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A new nonlinear representation of multiresolution decompositions and new thresholding adapted to the presence of discontinuities are presented and analyzed. They are based on a nonlinear modification of the multiresolution details coming from an initial (linear or nonlinear) scheme and on a data dependent thresholding. Stability results are derived. Numerical advantages are demonstrated on various numerical experiments.

Introduction

This paper is devoted to the analysis of a new nonlinear multiresolution representation scheme and associated thresholding for discrete data. Given f L a data where L stands for a resolution level, a multiresolution representation of f L is any sequence of type {f 0 , d 0 , . . . , d L-1 } where f j is an approximation of f L at resolution j < L and d j stands for the details required to recover f j+1 from f j . The couple {f j , d j } contains the same information as f j+1 and therefore the same is true for {f 0 , d 0 , . . . , d L-1 } and f L .

Inter-resolution operators are named decimation (from fine, i.e. large value of j, to coarse, i.e. small value of j) and prediction (from coarse to fine). The reconstruction and discretization operators act between the continuous level and any discrete level (see [START_REF] Aràndiga | Nonlinear Multi-scale Decomposition: The Approach of A.Harten[END_REF], [START_REF] Harten | Multiresolution representation of data II[END_REF] for more details).

Linear multiresolution representations of data are multiresolutions involving linear inter-resolution operators. It turns out that the efficiency of linear multiresolution decompositions, for instance for image compression, is generally limited by the presence of discontinuities or edges, since the detail coefficients d j close to the discontinuities remain significant even when j → +∞. In wavelet multiresolution for instance, the numerically significant detail coefficients d j k are mainly those for which the corresponding wavelet support is intersected by discontinuities.

Different steps towards adaption near singularities has been proposed involving nonlinear prediction operators [START_REF] Amat | Data compression with ENO schemes: A case study[END_REF], [START_REF] Amat | Analysis of a new nonlinear subdivision scheme. Applications in image processing[END_REF], [START_REF] Amat | On the stability of the PPH nonlinear multiresolution[END_REF], [START_REF] Aràndiga | Nonlinear Multi-scale Decomposition: The Approach of A.Harten[END_REF], [START_REF] Cohen | Theoretical, applied and computational aspects of nonlinear approximation[END_REF], [START_REF] Cohen | Quasilinear subdivision schemes with applications to ENO interpolation[END_REF], [START_REF] Daubechies | Normal multiresolution approximation of curves[END_REF], [START_REF] Harizanov | Stability of nonlinear subdivision and multiscale transforms[END_REF], [START_REF] Matei | Smoothness characterization and stability in nonlinear multiscale framework: theoretical results[END_REF], [START_REF] Oswald | Smoothness of Nonlinear Median-Interpolation Subdivision[END_REF].

The aim of this paper is to describe and analyze a new nonlinear representation for multiresolution transforms and new thresholding strategy that incorporate the presence of discontinuities. It is based on a nonlinear modification of the multiresolution details generated by an initial scheme and on a data dependent thresholding. We present several results related to the stability of these multiresolution schemes. Numerical properties are demonstrated on various experiments.

Our strategy is related to the notion of normal approximation for curves or surfaces that can be found in [START_REF] Daubechies | Normal multiresolution approximation of curves[END_REF], [START_REF] Guskov | Normal meshes[END_REF]. A multiresolution approximation of a curve or surface is normal if all the detail vectors align with a locally defined normal direction which only depends on the coarser levels. Because they depend on the computation of a normal, these approximations lead to nonlinear representations. When one uses normal multiresolution only a single scalar coefficient needs to be stored instead of the standard 2-D or 3-D vector; memory saving is then performed. It turns out to be that the direction of the normal provides also some information on the signal, that can be used for better compression in the presence of discontinuities.

