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Abstract

We establish an upper estimate for the small eigenvalues of the twisted Dirac operator on Kähler
submanifolds in Kähler manifolds carrying Kählerian Killing spinors. We then compute the spectrum
of the twisted Dirac operator of the canonical embedding CP d → CP n in order to test the sharpness
of the upper bounds.

1 Introduction

One of the basic tools to get upper bounds for the eigenvalues of the twisted Dirac operator on spin
submanifolds is the min-max principle. The idea consists in computing in terms of geometric quantities
the so-called Rayleigh-quotient applied to some test section coming from the ambient manifold. In [1], C.
Bär established with the help of the min-max principle upper eigenvalue estimates for submanifolds in
Rn+1, Sn+1 and Hn+1, estimate which is sharp in the first two cases. In the same spirit, the first-named
author studied in his PhD thesis [6] different situations where the ambient manifold admits natural test-
spinors carrying geometric information.

In this paper, we consider a closed spin Kähler submanifold M of a Kähler spin manifold M̃ and derive
upper bounds for the small eigenvalues of the corresponding twisted Dirac operator in case M̃ carries
so-called Kählerian Killing spinors (see (2.3) for a definition). Interestingly enough, the upper bound
turns out to depend only on the complex dimension of M (Theorem 2.2). Whether this estimate is sharp
is a much more involved question. A first approach consists in finding lower bounds for the spectrum
and to compare them with the upper ones. In Section 3, we prove a Kirchberg-type lower bound for
the eigenvalues of any twisted Dirac operator on a closed Kähler manifold (Corollary 3.2). Here the cur-
vature of the twisting bundle has to be involved. Even for the canonical embedding CP d → CPn, the
presence of that normal curvature does not allow to state the equality between the lower bound and the
upper one, see Proposition 3.3. The next approach consists in computing explicitly the spectrum of the
twisted Dirac operator, at least for particular embeddings. In Section 4, we determine the eigenvalues
(with multiplicities) of the twisted Dirac operator of the canonical embedding CP d → CPn, using earlier
results by M. Ben Halima [3]. We first remark that the spinor bundle of the normal bundle splits into a
direct sum of powers of the tautological bundle (Corollary 4.4). We deduce the spectrum of the twisted
Dirac operator in Theorem 4.8, where we also include the multiplicities with the help of Weyl’s character
formula. We conclude that, for d < n+1

2 , the twisted Dirac operator admits 0 as a lowest eigenvalue and
(n+ 1)(2d+ 1− n) for d ≥ n+1

2 (see Proposition 4.9). This implies that, for d = 1, the upper estimate is
optimal for n = 3, 5, 7, however it is no more optimal for n ≥ 9.

This work is partially based on and extends the first-named author’s PhD thesis [6, Ch. 4].
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2 Upper bounds for the submanifold Dirac operator of a Kähler
submanifold

In this section, we prove a priori upper bounds for the smallest eigenvalues of some twisted Dirac operator
on complex submanifolds in Kähler manifolds admitting so-called Kählerian Killing spinors.

LetM2d be an immersed almost-complex submanifold in a Kähler manifold (M̃2n, g, J) (“almost-complex”
means that J(TM) = TM). Then for the induced metric and almost-complex structure the manifold
(M2d, g, J) is Kähler, in particular its immersion is minimal in (M̃2n, g, J). We denote by Ω̃, Ω and ΩN
the Kähler form of (M̃2n, g, J), (M2d, g, J) and of the normal bundle NM −→ M of the immersion
respectively (in our convention, Ω(X,Y ) = g(J(X), Y ) for all X,Y ).
Assuming both (M2d, g, J) and (M̃2n, g, J) to be spin, the bundle NM carries an induced spin structure
such that the restricted (complex) spinor bundle ΣM̃|M of M̃ can be identified with ΣM ⊗ ΣN , where
ΣM and ΣN are the spinor bundles of M and NM respectively. Denote by “ ·

M
”, “ ·

N
” and “·”the Clifford

multiplications of M , NM and M̃ respectively. By a suitable choice of invariant Hermitian inner product
〈· , ·〉 (with associated norm | · |) on ΣM̃ the identification above can be made unitary. Moreover, it can
be assumed to respect the following rules: given any X ∈ TM and ν ∈ NM , one has∣∣∣∣∣ X · ϕ = {X ·

