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Abstract

We derive a general large deviation principle for a canonical sequence of proba-
bility measures, having its origins in random matrix theory, on unbounded sets K of
C with weakly admissible external fields () and very general measures v on K. For
this we use logarithmic potential theory in R™, n > 2, and a standard contraction
principle in large deviation theory which we apply from the two-dimensional sphere
in R? to the complex plane C.
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1 Introduction and main results

Let K be a closed subset of the complex plane C and v a measure on K. For k =1,2, ...,
we will be concerned with the following ensemble of probability measures on K**1:

Zik\VDM(zO, ) exp (— 2K[Q(z0) -+ Qe (z0) ().
Here
e /) is a normalization constant;
® VDM(zo, ..., z1) = [lg<icj<r (25 — 2i) is the usual Vandermonde determinant;
e (): K — (—o0,+00] is a lower semicontinuous function; and
e 3>0.

These probability measures occur in random matrix theory as the joint probability of
eigenvalues and also in the theory of Coulomb gases, where zy,...,2; are the positions
of particles. They have been extensively studied but generally only when v is Lebesgue
measure (cf., [I] or [Ig]).

We will deal with the global behavior as k — oco. In particular, we study the almost sure
convergence of the empirical measure of a random point k%l Zf:o d,, to the equilibrium
measure given by the unique minimizer of the weighted energy functional; i.e.,

inf{I%(p) : pe M(K)}

where M(K) are the probability measures on K and

Q = O 1 z
I (u)—/K/Kl g‘z_t‘w(z)w(t)du( )dpu(t),

with w(z) = exp(—Q(z)). We will also establish a large deviation principle (LDP).

Ben Arous and Guionnet [2], building on work of Voiculescu, first proved a large de-
viation principle for the Gaussian Unitary Ensemble. This was subsequently extended to
general unitary invariant ensembles. Hiai and Petz [I8] extended these methods to the
complex plane and strongly admissible (see Definition B]) continuous weights ). In these
settings, v was taken to be Lebesgue measure.

More recently, the case of weakly admissible weights (see Definition B.1]) on unbounded
subsets of the plane was studied in [15] and the existence of a unique minimizer of the
weighted energy functional (which in this case may not have compact support) was es-
tablished. In [I4] a large deviation principle was established for @) weakly admissible,
continuous on R or C and v the Lebesgue measure. Such weights occur in certain ensem-
bles (see [I4], the Cauchy ensemble) and in certain vector energy problems (see [15]).

In this paper we will systematically develop the case when @) is lower semicontinuous,
weakly admissible and v is more general than Lebesgue measure. We will use the methods
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of [9 which first of all give the almost sure convergence of the empirical measure of a
random point, and, subsequently, we obtain a large deviation principle.

The paper is organized as follows: in the next section, we give some basic results on
logarithmic potential theory in R" valid for n > 2. Using the results in R? together with
inverse stereographic projection from a two-dimensional sphere S to the complex plane,
in section 3 we readily extend some classical potential-theoretic results valid for compact
subsets of C to closed, unbounded sets with weakly admissible weights.

In sections 4-7, we return to the setting of compact sets K in R™ and admissible
weights (see Definition 2.2} such weights need only be lower semicontinuous). Corollary
establishes the almost sure convergence of the empirical measure of a random point
to the equilibrium measure in this setting, for appropriate measures v.

Our next goal is to show that two functionals J and .J on the space M(K) of proba-
bility measures coincide. These functionals are defined as asymptotic L?(v)—averages of
Vandermonde determinants with respect to a Bernstein-Markov measure v on K. As in
previous work (cf., [9] and [§]), weighted versions of these functionals are of essential use
(Theorem [6.6]). This equality immediately yields a large deviation principle in this R”
setting, Theorem [Tl in which the rate function is given in terms of the weighted energy
functional independent of the Bernstein-Markov measure v.

In section 8, we deal with compact subsets of the sphere in R?® and measures of infinite
mass, again establishing a LDP (Theorem B.@]). Measures of infinite mass arise as the push-
forward of measures on unbounded subsets of the plane under stereographic projection.

Our ultimate goal, achieved in sections 9 and 10, is to utilize the R” result to prove the
analogous equality of the appropriate J—functionals for probability measures on closed,
unbounded sets in C allowing weakly admissible weights and very general measures of
infinite mass (Theorem[0.4]). Then, via a contraction principle, we obtain an LDP (Theorem

10.2):

Theorem 1.1. Let K C C be closed, and let () be a weakly admissible weight on K.
Assume (K, v, Q) satisfies the weighted Bernstein-Markov property (91)). If v has finite
mass, assume that (K, v) satisfies a strong Bernstein-Markov property while if v has infinite
mass in a neighborhood of infinity, assume that (94]) and (93) are satisfied for some
function €(z). Define a sequence {ov} of probability measures on M(K) by

k k

1 .
or(G) = Z/é VDM (2, ..., z) [ [ [ 79 [ dv(=)
k

=0 i=0

where Gy, = {(z0, ..., z) € KFL i 20z, € G} Then {0}} satisfies a large deviation
principle with speed k* and good rate function I := Tx o where, for up € M(K),

Z(p) = 1%(p) — I%(pxq)-

In section 11 we extend this result to the case of general 5 (Theorem [[T.2). Our results
include the LDP for a number of ensembles occurring in the literature (see Remark [10.3])



and also the results of Hardy [I5] for Lebesgue measure in R or C (see the discussion after
Theorem [MT.2). The idea of using inverse stereographic projection and working in R? to
obtain an LDP for unbounded sets in C comes from this work.

2 Logarithmic Potential Theory in R”

Let K C R"™ be compact and let M(K) be the set of probability measures on K endowed
with the topology of weak convergence from duality with continuous functions. We consider
the logarithmic energy minimization problem:

where

1
1) = [ [ o8 = du(a)iuty)

is the logarithmic energy of . We will say that K is log-polarif I(u) = oo for all p € M(K).
It is known that any compact set of positive Hausdorff dimension is non log-polar [I1]. For
a Borel set £ C R" we will say F is log-polar if every compact subset of E is log-polar.

We write .

U (w) = [ log ——duly)
K x —y|
for the logarithmic potential of u. It is locally integrable and superharmonic in all of R™.
We gather known results about logarithmic potentials in R™ in the next theorem.

Theorem 2.1. The following results, whose precise statements can be found in [Z1)] for
logarithmic potentials in C = R2, hold true for logarithmic potentials in R"™, n > 2:
1. for p = py — po a signed measure with compact support and total mass zero, with i
and o of finite energies, 1(p) is nonnegative and is zero if and only if p = po.
2. principle of descent and lower envelope theorem (with “q.e.” in the latter replaced by
“off of a log-polar set”);
3. maximum principle;
4. continuity principle.

Proof. The version of Item 1. in C is [2I, Lemma 1.8]. In R", it follows from |12, Theorem
2.5]. An extension of item 1. in case of unbounded support and whenever I(u) is well-
defined is given in [I9], see Example 3.3. One checks that the proofs of the principle of
descent and lower envelope theorem in C, Theorems 1.6.8. and 1.6.9. of [2I], are valid in
R™. Ttems 3. and 4. are Theorems 5.2 and 5.1 of [I7]. A maximum principle restricted to
the two dimensional sphere also follows as a particular case of [10, Theorem 5]. O

We will need to work in a weighted setting. We caution the reader that, unlike the
setting of compact sets in R” where we have a single notion of admissibility for a weight
function, when we work on unbounded sets in C in the next section we will have several
different notions.



Definition 2.2. Given a compact set K C R" which is not log-polar, let ) be a lower
semicontinuous function on K with {z € K : Q(z) < oo} not log-polar. We call such @
admissible and write Q € A(K). We define w(z) := e~ @@,

We refer to either @) or w as the weight; in [21] this terminology is reserved for w.
We consider now the weighted logarithmic energy minimization problem:

inf I%(p), p € M(K),

where

Q = (0] 1 e = X xZ).
19(1) = /K /K log e s du(a)dpy) = 1) +2 /K Q(x)dp(x)

Following the arguments on pp. 27-33 in [21], we have the following.

Theorem 2.3. For K C R™ compact and not log-polar, and Q) € A(K),
1. Vi i=1inf e porey 19(p) is finite;
2. there exists a unique weighted equilibrium measure g o € M(K) with I9(ux.g) = Vi
and the logarithmic energy I(pr g) s finite;
3. the support S, :=supp(uk.q) is contained in {xr € K : Q(z) < oo} and S, is not
log-polar,
4. Let Fy, ==V, — [ Q(x)dug o(x) denote the (finite) Robin constant. Then

UFER(x) + Q(x) > F, on K\ P where P is log-polar (possibly empty);
UFEQ(2) 4+ Q(z) < F, for all x € S,

Remark 2.4. In the proof of the Frostman-type property 4. in [21], one simply replaces
“q.e.” — off of a set of positive logarithmic capacity in C — by “off of a log-polar set” as
the essential property used is the existence of a measure of finite logarithmic energy on a
compact subset of a set of positive logarithmic capacity in C. We should mention that,
in the unweighted case, the existence portion of 2. and property 4. can be found in [I7],
Theorems 5.4 and 5.8.