The paper is organized as follows: we recall in section 2 the discrete pointvalue framework for multiresolution and its relation with subdivision schemes. Our algorithm is then described and analyzed theoretically in sections 3, 4 and 7. Numerical performances are presented in section 8 and finally some conclusions are provided in section 9.

The interpolatory multiresolution setting

Let us consider a set of nested grids in [0, 1]:

X j = {x j k } J j k=0 , x j k = kh j , h j = 2 -j /J 0 , J j = 2 j J 0 ,
where J 0 is some fixed integer and the point-value discretization operator

D j : C([0, 1]) → V j f → f j = (f j k ) J j k=0 = (f (x j k )) J j k=0 (1) 
where V j is the space of real sequences of length J j + 1 and C([0, 1]) the set of continuous functions on [0, 1]. A reconstruction operator R j associated to this discretization is any right inverse of D j on V j which means that

(R j f j )(x j k ) = f j k = f (x j k ). (2) 
The operator D j+1 R j provides a subdivision scheme. Moreover, since D j+1 R j f j = f j+1 for any function f , details should be added to recover f j+1 from f j and multiresolution transforms are then available (see [START_REF] Aràndiga | Nonlinear Multi-scale Decomposition: The Approach of A.Harten[END_REF] for details).

Data independent Lagrange interpolation

Given two integers r ≥ 1, r ≥ s > 0, data independent Lagrange interpolation can be defined using a fixed set of indices (a stencil) S = S(r, s) = {-s, -s + 1, . . . , -s + r}, r ≥ s > 0, r ≥ 1, such that the predicted value at scale j + 1 and position x j+1 2k+1 is the value at the same position of I j (x, f j ), the Lagrange polynomial of degree r interpolating the set of values {f j k+m , m ∈ S} at positions {x j k+m , m ∈ S}. Linearity and reproduction of polynomial of degree less or equal to r implies that for any function f ∈ C r+1 ,

f j = f (x j k ) ⇒ I k (x j+1 2k+1 , f j ) = f (x j+1 2k+1 ) + O(h j ) r+1 .
The prediction procedure for smooth data is then said to be of accuracy p = r + 1.

The Lagrange interpolatory techniques lose much of their accuracy in the presence of isolated singularities. Indeed, if there exists a discontinuity

point of f in [x j k-1 , x j k ],
it is easy to check that any divided difference 1 based on a set of s + 1 points containing

{x j k-1 , x j k } verifies f [x j l , . . . , x j l+s ] = O(∆ j k )/h s j , where ∆ j k = f j k -f j k-1 .
Therefore, for any polynomial piece I l (x) which stencil S contains both x j k-1 and x j k (that is, the stencil crosses the singularity) the error becomes

f (x) = I l (x) + O([f ]),
where [f ] stands for the jump of f at the discontinuity. In other words, the accuracy of the prediction on the corresponding interval is reduced to zero. More details can be found in [START_REF] Aràndiga | Nonlinear Multi-scale Decomposition: The Approach of A.Harten[END_REF].

A new multiresolution representation and associated thresholding

In this section we introduce a new nonlinear representation for multiresolution. It is based on a nonlinear modification of the multiresolution details coming from an initial scheme in order to obtain a specific adaptation to the presence of discontinuities.

We first focus our attention on the simplest case: the two-point interpolatory scheme S 1 that reads:

(S 1 f j ) 2k = f j k , (S 1 f j ) 2k+1 = f j k +f j k+1 2 .

