

]

= 0. (7.29)
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With these notations Equation (5.3) rewrites as

f(t) = f(0)e−C̃(t) +

∫ t

0

e−C̃(s,t) dr̃s (7.30)

where

r̃t =

∫ t

0

〈wT
s ,∇σk(Ys)ν〉dBk

s − 1

2

∫ t

0

〈rics(wT
s ), ns〉 ds

+
1

2

∫ t

0

〈wT
s , //

−1
s trace∇2ν(Ys)〉 ds.

(7.31)

Proof. The convergences are obvious. For equation (7.31), we see if t < ζ, e−C̃(s,t) → 0
for any s ≥ 0. Hence

f(t) = f(0) +

∫ t

0

dr̃s = f(0) + r̃t.

If t ≥ ζ,

∫ t

0

e−C̃(s,t) dr̃s =

∫ t

α(t)

e−C̃(s,t) dr̃s

and so

f(t) =

∫ t

α(t)

dr̃s = r̃(t)− r̃(α(t)).

�

The new expression (7.30) for ft is the same form as the equation for fa(t):

fa(t) =fa(0)e
−

∫ t
0
c̃a(r)dr +

∫ t

0

e−
∫ t
s
c̃a(r)dr dr̃as

=fa(0)e
−C̃a(t) +

∫ t

0

e−C̃a(s,t) dr̃as .

We observe also that ca(t) does not converge to a finite stochastic process, hence we only

expect that fa(t) converges to f(t) in a weak sense. Especially it is only for a set of t of

full measure that fa(t) → f(t). This will be made precise in part 7.5

7.4. Convergence of the tangential parts. We will see that tangential parts of W a
t con-

verges in UCP topology, as for normal parts we have to exclude the boundary times. But

both of them converge in Lp([0, T ]× Ω), this will be proved at the very end of the proof.

Let us begin with the first convergence.

Lemma 7.11. As a → 0, W a,T
· → WT

· in UCP topology.

Proof. Since //at → //t in the UCP topology it is sufficient to prove that wa,T
· → wT

· in the

UCP topology. We recall from Lemma 7.3, the term involving ca(t) cancels and we have
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DW a,T
t =− 1

2

(

Ric♯(W a,T
t )

)T

dt− 1

2
fa(t)

(

Ric♯(ν(Y a
t ))
)T

dt− S(W a
t ) dL

a
t

− fa(t)∇σk
ν(Y a

t )dB
k
t − 1

2
ft trace∇2ν(Y a

t )dt

− 1

2
〈W a,T

t ,∇σk
ν(Y a

t )〉∇σk
ν(Y a

t ) dt

−
∑

k

〈W a,T
t ,∇σk

ν(Y a
t )〉ν(Y a

t )dBk
t − 〈W a,T

t , trace∇2ν(Y a
t )〉ν(Y a

t )dt

+ ft‖∇ν(Y a
t )‖2ν(Y a

t )dt.

Hence

dwa,T
t =− 1

2
ricat (w

a,T
t ) dt− 1

2
fa(t)

(

Ric♯(ν(Y a
t ))
)T

dt− sat (w
a,T
t ) dLa

t

− fa(t)(//
a
t )

−1∇σk
ν(Y a

t )dBk
t − 1

2
fa(t)(//

a
t )

−1 trace∇2ν(Y a
t )dt

− 1

2
〈wa,T

t , (//at )
−1∇σk

ν(Y a
t )〉(//at )−1∇σk

ν(Y a
t ) dt

−
∑

k

〈wa,T
t , (//at )

−1∇σk
ν(Y a

t )〉na
t dB

k
t

− 〈wa,T
t , trace(//at )

−1∇2ν(Y a
t )〉na

t dt

+ fa(t)‖∇ν(Y a
t )‖2na

t dt.

(7.32)

We define the processes va,Tt , va,~nt :

va,Tu (·) =− 1

2

∫ u

0

ricat (·) dt−
∫ u

0

sat (·) dLa
t

− 1

2

∫ u

0

〈·, (//at )−1∇σk
ν(Y a

t )〉(//at )−1∇σk
ν(Y a

t ) dt

−
∑

k

∫ u

0

〈·, (//at )−1∇σk
ν(Y a

t )〉na
t dB

k
t

−
∫ u

0

〈·, trace(//at )−1∇2ν(Y a
t )〉na

t dt.

(7.33)

Also,

va,νu =−
∫ u

0

1

2

(

Ric♯(ν(Y a
t ))
)T

dt−
∫ u

0

(//at )
−1∇σk

ν(Y a
t )dB

k
t

− 1

2

∫ u

0

(//at )
−1 trace∇2ν(Y a

t )dt+

∫ u

0

‖∇ν(Y a
t )‖2na

t dt.

(7.34)

With these notations and the expression for fa(t) in formula (7.19) we have

dwa,T
t = dva,Tt (wa,T

t ) + fa(t)dv
a,ν
t

and so

dwa,T
t = dva,Tt (wa,T

t ) +

(

fa(0)e
−C̃a(t) +

∫ t

0

e−
∫ t
s
c̃a(u) du dr̃as

)

dva,νt . (7.35)
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We also have

dwT
t = dvTt (w

T
t ) +

(

f(0)e−C̃(t) +

∫ t

0

e−C̃(s,t) dr̃s

)

dvνt , (7.36)

(recall that e−C̃(s,t) = 0 if s < αt), where

vνu =− 1

2

∫ u

0

rict(nt)
T dt+

∫ u

0

‖∇ν(Yt)‖2nt dt−
∫ u

0

(//t)
−1∇σ(Yt) dBt

ν

− 1

2

∫ u

0

(//t)
−1∆h,T ν(Yt) dt,

(7.37)

vTu (·) =− 1

2

∫ u

0

rict(·) dt−
∫ u

0

st(·) dLt −
∫ u

0

〈·, (//t)−1∇σT (Yt) dBt
ν〉nt

− 1

2

∫ u

0

〈·, (//t)−1∆hν(Yt)〉nt dt

−
∑

j≥2

∫ u

0

〈·,∇σj(Yt)ν〉(//t)−1∇σj(Yt)ν dt.

(7.38)

We investigate further (7.35)

dwa,T
t =dva,Tt (wa,T

t ) + fa(0)e
−C̃a(t)dva,νt

+

(∫ t

0

e−
∫ t
s
c̃a(u) du〈wa,T

s ,∇σk(Y a
s )ν〉dBk

s

)

dva,νt

− 1

2

(∫ t

0

e−
∫

t
s
c̃a(u) du〈ricas(wa,T

s ), na
s〉 ds

)

dva,νt

+
1

2

(
∫ t

0

e−
∫

t
s
c̃a(u) du〈wa,T

s , (//as )
−1 trace∇2ν(Y a

s )〉 ds
)

dva,νt .

From this the required convergence should follow: when a approaches zero, va,νt ap-

proaches vat and va,Tt approaches vTt . If furthermore if fa(0) → f(0), then

lim
a→0

fa(0)e
−C̃a(t) = f(0)e−C̃(t).

Hence the components of wa,T
t is the solution to a system of non-Markovian stochastic

differential equations whose coefficients converge, and furthermore va,Tt (wa,T
t ) converges

only in UCP, not in Hp([0, T ]). These factors explain why the proof below is length

given this simple explanation. To prove that va,Tt → vTt in UCP topology, c.f. (7.33) and

(7.38), we only need to prove that

∫ ·

0

sat (·) dLa
t →

∫ ·

0

st(·) dLt in UCP topology. This is

a consequence of Lemma 7.8, together with the facts that UCP topology is equivalent to

local convergence in Sp and that the random variables La
S are uniformly bounded in L2.