Next we discretize: for k > 2, let the k-th weighted diameter 6 (/) be defined by

SP(K) = sup |[VDMZ(wy,...,ay)[/FED),

T1,...,0,€EK

where [VDM®(z1, ..., 2;)| denotes the weighted Vandermonde:

k
VDM (1, ... zp)| = [ [ |2i = jlw(@)w(ay) = [ i — 2] [ [ w(a;)*
i<j i<j 7=1
k
=t [VDMy(zy, ..o )| - [ w(z)F " (2.1)

j=1



By the uppersemicontinuity of (21, ..., zx) — [, lzi —2;lw(z:)w(z;) on K* the supremum
is attained; we call any collection of k points of K at which the maximum is attained
weighted Fekete points of order k for K, (). Following the proofs of Propositions 3.1-3.3 of
[9, Section 3] we may derive similar results in R™.

Theorem 2.5. Given K C R" compact and not log-polar, and Q) € A(K),
1. af {ug = %Z?ﬂ 0w} C M(K) converge weakly to p € M(K), then
J

lim sup |[VDME (2\F | 2 [2EE=D < oxp (—19(n)); (2.2)

k—o0

2. we have
§9(K) = klim 51?(K) = exp (—Vi);
—00

3. if {xﬁ-k)}jzl _____ g k=23, C K and

lim |[VDME (2P, . 2[R0 = exp (= V)

k—o0

then

k
[y = Zéwgk) — Wk, weakly.
j=1

| =

3 Weighted potential theory on unbounded sets in C

We use the previous results in R? and the inverse stereographic projection from the two-
dimensional sphere to C to extend classical results concerning potential theory on compact
subsets of C to unbounded closed sets with weakly admissible weights. Some of these
results already appeared in the literature, see, e.g., [16], 23].

Thus let K C C be closed and unbounded. We consider three types of admissibility for
weight functions on K.

Definition 3.1. Let @) be a lower semicontinuous function on K with {z € K : Q(z) < oo}
a nonpolar subset of C (equivalently a non log-polar subset of R?). We say Q is

1. weakly admissible if there exists M € (—o0, 00) such that

liminf (Q(z) —log|z|) = M. (3.1)

z€K, |z|—o0

2. admissible if iminf.cx |2j»400 (Q(z) —log \z|) = +00.

3. strongly admissible if for some € > 0, there exists R > 0 with Q(z) > (1 + ¢€) log|z|
for z € K and |z| > R.



Examples of weakly admissible weights arise from logarithmic potentials: if x4 is a proba-
bility measure on C such that U* is continuous, then @) = —U" is weakly admissible on
K =C.

We assume now that () is weakly admissible. We consider the inverse stereographic
projection T' : C U {oo} — S where S is the sphere in R?® centered in (0,0,1/2) of radius
1/2. Tt is defined by

([ Re(2) Im(z) | 2|2
T<Z>_(1+|z|2’1+|z|2’1+|z|2 , #eC (32)

and T(o0) = Py, where Py = (0,0,1) denotes the “north pole” of S. The map T is a
homeomorphism with

T(2) = T(u)]

B |z — ul B
VI 2T+

where | - | denotes the Euclidean distance.
For v a positive Borel measure supported on K, not necessarily finite, we denote by
T.v its push-forward by T, that is, the measure on T'(K') such that

mwazéﬂﬂmw@,

u e C, (3.3)

T(K)
for any Borel function f on T'(K). Lemma 2.1 in [I5] shows that the map
T.. M(K) = M(T(K)),

is a homeomorphism from M(K) to the subset of M(T(K)) of measures which put no
mass at the north pole Py of S. Here, M(K) and M(T'(K)) are endowed with the topology
of weak convergence. This is the topology coming from duality with bounded, continuous
functions. On K it suffices to consider bounded, continuous functions f : K — C such that
limy.| e f(2) exists. This follows from the correspondence of M(K') with the measures in
M(T(K)) putting no mass at F.

When the support of a measure p € M(K) is unbounded, its potential

1

Ut(z) = /log mdu(t), zeC

is not always well-defined. However, the following lemma holds true.

Lemma 3.2. If there exists a zy € C with U*(zy) > —oo then

/ log(1 + |t])dp(t) < oo, (3.4)

which implies that U*(z) is well-defined as a function on C with values in (—oo, 0o]. More-
over, U"(z) is then superharmonic and

%wasmaﬂm+/muﬂmww
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Also,
/log(l FtDdu(t) < 0o = —o0 < I(j1). (3.5)

Proof. If 1+ 2|z| < [t| then 1+ || < 2(]t| — |z0|) < 2|t — 20], hence

/ log(1 + |t])du(t) < log2 +/ log |z — t|du(t) < oco. (3.6)
+2[20/<[t| 1+2[20/<[t|

Conversely, if ([8.4]) holds then —oo < U*(z) and —oo < I(p) since |z—t| < (1+|z|)(1+|t]).
Under assumption (3.4]), the potential U*(z) is superharmonic. This follows e.g. from the
fact that

0n(z) = [1og T gy - [ 1ost1+ iehduco

|z —1]
and the first integral on the right-hand side is superharmonic with respect to z, see [20]

Theorem 2.4.8]. The direct implication in (3.5) was noted above. Conversely, if —oo < I(u)

then U¥#(z) cannot be constant, equal to —oo, for all z, so the inequality on the left of (3.3]),
which is ([B.4]), follows from (B.6). O

Logarithmic potentials on C and on the sphere S correspond by the relation
1 1
(wu):Uﬂwﬁa—img1+pﬁy—§/Iga+qumo, z € C. (3.7)

The weighted logarithmic energy of a measure p € M(K) is defined as

260 = [ [ o8 s dn(aut) = 100 +2 [ Qa3

where w = e~%. The double integral is always well-defined. Indeed it follows from the upper
semicontinuity of w and (B that the integrand is bounded below. On the contrary, the
second expression has a meaning only if /(x) > —oo which is not necessarily true. Another
equivalent way to define I9(p), which is always valid, is by using the map T as was done
in [16]. Here, one identifies 19(u) with the weighted logarithmic energy of the measure
Tip € M(T(K)),

ATop) = /T(K/T(Klog AT, u(a)T. +2/ O@)dTpu(z),  (3.9)

where

QT (=) = Qz) — 5 log(1 + |2P). (3.10)

To define Q on the whole of T(K) we set Q(Py) = M, so that Q becomes lower semicon-

tinuous, and we get a correspondence between weakly admissible weights on the closed set
K in C and admissible weights on the compact set T(K) C S in R3.



Lemma 3.3. A closed subset K C C is polar if and only if T(K) C S is log-polar.
Proof. We have

o o e g ) = [ [ g ot | oa(1ynt),

Recall that a closed subset K C C is polar if K, = KNB(0,r) is polar for all » > 0. Thus, if
K is nonpolar, there exists » > 0 with K, nonpolar, that is, there is a measure pu, supported
on K, of finite energy. By the above equality, T p, is a measure on T'(K,) C T(K) of finite
energy, so T'(K) is not log-polar. Conversely, if K C C is polar, for any finite measure p of
compact support in K we have () = oo in C (cf. [20]) and thus I(T,u) = oo in S. Since
any measure on T'(K) charging the north pole Py has infinite energy, it follows that T'(K)
is log-polar. O

Theorem asserts the existence and uniqueness of a weighted energy minimizing
measure on a non log-polar compact subset of R” with an admissible weight. Obviously,
this minimizing measure does not charge any point of the set, in particular the north pole
By if it belongs to the set. Hence the above correspondence implies the following.

Theorem 3.4. Let K be a nonpolar closed subset of C and Q) a weakly admissible weight
on K. Then,
1. Vo = inf e pmery I9(p) is finite;
2. there exists a unique weighted equilibrium measure pg.q € M(K) with I9(ux.g) = Vi
and the logarithmic energy I(purg) is finite (hence —AUMKQ = 2wk g);
3. the support S, :=supp(pik.q) is contained in {x € K : Q(z) < oo} and S, is not
polar;
4. Let Fy, ==V, — [ Q(2)duk q(2) denote the (finite) Robin constant. Then

UFER(2) 4+ Q(z) > F, on K\ P where P is polar (possibly empty);
UFEQ(2) + Q(z) < F, for all z € S,.

Proof. The above assertions correspond by the map 7' to the similar assertions from The-
orem [2.3] applied with a non log-polar compact subset of the sphere S. Note that

Tipk@ = trieyor Vo =Ve,  Fo=F5— %/K log(1 + [t*)dpr q(t),
where we have set @ := e~@. The fact that (trg) < oo follows from
o) = 1) =2 [ Qo =12Tnxe) =2 [ Qauno,
where we know that I Cj(T*,uK,Q) = Vg is finite and @ is bounded below. If S, is compact,

it is clear that the other inequality —oo < I(ug ) is satisfied. If S, is not compact, we
may use

[ [ 1081z = tidniae)ducot) <2 [ 1og(1+ Do)
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so to verify —oo < I(pk,q) it suffices to show that

[ tos(1 + e ducolt) < o
K
which holds true by Lemma since the equilibrium potential satisfies UF%.@ > —oco. [

In particular, if p is a probability measure on C such that U* is continuous, taking
@ = —U" on K = C we have 1 = j1x,g so that, in general, i ¢ need not have compact
support. As specific examples, if K = C and Q(z) = 3log(1 + |2|?), then dugo =
71 (1 + |2]*)"2dm(z) where dm is Lebesgue measure, cf., Example 1.4 of [15]. If K = R
and Q(z) = 1log(1l + 2?), then duk g = 7 (1 + 2%)~'dz, cf., Example 1.3 of [I5]. We
mention that in [16], existence and uniqueness of a minimizing measure was proven in the
more general context of weakly admissible vector equilibrium problems.