Adapting the two-point interpolatory multiresolution scheme

The encoding associated to the two-point interpolatory multiresolution scheme S 1 , is given by

f j k = f j+1 2k , dlin j k = f j+1 2k+1 - f j k + f j k+1 2 , 1 The divided differences are defined by induction f [x j k-1 , x j k ] := f (x j k )-f (x j k-1 ) x j k -x j k-1 and f [x j k-m , . . . , x j k-m+n ] := f [x j k-m+1 ,...,x j k-m+n ]-f [x j k-m ,...,x j k-m+n-1 ] x j k-m+n -x j k-m
and the decoding by

f j+1 2k = f j k , f j+1 2k+1 = f j k + f j k+1 2 + dlin j k .
As we have mentioned in the previous section, in smooth regions, using the properties of Lagrange's interpolation, the details verify

dlin j k = O(h 2 j ). (3) 
However, in presence of discontinuities, the accuracy is lost and the details verify

|dlin j k | = 1 2 |∆ j k | + O(h j ). ( 4 
)
Our aim is to reduce the size of the details in presence of discontinuities. We propose to consider the projection of the detail on the normal to the line [(f j k , x j k ), (f j k+1 , x j k+1 )], see Figure 1. After basic algebraic manipulation we obtain that the normal projection of the detail dlin j k is:

d j k = dlin j k 2 j 4 -j + (∆ j k ) 2 . ( 5 
)
Pythagorean theorem gives

|d j k | ≤ |dlin j k |. Moreover, close to isolated discontinuities, d j k = O(2 -j
). The nonlinear multiresolution decomposition that we then propose reads

f j k = f j+1 2k , d j k = (f j+1 2k+1 - f j k +f j k+1 2 ) 2 j 4 -j + (∆ j k ) 2
, and the reconstruction

f j+1 2k = f j k , f j+1 2k+1 = f j k + f j k+1 2 + d j k • 2 j 4 -j + (∆ j k ) 2 .
Figure 1: A nonlinear modification of the details using a projection strategy However, this reduction of the detail size cannot be exploited, without adaption, by a standard tresholding procedure. Indeed, such a thresholding τ j 0 ǫ reads: Given j 0 ≤ L -1 and ǫ j > 0, j 0 ≤ j ≤ L -1 with L-1 j 0 ǫ j = ǫ, the thresholding operator τ j 0 ǫ is defined as:

For any j 0 ≤ j ≤ L -1, if |d j k | ≤ ǫ j then dj k = τ j 0 ǫ (d j k ) = 0, otherwise dj k = τ j 0 ǫ (d j k ) = d j k .
We propose the following thresholding procedure (see Figure 2)that involves both d j k and dlin j k (that can be recovered from f j and d j k ):

For any j 0 ≤ j ≤ L -1:

If |dlin j k | ≤ ǫ j then dj k = τ j 0 ǫ (d j k ) = 0. If |dlin j k | > ǫ j and |d j k | ≤ ǫ j then        dk j = τ j 0 ǫ (d j k ) = 1 2 ∆ j k 2 j 4 -j +(∆ j k ) 2 if d j k ≥ 0, dk j = τ j 0 ǫ (d j k ) = - 1 2 ∆ j k 2 j 4 -j +(∆ j k ) 2 if d j k < 0. If |dlin j k | > ǫ j and |d j k | > ǫ j then dj k = τ j 0 ǫ (d j k ) = d j k .
Note that when |dlin j k | > ǫ j and |d j k | ≤ ǫ j it is only required to store the sign of d j k and, moreover,

| dk j | ≤ O(2 -(j+1)
).

Remark 1

The above procedure takes into account discontinuities at order 0 since it approximates jumps of a piecewise constant function. Approximation at order 1, compatible with the scheme S 1 reads (see Figure 3): For any j 0 ≤ j ≤ L -1:

If |dlin j k | ≤ ǫ j then dj k = τ j 0 ǫ (d j k ) = 0. If |dlin j k | > ǫ j and |d j k | ≤ ǫ j then        dk j = τ j 0 ǫ (d j k ) = 1 2 (∆ j k -∆ j k+1 ) 2 j 4 -j +(∆ j k ) 2 if d j k ≥ 0, dk j = τ j 0 ǫ (d j k ) = - 1 2 (∆ j k -∆ j k-1 ) 2 j 4 -j +(∆ j k ) 2 if d j k < 0. If |dlin j k | > ǫ j and |d j k | > ǫ j then dj k = τ j 0 ǫ (d j k ) = d j k .