M
⊗(IdΣ+N − IdΣ−N )}ϕ

ν · ϕ = (Id⊗ ν ·
N

)ϕ, (2.1)

for all ϕ ∈ ΣM̃|M = ΣM ⊗ΣN . Here ΣN = Σ+N ⊕Σ−N stands for the orthogonal and parallel splitting
induced by the complex volume form, see e.g. [6, Sec. 1.2.1] or [9, Sec. 2.1]. The following Gauss-type
formula holds for the spinorial Levi-Civita connections ∇̃ and ∇ := ∇ΣM⊗ΣN on ΣM̃ and ΣM ⊗ ΣN
respectively: for all X ∈ TM and ϕ ∈ Γ(ΣM̃|M ),

∇̃Xϕ = ∇Xϕ+
1
2

2d∑
j=1

ej · II(X, ej) · ϕ, (2.2)

where (ej)1≤j≤2d is any local orthonormal basis of TM and II the second fundamental form of the im-
mersion.

Recall that, for a complex constant α, an α-Kählerian Killing spinor on a Kähler spin manifold (M̃2n, g, J)
is a pair (ψ, φ) of spinors satisfying, for all X ∈ TM̃ ,∣∣∣∣∣ ∇̃Xψ = −αp−(X) · φ

∇̃Xφ = −αp+(X) · ψ,
(2.3)

where p±(X) := 1
2 (X ∓ iJ(X)). The existence of a non-zero α-Kählerian Killing spinor on (M̃2n, g, J)

imposes the metric to be Einstein with scalar curvature S̃ = 4n(n+ 1)α2 (in particular α must be either
real or purely imaginary), the complex dimension n of M̃ to be odd and the spinors ψ, φ to lie in particular
eigenspaces of the Clifford action of Ω̃, namely∣∣∣∣∣ Ω̃ · ψ = −iψ

Ω̃ · φ = iφ.
(2.4)

Actually a Kähler spin manifold carries a non-zero α-Kählerian Killing spinor with α ∈ R× if and only if
it is the twistor-space of a quaternionic-Kähler manifold with positive scalar curvature (in particular it
must be CPn if n ≡ 1 (4)), see [12]. For purely imaginary α only partial results are known, the prominent
examples being the complex hyperbolic space [10, Thm. 13] as well as doubly-warped products associated
to some circle bundles over hyperkähler manifolds [8].
We need the following lemma [6, Lemme 4.4]:
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Lemma 2.1 Let (M2d, g, J) be a Kähler spin submanifold of a Kähler spin manifold (M̃2n, g, J) and
assume the existence of an α-Kählerian Killing spinor (ψ, φ) on (M̃2n, g, J). Then

(DΣN
M )2(ψ + φ) = (d+ 1)2α2(ψ + φ) + α2ΩN · ΩN · (ψ + φ). (2.5)

Proof: Fix a local orthonormal basis (ej)1≤j≤2n of TM̃|M with ej ∈ TM for all 1 ≤ j ≤ 2d and ej ∈ NM
for all 2d+ 1 ≤ j ≤ 2n. Introduce the auxiliary Dirac-type operator D̂ :=

∑2d
j=1 ej · ∇̃ej

: Γ(ΣM̃|M ) −→
Γ(ΣM̃|M ). As a consequence of the Gauss-type formula (2.2), the operators D̂2 and (DΣN

M )2 are related
by [6, Lemme 4.1]

D̂2ϕ =
(
DΣN
M

)2
ϕ− d2|H|2ϕ− d

2d∑
j=1

ej · ∇Nej
H · ϕ,

where H := 1
2d tr(II) is the mean curvature vector field of the immersion. In particular D̂2 and (DΣN

M )2

coincide as soon as the mean curvature vector field of the immersion vanishes, condition which is fulfilled
here. Using

∑2n
j=1 p+(ej) · p−(ej) = iΩ̃− n and

∑2n
j=1 p−(ej) · p+(ej) = −iΩ̃− n, we compute:

D̂ψ =
2d∑
j=1

ej · ∇̃ej
ψ

(2.3)
= −α

2d∑
j=1

ej · p−(ej) · φ

= −α
2d∑
j=1

p+(ej) · p−(ej) · φ

= −α(iΩ · −d)φ

= −α(iΩ̃ · −d)φ+ iαΩN · φ
(2.4)
= (d+ 1)αφ+ iαΩN · φ.