Let L(C) be the set of all subharmonic functions v on C with the property that
u(z) — log |z| is bounded above as |z| — oo.
We will need the following version of the domination principle, see [7, Corollary A.2].

Proposition 3.5. Let u,v € L(C) with u(z) —v(z) bounded above as |z| — oo and suppose
I(Av) < 00. If u < v a.e.-Av, then u < v on C.

Here, Av need not have compact support.

We can now state a weighted version of the Bernstein-Walsh lemma with a weakly
admissible weight (see [21l Theorem III.2.1] for the case of an admissible weight). This will
be used in section 8 to get a version for appropriate polynomials on the sphere (Theorem
RI). We let Pi(C) denote the complex-valued polynomials of a complex variable of degree
at most k.

Theorem 3.6. Let K be a closed nonpolar subset of C and Q) a weakly admissible weight
on K. If pr, € Py(C) and

Ipe(2)e FCR) | < M for g.e. z € S,

then
Ipe(2)| < M exp(k(=U*5R(2) + Fy)), zeC,

and
Ipi(2)e FeB) | < M, for g.e. z € K.

Proof. The function g := log(|px|/M)/k belongs to L(C) and
9(2) <Q(z) < =UMEQ(z) + F,, for qe. z € 5,.

By Lemma B2, —U*x@ + F,, also belongs to L(C) and —AU"¥@ = 2nug g is of finite
energy. Hence, by the above domination principle,

g(2) < UMK (2) + F,, z€C,

which, together with the first inequality in item 4. of Theorem [3.4] proves our contention.
O
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We proceed with properties of the weighted Vandermonde. We have the relation
\VDMP (21, ..., )| = [VDME(T(21), ..., T(z))],

from which it follows that the assertions of Theorem about the Vandermonde can be
carried over to C. Since the result may be of interest on its own, we state it as a theorem.

Theorem 3.7. Let K be a closed nonpolar subset of C and () a weakly admissible weight
on K. The k-th weighted diameters 6°(K), k > 2, are finite and

1. af {ug = %Z?ﬂ 0 w0} C M(K) converge weakly to i € M(K), then

lim sup |[VDOME (2\F | 2[R0 < oxp (—19(n)); (3.11)

k—00
2. we have 62(K) := limy_,0 02 (K) = exp (—Va);
3. if {$§k)}j:1 ..... g k=23, C K and

lim [VDMP (@, ..., o)) D = exp (—V,)

k—o0

then

k
i = Zéx;k) — pi,g weakly.
j=1

| =

Remark 3.8. The Frostman-type result in 4. of Theorem B4 and 2. of Theorem B.7] (as
well as 3. in the special case of arrays of weighted Fekete points) have also been proved in

[3].

4 Bernstein-Markov properties in R”

In sections 4-8, we return to the setting of compact sets in R™. In particular, admissible
weights will be in the sense of Definition For £k = 1,2,..., let P, = P,g") denote the
real polynomials in n real variables = (1, ..., x,) of degree at most k and P,(C) denote
the complexr holomorphic polynomials in n complex variables z = (z1, ..., z,,) of degree at
most k. Given a compact set K C C" and a positive measure v on K, we say that (K, v)
satisfies the Bernstein-Markov property (or v is a Bernstein-Markov measure for K) if for
all p, € Px(C),

) . k
||pk| |k := sup |pr(2)| < Mk||pk||L2(,,) with hmsupM,i/ =1.
zeK k—o0

It was shown in [§] that any compact set in C" admits a Bernstein-Markov measure for
complex holomorphic polynomials; indeed, the following stronger statement is true.

11



Proposition 4.1 ([§]). Let K C R". There exists a measure v € M(K) such that for all
complez-valued polynomials p of degree at most k in the (real) coordinates v = (x1, ..., x,)
we have

Pl < Millplle2e)

where lim sup,_, . M,i/k = 1.

For a compact set K C R™ and a positive measure v on K, we will say that (K, v) satisfies
the Bernstein-Markov property if for all p, € Py,

) . k
||pk||x = sup |pr(z)| < Mk||pk||Lz(,,) with lim sup M]i/ =1.
reK k—oo

More generally, for K C R"™ compact, Q) € A(K), and v a measure on K, we say that the
triple (K, v, Q) satisfies the weighted Bernstein-Markov property if for all p, € Py,

e ™ || e < M ||e ™ @py|| 12,y with limsup MF =1

k—00

We have the analogous notion of weighted Bernstein-Markov property for p, € Py (C) if
K cC"and Q € A(K).

Remark 4.2. These properties can be stated with L” norms for any 0 < p < oo. The proof
of Theorem 3.4.3 in [22] in C that if (K, v) satisfies an (weighted) LP—Bernstein-Markov
property for Py (C) for some 0 < p < oo then (K, v) satisfies an (weighted) LP—Bernstein-
Markov property for all 0 < p < oo just uses Hélder’s inequality and remains valid in our
setting.

Now another very important observation: Theorem 3.2 of [4] works — indeed, is even
stated — in R" for any n > 2:

Theorem 4.3. Given K C R™ compact, and Q) a continuous weight, if v is a finite measure
on K such that (K,v) satisfies a Bernstein-Markov property, then the triple (K,v, Q)
satisfies a weighted Bernstein-Markov property.

Definition 4.4. Given K C R" compact, a finite measure v on K is called a strong
Bernstein-Markov measure for K if for any continuous weight () on K, the triple (K, v, Q)
satisfies a weighted Bernstein-Markov property. We have the analogous notion if K C C”
using pi € Pi(C).

Remark 4.5. Combining Proposition .1l and Theorem we see that any compact set
K in R™ admits a strong Bernstein-Markov measure; and any Bernstein-Markov measure
on K is automatically a strong Bernstein-Markov measure for K. This latter equivalence
is not necessarily true in the complex setting. For K C C, there are well-known sufficient
mass-density conditions on a measure v on K so that (K, v) satisfies a Bernstein-Markov
property for Px(C) [22]. In particular, Lebesgue measure on an interval or Lebesgue planar
measure on a compact set in C having C! boundary satisfy the Bernstein-Markov property.
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We remark that if C\ K is regular for the Dirichlet problem, the condition that (K, v)
satisfies a Bernstein-Markov property for P (C) is equivalent to the condition that v be a
regular measure; i.e., v € Reg in the terminology of [22]. We refer to this book for more
details.

Furthermore, for every compact set K in R™ there exist discrete measures which satisfy
the (strong) Bernstein-Markov property [§]. If one considers K € R™ C C", there are
sufficient mass-density conditions on a measure v on K so that (K, v) satisfies a Bernstein-
Markov property for polynomials on C™ and hence on R™. For more on this, cf., [6] and

8.

Remark 4.6. Let K C R" be compact and not log-polar and let v € A(K). If «v is a finite
measure on K such that (K, a,v) satisfies a weighted Bernstein-Markov property, then

1. (K, ca,v) satisfies a weighted Bernstein-Markov property for any 0 < ¢ < oo and

2. (K,a+ (,v) satisfies a weighted Bernstein-Markov property for any finite measure
£ on K.

The importance of a (weighted) Bernstein-Markov property is the following consequence
on the asymptotic behavior of the (weighted) L? normalization constants defined by

78 = Z0(K.v) = [ VDME X av(Xo), (4.1

where Xy := (11,...,7;) € K*¥ and v is a finite positive measure on K.

Remark 4.7. The quantity Z,? appears as the normalization constant in the law of eigen-
values of random matrix models. It is also referred to as the partition function in the theory
of Coulomb gases. See Section [[I] for more details on the link between these notions.

Proposition 4.8. Given K C R™ compact and not log-polar, Q € A(K), and v a finite
measure on K such that (K, v, Q) satisfies a weighted Bernstein-Markov property, we have

lim (Z2)HED = exp (V) = 09(K).