Stability analysis

At this stage, since d j k goes to zero in continuity regions (∆ j k and dlin j k go to zero at least as 2 -j ) as well as close to discontinuities, it is clear that the proposed thresholding reduces significantly the number of non zero details. A crucial point is to establish stability, i.e., that the sequence reconstructed from the threshold details lives at a distance from the original sequence controlled by the threshold value.

Considering {f L k } k∈Z , j 0 ≤ L -1 and ǫ = L-1 j 0 ǫ j > 0, we call { f L k } k∈Z the sequence obtained after decomposition, τ j 0 ǫ -thresholding and reconstruction, starting from the sequence {f L k } k∈Z . We then have the following result:

Theorem 1 If the sequence {f L k } k∈Z comes from the sampling of a smooth function but on a finite number of isolated discontinuity points, then, there exists a scale J 0 such that for any thresholding τ j 0 ǫ , J 0 ≤ j 0 , with ǫ j > 

O(2 -(j+1) ), ||f L -f L || ∞ ≤ L j=j 0 ǫ j := ǫ. ( 6 
)
Proof:

The proof is detailed for the order 0 procedure but can be adapted to order 1.

We analyze

|f j+1 2k+1 -f j+1 2k+1 | since |f j+1 2k -f j+1 2k | = |f j k -f j k |.
Two cases have to be considered: The first case coincides with the linear case where the stability bounds are known [START_REF] Amat | On specific stability bounds for linear multiresolution schemes based on piecewise polynomial Lagrange interpolation[END_REF]. We then focus our analysis on the second case.

f j+1 2k+1 = f j k + f j k+1 2 , or f j+1 2k+1 = f j k + f j k+1 2 + 2 j (( ∆j k ) 2 + 4 -j ) 1/2 dj k , with |dlin j k | > ǫ j , | dj k | < ǫ j .
We write

|f j+1 2k+1 -f j+1 2k+1 | = |( f j k + f j k+1 2 - f j k + f j k+1 2 ) +((2 j ((∆ j k ) 2 + 4 -j ) 1/2 d j k ) -(2 j (( ∆j k ) 2 + 4 -j ) 1/2 dj k ))| ≤ |( f j k + f j k+1 2 - f j k + f j k+1 2 ) +((2 j ((∆ j k ) 2 + 4 -j ) 1/2 dj k ) -(2 j (( ∆j k ) 2 + 4 -j ) 1/2 dj k ))| +|((2 j ((∆ j k ) 2 + 4 -j ) 1/2 d j k ) -(2 j ((∆ j k ) 2 + 4 -j ) 1/2 dj k ))|
, and analyze the different right hand side terms.

• Bound for the first two terms

The function

F (x) := 2 j (x 2 + 4 -j ) 1/2 verifies | dF (x) dx | = |2 j x √ x 2 + 4 -j | ≤ 2 j , then |(2 j ((∆ j k ) 2 + 4 -j ) 1/2 dj k ) -(2 j (( ∆j k ) 2 + 4 -j ) 1/2 dj k )| ≤ C|∆ j k -∆j k | ≤ C|(f j k+1 -f j k ) -( f j k+1 -f j k )| ≤ C|(f j k+1 -f j k+1 ) -(f j k -f j k )|,
where

C ∈ R + verifies |C| ≤ 2 j | dj k | ≤ 1 2 . Since C ≤ 1/2 it
follows that the first and second terms are bounded by

( 1 2 + C)||f j -f j || ∞ + ( 1 2 -C)||f j -f j || ∞ = ||f j -f j || ∞ .
• Bound for the third term

Let us assume, without loos of generality, that

d j k > 0, then dj k = ∆ j k 2 j+1 4 -j +(∆ j k ) 2
and the third term coincides with dlin j k -

∆ j k 2 . If k corresponds to a smooth region then dlin j k = O(2 -(j+1) ) and ∆ j k = O(2 -(j+1) ) while in discontinuity regions dlin j k - ∆ j k 2 = O(2 -(j+1)
). In both cases the third term is less than ǫ j from a given scale J 0 .