To make the rest of the proof more transparent let us define

ũt =

∫ t

0

e−C̃(s,t)〈·,∇σT (Ys) dBs
ν〉

− 1

2

∫ t

0

e−C̃(s,t)〈rics(·), ns〉 ds+
1

2

∫ t

0

e−C̃(s,t)〈·, //−1
s ∆h,T ν(Ys)〉 ds;

(7.39)
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ũa
t =

∫ t

0

e−C̃a(s,t)〈·,∇σT (Y a
s ) dBs

ν〉

− 1

2

∫ t

0

e−C̃a(s,t)〈ricas(·), na
s〉 ds+

1

2

∫ t

0

e−C̃a(s,t)〈·, //−1
s ∆h,T ν(Y a

s )〉 ds
(7.40)

Then, by Lemma 7.3, we may write

fa(t) = fa(0)e
−C̃a(t) +

∫ t

0

dũa
s(w

a,T
s ), (7.41)

f(t) = f(0)e−C̃(t) +

∫ t

0

dũs(w
T
s ). (7.42)

Take theses back to equations (7.35) and (7.36), we see

dwa,T
t = dva,Tt (wa,T

t ) +

(

fa(0)e
−C̃a(t) +

∫ t

0

dũa
s(w

a,T
s )

)

dva,νt .

We also have

dwT
t = dvTt (w

T
t ) +

(

f(0)e−C̃(t) +

∫ t

0

dũs(w
T
s )

)

dvνt .

Let us simply compute the difference of the two matrices:

d(wa,T
t − wT

t )

=d(va,Tt − vTt )(w
a,T
t ) + dvTt (w

a,T
t − wT

t ) + fa(t) d(v
a,ν
t − vνt )

+ dvνt

(

fa(0)e
−C̃a(t) − f(0)e−C̃(t)

)

+ dvνt

∫ t

0

d(ũa
s − ũs)(w

a,T
s ) + dvνt

∫ t

0

dũs(w
a,T
s − wT

s ).

(7.43)

Now we recall that convergence in UCP topology is implied by local convergence in

S1. For a stopping time S′ smaller than S we have
∥

∥

∥

∥

∥

(∫ ·

0

dvTt (w
a,T
t − wT

t

)S′
∥

∥

∥

∥

∥

S1

≤ ‖(vT )S′‖H∞
· ‖(wa,T

· − wT
· )

S′‖S1 (7.44)

Since vT0 = 0 and vT has locally bounded H∞ norm we can split the time interval and we

only have to make the proof on [0, S′] where S′ ≤ S is a stopping time so that

‖(vT )S′‖H∞
< 1. (7.45)

Then using an argument analogous to that for (7.44) we see
∥

∥

∥

∥

∥

(∫ ·

0

dvνt

∫ t

0

dũs(w
a,T
s − wT

s

)S′
∥

∥

∥

∥

∥

S1

≤ ‖(vν)S′‖H∞
·
∥

∥

∥

∥

∥

(∫ ·

0

dũt(w
a,T
t − wT

s

)S′
∥

∥

∥

∥

∥

S1

≤ ‖(vν)S′‖H∞
· ‖(ũ)S′‖H∞

· ‖(wa,T
· − wT

· )
S′‖S1

(7.46)

Since vν and ũ have locally bounded H∞ norms, with the same argument we can take S′

so that

‖(vν)S′‖H∞
· ‖(ũ)S′‖H∞

< 1. (7.47)
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We want to prove that ‖(wa,T
· − wT

· )
S′‖S1 → 0 as a → 0. Using (7.43-7.45), (7.46),

(7.47) and Gronwall lemma, it is sufficient to prove that

lim
a→0

∥

∥

∥

∥

∥

(∫ ·

0

d(va,Tt − vTt )(w
a,T
t )

)S′
∥

∥

∥

∥

∥

S1

= 0, (7.48)

lim
a→0

∥

∥

∥

∥

∥

(∫ ·

0

dvνt

(

fa(0)e
−C̃a(t) − f(0)e−C̃(t)

)

)S′
∥

∥

∥

∥

∥

S1

= 0. (7.49)

and

lim
a→0

∥

∥

∥

∥

∥

(∫ ·

0

dvνt

∫ t

0

d(ũa
s − ũs)(w

a,T
s )

)S′
∥

∥

∥

∥

∥

S1

= 0. (7.50)

For (7.48) we write
∫ t

0

d(va,Ts − vTs )(w
a,T
s ) = wa,T

t (va,Tt − vTt )−
∫ t

0

va,Ts − vTs )dw
a,T
s . (7.51)

From (7.32) and Lemma 7.5 we see that the processes wa,T are uniformly bounded in H2.

Sinceva,Tt → vTt in UCP topology, va,Tt → vTt locally in S∞. We have
∥

∥

∥

∥

∥

(∫ ·

0

va,Ts − vTs )dw
a,T
s

)S′
∥

∥

∥

∥

∥

S2

≤ ‖(va,T − vT )S
′‖S∞

· ‖wa,T
s ‖H2

and

‖wa,T
· (va,T· − vT· )‖S2 ≤ ‖(va,T − vT )S

′‖S∞
· ‖wa,T

s ‖S2

≤ 3‖(va,T − vT )S
′‖S∞

· ‖wa,T
s ‖H2 .

From this, (7.51) and the fact that S1 norm is smaller than S2 norm, we obtain (7.48).

For (7.49) it is sufficient to compute the H2 norm of

(∫ ·

0

dvνt

(

fa(0)e
−C̃a(t) − f(0)e−C̃(t)

)

)S′

and to use the dominated convergence theorem.

Finally let us prove (7.50). This can be done by modifying S′, using the facts that the

processes W a,T have uniformly bounded S2 norms and ũa → ũ in UCP topology. For

this last point, use (7.29) in Corollary 7.10 and Corollary B.4. �

7.5. Convergence of the normal parts.

Lemma 7.12. For all p ∈ [1,∞) and T > 0,

E

[

∫ T

0

|fa(t)− f(t)|p dt
]

→ 0. (7.52)

Proof. Write

fa(t)− f(t) = (fa(0)− f(0)) e−C̃a(t) + f(0)
(

e−C̃a(t) − e−C̃(t)
)

+

∫ t

0

(

e−C̃a(s,t) − e−C̃(s,t)
)

dr̃as +

∫ t

0

e−C̃(s,t) d (r̃as − r̃s) .

The first term in the right converges to 0 in Lp([0, T ] × P) due to the positiveness of

C̃a(t). The second term in the right converges to 0 due to (7.28). For the last term in
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the right we use boundedness of e−C̃(s,t) and the fact that r̃at → r̃t in Hp([0, T ]) due

to (7.18) and (7.31) together with (B.2) and Lemmas 7.11 and 7.5 which allow to prove

that wa
t → wT

t in Sq([0, T ]), q ∈ [1,∞).
We are left to prove that

∫ t

0

(

e−C̃a(s,t) − e−C̃(s,t)
)

dr̃as → 0 in Lp([0, T ]× P.