Proof. We clearly have limsup,_, . (Z2)/*#=) < exp (—V,,) from 2. of Theorem 25 For
the reverse inequality with liminf, note that

n

VDM (1, ... zi)]* = [ [ 12 — 251 = [T O (@i — 20)%)

1<j i<j 1=1

(where we write z; = (z;1,...,%;,)) is a polynomial of degree k(k — 1) in the nk real
coordinates {;;}i=1. n; i=1.. k- Now if Fyx = (f1,..., fr) is a set of weighted Fekete points
of order k for K, (), then

k
p(z1) == VDM (21, fo, ..., fi)]? He—2(k—1)Q(fj)

Jj=2

13



is a (nonnegative) polynomial of degree 2(k — 1) in (the coordinates of) z;. By definition
of weighted Fekete points, for any r; € K,

p(xp)e 2k ><m€a}§p( z)e 2E-DRE) = p(f)e=2k-DQA)

since this right-hand-side is precisely |V DM (Fy)[?>. By the weighted Bernstein-Markov
property using L' norm instead of L? (see Remark [2),

=

|VDM1?(F1<)|2 < Mz(k—l)/ VDM (21, fo, -, fi)] - € 2D He 2E-13U) dv(1).
K

J=2

Now for each fixed z; € K, we consider
k
pa(2) = |V DMy (w1, 2, fs..., fir) [P - e 267109 H AR
which is a (nonnegative) polynomial of degree 2(k — 1) in (the coordinates of) z5. Then

p2(f2> 2(k—1)Q(f2) < maxpg( ) 2(k-1)Q(x)

The left-hand-side is
k
|VDMk(xlaf2af3-“afk)| . _2(k e He 2(k— 1Q(f]
j=2

The right-hand-side, by the weighted Bernstein-Markov property, is bounded above by

k
Mo / \VDMj(21, 22, f3, ..., fir)|? - e 27100 H e 2R g2k 1Q2) gy (7,
K

J=3

Plugging these into our first estimate, we have

k
|VDMkQ(Fk)|2 < M2(k—l)/ VDM (1, fay oy fi)]? - e 27 DR H6_2(k_1)Q(fj)dV($1)
K

Jj=2

SMz(k_l)/ [M2(k—1)/ VDM (21,29, fa, .y fi)|* - e 207D,
K

k
[ e 200U e 2000 gy ()] d ()

7=3
2
= (M2(k—1))2/ \VDMy(z1, 72, f3, .5 fr) |2H —2k-RM) He 2R dy (o) d (1).
K2
7=1

Continuing the process and using ]\421(/1162 kl) — 1 gives the result.
O
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Given any @ € A(K), we can always find a finite measure satisfying the important
conclusion of Proposition E8l

Proposition 4.9. Let K C R™ be compact and not log-polar and let Q € A(K). Then
there exists a finite measure 1 on K such that

lim (Z2 (K, 1))=Y = exp (= V,,) = 69(K). (4.2)

k—o0

We can even construct ju so that, in addition, u is a (strong) Bernstein-Markov measure
for K.

Proof. Consider the weighted equilibrium measure px . We have V,, = I(uxg) < co. By
Lusin’s continuity theorem, for every integer m > 1, there exists a compact subset K,
of K such that pxo(K \ K,n) < 1/m and @ (considered as a function on K, only) is
continuous on K,,. We may assume that each K,, is not log-polar and that the sets K,
are increasing as m tends to infinity. Let u,, € M(K,,) be a (strong) Bernstein-Markov
measure for K. We claim that = Y07 | 55, satisfies ([@2).

Since p,, € M(K,,) is a (strong) Bernstein-Markov measure for K, and Q,,, :== Q|g,, is
continuous, it also follows from 1. of Remark L6l that (K,,, Q., ﬁ L) satisfies a weighted
Bernstein-Markov property.

Since Z2(K, 1) < maxyejer |VDMO(x)[>1u(K)*, we have

limsup(Z2 (K, p))/*E= < 69(K).

k—00

To show
lim inf(Z (K, 10)/E7D > 69(K),
—00

let A, = i g(Kn) so that A, 1 1. Letting 6,, := ﬁ,uK,Q\Km € M(K,,), we have
190(6,) > T (g, 0.

Since (K, Qum, 2%” ) satisfies a weighted Bernstein-Markov property,
1

exp (19 (j110,.0,.)) = Jim (27" (Ko, g VHED.
Clearly
1
ZOE 1) > 22" (Ko plic,) = 22" (Ko, i),
Thus

1
lim inf(Z2 (K, 1))V ® =D > lminf (Z2™ (K, = pim) )Y/ EED
k—o0 k—o0 m
= exp (19" (K@) = exXp (=197 (0)).
By monotone convergence we have

lim 19 (6,,) = 11

m—0o0
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so that
lim inf (Z7 (K, 10) /"0 > exp — 19k q) = 69(K),
—00

as desired.
For the second part, let v be a (strong) Bernstein-Markov measure for K and define

o= Z 27" Uy + 1.
m=1

The fact that p is a (strong) Bernstein-Markov measure for K follows from the fact that v is
a (strong) Bernstein-Markov measure for K and 2. of Remark L6l Finally, u satisfies (4.2])
from the previous part applied to Y~ 27" u,, and the obvious inequality Z,?(K ) >
ZkQ(Ka Zzzl 2_mlLLm)' O

Example 4.10. If 4 is a (strong) Bernstein-Markov measure for K and the set of points
of discontinuity of ) € A(K) is of u measure zero, then (£2) holds for . As a simple but
illustrative example, let K = [—1,1] C R and take

Q(z) =0at all z € [-1,1] \ {0}; Q(0) = —1.

It is easy to see that Lebesgue measure du on [—1, 1] satisfies (A.2]) but (K, @, i) does not
satisfy the weighted Bernstein-Markov property. On the other hand, (K, Q, u + o) does
satisfy the weighted Bernstein-Markov property.

For @Q € A(K) and v a finite measure on K, we define a probability measure Prob; on
K*: for a Borel set A C K*,

Proby(A) = % /A VDM (X, [2dv(Xy,). (4.3)

Directly from Proposition £9 and (£3]) we obtain the following estimate.

Corollary 4.11. Let Q € A(K) and v a finite measure on K satisfying
Jim (Z (K, ) /MY = exp (< V) = 69(K).
Given n > 0, define
Ay = {Xi € K" [VDMZ (X P = (89(K) — )", (4.4)

Then there ezists k* = k*(n) such that for all k > k*,

n k(k—1)
PrObk(Kk \ Akm) S (1 — m) V(Kk)
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We get the induced product probability measure P on the space of arrays on K,
X = {X = {X € K},

namely,
[e.9]

(x.P) := (K", Proby).
k=1

As an immediate consequence of the Borel-Cantelli lemma and 3. of Theorem B.5 we
obtain:

Corollary 4.12. Let Q) € A(K) and v a finite measure on K satisfying

lim (Z2 (K, v))Y*E=D = exp (=V,,) = 09(K).

k—o00

For P-a.e. array X = {l’gk)}jzl ,,,,, k; k=23,... € Xs

k
1
z Zéx;m — K, weakly as k — 00.
j=1

5 Approximation of probability measures

For the proof of a large deviation principle (LDP) in R, as in [9], we will need to approach
general measures in M(K') by weighted equilibrium measures. For that, we consider equi-
librium problems with weights that are the negatives of potentials. We first verify that the
natural candidate solution to such a problem is, indeed, the true solution.

Lemma 5.1. Let p € M(K), K C R™ compact, I(i) < oo. Consider the possibly non-
admissible weight u == —U" on K. The weighted minimal energy on K is obtained with
the measure p, that is

Vv e M(K), I(p) +2/ud,u < I(v) —I—Q/udu,
with equality if and only if v = p.
Proof. We may assume that I(v) < oo. The inequality may be rewritten as
0 < I(v) = 20(u,v) + I() = I(v — ),

which is true, and, moreover, the energy (v — p) can vanish only when v = p, see item 1.
of Theorem 2.11 O

The following two approximation results are analogous to [21, Lemma 1.6.10].
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Lemma 5.2. Let K C R" be compact and non log-polar and let p € M(K). Let Q € A(K)
be finite p-almost everywhere. There exist an increasing sequence of compact sets K, in
K and a sequence of measures pi,, € M(K,,) satisfying

1. the measures i, tend weakly to pu, as m — oo;
2. the functions Q|k,, € C(Ky,) and [ Qdp,y, tend to [ Qdp as m — oo;
3. the energies I(p,,) tend to I(u) as m — oco.

Proof. By Lusin’s continuity theorem, for every integer m > 1, there exists a compact
subset K, of K such that u(K \ K,,) < 1/m and @ (considered as a function on K, only)
is continuous on K,,. We may assume that K, is increasing as m tends to infinity. Then,
the measures fi,, := px,, are increasing and tend weakly to p. Since @) is bounded below
on K, the monotone convergence theorem tells us that

[ @din = [Qudi— [ Q. asm o

Denoting as usual by log™ and log™ the positive and negative parts of the log function, we
have, as m — o0,

Xm(z>t) 10g+ |Z - t| T 1Og+ |Z - t| and Xm(z>t) lOg_ |Z - t| T 1Og_ |Z - t|a

(x p)-almost everywhere on K x K where x,,(z, t) is the characteristic function of K, x K,
and we agree that the left-hand sides vanish when z =t ¢ K,,,. By monotone convergence,
we obtain

I(ft) — I(pn), as m — oo.

Finally, defining fi,,, 1= iy /10(K,,) gives the result. O

Corollary 5.3. Let K C R™ be compact and non log-polar and let p € M(K) with
I(pn) < 0o. Let K, be the sequence of increasing compact sets in K and p,, the sequence
of measures in M(K,,) given by Lemma [5.2 with Q = U". There ezist a sequence of
continuous functions Q),, on K such that

1. the measures pu,, tend weakly to p and the energies I(p,y,) tend to I(p), as m — oo;
2. the measures [, are equal to the weighted equilibrium measures g q,, -

Proof. First, note that U* € A(K) and is finite p-almost everywhere since I(u) < 0o, so
that Lemma applies with ) = U*. Now we define

Qum = —U"" g = —pu(K,,) U™ k.

Since () = U*" is continuous on K,,, it follows that (),, is continuous on K,,. By the
continuity principle for logarithmic potentials (4. of Theorem [21]), —U*™ is continuous on
R™ and hence @),, is continuous on K. Items 1. and 2. follow from Lemmas and [5.1]
respectively. O
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6 The JY functionals on R”

In this section, we introduce and establish the main properties of the weighted L? func-

tionals 7Q, J9 as well as the relation with the weighted energy I9. Our goal is to establish
an LDP in the next section.