Combining the three bounds and iterating, we finally get

||f L -f L || ∞ ≤ L j=J 0 ǫ j = ǫ,
that concludes the proof.

Generalization to centered Lagrange interpolation of degree r

A generalization of the previous results can be performed for centered Lagrange interpolation scheme. There, r = 2p + 1 and s = p -1. Using fundamental properties of linear subdivision schemes [START_REF] Dyn | Subdivision schemes in computer-aided geometric design[END_REF] one get that

(S r f j ) 2k+1 = (S 1 f j ) 2k+1 + (S r,1 ∆ j ) 2k+1 ,
where S r,1 is a scheme for the differences ∆ j . Moreover, if r is odd and therefore the scheme S r centered, the expression of (S r,1 ∆ j ) 2k+1 does not contains the term ∆ j k . Since in smooth regions ∆ j l = O(2 -j ). This implies that, for any value k such that [x j k , x j k+1 ] contains a single isolated singularity

(S r f j ) 2k+1 = (S 1 f j ) 2k+1 + O(2 -j ).
Therefore, for such values of k

(S r f j ) 2k+1 = f j k + f j k+1 2 + O(2 -j ). (7) 
The implications of ( 7) are twofold. First the scheme S r behaves, in the singularity interval as a perturbation of the two point scheme S 1 and therefore the nonlinear detail constructed following ( 5) is, up to a perturbation, a normal projection. Second, the stability analysis can be derived similarly, transposing

f j k +f j k+1 2
by (S r f j-1 ) 2k+1 .

6 Generalization to the nonlinear scheme PPH

Up to now, we have concentrated our attention to linear schemes that are known to generate large coefficients close to discontinuities. Nonlinear schemes have been specifically designed to circumvent this drawback. An archetype for a large class of nonlinear schemes is the scheme S P P H that we recall briefly [START_REF] Amat | Analysis of a new nonlinear subdivision scheme. Applications in image processing[END_REF].

Introducing the second order differences Df k j = f j k+1 -2f j k + f j k-1 , the interpolatory PPH reconstruction is defined as

(S P P H f j ) 2k = f j k (S P P H f j ) 2k+1 = f j k +f j k+1 2 -1 8 H(Df j k+1 , Df j k ), (8) 
where H is given by: (x, y) ∈ IR 2 → H(x, y) := xy x + y (sgn(xy) + 1),

where sgn(x) = 1 if x ≥ 0 and sgn(x) = -1 if x < 0.

The function H plays indeed a key role. In fact, S P P H has been obtained substituting the arithmetic mean by the function H in the expression of the S 3 centered Lagrange interpolating scheme. Even if the function H satisfies different properties that lead to a competitive scheme, it appears that when Df j k+1 Df j k ≤ 0 S P P H coincides with the scheme S 1 . Moreover, this situation occurs in the interval crossing a discontinuity.

A nonlinear modification of S P P H therefore consists, following (5) in substituting (d P P H ) j k by

d j k = (d P P H ) j k 2 j 4 -j + (∆ j k ) 2 . ( 10 
)
7 Stability via an error-control strategy

Error-control algorithms have been developed in [START_REF] Amat | Tensor product multiresolution analysis with error control for compact image representation[END_REF]. They aim to construct a truncation procedure that ensures a prescribed accuracy. They are defined as a modification of classical truncation algorithms that allows to keep track of the cumulative error.

They can be adapted to the above defined truncation procedure. As it will be shown, they lead to a stability result for the nonlinear/error control truncation, without any hypotheses on the initial sequence or the threshold.