Similarly,

D̂φ =
2d∑
j=1

ej · ∇̃ej
φ

(2.3)
= −α

2d∑
j=1

ej · p+(ej) · ψ

= −α
2d∑
j=1

p−(ej) · p+(ej) · ψ

= −α(−iΩ · −d)ψ

= α(iΩ̃ ·+d)ψ − iαΩN · ψ
(2.4)
= (d+ 1)αψ − iαΩN · ψ,

so that
D̂(ψ + φ) = (d+ 1)α(ψ + φ) + iαΩN · (φ− ψ).

To compute D̂2(ψ + φ) we need the commutator of ΩN · with D̂. For any ϕ ∈ Γ(ΣM̃|M ), one has

D̂(ΩN · ϕ) =
2d∑
j=1

ej · ∇̃ej
(ΩN · ϕ)

=
2d∑
j=1

ej · ∇̃ej ΩN · ϕ+ ej · ΩN · ∇̃ejϕ
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=
2d∑
j=1

ΩN · ej · ∇̃ejϕ+ ej · ∇̃ej ΩN · ϕ

= ΩN · D̂ϕ+
2d∑
j=1

ej · ∇̃ej
ΩN · ϕ,

with, for all X,Y ∈ TM and ν ∈ NM ,

(∇̃XΩN )(Y, ν) = −ΩN (∇̃XY, ν)

= −g(J(∇̃XY ), ν)
= −g(J(II(X,Y )), ν),

so that

2d∑
j=1

ej · ∇̃ej ΩN · ϕ = −
2d∑

j,k=1

2n∑
l=2d+1

g(J(II(ej , ek)), el)ej · ek · el · ϕ

= −
2d∑

j,k=1

ej · ek · J(II(ej , ek)) · ϕ

=
2d∑
j=1

J(II(ej , ej)) · ϕ

= 0,

since the immersion is minimal. Hence D̂(ΩN · ϕ) = ΩN · D̂ϕ and we deduce that

D̂2(ψ + φ) = (d+ 1)αD̂(ψ + φ) + iαD̂(ΩN · (φ− ψ))

= (d+ 1)2α2(ψ + φ) + i(d+ 1)α2ΩN · (φ− ψ) + iαΩN · D̂(φ− ψ)
= (d+ 1)2α2(ψ + φ) + i(d+ 1)α2ΩN · (φ− ψ) + iαΩN · ((d+ 1)α(ψ − φ)− iαΩN · (ψ + φ))
= (d+ 1)2α2(ψ + φ) + α2ΩN · ΩN · (ψ + φ),

which concludes the proof. �

Next we formulate the main theorem of this section. Its proof requires some further notations. Given any
rank-2k-Hermitian spin bundle E −→ M with metric connection preserving the complex structure, the
Clifford action of the Kähler form ΩE of E splits the spinor bundle ΣE of E into the orthogonal and
parallel sum

ΣE =
k⊕
r=0

ΣrE, (2.6)

where ΣrE := Ker(ΩE ·−i(2r−k)Id) is a subbundle of complex rank
(
k
r

)
. Moreover, given any V ∈ E,

one has p±(V ) · ΣrE ⊂ Σr±1E.

Theorem 2.2 (see [6, Thm. 4.2]) Let (M2d, g, J) be a closed Kähler spin submanifold of a Kähler
spin manifold (M̃2n, g, J) and consider the induced spin structure on the normal bundle. Assume the
existence of a complex µ-dimensional space of non-zero α-Kählerian Killing spinor on (M̃2n, g, J) for
some α ∈ R×. Then there are µ eigenvalues λ of (DΣN

M )2 satisfying

λ ≤

 (d+ 1)2α2 if d is odd

d(d+ 2)α2 if d is even.
(2.7)

If moreover (2.7) is an equality for the smallest eigenvalue λ and some odd d, then
∑2d
j=1 ej ·II(X, ej)·ψ =∑2d

j=1 ej · II(X, ej) · φ = 0.

4



Proof: Let (ψ, φ) be a non-zero α-Kählerian Killing spinor on (M̃2n, g, J). We evaluate the Rayleigh-

quotient
R

M
〈(DΣN

M )2(ψ+φ),ψ+φ〉vgR
M
〈ψ+φ,ψ+φ〉vg

and apply the min-max principle. It can be deduced from Lemma 2.1
that

〈(DΣN
M )2(ψ + φ), ψ + φ〉 = (d+ 1)2α2|ψ + φ|2 + α2〈ΩN · ΩN · (ψ + φ), ψ + φ〉

= (d+ 1)2α2|ψ + φ|2 − α2|ΩN · (ψ + φ)|2.