Fix a compact set K in R™, a measure v in M(K) and @) € A(K). We recall that M (K)
endowed with the weak topology is a Polish space, i.e., a separable complete metrizable
space. Given G C M(K), for each k = 1,2, ... we let

k
- 1
= = K* = . 1
Gk {a (a'1> aa'k) € ) k’ ;6% S G}? (6 )
and set o
J2(G) == [ i |VDM,§?(a)|2dy(a)} . (6.2)

Definition 6.1. For yu € M(K) we define

7Q(u) = inf 7Q(G) where 7Q(G) = limsup J2(G);

Gop k—o00

J9(u) := inf J°(G) where J9(G) := li}gninf J2(@G);

Gop

Here the infima are taken over all neighborhoods G of the measure p in M(K). Note that,
a priori, 7Q, J9 depend on v. For the unweighted case Q = 0, we simply write J and J.

Lemma 6.2. The functionals J(p), J(pn), J9(u), 7Q(u), are upper semicontinuous on
M(K) in the weak topology.

Proof. The proof is similar to the one of [7, Lemma 3.1]. O

Lemma 6.3. The following properties hold (and with the .J, J° functionals as well):
1. 7Q(u) < e %W for Q € AK);
2. T%(u) < T(p) - e Qe for Q € A(K);
3. 7Q(,u) = J(p) - e 2/ for Q continuous.

Proof. Ttem 1. follows from

J(G) < sup [VDME ()M,

acGy,
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and the upper bound (22)) on the limit of the Vandermonde. We prove item 2. and item
3. simultaneously. We first observe that if © € M(K) and @ is continuous on K, given
€ > 0, there exists a neighborhood G C M(K) of p with

}/KQ@M_%]Z;&%)}SE for a € G,

for k sufficiently large. Thus we have

k
_g—/[{Qdug—%;Q(aj)ge—/KQd,u. (6.3)

Note that for @ € A(K), hence lower semicontinuous, we only have the second inequality.

Since
k

VDM (a)] = [VDM(a)| - [J e~ D),

J=1

we deduce from (63)) that
|VDMk(a)|e—k(k—1)(E+fK Qdp) < |VDM,?(a)| < |VDM,(a) |€k(k—1)(s—fK Qdp)

Now we take the square, integrate over a € Gy, and take a k(k — 1)-th root of each side to
get
Jk(G>e—2(e+fK Qdu) < J,?(G) < Jk(G)ez(e—fK Qdp).

Precisely, given € > 0, these inequalities are valid for G a sufficiently small neighborhood
of u. Hence we get, upon taking limsup,_, ., the infimum over G > pu, and noting that
e > 0 is arbitrary,

T(p) = T () - e Qv

as desired. If @) is only lower semicontinuous, we still have the upper bounds in the above,
which gives item 2. O

From item 1. in Lemma [6.3] we know that for @ € A(K)
log J% () < log (1) < —I19(p). (6.4)

In the remainder of this section, we show that when the measure v satisfies a Bernstein-
Markov property, equalities hold in (6.4)).

We first consider the unweighted functionals J and J and the case of an equilibrium
measure (= g, where v € A(K)

Lemma 6.4. Let K be non log-polar, v € A(K), and let v € M(K) such that (K,v,v)
satisfy a weighted Bernstein-Markov property. Then,

log J(pxw) = log J(prcw) = =1 (pxc)- (6.5)
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Proof. To prove (6.H), we first verify the following.
Claim: Fix a neighborhood G of juk,. For n > 0, define
Ay = {Zic € K* - [VDM(Zu)|” > (8°(K) — )"V},
Given a sequence {n;} with n; | 0, there exists a jo and a ko such that
Vi > jo, Vk>ko, Apn C G (6.6)
We prove (6.6) by contradiction: if false, there are sequences {k;} and {j;} tending to

infinity such that for all | sufficiently large we can find a point Zy, = (z1,..., 2,) with
Zk1 c Aklvnjl \le But

1 &
= E > 6., ¢G
i=1

for [ sufficiently large is a contradiction with item 3. of Theorem since Ziy € A,
and 7;, — 0 imply u' — ug, weakly. This proves the claim.

Fix a neighborhood G of g, and a sequence {n;} with n; | 0. For j > j, choose
k = k; large enough so that the inclusion in (6.6)) holds true as well as

_ ni o\ Filk—1)

prin 0 A < 1~ i) on

" T HR b S ' 6.8
( _25”([()) —0 as j— oo, (6.8)

which is possible (for (6.7) we make use of Corollary A.I1]). In view of (6.6]), the definition
of Proby;, and (6.17), we have

1 1
- [ VDM, (B i Za) > / VDM (Za) v (2,
kj J Gr; k; Akja’?j
7; kj(k;—1)
>1—1(1—- . .
>1- 26”(K)> (6.9)

Note that, because of (G.8]), the lower bound in (€.9) tends to 1 as j — oo. Then, since
(K, v,v) satisfy a weighted Bernstein-Markov property, we derive, with the asymptotics of
Zy, given in Proposition I8, that

1
lim inf ————— log / (VDM (Zy)|?dv(Zy.) > log 6°(K).
J—00 kj(l{?] - 1) ékj 7 ) J

Given any sequence of positive integers {k} we can find a subsequence {k;} as above
corresponding to some 7; | 0; hence

o 1 2
v > v
h]:frgg}f WD) log /ék VDM (Zy,)|*dv(Zy) > log §°(K).
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It follows that
log J*(G) > log 8°(K).

Taking the infimum over all neighborhoods G of p, we obtain
log J*(prc.v) > log 6*(K).

Using item 2. of Lemma 6.3l with p = g, we get

logl(,uK,v) 2 _I(,Uk,v)a
and with the unweighted version of item 1., we obtain (6.3]). O

Remark 6.5. We observe that the proof only used the property

lim (Z} (K, v))YFE=D = §v(K).

k—o0

Theorem 6.6. Let K be a non log-polar compact subset of R"™ and let v € M(K) satisfy
the (strong) Bernstein-Markov property.

(i) For any p € M(K), _
log J (1) = log J(n) = —I(p). (6.10)
(11) Let Q € A(K). Then
Ty = T() - 2, (6.11)

(and with the J, J° functionals as well) so that,
—Q
log J™ (1) = log JO(n) = —1°(n). (6.12)
Proof. We first prove (i). The upper bound

log J (1) < —1I(p) (6.13)

is the unweighted version of (6.4]). For the lower bound —I(u) < log J(u) we first assume
that I(p) < oo. Using Corollary 53] there exists a sequence of (continuous) functions @,
defined on K and measures i, = ftx g,, tending weakly to p such that,

lim () = I(p). (6.14)

m—o0

Thus we can apply Lemma to conclude
log J (pim) = 10g J (pm) = —1 (),
and from (6.14]) along with the uppersemicontinuity of the functional p — J(u), we derive

lim log J(ptm) = —1(p) < log J(u).

m—r0o0
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Together with ([G.13]) we get

log J (1) = log J (1) = —I(p).

If 4 € M(K) satisfies I(u) = oo, Item 1. of Lemma [6.3 shows that J(u) = 0.
We next proceed with assertion (ii). For (611, it is sufficient to prove the inequality

T ) > T(p) - 2, (6.15)

We first assume that @ is finite p-almost everywhere and I(u) < oo so that Lemma
can be applied on K. Let K,, be the sequence of compact subsets of K and pu,, be the
sequence of measures in M(K,,) given by that lemma. By the upper semicontinuity of the

functional 7Q,
T9() > limsup T (1)

m—r0o0

Also, by item 3. of Lemma [63 and (610), since Q|g,, is continuous,

7Q(Mm) _ J(Mm)e—2IQdﬂm — e_l(um)_2de/me'

Hence, (6.13]) follows from items 2. and 3. of Lemma [5.21 When [ (1) = oo, both sides of
6.I5) equal 0, since J(pu) = =" and, by definition, 0 < 7Q(,u). If n({Q = oo}) > 0, this
is true as well because J(u) > —oo while the exponential in the right-hand side vanishes.

Finally, (6I2) follows from (6.10) and (E.IT). O

Remark 6.7. We note that the Bernstein-Markov property of the measure v has only
been applied with the sequence of continuous weights (), that appear when approaching
i with Corollary (.31

From now on, we simply use the notation J, J¢, without the overline or underline. It
follows from (G.I0) and (6.12)) that these functionals are independent of the measure v;
i.e., we have shown: if v € M(K) is any (strong) Bernstein-Markov measure, for any
Q € A(K), and for any p € M(K) we have

log J(p) = —19(p). (6.16)

7 Large Deviation Principle in R”

Fix a non log-polar compact set K in R", a measure v on K and @ € A(K). Define
gk + K¥ — M(K) via
k
> 6. (7.1)
j=1

| =

jk(l’l, ey S(Zk) =
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The push-forward oy, := (ji)«(Proby) (see [@3) for the definition of Proby) is a probability
measure on M(K): for a Borel set G C M(K),

o(G) = — /@ VDM (a1, .oy ) Peli(a) - - - di(ay). (7.2)

k
recall (1), @3) and G.I); here, Z2 depends on K, Q and v.