The modified encoding procedure reads:

Algorithm 1 for j = L -1, . . . , 0 for k = 1, . . . , J j-1 f j k = f j+1 2k end end Set f 0 = f 0 for j = 0, . . . , L -1 f j 0 = f j 0 for k = 1, . . . , J j-1 d j k = (f j 2k+1 - f j k + f j k+1 2 )(2 j 4 -j + ( ∆j k ) 2 ) -1 dj = τ j 0 ǫ (d j k ) end for k = 1, . . . , J j-1 f j+1 2k-1 = f j k + f j k+1 2 + 2 j 4 -j + ( ∆j k ) 2 dj k f j+1 2k = f j k end end f L ⇒ {f 0 , d1 , . . . , dL }.
Given a tolerance parameter T OL, we consider the following truncation procedure

dj k :=          2 -(j+1) sgn(d j k ) if 2 j 4 -j + ( f j k -f j k+1 ) 2 ||d j k | -2 -(j+1) | < T OL, 0 if 2 j 4 -j + ( f j k -f j k+1 ) 2 |d j k | < T OL, d k j otherwise.
(11) Following the numerical results and commentaries of the previous section, taking an adequate parameter T OL, a high compression is expected.

Moreover, we have ensured stability properties.

Theorem 2 Given a discrete sequence f L and a tolerance level T OL, then the sequence f L satisfies

||f L -f L || p ≤ T OL (12) 
for p = ∞, 1 and 2. Thus, the modified algorithm for the interpolatory case is stable.

Proof:

From the definition of the error-control algorithm we obtain

f j+1 2k -f j+1 2k = f j k -f j k , f j+1 2k-1 -f j+1 2k-1 = f j+1 2k-1 - f j k + f j k+1 2 -2 j 4 -j + ( ∆j k ) 2 dj k = 2 j 4 -j + ( ∆j k ) 2 (d j k -dj k ).
Taking norms and using the definition of the truncation procedure the proof is completed.

Numerical experiments

In this section some numerical experiments are presented. We perform a comparison between the classical implementation and our nonlinear strategy. The evaluated error is the l 2 error between the initial data and the reconstructed one after compression. We call nnz the number of non zero coefficients after thresholding.

1. We start with the sampling of a smooth function f (x) = 8 sin(8 • π • x),

x ∈ [0, 1].

We fix the error after decoding and compute the compression. Both schemes give similar results (see Table 1 In this case, we consider a full-compression and compute the error.

Full-compression means for us that 1) For the linear (two-points) scheme we put all the details equal to zero.

2) For our nonlinear multiresolution we put all the details smaller than 2 -(j+1) equal to zero and the others equal to

dj k = f j k -f j k+1 2 j+1 ((∆ j k ) 2 + 4 -j ) 1/2 (≈ 1 2 j+1 ).
that is, our data dependent thresholding. Note that in both cases, nnz = 2 j 0 .

Reconstructed signals are plotted on Figure 4 while errors are gathered in Table 2. Efficiency of the nonlinear approach is quite visible.

Nonlinear Linear (Two-points) Error 0.33 6.91

Table 2: Non smooth data, L = 10, j 0 = 7

Conclusions

In this paper, a new multiresolution framework has been presented involving a nonlinear evaluation of details and a nonlinear truncation. The corre- 
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 2 Figure 2: Nonlinear truncation order 0

Figure 3 :

 3 Figure 3: Nonlinear truncation order 1

Figure 4 :

 4 Figure 4: Non linear (left) and linear (right) reconstructions after fullcompression

Table 1 :

 1 ). Smooth data, L = 8, j 0 = 5 2. Next, we consider the sampling of the following piecewise smooth function: f (x) = 8 sin(8• π • x), x ∈ [0, 1/2] and f (x) = 8 cos(8 • π • x), x ∈ (1/2, 1].

		Nonlinear Linear (two-points)
	Error	0.03	0.03
	nnz	47	43
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