Here it is easier to replace S by T ≥ S which is deterministic. We have

E

[

∫ T

0

∣

∣

∣

∣

∫ s

0

(

e−C̃a(u,s) − e−C̃(u,s)
)

dr̃au

∣

∣

∣

∣

p

ds

]

=

∫ T

0

E

[∣

∣

∣

∣

∫ s

0

(

e−C̃a(u,s) − e−C̃(u,s)
)

dr̃au

∣

∣

∣

∣

p]

ds

≤ C(p, T )

∫ T

0

E

[∫ s

0

∣

∣

∣e−C̃a(u,s) − e−C̃(u,s)
∣

∣

∣

p

du

]

ds.

The last inequality comes from the fact that the identity map from Sp([0, s]) to Hp([0, s])
is continuous and bounded by C(p, s) satisfying 0 < C(p, s) ≤ C(p, T ). Notice that the

fact that u 7→ e−C̃a(u,s) − e−C̃(u,s) is not adapted is not a problem since in dr̃au there is

no integration with respect to B1. We conclude with (7.29) which is easily seen to be true

with S replaced by T . �

Lemma 7.13. For all p ∈ [1,∞), T > 0 and all smooth φ : M → R+ vanishing in a

neighbourhood of ∂M , φ(Y a
t )fa(t) → φ(Yt)f(t) in Sp([0, T ]).

Proof. Since φ is bounded and the processes fa(t) are uniformly bounded in Sp([0, T ])
independently of a, it is sufficient to prove convergence in UCP topology.

We have

φ(Ra
t )fa(t)− φ(Rt)f(t) = (φ(Ra

t )− φ(Rt)) fa(t) + φ(Rt) (fa(t)− f(t)) .

Since the processes fa(t) are uniformly bounded in Sp([0, T ]) independently of a and

Ra
t → Rt in Sp([0, T ]), the fist term in the right converges to 0 in UCP topology. Let us

consider the second term:

d (φ(Rt)(fa(t)− f(t))) =(fa(t)− f(t))dφ(Rt) + φ(Rt)d (fa(t)− f(t))

+ dφ(Rt)d (fa(t)− f(t)) .

The integral of the first term in the right converges to 0 in UCP topology, due to (7.29) and

the fact that φ(Rt) has uniformly bounded absolutely continuous local characteristics.

On the other hand

φ(Rt)d (fa(t)− f(t))

=− c̃a(t)φ(Rt)(fa(t)− f(t)) dt+ φ(Rt)(c̃(t)− c̃a(t))f(t) dt

+ φ(Rt)(fa(t)− f(t))dr̃a(t) + φ(Rt)f(t)d(r̃
a
t − r̃t).

From subsection 7.4 together with (7.18) and (B.2) we get that r̃a → r̃ in semimartin-

gale topology.

So due to the presence of φ(Rt) which vanishes in a neighbourhood of ∂M all the terms

behave nicely, with the help of (7.52).

Finally the covariance term can be treated with similar methods. �

With this we completed the proof of Theorem 5.6 and close this section.
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APPENDIX A.

THE HALF LINE EXAMPLE

On the half line we select a reflected Brownian motion with ‘good’ sample path prop-

erties. To begin with we consider two reflected Brownian motions: the solution to the

Skorohod problem associated with a Brownian motion x+Bt and the solution to the Sko-

rohod problem associated with x +
∫ t

0 sign(x + Bs)dBs. The first is a stochastic flow,

see lemma A.1 below, while the second is not. The solution and the derivative flow to the

Skorohod problem for x+Bt is approximated by solutions and derivative flows to a family

of SDEs with explicit drifts. Furthermore, the derivative flow to the Skorohod problem is

shown to coincide with the damped parallel translation introduced in Appendix C.

Denote C0(R;R) the space of real valued continuous function with f(0) = 0 and

C0(R+;R+) its subset of non-negative valued functions. To each x ≥ 0 and f ∈
C0(R,R) there exists a function h ∈ C0(R,R+) such that the function g, given by

g(t) = x + f(t) + h(t), satisfies
∫ t

0
χ{0}g(s)ḣ(s)ds = h(t). The pair (g, h) is the so-

lution to the Skorohod problem associated to (x, f) and is denoted by

Φ·(x, f) = (g, h). (A.1)

It is well known that h(t) = − inf0≤s≤t{(x + f(s)) ∧ 0}. If Bt is a standard real val-

ued Brownian motion, then Skorohod problem defines the pair of stochastic processes

(Xt(x), Lt(x)), and Lt(x) is called the local time at 0 of Xt(x) and

Xt(x) = x+Bt + Lt(x). (A.2)

On the other hand, |x + Bt| is also a reflected Brownian motion. In fact, by Tanaka’s

formula, |x+Bt| = x+βt+2ℓ0t (ω) where βt =
∫ t

0 sign(x+Bs)dBs is a Brownian motion

and ℓ0t is the local times of x + Bt. The local time ℓ0t is also the boundary time, the total

time spent by x + Bt on the boundary {0} before time t. This was introduced by P. Lévy

(1940) as a Borel measurable function Ω×R+ ×R → R+ such that
∫ t

0
f(x+ Bs)ds =

∫

R
f(a)ℓat da for all f ∈ Bb(R;R) and such that (t, a) 7→ ℓat (ω) is continuous for a.s. ω. It

is well known that ℓ0t = limε→0
1
ε

∫ t

0 χ[0,ε)(x+Bs)ds = limε→0
1
2ε

∫ t

0 χ(−ε,ε)(x+Bs)ds.

It is clear that (|x + Bt(ω)|, 2ℓ0t (ω)) is the solution to the Skorohod problem associated

with x+ β·(ω), and |x+Bt| is not a stochastic flow.

It turns out that Xt(x) = x + Bt + Lt(x) has many nice properties. Despite that

the probability distribution of Xt(x) is that of a reflecting Brownian, on a sample path

level it is not at all the reflected path! It is rather, a lifted path, by ‘the lower envelope’

curve. The lower envelope curve is the unique continuous decreasing curve that is below

the given curve (Bt). Let 0 < x < y. Let τ(y) = inf{t > 0 : Xt(y) = 0}. It is clear that

Xt(y)−Xt(x) = y−x until Xt(x) reaches zero and the two stochastic processes coalesce

when Xt(y) reaches zero. If we compensate x by Lt(x), the two processes Xt(x+Lt(x))
and Xt(x) are equal for all t.

In Lemma A.1 we summarise the sample properties of Xt(x) and discuss differentia-

bility of Xt(x) with respect to x. These properties are elementary and not surprising. It

is perhaps more surprising that these elementary properties of Xt(x) are passed to the re-

flected Brownian motion on a manifold with boundary. We should mention differentiability

with respect to the initial value was studied in K. Burdzy [10] and S. Andres [3] for more

general domains of the Euclidean space: Lipschitz domains.
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For s < t define θsB = Bs+· − Bs. Let ξ an Fs measurable random variable and

(Xs,t(ξ, θsB), Ls,t(ξ, θsB)) the solution to the Skorohod problem for (ξ, θsB),

Xs,t(ξ, θsB) = ξ + (θsB)t−s + Ls,t(ξ, θsB).

Define Ls,t(ξ, θsB) = 0 for 0 ≤ t ≤ s. For simplicity we also omit B in the flow, and

write Xt(x) for Xt(x,B). Let Tx,y = inf{t > 0, Xt(x) = Xt(y)} be the first time Xt(x)
and Xt(y) meets.

Lemma A.1. The following statements hold pathwise.