Theorem 7.1. Assume v is a (strong) Bernstein-Markov measure on K, Q € A(K), and
v satisfies

lim (Z2 (K, v))Y*E= = exp (= V) = 09(K). (7.3)

k—o0

The sequence {0y = (ji)«(Proby)} of probability measures on M(K) satisfies a large
deviation principle with speed k* and good rate function T := Tx o where, for p € M(K),

I(p) = log J%(prq) — log JO(p) = 19(p) — I?(pux.q)-

This means that Z : M(K) — [0, 00| is a lower semicontinuous mapping such that the
sublevel sets { € M(K) : Z() < a} are compact in the weak topology on M(K) for all

a >0 (Zis “good”) satisfying (4] and (Z3):

Definition 7.2. The sequence {y} of probability measures on M(K) satisfies a large
deviation principle (LDP) with good rate function Z and speed k? if for all measurable
sets I' € M(K),

1
. < Timinf L
;?rfo Z(p) < lllzggg}f 12 log 14, (I") and (7.4)
: 1 .
lim sup 5 log i (I") < —inf Z(p). (7.5)
k—o00 pel

In the setting of M(K), to prove a LDP it suffices to work with a base for the weak
topology. The following is a special case of a basic general existence result for a LDP given
in Theorem 4.1.11 in [13].

Proposition 7.3. Let {o.} be a family of probability measures on M(K). Let B be a base
for the topology of M(K). For i € M(K) let

I(p) = — {GellalzlieG} (hi%ﬂf clogo(G)).

Suppose for all p € M(K),

700 = = Bl (imsa clogo.(C).

Then {o.} satisfies a LDP with rate function Z(p) and speed 1/e.

We give our proof of Theorem [T1] using Theorem [G.6l
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Proof. As a base B for the topology of M(K), we simply take all open sets. For {o.}, we
take the sequence of probability measures {0} } on M(K) and we take ¢ = k=2. For G € B,
1 k—1 1

= log 04 (G) = 5 log J¢(G) — = log Z¢

using (6.2) and (Z.2)). From (6.16), and the fact that (Z.3]) holds,

) 1
lim — log Z? = log6°(K) = log J(ixc):

k—o00

and by Theorem [6.6]
inf limsup log J&(G) = inf liminf log JZ(G) = log JO ().

GO koo G k—oo

Thus by Proposition [7.3] and Theorem [6.6] {0y} satisfies an LDP with rate function

I(p) = log J® (k@) — log J(u) = I?(p) — 1% (1 q)
and speed k2. This rate function is good since M(K) is compact. 0

Remark 7.4. Note that the rate function is independent of the (strong) Bernstein-Markov
measure v satisfying ({Z3)).

8 Measures v of infinite mass on K C S C R?

In this section, we restrict to the setting of compact subsets of the two-dimensional sphere
S in R3, of center (0,0,1/2) and radius 1/2. Then in the following sections, we use stere-
ographic projection from S to the complex plane to derive a large deviation principle on
unbounded subsets of C. Now typically, on the complex plane, one would like to consider
locally finite measures with infinite mass like, e.g., the Lebesgue measure. We use the
stereographic projection 7" defined in (3.2)) which sends the north pole Py = (0,0,1) of S
to the point at infinity in C. On the sphere S we are thus led to consider positive measures
v, locally finite in S\ P, such that

v(Vp,) = 00, for all neighborhoods Vp, of F. (8.1)

The goal of this section is to extend the results from the previous sections to such measures.

Fix a compact subset K of S containing F;. To ensure the finiteness of the different
quantities defined previously, some condition should be satisfied linking the measure v and
the increase of the weights () near Fy. We assume that

Ja >0, /K e(z) du(z) < oo, (8.2)

where €(z) is some nonnegative continuous function that tends to 0 as « tends to Fy, and
that
Q(x) > —loge(x), asx — Fy. (8.3)

This implies in particular that Q(FPy) = co. We next state a weighted Bernstein-Walsh
lemma on the sphere.
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Theorem 8.1. Let K be a closed non log-polar subset of S and Q € A(K). Let
k
:H|:L'—xj|, x €S, (8.4)
j=1

where x1,...,x, €S and assume
lpe(2)e™*@ | < M for x € S,,\ P where P is log-polar (possibly empty).

Then
lpe(z)] < M exp(k(=U"<%(x) + F,)), x €S,

and
Ipe(2)e @ < M forxze K\ P where P is log-polar (possibly empty).

Proof. Using the stereographic map 7' defined in (3.2]), this theorem is a translation of
Theorem on C. O

We will also need a lemma related to where the LP norm of a weighted “polynomial”
lives, see [21, I11, Theorem 6.1], [5, Theorem 6.1] for polynomials on C. For w = e~%, we
set

={z c K, U'sQ(z)+ Q(z) < F,}.

Note that, as U5 (x) + Q(z) is lower semicontinuous, S is a closed subset of S which,
moreover, does not contain Fy. Indeed, U*¥.@(z) is bounded below while Q(z) tends to
infinity as x tends to Fy. Moreover, from Theorem 3.4 S,, C S.

Lemma 8.2. Let p > 0, K a non log-polar compact subset of S containing Py, @ € A(K)
and v a positive measure on K satisfying (81)-(8.3). We assume that (K, v, Q) satisfies
the weighted Bernstein-Markov property. Let N C K be a closed neighborhood of S;. Then,
there exists a constant ¢ > 0 independent of k and p such that, for all expressions py. of the

form (834),
/|pke FPdy < (14 O(e /|pke Ry,

Proof. We normalize py so that ||ppe=*<
a constant ¢ > 0 such that for k£ large,

sz = 1. It is sufficient to show that there exists

/K . |pre e Pdy < e, (8.5)
and that, for every € > 0 and k large,

/ lpre " C|Pdy > e~
K
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For the second inequality, we use the L?/?-Bernstein-Markov property (recall Remark
[A2)) which gives

P _ —p/2 —ek
s, = My '™ 2 e

Y

_ —n/2 — —n/2 _
/ pre Py > My e @ > M e
K

for k large, where we notice that p? is a real polynomial of degree 2k.

For the first inequality, we use Theorem and the fact that S, C S;. This implies
that, for x € K,

€420 ()] < [le Ryl MO < (KUK Q)

Since UM% is bounded below on K, there exists a constant by such that
—UMER(x) — Q(z) + Fy <loge(x) + by, z €K,

and, as €(z) tends to 0 as z tends to Fp, there exists a neighborhood Vp, of P such that
e%e(z)/? < 1 for x € Vp,. On the other hand, since N is a closed neighborhood of S¥ and
—UHFK.Q — () is upper semicontinuous, there exists a constant b; > 0 such that

—UtER(z) —Q(z) + F, < —by <0, z€ K\N.

From this we deduce that

/ e Py = / e Py + / e P dy
K\N Vi K\(NUVi,)

0

< / eMPOe( )P dy 4 eTFP YK\ Vp,)
Vp

0

< lePelw) 218, [ elwyan+ e\ Vi),

for k large, which implies (8.3]). O
We are now in a position to prove an extended version of Proposition 4.8

Proposition 8.3. Let K be a non log-polar compact subset of S containing Py, Q) € A(K)
and v a positive measure on K satisfying (81)-(8.3). We assume that (K, v, Q) satisfies
a weighted Bernstein-Markov property. Then the L? normalization constants Z,? defined
in (4.1) are finite and

lim (Z2)VEE=D = §Q(K).

k—00

Proof. In view of (82) and (83), it is clear that, for k large, the integral defining Z2 is
finite. The lower bound,

69(K) < liminf(Z2)VkE=D),

k—o0
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is proved as in the proof of Proposition [£.8 by making use of the weighted Bernstein-Markov
property. For the upper bound,

lim sup(Z2) /=D < §9(K), (8.6)

k—o0

we first note that the expression |V DM (Xy)|? is, in each variable, of the form e=2(=DQ|¢[2
with |¢| as in ([84]) for £ — 1. Hence, by using Lemma with p = 2 for each of the k
variables, and with N C K a closed neighborhood of S as in Lemma B2 with v(N) < oo
and Py € N, we get
Z2 = / [VDMP (Xi) Pdv(Xi) < (1+ O(e kD)) / k [V DMP (Xy)|*dv(Xy)
N
< (1+O(em M D))M(a7 (K)) D (N,
which implies (8.6]) by taking the k(k — 1)-th root and letting k go to infinity. O
The next goal is to generalize Corollary [4.171

Corollary 8.4. We assume that the conditions (81)-(8.3) are satisfied and that (K, v, Q)
satisfies the weighted Bernstein-Markov property. Then, with the notation of Corollary
[4.1]), there exist a constant ¢ > 0 and k* = k*(n) such that for all k > k*,

Prob(KE\ Ay) < (1= g ) )+ 0 ), (57)

where N C K is a closed neighborhood of S?, as in Lemmal82 with v(N) < oo and Py ¢ N.