Using (2.6) for E = NM we observe that |ΩN · (ψ+ φ)| ≥ |ψ+ φ| if n− d is odd (i.e., if d is even) and is
nonnegative otherwise. The inequality follows.
If d is odd and (2.7) is an equality for the smallest eigenvalue, then (DΣN

M )2(ψ + φ) = (d+ 1)2α2(ψ + φ)
and ΩN · (ψ+φ) = 0. Since Ω̃ = Ω⊕ΩN one has ΣrM̃|M =

⊕r
s=0 ΣsM ⊗Σr−sM (where each component

vanishes as soon as the index exceeds its allowed bounds), so that ψ ∈ Γ(Σ d−1
2
M ⊗ Σ n−d

2
N) and φ ∈

Γ(Σ d+1
2
M ⊗ Σ n−d

2
N). Coming back to the Gauss-type equation (2.2), one obtains∣∣∣∣∣ ∇Xψ = −αp−(X) · φ− 1

2

∑2d
j=1 ej · II(X, ej) · ψ

∇Xφ = −αp+(X) · ψ − 1
2

∑2d
j=1 ej · II(X, ej) · φ

for all X ∈ TM . Looking more precisely at the components of each side of those identities, one notices
that, pointwise, ∇Xψ ∈ Σ d−1

2
M ⊗ Σ n−d

2
N and, using (2.1), that p−(X) · φ ∈ Σ d−1

2
M ⊗ Σ n−d

2
N . But

pointwise
∑2d
j=1 ej ·II(X, ej) ·ψ ∈ (Σ d−3

2
M⊗Σ n−d−2

2
N)⊕(Σ d−3

2
M⊗Σ n−d+2

2
N)⊕(Σ d+1

2
M⊗Σ n−d−2

2
N)⊕

(Σ d+1
2
M⊗Σ n−d+2

2
N), in particular this term must vanish. Analogously one has

∑2d
j=1 ej ·II(X, ej) ·φ = 0.

This concludes the proof. �

To test the sharpness of the estimate (2.7), we would like to first compare it to an a priori lower bound.
This is the object of the next section.

3 Kirchberg-type lower bounds

In this section, we aim at giving Kirchberg type estimates for any twisted Dirac operator on closed
Kähler spin manifolds. First consider a Kähler spin manifold M of complex dimension d and let E be
any rank 2k-vector bundle over M endowed with a metric connection. We define a connection on the
vector bundle Σ := ΣM ⊗ E by ∇ := ∇ΣM⊗E . The Dirac operator of M twisted with E is defined by
DE
M : Γ(Σ) → Γ(Σ), DE

M :=
∑2d
i=1 ei · ∇ei

, where {ei}1≤i≤2d is any local orthonormal basis of TM and
“·” stands for the Clifford multiplication tensorized with the identity of E. The square of the Dirac-type
operator DE

M is related to the rough Laplacian via the following Schrödinger-Lichnerowicz formula [11,
Thm. II.8.17]

(DE
M )2 = ∇∗∇+

1
4

(ScalM +RE),

where ScalM denotes the scalar curvature of M and RE is the endomorphism tensor field given by

RE : Σ −→ Σ
ψ 7−→ 2

∑2d
i,j=1(ei · ej · Id⊗REei,ej

)ψ.

Recall that for any eigenvalue λ of the Dirac operator, there exists an eigenspinor ϕ associated with
λ such that ϕ = ϕr + ϕr+1, where ϕr is a section in Σr := ΣrM ⊗ E. Here ΣrM is the subundle
Ker(Ω · −i(2r − d)Id) of ΣM . Such an eigenspinor ϕ is called of type (r, r + 1). In order to estimate the
eigenvalues of the twisted Dirac operator we define, as in the classical way, on each subbundle Σr the
twisted twistor operator for all X ∈ Γ(TM), ψr ∈ Σr by [5]

PXψr := ∇Xψr + arp−(X) ·D+ψr + brp+(X) ·D−ψr,

where ar = 1
2(r+1) , br = 1

2(m−r+1) and D±ψr =
∑2d
i=1 p±(ei) · ∇eiψr.

We state the following lemma:
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Lemma 3.1 For any eigenspinor ϕ of type (r, r + 1), we have the following inequalities

λ2 ≥


1

4(1−ar) inf
Mϕr

(ScalM +REϕr
),

1
4(1−br+1) inf

Mϕr+1

(ScalM +REϕr+1
),

(3.1)

where REφ := <(RE(φ), φ
|φ|2 ) is defined on the set Mφ = {x ∈M | φ(x) 6= 0} for all spinor φ ∈ Σ.