(1) For all 0 ≤ s < t, x ∈ R,

Xs,t(Xs(x,B), θsB) = Xt(x,B), Lt(x,B) = Ls(x,B) + Ls,t(Xs(x,B), θsB).

(2) Let 0 < x < y, then Xt(x) and Xt(y) coalesce at the finite time T (x, y). Fur-

thermore T (x, y) = τ(y) and Lτ(y)(x) = y − x.

(3) For all t ≥ 0 and x > 0, Xt(x + Lt(x)) = Xt(x) .

(4) For all x ≥ 0 and t ≥ 0,

∂xXt(x) =

{

1, t < τ(x)

0, t > τ(x)
.

Proof. For part (1), we observe that,

Xs,t(Xs(x,B), θsB) = x+Bt + Ls(x,B) + Ls,t(Xs(x), θsB).

Define L̃(r) = Lr(x,B) when r ≤ s and L̃(t) = Ls(x,B) +Ls,t(Xs(x), θsB) for t > s.

Then L̃ ∈ C0(R+,R+), and (Xs,t(Xs(x,B), θsB), L̃) solves the Skorohod problem for

(x,B). By the uniqueness of the Skorohod problem, Xt(x,B) = Xs,t(Xs(x,B), θsB)

and L̃(t) = Lt(x,B).
Part (2). From the construction of the solution of the Skorohod problem, it is easy to see

that τ(x) < τ(y) and Xt(y)−Xt(x) = y − x on {t < τ(x)}, and Xτ(y)(y) = Xτ(x)(x)
on {t = τ(y)}. By the flow property, 0 ≤ Xt(x) ≤ Xt(y) a.s. for all time. In other

words, the two curves {Xs(x), s ≤ t} and {Xs(y), s ≤ t} are parallel on {t < τ(x)},

until the lower curve hits zero after which the distance between the two curves decreases

until Xt(y) reaches zero, upon which point the two curves meet. The accumulated upward

lift that Xt(x) receives up to τ(y) is

− inf
0≤s≤τ(y,ω)

{(x− y + y +Bs(ω)) ∧ 0} = y − x.

This shows that Xτ(y)(x) = 0 and together with the flow property we see the coalescence.

We completed the proof that T (x, y) = τ(y) and Lτ(y)(x) = y − x.

Part (3). On {t < τ(x)}, Xt(x+ Lt(x)) = Xt(x) trivially. If t ≥ τ(x + Lt(x)),

Xt(x+ Lt(x)) = x+ Lt(x) +Bt(x) − inf
0≤s≤t

((x+ Lt(x) +Bs) ∧ 0)

= x+ Lt(x) +Bt(x) − inf
0≤s≤t

((x+Bs) ∧ 0)− Lt(x) = Xt(x).

If τ(x) ≤ t < τ(x+ Lt(x)), Xt(x+ Lt(x)) = x+ Lt(x) +Bt while Xt(x) receives the

kick of the size Lt(x): Xt(x) = x+ Bt + Lt(x).
Part (4). Take t < τ(x). Then t < τ(x+ε) for ε > t−τ(x) and Xt(x+ε) = Xt(x)+ε,

consequently ∂xXt(x) = 1. Suppose t > τ(x). Then by part (2), Xt(x) = Xt(x − ε) for

any ε < 0. If 0 < ε < Lt(x), 0 ≤ Xt(x + ε) −Xt(x) ≤ Xt(x + Lt(x)) −Xt(x) = 0.

We used part (3) in the last step. Hence ∂xXt(x) = 0 for t > τ(x). This completes the

proof. �
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A consequence of Lemma A.1 is the following. If we pick up a time t > τ(x), Xt(x+
Lt(x)) must reach 0 between τ(x) and t.

In the following we construct a family of stochastic processes {Xa
· (x), a > 0} with

the properties stated below illustrating the general construction. [1] For each a, Xa
· is a

stochastic flow and x 7→ Xa
t (x)is a diffeomorphisms on its image; [2] they approximate

the reflected Brownian motion; [3] their derivatives approximate ∂xXt(x).

Let φ(x) =
∫ x

0 e−
y2

2 dy. For x > 0 and a > 0 let

ua(x) = P (τ(x) > a) =

√

2

π
φ

(

x√
a

)

= Paχ(−∞,x),

where Pt denotes the heat semigroup. Thus ∂xu
a = 2pa where pa is the Gaussian kernel.

Formally u0(0) = P (τ(0) > 0) = 0 and for x > 0, u0(x) = P (τ(x) > 0) = 1, and
∂
∂x lnu0(x) = ∂

∂xχ(−∞,x) = δ0(x), the Dirac mass at 0. Note that lnua is a concave

function with positive gradient:

∂x lnu
a =

1√
a
(lnφ)′(

x√
a
) =

1√
a

e−
x2

2a

φ( x√
a
)
> 0; (A.3)

∂2
x(lnu

a) =
1

a
(lnφ)′′(

x√
a
) = − xe−

x2

2a

a
3
2φ( x√

a
)
− e−

x2

2a

aφ( x√
a
)
< 0. (A.4)

Proposition A.2. Let Xa
t (x) be the solution to

Xa
t (x) = x+Bt +

∫ t

0

∂x lnu
a(Xa

s (x))ds. (A.5)

Then x 7→ Xa
t (x) is an increasing function, a 7→ Xa

t (x) decrases as a decreases to zero.

For every (t, x, ω), lima↓0 Xa
t (x) exists. For every x ≥ 0, the following holds for almost

surely all ω: lima↓0 Xa
t (x) = Xt(x) for all t.

Proof. That Xa
t (x) increases with x follows from the comparison theorem one dimen-

sional SDEs. We also observe that the drift ∂x lnu
a(x) in (A.5) increases with a.

∂a∂x lnu
a = − 1

2a
3
2

(lnφ)′(
x√
a
)− x

2
√
aa

3
2

(lnφ)′′(
x√
a
) > 0.

For y > 0, define

F (y) = y(lnφ)′′(y) + (lnφ)′(y).

It is clear that F (y) is negative for y sufficiently large. By the comparison theorem, Xa
t (x)

increases with a and X̄t(x) = lima↓0 Xa
t (x) exists for every t, x, ω. Consequently

Ax
t := lim

a↓0

∫ t

0

∂x lnu
a(Xa

s (x))ds

exists and

X̄t(x) = x+Bt +Ax
t .

Let f(t, a) =
∫ t

0
∂x lnu

a(Xa
s (x))ds, which is positive and increasing with t. ThusAx

t is

non-negative and nondecreasing in t.
Note that lima→0 ∂x lnu

a(x) = 0 for x > 0, but the convergence is not uniform in x.

For x ∈ (0,
√
a],

∂x lnu
a ≥ 1√

a

e−
x2

2a

x√
a

≥ 1− x2

2a

x
>

1

2x
.
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By comparison with the Bessel square process Bes2 or standard criterion for diffusion

process, for almost surely all ω, Xa
t (x) cannot reach 0. Next we observe that, Xt(y) is a

flow, Xa
t (y) > Xa

t (x) whenever y > x. Thus Xa
t (x) > 0 for all a > 0. The limiting

process X̄t(x) has the property:

X̄0(x) = x, X̄t(x) ≥ 0.

Let S < T be random times with X̄t(x, ω) > 0 for t ∈ [S, T ]. Let

δ(ω) = inf{X̄t(x, ω), t ∈ [S(ω), T (ω)]} > 0.