Proof. We set By, := K*\ A, and decompose the integral in
1
Proby(K*\ Apy) = —5 / [V DMZ(Xy)|2dv(Xy)
2 JBi,

as a sum of two integrals over By, N N* and By, N (K*\ N*). Recalling the definition of
the set Ay, the first term is less than

(1-5 54 K))k(k_l)u(N)’“,

for k large. The second term is less than

=

1

~a Kk\NkWDMQ(Xk )2dv(Xy) < Z \VDM,?(Xk)Pdu(Xk),
k

where U; = K x -+ x (K \ N) x--- K and the subset K \ N is in j-th position. As already
observed in the previous proof, the expression |VD.M,§2 (Xy)|? is, in each variable, of the
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form e=2(k=1)Q|¢|? with |q| as in (84) for k — 1. Hence, applying Lemma B2 with the j-th
variable to the integral over U;, we get the upper bound

k
1
Ot Y o [ 1VDME X v X
k J

j=1
where V; = K x --- x N x --- K. Replacing N with K we finally get the upper bound
O(ke=¢*=1) which implies (81) with a different c. O

The last result that needs to be extended is the first item of Lemma [6.3] namely, that
for Q € A(K), and v satisfying (&I)—(&3),

Te(u) < e 19w, (8.8)

With the notation of Section [0, we remark that fixing @ > 0 as in ([82), we can write

[ VDM (a) Pdv(a) = / VDM (a) 25 (a),
G Gy,

where
a

Q) = Qe) = g Q@) Fa) = (o)
and @, = max(@,0). Observe that {Q} is an increasing sequence of admissible weights
that converges pointwise to @) as k tends to infinity. Also, in view of ([82) and ([B3), v is

a finite measure. Since
/ [VDMO* (a)|*dv(a) < / VDM (a)|*di(a), k> ko,
ék ék
we have

[ VDM (a)*dv(a) < [ VDM (a)|*di(a), k> k.
Gk Gk

By letting k£ go to infinity in this inequality and taking the infima over all neighborhoods
G of a measure p in M(K), we obtain

T2 (1) < T2 (1),

where, here, the subscript denotes the measure with respect to which the Vandermonde is
integrated. Since v is of finite mass, we derive from item 1. of Lemma that

J9 () < e~ Iow,

Letting ko go to infinity, and making use of

[ Qudn = [, asko -,

which follows from the monotone convergence theorem, we obtain (B.8]).

From the results above and the proofs of the previous sections, one may check that
Theorem extends to the measures v considered in this section. For future reference, we
state this as a theorem.
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Theorem 8.5. Let K be a non log-polar compact subset of the sphere S in R3, containing
Py, Q € A(K) and v a positive measure on K satisfying (81)-(83). Assume v satisfies a
(strong) Bernstein-Markov property. Then,

—=Q
log J* (1) = log J9(p) = —1%(p).
Also, the large deviation principle asserted in Theorem [II] extends.

Theorem 8.6. Let K be a compact subset of the sphere S in R3, containing Py, Q € A(K)
and v a positive measure on K satisfying (81)-(83) and (7.3). Then, the large deviation
principle from Theorem [7.1] holds.

Remark 8.7. In Theorems and 8.0 the conclusion is valid for any v satisfying a
(strong) Bernstein-Markov property and ([8J))—(83)) (with any appropriate function €(x)).
Moreover, the rate function in Theorem is independent of v.

9 The JY functionals on unbounded sets in C

We return to the case of unbounded sets in C; our goal is to use Theorems and
to derive their versions in our current setting. In the sequel we will need the Bernstein-
Markov property on C. For K a closed subset of C, v a positive measure on K, locally
finite but possibly of infinite mass in a neighborhood of infinity, and () a weakly admissible
weight as in (B]), we say that (K, v, Q) satisfies the Bernstein-Markov property if

Vpr € Pe(C),  [le  pille < Mille ™ “pill 20y, with lim sup MF =1 (9.1)
—00

As in Section [ if (@) holds true for any continuous weakly admissible weight @, we will
say that v satisfies a strong Bernstein-Markov property. Note that the polynomials pj in
(@) are polynomials with respect to the complex variable z.

Example 9.1. For () a continuous admissible weight on R, the linear Lebesgue measure
d\ provides an example of a measure with unbounded support satisfying (@.I]). Indeed,
from Theorem B.6] the sup norm of e *@p,, is attained on S,, which is compact. Hence, it
suffices to prove (@) on S,, or any compact set containing S,,, for instance a finite interval
I (see Remark [LH). For @) a continuous admissible weight on C, similar reasoning shows
that planar Lebesgue measure dm on C satisfies ([O.I]) as well (in this case one considers
the restriction of dm to a closed disk).

Next, let () be an admissible weight on K = {z € R : > 0} which is continuous except
Q(0) = 400. In this case, property (c) of Theorem 1.1.3 [21] shows that S,,, the support of
Ik.0, Will be compact and disjoint from the origin. Thus linear Lebesgue measure similarly
satisfies (@.). Specific examples are Laguerre weights Q(z) = Az — slogz with A\, s > 0
which occur in the Wishart ensemble (see [18], section 5.5); and Q(z) = c(logz)? with
¢ > 0, occurring in the Stieltjes-Wigert ensemble (see [24] and [14]).
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Remark 9.2. For future use we observe that, if v has infinite mass in a neighborhood of
infinity, then the Bernstein-Markov property (@) is automatically satisfied if we restrict,
for each k, to polynomials p, of exact degree k and the weight () satisfies a condition
slightly stronger than weak admissibility (B.]), namely

lim (Q(z) —logl|z|) = M < 0. (9.2)

z€K, |z|—o0

Indeed, for pj a monic polynomial of degree k, |e*2)p,(2)| behaves like the constant
e "M > () as z — oo, so that its sup norm on K is finite while its L?(v)-norm is infinite.
Hence we can take M; = 1 for each £ > 0.

Next, we define the (weighted) L? normalization constants for a closed subset K of C,
() weakly admissible and v a positive measure on K,

Z2(K,v) = /K k (VDM (Zy)|*dv(Zy), (9.3)

where Zy := (z1, ..., z) € K*. Then we have the correspondence
Z2(K,v) = Z(T(K), T.v)

where @ is defined in (BI0). To ensure the finiteness of Z 9(K,v) in case v has infinite mass
in a neighborhood of infinity, like, e.g., Lebesgue measure, we assume that the weight ()
and the measure v satisfy conditions that correspond via the inverse of T' to the conditions

[®2) and ([B3) on the sphere, namely,
Jda > 0, / €(2)%dr(z) < oo, (9.4)
K
and

Q(z) —log|z| > —loge(z), asz— oo, (9.5)

where €(z) is some nonnegative continuous function that tends to 0 as z tends to co. Note
that the weight @ is then admissible in the sense of [21] or 2. of Definition B] that is

Q(z) —log|z| = o0, as z— oc. (9.6)

Using the inequality
|2 = 2] < (1+ |z])(1 + [3]),
one may also check directly that the Z,?(K ,v), k large, are, indeed, finite.
In the typical example where K = R or K = C and v is Lebesgue measure, €(z) can

be chosen as |z|7¢, € > 0, and ([Q.5) becomes the following strong admissibility condition
(recall 3. of Definition B.]):

Q(z) —log|z| > €elog|z|, asz— oo.

Our next result is a version of Propositions .8 and B3 on the k(k—1)-th root asymptotic
behavior of the L? normalization constants for K a closed subset of C.
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Proposition 9.3. Let K be a nonpolar closed subset of C and v a positive measure on K.
Let Q be a weight on K which is weakly admissible if v has finite mass and such that (97)
and (9F) are satisfied for some function €(z) if v has infinite mass in a neighborhood of
infinity. We assume that (K, v, Q) satisfies the weighted Bernstein-Markov property (9.1).
Then,

lim (Z2)VEE=D = 5Q(K).

k—00
Proof. Via the inverse map of T, the statement is essentially a simple translation of Propo-
sitions [4.§ and The only observation to be made is that, for the proof of Proposition
on the sphere, it suffices that a weighted Bernstein-Markov property is satisfied with
respect to polynomials p of the particular form

p(x) = H |$ - T(Zj)Pv r €S, (97)

and that this Bernstein-Markov property corresponds to (@) via 7!. Also, in the proof
of Proposition B3] it is sufficient to use a version of Lemma which only assumes the
Bernstein-Markov property for polynomials of the form (@.7)) (and thus only holds for such
polynomials). O

Weighted J-functionals J(y) and 7Q(,u) can be defined on the closed subset K of C,
with respect to a positive measure v in K, as was done on compact subsets of R", see
Definition [6.11 Then,

Iy = JUTops),  T2(p) = T (Top),

where the J-functionals on the right-hand sides involve integrals with respect to the mea-
sure T,v. From this correspondence, and Theorems and B3 we derive the following.

Theorem 9.4. With the hypotheses of Proposition and assuming that v satisfies a
strong Bernstein-Markov property on K, we have

log J2(12) = log T (1) = —19(p).