Proof: Using the identity
∑2d
i=1 ei ·Pei

ψr = 0, one can easily prove by a straightforward computation that
for any spinor ψr ∈ Σr

|Pψr|2 = |∇ψr|2 − ar|D+ψr|2 − br|D−ψr|2. (3.2)

Applying Equation (3.2) to ϕr and ϕr+1 respectively and integrating over M , we get with the use of the
Schrödinger-Lichnerowicz formula that

0 ≤
∫
M

[λ2(1− ar)−
1
4

(ScalM +REϕr
)]|ϕr|2.

Also that,

0 ≤
∫
M

[λ2(1− br+1)− 1
4

(ScalM +REϕr+1
)]|ϕr+1|2,

from which the proof of the lemma follows. �

One can get rid of the dependence of the eigenspinors ϕr and ϕr+1 in the r.h.s. of (3.1):

Corollary 3.2 Let κ1 be the smallest eigenvalue of the (pointwise) self-adjoint operator RE . Then

λ2 ≥


d+1
4d (Scal0 + κ1) if d is odd

d
4(d−1) (Scal0 + κ1) if d is even,

where Scal0 denotes the infimum of the scalar curvature.

Proof: Let us choose the lowest integer r ∈ {0, 1, · · · , d} such that ϕ is of type (r, r + 1). The existence
of anti-linear parallel maps on ΣM commuting with the Clifford multiplication (see e.g. [7, Lemma 1])
allows to impose that r ≤ d−1

2 if d is odd and r ≤ d−2
2 if d is even. This concludes the proof. �

In the following, we formulate the estimates (3.1) for the situation where M is a complex submanifold
of the projective space CPn and E is the spinor bundle of the normal bundle NM of the immersion. To
do this, we will estimate REφ for all spinor field φ ∈ Σ in terms of the second fundamental form of the
immersion.

Proposition 3.3 Let (M2d, g, J) be a Kähler spin submanifold of the projective space CPn. For all spinor
field φ ∈ Σ, the curvature is equal to

REφ = −4<(Ω · ΩN · φ,
φ

|φ|2
)−

2d∑
i,j,p=1

<(ei · ej · II(ei, ep) · II(ej , ep) · φ,
φ

|φ|2
) + |II|2. (3.3)

where Ω is the Kähler form of M.

Proof: First, recall that for all X,Y ∈ Γ(TM) and U, V sections in NM , the normal curvature is related
to the one of CPn via the formula [4, Thm. 1.1.72]

(RNMX,Y U, V ) = (RCPn

X,Y U, V )− (BXU,BY V ) + (BY U,BXV )

= 2g(X, J(Y ))g(J(U), V )−
2d∑
p=1

g(II(X, ep), U)g(II(Y, ep), V )

+
2d∑
p=1

g(II(Y, ep), U)g(II(X, ep), V ), (3.4)

6



where BX : NM → TM is the tensor field defined by g(BXU, Y ) = −g(II(X,Y ), U) and {ep}1≤p≤2d

is a local orthonormal basis of TM . Here we used the fact that the curvature of CPn is given for all
X,Y, Z ∈ TCPn by

RCPn

X,Y Z = (X ∧ Y + JX ∧ JY + 2g(X, JY )J)Z

with (X ∧ Y )Z = g(Y,Z)X − g(X,Z)Y . Hence by (3.4), the normal spinorial curvature associated with
any spinor field φ is then equal to

REei,ej
φ =

1
4

2(n−d)∑
k,l=1

g(RNMei,ej
ek, el)ek · el · φ

=
1
2

2(n−d)∑
k=1

g(ei, J(ej))ek · Jek · φ−
1
2

2d∑
p=1

[II(ei, ep) · II(ej , ep) ·+g(II(ei, ep), II(ej , ep))]φ.

Thus, we deduce

RE(φ) = 2
2d∑

i,j=1

J(ej) · ej · ΩN · φ−
2d∑

i,j,p=1

ei · ej · II(ei, ep) · II(ej , ep) · φ

−ei · ej · g(II(ei, ep), II(ej , ep))φ

= −4Ω · ΩN · φ−
2d∑

i,j,p=1

ei · ej · II(ei, ep) · II(ej , ep) · φ+ |II|2φ.