The function x 7→ ∂x lnu
a(x) decreases,

∫ T

S

∂x lnu
a(X̄s(x))ds ≤

∫ T

S

∂x lnu
a(δ(ω))ds.

Then, since Xa
s (x) ≥ X̄s(x),

AT (ω)− AS(ω) = lim
a↓0

∫ T

S

∂x lnu
a(Xa

s (ω))ds

≤ lim
a↓0

∫ T

S

∂x lnu
a(X̄s(ω))ds

≤ lim
a↓0

∫ T

S

∂x lnu
a(δ(ω))ds = 0.

This implies that
∫ t

0

χ{X̄s(x)>0}dA
x
s = 0

and (X̄t(x), A
x
t ) solves the Skorohod problem associated to x+Bt. �

Lemma A.3. For all x > 0 and a > 0, ∂3
x lnu

a > 0.

Proof. It is clearly sufficient to consider the case a = 1.

A(x) = ∂x lnu
1(x) = φ′(x).

We have from (A.4)

A′(x) = −xA(x) −A2(x)

and this implies

φ′′′(x) = A′′(x) = (x2 − 1)A(x) + 3xA2(x) + 2A3(x). (A.6)

It is clearly positive when x ≥ 1. For 0 ≤ x < 1,

A(x) =
e−x2/2

∫ x

0
e−y2/2 dy

>
1− x2/2

x
>

1− x2

3x
.

Hence

φ′′′(x) ≥ A(x)
(

(x2 − 1) + 3xA(x)
)

> 0.

This completes the proof. �

Since lnua
t (x) is smooth, the derivative flow V a

t (x) = ∂xX
a
t (x) exists and satisfies the

linear equation V̇ a
t = (∂2

x lnu
a)V a

t . We prove that V a
t converges to 1 when t < τ(x) and

converges to 0 when t > τ(x). In the sequel, by V a
τ(x+h)(x) we mean ∂xX

a
s (x)|s=τ(x+h),

and τ(x + h) is not differentiated.

Theorem A.4. Let Xa
t (x) be the solution to (A.5). Let V a

t (x) = ∂xX
a
t (x). Then the

following holds.
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(1) For all positive a and t, x 7→ V a
t (x) is increasing and t 7→ V a

t (x) decreases. For

any y > x,

lim
a→0

V a
τ(y)(x) = 0.

(2) For almost all ω the following holds for all x > 0 and t ≥ 0 such that t 6= τ(x):

lim
a↓0

V a
t (x) = ∂xXt(x).

Furthermore,

lim
a→0

E

∫ T

0

|V a
t (x) − ∂xXt(x)| dt = 0.

Proof. We observe that

d

dt
V a
t (x) = ∂2

x(lnu
a
t )(X

a
t (x))V

a
t (x),

and V a
0 (x) = 1, leading to the formula,

V a
t (x) = e

∫

t
0
∂2
x(lnua)(Xa

s (x))ds. (A.7)

(1) Since ∂2
x(ln u

a) < 0, V a
t (x) decreases with t. We differentiate (A.7) to see that

∂xV
a
t (x) = V a

t (x)

∫ t

0

(∂3
x lnu

a)(Xa
s (x))V

a
s (x)ds.

Firstly, letting V a
0 = 1. By Lemma A.3, ∂3

x lnu
a > 0, so x 7→ V a

t (x) is increasing.

Let x, ω be fixed. Let t 6= τ(x, ω) be a non-negative number and h > 0. There is a

number θ(ω) ∈ [0, 1] s.t.

Xa
t (x+ h)−Xa

t (x)

h
= ∂xX

a
t (x+ θh) ≥ ∂xX

a
t (x).

Since τ(x + h, ω) 6= τ(x, ω) for a.e. ω, for almost all ω we may set t = τ(x, ω):

0 ≤ ∂xX
a
t (x)|t=τ(x+h) ≤

Xa
τ(x+h)(x + h)−Xa

τ(x+h)(x)

h
≤

Xa
τ(x+h)(x+ h)

h
.

Take h = Lt(x). By Proposition A.2

lim
a→0

Xa
τ(x+Lt(x))

(x + Lt(x)) = Xτ(x+Lt(x))(x+ Lt(x)) = 0.

Thus for any h > 0,

lim
a↓0

V a
τ(x+h)(x) = 0.

(2) Let x > 0. By Lemma A.1, Xt(x + Lt(x)) = Xt(x) for all t ≥ 0. So if t > τ(x),
then t ≥ τ(x + Lt(x)). Suppose that t > τ(x). Since V a

t (x) decreases with t,

0 ≤ V a
t (x) ≤ V a

τ(x+Lt(x))
(x).

By the conclusion of part (1), the right hand side converges to 0 as a → 0.

If t < τ(x), Xa
t (x) > Xt(x) > 0 by comparison theorem for SDEs. Also ∂2

x lnu
a < 0,

1 ≥ lim
a↓0

exp

(∫ t

0

∂2
x lnu

a(Xa
s (x))ds

)

≥ exp

(

lim
a↓0

∫ t

0

∂2
x lnu

a(Xs(x))ds

)

.

On the other hand for every y, ∂2
x lnu

a(y) → 0 and infs∈[0,t]Xs(x) > 0 for t < τ(x). This

concludes that lima↓0 exp
(

∫ t

0 ∂
2
x lnu

a(Xa
s (x))ds

)

= 1. Note that V a
t (x) is uniformly

bounded to conclude the convergence in L1. �
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APPENDIX B.

CONVERGENCE IN S p AND IN H p

Let a0 > 0 and let {(Y a
t , t < ξa), a ∈ [0, a0)} be a family of continuous semi-

martingales with values in a manifold M . If U is an open domain in M , let τU,a denote

the exit times:

τU,a = inf{t > 0 : Y a
t 6∈ U}.

Definition B.1. (1) We say that Y a converges to Y 0 in the topology of uniform con-

vergence in probability on compact time sets (UCP) if

(1a) for all relatively compact open domain U ⊂ M ,

lim inf
a→0

τU,a ≥ τU,0,

(1b) for all t > 0, the following convergence holds in probability:

lim
a→0

sup
s≤t∧τU,a∧τU,0

ρ
(

Y a
s , Y

0
s

) (P )
= 0

(2) Let p ∈ [1,∞). We say that Y a converges to Y 0 locally in Sp if there exists an

increasing sequence of stopping times (Tn)n≥1 with limn→∞ Tn = ξ0 such that

for some a1 > 0 and for all a < a1 and all n ∈ N, Tn < ξa a.s. and

lim
a→0

E

[

sup
t≤Tn

ρp(Y a
t , Y

a
0 )

]

= 0 (B.1)

Notice that given (1b), condition (1a) is equivalent to lim inf
a→0

ξa ≥ ξ0.

Let D denote the space of real-valued adapted, Cádlág stochastic processes, defined on

some filtered probability space (Ω,F , (Ft)t≥0,P) satisfying the usual conditions. We are

mainly interested in special semi-martingales from D. Below an element of D is assumed

to be also a special semi-martingale.