Proof. The statement is a translation of Theorems and on the sphere. Again, we
observe that the strong Bernstein-Markov property for polynomials of the form (0.7 is
sufficient for their proofs. We also use the equality of the weighted logarithmic energies

B8) and ([B.9). O

The conclusion is valid for all v satisfying the hypotheses; in particular, the functional
JO (= J9Y = 7Q) = ¢~1? for any such v.
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10 Large deviation principle for unbounded sets in C

A large deviation principle in the spirit of Theorem [7.I] for compact subsets of C™, m > 1
has been obtained in [§] using the methods of this paper (see also [9]). Yattselev [25] has
proved an LDP associated to a specific type of weight on C; he uses Lebesgue measure
on C. The large deviation principle for strongly admissible weights ) on all of C with
Lebesgue measure can be found in the book of Hiai and Petz [I§]. There they extend the
method of Ben Arous and Guionnet [2]. Here, we will utilize the results from the previous
sections to establish a LDP in the setting of a closed set K in C, not necessarily bounded,
with a weakly admissible weight ) and an appropriate Bernstein-Markov measure. The
proof is based on a standard contraction principle in LDP theory:

Theorem 10.1 ([I3| Theorem 4.2.1]). If {P,} is a sequence of probability measures on a
Polish space X satisfying an LDP with speed {a,} and rate function Z,Y is another Polish
space and f : X — Y is a continuous map, then {Q,, :== f.P,} satisfies an LDP on'Y with
the same speed and with rate function

J(y) = inf{Z(x): x € X, f(z) = y}. (10.1)

For K a closed, possibly unbounded, subset of C, v a locally finite measure on K, and
Q a weakly admissible weight on K, we define the measure Prob, on K* as in [@3)) for K
in R" and j;, : K¥ — M(K) as in [Z1)).

The statement of the large deviation principle is as follows.

Theorem 10.2. Assume (K, v, Q) satisfies the weighted Bernstein-Markov property (91).
Ifv has finite mass, we also assume that (K, v) satisfies a strong Bernstein-Markov property
while if v has infinite mass in a neighborhood of infinity, we assume that (9-4]) and (93)
are satisfied for some function €(z). Then the sequence {0 = (ji)«(Proby)} of probability
measures on M(K) satisfies a large deviation principle with speed k* and good rate
function I := Tk o where, for p € M(K),

I(p) = log J?(pure,q) — log J(n) = I19(p) — I?(puxc @)- (10.2)

We emphasize again that, as in Theorem [ the rate function is independent of the
measure v.

Proof. We apply Theorem [I0.] to the homeomorphism f = (71),: thus to prove an LDP
in the setting of a closed set K in C, not necessarily bounded, with a weakly admissible
weight @, it suffices, via this contraction principle, to use an LDP in the setting of a
compact set T(K) in S C R? with the admissible weight (). This we have from Theorems
[C1 and .6 In case v is of infinite mass in a neighborhood of infinity, we observe that
the strong Bernstein-Markov property of (K, v) is not needed. Indeed, the corresponding
Bernstein-Markov property on T'(K) is only needed for polynomials that are Vandermonde
expressions, hence of maximal degree, and for the weights @),, appearing in Corollary
These weights are of the form —U# with pu,, € M(T(K)) and the corresponding weights
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on K satisfy (0.2) with M = —U*"(F,) < oo, so that Remark 0.2l applies. Finally, the rate

function Z (1) is good because I9(u) = I9(T,p), the energy I9 is lower semicontinuous on
the compact set M(S), and T, is a homeomorphism. O

Remark 10.3. In particular (see Example [0.1]), we have a large deviation principle on
K ={x € R: 2z > 0} with Lebesgue measure for the Laguerre weights as well as for the
weights occurring in the Stieltjes-Wigert ensembles.

11 Applications: 5 ensembles

Let K be a closed subset of C, v a positive measure on K, and () a weakly admissible
weight on K. Classical models in random matrix theory involve probability distributions
on K* of the form .
1 s
o [T 12—z e 9 dv(z), (11.1)
B,k 1<i<j<k i=1

where 5 > 0 and the normalization constant fﬁQk is

k
ng:/m [T == [ e 9 dv(z). (11.2)

1<i<j<k i=1

(We caution the reader that in [I5] and [I] the 25 is replaced by ). The probability
distribution (I1.I]) and normalization constant ng differ from the distribution in ([£3]) and

the L? normalization constant ZkQ, defined in (@3)), by the exponent  and an additional
factor [, e 722 in its integrand. One may check that all results from the previous sections
remain true, with appropriate modifications, when we consider (I1.I]) and (IT.2). Actually,
writing the products in (L) and (II.2]) as the square of a weighted Vandermonde to the
power (3, the main modification consists in replacing the weight () with the weight /5
and to use the Bernstein-Markov property in L? instead of L' as was done in Section Hl
To be precise, because of the factor k, instead of k — 1, in the exponential factors of (ITT.TI)
and (I1.2), the Bernstein-Markov property to be satisfied for a given weight @ here is

¥pk € Pr(C),  [le M|l < Mylle™ V9|12, with limsup My = 1. (11.3)

k—00

This property is slightly weaker than (@.0]) as it concerns only polynomials in P;(C) instead
of Pry1(C), but it will make a minor difference in the assumptions of the large deviation
principle because Remark no longer applies.

When v has infinite mass in a neighborhood of infinity, the conditions ([@4]) and (@.5l)
become

Ja > 0, /K e(2)"du(2) < oo, (11.4)
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and
Q(z) — Blog|z| > —loge(z), as z— oo, (11.5)
where €(z) is some nonnegative continuous function that tends to 0 as z tends to oc.
Based on the above remarks, one may check that we have the following analogue of
Proposition [0.3] concerning the asymptotics of Z

Proposition 11.1. Let K be a nonpolar closed subset of C and v a positive measure on
K. Let Q) be a weight on K such that Q/B is weakly admissible if v has finite mass and
such that (11.7) and (I1.3) are satisfied for some function €(z) if v has infinite mass in
a neighborhood of infinity. We assume that (K,v,Q /) satisfies the weighted Bernstein-
Markov property (I1.3). Then

Tim (29,)MH6°0 = (59/5(K).
—00 B,

The following large deviation principle, an analogue of Theorem [10.2] also holds true.
Theorem 11.2. Let Q/3, 5 > 0, be a weakly admissible weight on K such that (K,v,Q/S)
satisfies the weighted Bernstein-Markov property (I1.3). We assume that (K, v) satisfies a
strong Bernstein-Markov property and, in addition, if v has infinite mass in a neighborhood
of infinity, we assume that (11.7) and (I13) are satisfied for some function €(z). Then the
sequence of probability measures o, on M(K), defined so that for a Borel set G C M(K),

k
o (G z | | e v(z;),
~ 78, /G 4 (=)

k 1<z<]<k i=1

satisfies a large deviation principle with speed k* and good rate function I[?Q defined
by

Ti o(p) == 1§ (1) = 1§ (),
where

Q1) = /K /K logﬁdu@)du(t)ﬂt? /K Q)du(z) = BIP(), e M),

Proof. One checks that all arguments in the proof of Theorem go through when
considering the probability distribution (ILI]) instead of the one in (£3). In particular,
this entails verifying the analogue of Theorems and [0.4] namely that, for appropriate
assumptions on v and (), one has

=Q
log T3 (1) = log J(p) = —IF (),

where the functionals 7? and J g are derived from

18,G) = [ [ VDM @) Pavta)

in the same way as in Definition [6.1l Since Remark does not apply for the Bernstein-
Markov property (I1.3]), the strong Bernstein-Markov property is needed even if v has
infinite mass. O

1/k(k—1)
| . G CM(K),
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As an example, we take K = R, dv = d\ = Lebesgue measure on R, and () a continuous
weight such that there exists f' > [ with /" weakly admissible:
IM > —o0, liminf (Q(z) — f'log|z]) = M. (11.6)
|z] =00, zEK
Note that this implies that /5 is admissible. Also, (IT4]) and (ITH) hold true with
€(z) = |2/ The triple (R, d), Q/B) satisfies the weighted Bernstein-Markov property
since @)/ is admissible, cf., Example The measure d\ likely also satisfies a strong
Bernstein-Markov property, but, as already mentioned in the proof of Theorem [10.2], for
an LDP it is sufficient that this property is satisfied for weights which correspond via T’
to continuous weights on the sphere S of the form —U*™ where pu,, € M(T(R)) are the
measures from Corollary 5.3l Moreover, the proof of Lemma [(.2]shows that the supports of
the measures ji,, can be chosen to avoid a neighborhood (depending on m) of the north pole
P, so that the push-backward measures v, = T, i, have compact supports in C. Using
the relations ([B.7) and (B.I0), what is then needed is that d satisfies the Bernstein-Markov
property for continuous weights of the form

Q) = U (2) = 5 [ Tog(1+ [ty
where v, € M(R) has compact support. These weights are weakly admissible. Hence,
by Theorem and the continuity of @),,, the corresponding weighted polynomials attain
their sup norm on S, (where w,, = e @"), which is equal to the support of v,,, see
Lemma [5.] (or more precisely its analogue in C). Consequently, we need that d\ satisfies
the Bernstein-Markov property for continuous weights on a compact set, which we know
holds true (cf., the discussion in Example [@.T]). Thus we conclude that the large deviation
principle asserted in Theorem applies on the real line for dv = d\ and any continuous
weight @) satisfying (II.6]). We note that this includes the large deviation principle for the
law of the spectral measure of Gaussian Wigner matrices ([2], [I, Theorem 2.6.1]) as well
as the refined version for weakly confining potentials given in [15].

When K = C, dv = dm = planar Lebesgue measure, and () is a continuous weight
on C satisfying the growth condition (IT.6]), assumptions (IT4]) and (ITH) still hold true
with €(z) = |2|°#". Moreover, the measure dm satisfies the required Bernstein-Markov
properties. Hence, Theorem applies when K = C, dv = dm, and @ is a continuous

weight satisfying (I1.6]).
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