Finally, the scalar product of the last equality with φ
|φ|2 finishes the proof. �

As we said in the proof of Corollary 3.2, the integer r can be chosen such that r ≤ d−1
2 if d is odd and

r ≤ d−2
2 if d is even. However, we note that a priori no such choice can be made for s once r has been

fixed. In particular, one cannot conclude that the smallest twisted Dirac eigenvalue of a totally geodesic
M in M̃ is (d+ 1)2, even in the “simplest” case where M = CPd (the d-dimensional complex projective
space). To test the sharpness of the estimate (2.7), we compute in the following section the spectrum of
DΣN
M for M = CPd canonically embedded in CPn.

4 The spectrum of the twisted Dirac operator DΣN
M on the com-

plex projective space

In this section, we compute the spectrum of the Dirac operator of CPd twisted with the spinor bundle
of its normal bundle when considered as canonically embedded in CPn. The eigenvalues will be deduced
from M. Ben Halima’s computations [3, Thm. 1]. We also need to compute the multiplicities in order to
compare the upper bound in (2.7) with an eigenvalue which may be greater than the smallest one. The
results are gathered in Theorems 4.7 and 4.8 below.

4.1 The complex projective space as a symmetric space

Consider the d-dimensional complex projective space CPd as the right quotient SUd+1/S(Ud ×U1), where

S(Ud × U1) := {
(
B 0
0 det(B)−1

)
|B ∈ Ud}. In this section we want to describe its tangent bundle

and its normal bundle when canonically embedded into CPn as homogeneous bundles, that is, as bundles
associated to the S(Ud×U1)-principal bundle SUd+1 −→ CPd via some linear representation of S(Ud×U1).
The one corresponding to the tangent bundle is called the isotropy representation of the homogeneous
space SUd+1/S(Ud ×U1). To compute it explicitly we consider the following Ad(S(Ud × U1))-invariant

7



complementary subspace

m :=
{

0 . . . 0 z1

...
...

...
0 . . . 0 zd
−z̄1 . . . −z̄d 0

 | (z1, . . . , zd) ∈ Cd
}

(4.1)

to the Lie-Algebra h of S(Ud×U1) in the Lie-algebra sud+1 = {X ∈ C(d+ 1) |X∗ = −X and tr(X) = 0}
and fix the (real) basis (A1, J(A1), . . . , Ad, J(Ad)) of m, where:

• (Al)jk = 1 if (j, k) = (l, d+ 1), −1 if (j, k) = (d+ 1, l) and 0 otherwise;

• (J(Al))jk = i if (j, k) = (l, d+ 1) or (j, k) = (d+ 1, l) and 0 otherwise.

It is easy to check that J defines a complex structure on m, which then makes m into a d-dimensional
complex vector space, and that [m,m] ⊂ h. In particular CPd is a symmetric space.

Lemma 4.1 The isotropy representation of the symmetric space SUd+1/S(Ud ×U1) is given in the com-
plex basis (A1, . . . , Ad) of m by:

α : S(Ud ×U1) −→ Ud(
B 0
0 det(B)−1

)
7−→ det(B) ·B.

Proof: For k ∈ {1, . . . , d} and B ∈ Ud we compute

Ad(
(
B 0
0 det(B)−1

)
)(Ak) =

(
B 0
0 det(B)−1

)
·Ak ·

(
B∗ 0
0 det(B)

)

=
(
B 0
0 det(B)−1

)
·



0 . . . 0 0
...

... 0
0 . . . 0 det(B)
...

... 0
−B∗k1 . . . −B∗kd 0



=


0 . . . 0 det(B)B1k

...
...

...
0 . . . 0 det(B)Bdk

− det(B)−1B∗k1 . . . −det(B)−1B∗kd 0


=

d∑
j=1

<e(det(B)Bjk)Aj + =m(det(B)Bjk)J(Aj)

=
d∑
j=1

det(B)BjkAj ,

which gives the result. �

Recall that the tautological bundle of CPd is the complex line bundle γd −→ CPd defined by

γd := {([z], v) | [z] ∈ CPd and v ∈ [z]}.

It carries a canonical Hermitian metric defined by 〈([z], v), ([z], v′)〉 := 〈v, v′〉.