For two real valued semi-martingales X,Y ∈ D we define the distance functions:

r(X,Y ) =
∑

n>0

2−n
E

(

1 ∧ sup
0≤t≤n

|Xt − Yt|
)

,

r̂(X,Y ) = sup
|H|≤1

r

(∫ t

0

Hsd(Xs − Ys)

)

,

where the supremum is taken over all predictable processes H bounded by 1. The distance

r is compatible with UCP:

sup
0≤s≤t

|X(n)
s −Xs| → 0 ( in probability )

for each t > 0 if and only if r(Xn − X) converges to 0. The distance r̂ induces the

semi-martingale topology on the vector space of semi-martingales.

Define

S
p = {X ∈ D : ‖X‖Sp = ‖ sup

t
|Xt|‖Lp < ∞},

H
p = {X ∈ D : ‖X‖H p = inf{(

∣

∣

∣

∣

|X0|+ [M,M ]∞)
1
2 +

∫ ∞

0

|dAs|
∣

∣

∣

∣

Lp

< ∞}.

where the infimum is taken over all semi-martingale decompositions X = X0 +M + A.

When the time interval is restricted to a finite time interval [0, T ] the notations will be

S p([0, T ]) and H p([0, T ]).
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A semi-martingale is locally in S p and H p if there exists a sequence of stopping times

Tn increasing to infinity such that XTnχ{Tn>0} are in these spaces. They are prelocally in

these spaces if XTn−χ{Tn>0} are, where XT−(t) = Xtχt∈[0,T ) + XT− χ[T,∞)(t). Let

(X(n)) and X be semi-martingales. Let 1 ≤ p < ∞. If X(n) converges to X is the semi-

martingale topology, then there exists a subsequence that converges prelocally in H p. If

X(n) converges to X prelocally in H p then it converges in the semi-martingale topology.

Extension to R
k-valued processes is done by considering the components.

The following estimate of M. Emery is useful: If Y is a semi-martingale and H a left

continuous process with right limit, and 1
p + 1

q = 1
r where p, q ∈ [1,∞], then

∥

∥

∥

∥

∫ ∞

0

HsdZs

∥

∥

∥

∥

H r

≤ ‖H‖S p‖Y ‖H q . (B.2)

We review these convergence in the settings that the semi-martingales may have finite

life times or take values in a manifold. See [7] for details.

Let Zt = Z0 + Mt + At be a semi-martingale in R
k with lifetime ξ and the canoni-

cal decomposition of Zt into starting point, local martingale Mt starting at 0 and a finite

variation process At starting at 0. Define

v(Z)t =

k
∑

i=1

(

|Zi
0|+ 〈M i,M i〉1/2t +

∫ t

0

|dAi|s
)

, t < ξ. (B.3)

Let T > 0. We say that a family of semi-martingales Z(n) converges to 0 in Sp([0, T ]) if

E

[

sup
s≤T

|Z(n)
s |p

]

→ 0. It converges to 0 in Hp([0, T ]) if v(Z(n)) → 0 in Sp([0, T ]).

To define this for a manifold valued stochastic process, we will use an embedding Φ :
M → R

k. The definition will in fact be independent of this embedding.

Definition B.2. Let (Y a
t ) be a family of semi-martingales indexed by a.

(1) We say that Y a converges to Y 0 in semi-martingale topology or in SM topology

if the semi-martingale norm of Φ(Y a)− Φ(Y 0), v
(

Φ(Y a)− Φ(Y 0)
)

, converges

to 0 in UCP topology.

(2) Let p ∈ [1,∞). We say that Y a converges to Y 0 locally in Hp if the processes

v
(

Φ(Y a)− Φ(Y 0)
)

converge to 0 locally in Sp.

The convergence in the semi-martingale topology is stronger than convergence in the

UCP topology. However it is a remarkable fact that they coincide on the subset of martin-

gales in the manifold. The following characterisations of convergence will be very useful

(see [7]).

Proposition B.3. • If Y a → Y 0 as a → 0 in UCP topology then for all p ∈ [0,∞)
there exists a sequence ak → 0 such that Y ak → Y 0 as k → ∞ locally in Sp.

• If Y a → Y 0 as a → 0 in SM topology then for all p ∈ [0,∞) there exists a

sequence ak → 0 such that Y ak → Y 0 as k → ∞ locally in Hp.

• If for some p ∈ [1,∞) Y a → Y 0 as a → 0 locally in Sp then Y a → Y 0 as

a → 0 in UCP topology.

• If for some p ∈ [1,∞) Y a → Y 0 as a → 0 locally in Hp then Y a → Y 0 as

a → 0 in SM topology.

As a consequence, a standard way to establish UCP or SM convergence given by the

following:
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Corollary B.4. • Y a → Y 0 as a → 0 in UCP topology if and only if there exists

p ∈ [1,∞) such that for any ak → 0 there exists a subsequence akℓ
such that

Y akℓ → Y 0 locally in Sp.

• Y a → Y 0 as a → 0 in SM topology if and only if there exists p ∈ [1,∞) such

that for any ak → 0 there exists a subsequence akℓ
such that Y akℓ → Y 0 locally

in Hp.

For processes which take their values in a compact manifold and which are defined in

bounded times, we have the following easy relations.

Corollary B.5. Assume that M is compact and that all processes are defined on some

deterministic time interval [0, T ]. The following equivalences hold:

• Y a → Y 0 as a → 0 in UCP topology;

• Y a → Y 0 as a → 0 in Sp for some p ∈ [1,∞);
• Y a → Y 0 as a → 0 in Sp for all p ∈ [1,∞).

Similarly, we have the equivalences

• Y a → Y 0 as a → 0 in SM topology;

• Y a → Y 0 as a → 0 in Hp for some p ∈ [1,∞);
• Y a → Y 0 as a → 0 in Hp for all p ∈ [1,∞).

APPENDIX C.

IKEDA AND WATANABE’S DAMPED PARALLEL TRANSLATION

The parallel transport Pt along a semi-martingale (Zt) is the semi-martingale with val-

ues in L(TZ0M,TZtM) solving the Stratonovich SDE

◦dPt = hPt(◦dZt), P0 = IdTZ0M
(C.1)

where hPt denotes horizontal lift to the orthonormal frame bundle. We have identified R
d

with TZ0M . Parallel transports are isometries, a proof for its existence on manifolds with

boundary can be found in Ikeda and Watanabe [21]. For simiplitiy we also use the notation

//t(Z).
If Zt is a diffusion process with generator L = 1

2∆ + U , where U is a time depen-

dent vector field, remaining in the interior of M for all time (which happens if M has no

boundary or if U is sufficiently strong in a neighbourhood of the boundary), then the paral-

lel transport Pt along Zt is the diffusion process whose generator on differential 1-forms is
1
2 trace∇2 +∇U . If ∆1 = −(d∗d+ dd∗) is the Hodge Laplacian, trace∇2 = ∆1 +Ric.

The damped parallel translation Wt along Zt is the solution to the equation

DWt =

(

∇WtU − 1

2
Ric♯(Wt)

)

dt, W0 = IdTZ0M
, (C.2)

where the covariant derivative DWt is defined to be //td
(

//−1
t Wt

)

. The process (Wt) is a

diffusion process with generator on 1-forms LW :

LWα =
1

2
∆1α+∇Uα+ α (∇·U) . (C.3)

The fundamental property of LW is its commutation with differentiation:

d(Lf) = LW (df), f ∈ C∞(M). (C.4)

As a consequence, if F ∈ C1,2([0, T ]×M,R) is such that F (t, Zt) is a local martingale,

then dF (t,Wt) is also a local martingale, where dF is the differential of F in the sec-

ond variable. On the other hand, (C.2) together with the fact that Pt is an isometry yield
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estimations on the norm of Wt. This allows to estimate the norm of dF . Another funda-

mental property is that Wt is the derivative of the flow corresponding to parallel couplings

of L-diffusions.

We construct a damped parallel transport along Brownian motion in a manifold with

boundary. The covariant derivative DWt has three components: one coming from the

behaviour in M0 (the usual one), one tangential to ∂M absolutely continuous with respect

to dLt and involving the shape operator of ∂M , and the third is normal to ∂M and has

jumps. This is similar to what happens for the half line. Concerning the half line case the

flow corresponding to parallel coupling of reflected Brownian motion is ∂xXt, so in this

case Wt = ∂xXt and the study is complete.

We also define the second fundamental form and shape operator for level sets of the

distance function to the boundary. Let S(r) = {y ∈ F0, R(y) = r}. Within a tubular

neighbourhood F0 of the boundary, R is smooth around x. Let r = R(x) and νx =
σ1(x) = ∇R(x). For w ∈ TxM , w′ ∈ TxS(r) we define Πx : TxM × TxS(r) → R and

Sx : TxM → TxS(r) by

Π(w,w′) = 〈S(w), w′〉 = −〈∇wν, w
′〉 = −∇dR(w,w′) (C.5)

The bilinear map Π is said to be the second fundamental form of S(r) and Sx its shape

operator or the Weingarten map.

Let 3δ0 be the radius of the tubular neighbourhood of ∂M . If D is a set denote τD the

exit time of Y from D.

Lemma C.1. Let U be a relatively compact set of M . Let R0 < δ0, Y0 ∈ U , Yt the

reflected Brownian motion, and

τ2δ0 = inf{t : Rt = 2δ0}.
Then under a probability measure equivalent to P , {Rt, t < τδ0 ∧ τU ∧ T } is the solution

to a Skorohod problem for a one dimensional Brownian motion on R+.

Proof. Within E0, because of Proposition 3.3 (2),

Rt = R0 +B1
t +

∫ t

0

∆R(Ys)ds+ Lt.

Let Q be the probability measure whose density with respect to P is the exponential mar-

tingale of −
∫ t

0 ∆R(Ys)dB
1
s . Then under Q, B̃1

t := B1
t +

∫ t

0 ∆R(Ys)ds is a Brownian

motion. On the other hand, Lt is nondecreasing and dLt vanishes when Rt 6= 0. Since

Rt ≥ 0 we have (R,L) = Φ(0, B̃1), the solution to Skorohod problem. See (A.1). By the

uniqueness of the Skorohod problem, under Q, {Rt, t < τ2δ0 ∧ τU ∧ T } has the law of a

one dimensional reflected Brownian motion. �

Let L(ω) = {t ≥ 0 : Yt(ω) ∈ ∂M} be the set of times that Yt spends on the boundary.

It has Lebesque measure zero for a.s. all ω and its complement

(0,∞) \ L(ω) = ∪α(lα(ω), rα(ω))

is the union of countably many disjoint open intervals, the excursion intervals. Denote the

set of right end times of excursions by R(ω):

R(ω) = ∪α{rα(ω)}.
We are interested in defining a damped parallel translation Wt along Yt, which agrees

with the usual one during an excursion, and pick up a change of direction when exiting the

boundary. The normal direction on the boundary is zero: we remove −〈Wt, ~n(Yt)〉~n(Yt)
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upon the process entering the boundary. We would have liked to define a stochastic pro-

cesses (wt), if it were possible, with values in n× n matrices, satisfying

(//t)
−1Wt =(//rα)

−1Wrα − 1

2

∫ t

rα

(//s)
−1Ric♯(//s−)((//s)

−1Ws) ds

−
∫ t

rα

(//s)
−1S(//s−)

(

(//s)
−1W ε

s

)

dLs, t ∈ (rα, rα+1)

(//rα+1)
−1Wrα+1

= (//(rα+1)−)
−1W(rα+1)− − 〈W(rα+1)−, νY(rα+1)−

〉(//r(α+1)−)
−1νY(rα+1)−

.

Given (lα, rα), for any ǫ > 0 there is an excursion (lα′ , rα′) such that 0 < lα′ − rα < ǫ,
and so the heuristic definition given above does not make sense.

We remedy this problem with an approximation adding jumps only on excursions of

size greater or equal to ǫ. We consider the set of excursions of lengths greater or equal to a

given size ε > 0 and define

Rε(ω) = {s = rα(ω) ∈ R(ω) : rα(ω)− lα(ω) ≥ ε},
where the excursions are ordered with l1 the first time Yt hits the boundary and we consider

only α ∈ N. If rα − lα ≥ ε,

(//t)
−1W ε

t = (//rα)
−1W ε

rα − 1

2

∫ t

rα

(//s)
−1Ric♯(//s−)((//s)

−1W ε
s ) ds

−
∫ t

rα

(//s)
−1S(//s−)

(

(//s)
−1W ε

s

)

dLs, t ∈ (rα, rα+1)

(//rα+1)
−1W ε

rα+1

= (//(rα+1)−)
−1W ε

(rα+1)− − 〈W(rα+1)−, νY(rα+1)−
〉(//r(α+1)−)

−1νY(rα+1)−
.

where (W ǫ,T ) denotes the tangential part of Wt. This takes into consideration those times

slightly before (lα+1, rα+1) and is relevant to the integration with respect to Lt.

Since Yt spends Lebesgue time 0 on the boundary, for integration with respect to a

continuous process we could ignore the boundary process. We would like to simply remove

the normal part of Wt upon it touches down to the boundary. We are lead to the following

alternative description. Let v ∈ TY0M and t > 0, for almost surely all ω, the following

folds,

(//t)
−1W ε

t (v) =v − 1

2

∫ t

0

(//s)
−1Ric♯(//s−)((//s)

−1W ε
s v) ds

−
∫ t

0

(//s)
−1S(//s−)

(

(//s)
−1W ε

s

)

dLs, t 6∈ Rε(ω)

(//t)
−1W ε

t =(//t−)
−1W ε

t− −
∑

s≤t,s∈Rε(ω)

〈W ε
t−, νYt−〉(//t−)−1νYt− .

In other words, W ε
t is continuous at any time t that is not a boundary time, and satisfies

the following covariant equation

DWt

dt
= −1

2
Ric#(Wt) + S(Wt).
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If t is the right hand side of an excursion, we remove the normal part of its component.

This description will be used in Theorem C.3.

Define

T = {αt ∈ H∞([0, T ]) : αt ∈ T ∗
Yt
M,αt = 0 on {Yt 6∈ D} for some D}. (C.6)

where D is relatively compact subset of M . This is the set of bounded semi-martingale

with values in the pull back cotangent bundle by Yt, with the property that there is relatively

compact subset D of M such that αt = 0 whenever Yt 6∈ D. Denote by τD the first exit

time from D by Yt.

Definition C.2. The limit process Wt ∈ L(TY0M,TYtM), below in Theorem C.3, is said

to be a solution to the following equation

DWt = −1

2
Ric♯(Wt) dt− S(Wt) dLt − χ{t∈R(ω)}〈Wt−, νYt〉νYt , W0 = IdTY0M

.

(C.7)

Theorem C.3. Let W ε
t the solution to

DW ε
t = −1

2
Ric♯(W ε

t ) dt− S(W ε
t ) dLt − χ{t∈Rε(ω)}〈W ε

t−, νYt〉νYt , W ε
0 = IdTY0M

.