Lemma 4.2 The normal bundle T⊥CPd of the canonical embedding CPd → CPn, [z] 7→ [z, 0n−d], is
unitarily isomorphic to γ∗d ⊗Cn−d, where γd −→ CPd is the tautological bundle of CPd and Cn−d carries
its canonical Hermitian inner product. In particular, the homogeneous bundle T⊥CPd → CPd is associated
to the S(Ud ×U1)-principal bundle SUd+1 −→ CPd via the representation

ρ : S(Ud ×U1) −→ Un−d(
B 0
0 det(B)−1

)
7−→ det(B)In−d.
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Proof: Consider the map

CPd × Cn−d φ−→ γd ⊗ T⊥CPd

([z], v) 7−→ ([z], z)⊗ dzπ(0d+1, v),

where π : Cn+1 −→ CPn is the canonical projection. It can be easily checked that φ is well-defined (the
identity π(λz) = π(z) implies dzπ = λdλzπ) and is a unitary vector-bundle-isomorphism. This shows the
first statement. Let (e1, . . . , ed+1) denote the canonical basis of Cd+1. The map

SUd+1 × C −→ γd

(A, λ) 7−→ ([Aed+1], λAed+1)

induces a complex vector-bundle-isomorphism SUd+1 × C/S(Ud × U1) −→ γd, where the right action of

S(Ud ×U1) onto SUd+1 ×C is given by (A, λ) ·
(
B 0
0 det(B)−1

)
:= (A ·

(
B 0
0 det(B)−1

)
,det(B)λ).

Thus γd is isomorphic to the homogeneous bundle over CPd which is associated to the S(Ud×U1)-principal

bundle SUd+1 −→ CPd via the representation S(Ud ×U1) → U1,
(
B 0
0 det(B)−1

)
7→ det(B)−1. This

concludes the proof. �

Note in particular that T⊥CPd is not trivial (and hence not flat because of π1(CPd) = 0).

4.2 Spin structures on TCPd and T⊥CPd

From now on we assume that both d and n are odd integers. Then both TCPd and TCPn are spin, in
particular T⊥CPd is spin. Since CPd is simply-connected, there is a unique spin structure on TCPd and
on T⊥CPd. In this section we describe those spin structures as homogeneous spin structures. For that
purpose one looks for Lie-group-homomorphisms S(Ud × U1) α̃→ Spin2d and S(Ud × U1)

ρ̃→ Spin2(n−d)

lifting α and ρ through the non-trivial two-fold-covering map Spin2k
ξ−→ SO2k.

First we recall the existence for any positive integer k of a Lie-group homomorphism Uk
j−→ Spinc2k with

ξc◦j = ι, where Spinc2k := Spin2k ×U1/Z2
is the spinc group, ξc : Spinc2k −→ SO2k×U1, [u, z] 7→ (ξ(u), z2)

is the canonical two-fold-covering map and ι : Uk −→ SO2k × U1, A 7→ (AR,det(A)). The Lie-group
homomorphism j can be explicitly described on elements of Uk of diagonal form as:

j(diag(eiλ1 , . . . , eiλk)) = e
i
2 (Pk

j=1 λj) · R̃e1,J(e1)(
λ1

2
) · . . . · R̃ek,J(ek)(

λk
2

),

where J is the canonical complex structure on Ck and, for any orthonormal system {v, w} in R2k and
λ ∈ R, the element R̃v,w(λ) ∈ Spin2k is defined by

R̃v,w(λ) := cos(λ) + sin(λ)v · w.

To keep the notations simple we denote by j both such Lie-group-homomorphisms Ud −→ Spinc2d and
Un−d −→ Spinc2(n−d).

Lemma 4.3 Let d < n be odd integers.

1. The spin structure on TCPd is associated to the S(Ud × U1)-principal bundle SUd+1 −→ CPd via
the Lie-group-homomorphism

α̃ : S(Ud ×U1) −→ Spin2d(
B 0
0 det(B)−1

)
7−→ det(B)−

d+1
2 · j ◦ α(

(
B 0
0 det(B)−1

)
).

2. The spin structure on T⊥CPd is associated to the S(Ud ×U1)-principal bundle SUd+1 −→ CPd via
the Lie-group-homomorphism

ρ̃ : S(Ud ×U1) −→ Spin2(n−d)(
B 0
0 det(B)−1

)
7−→ det(B)−

n−d
2 · j ◦ ρ(

(
B 0
0 det(B)−1

)
).
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Proof: It suffices to prove the results for elements of S(Ud × U1) of diagonal form. Indeed any element
of S(Ud × U1) is conjugated in SUd+1 to such a diagonal matrix. Since SUd+1 is simply-connected the
map SUd+1 → SO2k × U1, P 7→ (PAP−1,det(A)) (where A ∈ Uk is arbitrary), admits a lift through

Spinc2k
ξc

−→ SO2k ×U1 which is uniquely determined by the image of one single point. Therefore the lifts
under consideration are uniquely determined on diagonal elements.
For θ1, . . . , θd ∈ R let Mθ1,...,θd