(C.8)

There exists an adapted right continuous stochastic process Wt such that limǫ→0 W
ǫ
t =

Wt in UCP and in S2 for M compact. Furthermore for any α ∈ T ,

lim
ǫ→0

(∫ ·∧τD

0

αs(DW ε
s )

)

S2=

(∫ ·∧τD

0

αs(DWs)

)

.

The same result but with different formulation can be found in [21, 18, 29]. We give

a proof close to [21], which will be used for our approximation result (Theorem 5.6 and

Corollary 5.7).

Proof. Since the definition and convergence are local in Y , we can assume that M is

compact. Since Yt(ω) has a finite number of excursions larger than ε, the process W ε
t is a

well defined right continuous process. We first prove that as ε → 0, (W ε
t )t∈[0,T ] converges

in S2 to a process which we will call (Wt)t∈[0,T ].

Using the parallel translation process //t along Yt, we reformulate the equation as an

equation in the linear space L(TY0M,TY0M). Set

rict = //−1
t ◦ Ric♯Yt

◦ //t, st = //−1
t ◦ SYt ◦ //t, ~nt = //−1

t (νYt). (C.9)

Then W ǫ
t is a solution to (C.8) if and only if wǫ

t = (//t)
−1W ε

t satisfies the following

equations. For any rα ∈ Rε(ω),

wε
t =− wε

rα − 1

2

∫ t

rα

(//s)
−1rics(w

ε
s) ds−

∫ t

rα

ss(w
ε
s) dLs, t ∈ (rα, rα+1)

wε
rα+1

=wε
(rα+1)− − 〈wε

(rα+1))−, ~n(rα+1)−〉~n(rα+1−),

This means (wε
t ) satisfies the following equation:

dwε
t = −1

2
rict(w

ε
t ) dt− st(w

ε
t ) dLt − χ{t∈Rε(ω)}〈wε

t−, nt〉nt, w0 = Id. (C.10)

For 0 < r < t, denote by V ε
s,t ∈ L(TY0M ;TY0M) the solution to

V ε
r,t = Id− 1

2

∫ t

r

rics(V
ε
r,s) ds−

∫ t

r

ss(V
ε
r,s) dLs−

∑

{s∈Rε(ω)∩[r,t]}
〈V ε

r,s−, ns〉ns. (C.11)
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It will be used in a variation of constants method. Let 0 < ε′ < ε, the difference between

wε
t and wε′

t is given by

wε
t − wε′

t =

∫ t

0

(

−1

2
rics(w

ε
s) +

1

2
rics(w

ε′

s )

)

ds+

∫ t

0

(

−ss(w
ε
s) + ss(w

ε′

s )
)

dLs

−
∑

{s∈Rε(ω)∩[0,t]}
〈wε

s−, ns〉ns +
∑

{s∈Rε′(ω)∩[0,t]}
〈wε′

s−, ns〉ns

=− 1

2

∫ t

0

rics(w
ε
s − wε′

s ) ds−
∫ t

0

ss(w
ε
s − wε′

s ) dLs

−
∑

{s∈Rε(ω)∩[0,t]}
〈wε

s− − wε′

s−, ns〉ns +
∑

{s∈(Rε′(ω)\Rε)∩[0,t]}
〈wε′

s−, ns〉ns.

Let

Ct =
∑

{s∈(Rε′(ω)\Rε)∩[0,t]}
〈wε′

s−, ns〉ns. (C.12)

With the help of (C.11), wε
t − wε′

t can be expressed as

wε
t − wε′

t =
∑

{s∈(Rε′(ω)\Rε)∩[0,t]}
〈wε′

s−, ns〉V ε
s,t(ns). (C.13)

But the term −
∑

{s∈Rε(ω)∩[r,t]}〈V ε
r,s−, ns〉ns is norm decreasing. It is easy to see that

|V ε
r,t|2 = |v|2 −

∫ t

0

rics(V
ε
r,s)ds+

∫ t

0

〈S(V ε
r,s), V

ε
r,s〉dLr − χt∈R(ω)〈Vr,t−, nt〉2.

We have the following pathwise estimates:

|V ε
s,t| ≤ exp

(∫ t

s

ρ(Ys) ds+

∫ t

s

|ss| dLs

)

≤ e
∫ t
s
ρ(Ys) ds exp (CLt) (C.14)

where C > 0 is an upper bound for the norm of the shape operator and ρ a lower bound

for the Ricci curvature.

On the other hand it is a remarkable but not surprising fact that each term 〈wε′

s−, ns〉ns

can be written as a stochastic integral over an interval not containing any excursion of size

larger than ε. This comes from the fact that the norm part of wε′

t is set to zero at the end

of each excursion of size at least ε′. Note that ε > ε′. For s ∈ (Rε′(ω)\Rε) ∩ [0, t], the

jump at s is accumulated only during the last excursion. More precisely,

〈wε′

s−, ns〉ns =

∫ s

u

d〈wε′

r , nr〉nr

where u is the last vanishing time of 〈wε′

r , nr〉nr before s. Now since we are outside

boundary times, the process inside the integral is a continuous semi-martingale whose drift

is absolutely continuous with respect to ds + dLs with bounded derivative, see (C.10). It

is clear that s− u < ε. Consequently the quadratic variation of

Ct :=
∑

s∈(Rε′(ω)\Rε)∩[0,t]

〈wε′

s−, ns〉ns

is bounded by Cλ(U(ε)∩ [0, t]) where λ is the Lebesgue measure, U(ε) is the set of times

not contained in excursions larger than ε, and the drift of Ct is bounded by Cλ(U(ε) ∩
[0, t])(t+ Lt).
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We get

E[| sup
t≤T

wε
t − wε′

t |2]1/2 ≤ CE [exp (C(T + LT ))) λ(U(ε) ∩ [0, T ])(T + LT )] .

The left hand side goes to 0 as ε → 0, so for εn → 0, wεn is a Cauchy sequence in

S2, it converges to some process w. Clearly w does not depend on the sequence. Letting

Wt = //twt then W ε
t converges to Wt in S2.

Let us now prove that DW ε converges to DW in the sense given by theorem C.3. Let

(αt)t∈[0,T ] be a H2 semimartingale taking its values in T ∗
Yt
M , bounded by 1. We have for

0 < ε′ < ε
∫ t

0

αs (DW ε
s )−

∫ t

0

αs

(

DW ε′

s

)

= αt

(

W ε
t −W ε′

t

)

−
∫ t

0

Dαs

(

W ε
s −W ε′

s

)

.

By (B.2), a results of M. Emery, we see that

E

[

sup
t≤T

∥

∥

∥

∥

∫ t

0

αs (DW ε
s 〉)−

∫ t

0

αs

(

DW ε′

s

)

∥

∥

∥

∥

2
]

≤ ‖α‖S∞([0,T ])‖W ε −W ε′‖S2([0,T ]) + ‖W ε −W ε′‖S2([0,T ])‖α‖H∞([0,T ])

From the first part of the proof and the assumption on α, we get that for εn → 0,
(∫ ·

0
αs (DW εn

s )
)

t∈[0,T ]
is a Cauchy sequence in S2([0, T ]), so it converges to some pro-

cess which is linear in αs. Consequently we denote it by
(

(
∫ ·
0 αs (DWs)

)

t∈[0,T ]
. �
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