:= diag(eiθ1 , . . . , eiθd , e−i(
Pd

j=1 θj)) ∈ S(Ud ×U1). Then

uθ1,...,θd
:= R̃e1,J(e1)(

θ1 +
∑d
j=1 θj

2
) · . . . · R̃ed,J(ed)(

θd +
∑d
j=1 θj

2
)

lies in Spin2d, only depends on [θ1, . . . , θd] ∈ Rd/2πZd (if some θk is replaced by θk + 2mπ, then
uθ1,...,θd

is replaced by (−1)m(d−1)uθ1,...,θd
, and d − 1 is even) with ξ(uθ1,...,θd

) = α(Mθ1,...,θd
). There-

fore α̃(Mθ1,...,θd
) = uθ1,...,θd

. Moreover,

j ◦ α(Mθ1,...,θd
) = e

i
2 (Pd

j=1 θj+
Pd

k=1 θk) · R̃e1,J(e1)(
θ1 +

∑d
j=1 θj

2
) · . . . · R̃ed,J(ed)(

θd +
∑d
j=1 θj

2
)

= e
i(d+1)

2

Pd
j=1 θj · α̃(Mθ1,...,θd

)

= det(diag(eiθ1 , . . . , eiθd))
d+1

2 · α̃(Mθ1,...,θd
),

which proves 1.
The other case is much the same: setting

ρ̃(Mθ1,...,θd
) := R̃e1,J(e1)(

∑d
j=1 θj

2
) · . . . · R̃en−d,J(en−d)(

∑d
j=1 θj

2
),

one obtains a well-defined Lie-group-homomorphism S(Ud×U1)
ρ̃→ Spin2(n−d) with ξ ◦ ρ̃ = ρ (the integer

n− d is even) and

j ◦ ρ(Mθ1,...,θd
) = e

i
2

Pn−d
j=1

Pd
k=1 θk · R̃e1,J(e1)(

∑d
j=1 θj

2
) · . . . · R̃en−d,J(en−d)(

∑d
j=1 θj

2
)

= det(diag(eiθ1 , . . . , eiθd))
n−d

2 ρ̃(Mθ1,...,θd
),

which shows 2 and concludes the proof. �

In particular, we obtain the following

Corollary 4.4 Let d < n be odd integers and consider the canonical embedding CPd → CPn as above.
Then there exists a unitary and parallel isomorphism

Σ(T⊥CPd) ∼=
n−d⊕
s=0

(
n− d
s

)
· γ

n−d
2 −s

d ,

where Σ(T⊥CPd) denotes the (complex) spinor bundle of T⊥CPd and, for each s ∈ {0, . . . , n − d}, the

factor
(
n− d
s

)
stands for the multiplicity with which the line bundle γ

n−d
2 −s

d appears in the splitting.

Proof: By Lemma 4.3 and Lemma 4.2, one has, for any B ∈ Ud:

ρ̃(
(
B 0
0 det(B)−1

)
) = det(B)−

n−d
2 · j ◦ ρ(

(
B 0
0 det(B)−1

)
)

= det(B)−
n−d

2 · j(det(B)In−d).

Now it is elementary to prove that, for any positive integer k, any z ∈ U1 and any s ∈ {0, . . . , k},

δ2k ◦ j(z · Ik)|
Σ(s)

2k

= zs · Id
Σ

(s)
2k

,
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where Σ(s)
2k is the eigenspace of the Clifford action of the Kähler form to the eigenvalue i(2s − k) in the

spinor space Σ2k. In particular Σ(s)
2k splits into the direct sum of dimC(Σ(s)

2k ) copies of some one-dimensional

representation, with dimC(Σ(s)
2k ) =

(
k
s

)
. Since Σ2k = ⊕ks=0Σ(s)

2k , we obtain the following splitting:

δ2(n−d) ◦ ρ̃ =
n−d⊕
s=0

det(·)−( n−d
2 −s) ⊗ Id

Σ
(s)
2(n−d)

=
n−d⊕
s=0

det(·)−( n−d
2 −s) ⊗ 1

0@ n− d
s

1A
C ,

where det(·) : S(Ud×U1)→ U1,
(
B 0
0 det(B)−1

)
7→ det(B), the trivial representation on C is denoted

by 1C and “1lC” means that this representation appears with multiplicity l. �

4.3 The twisted Dirac operator on CPd

As a consequence of Corollary 4.4, the tensor product Σ(TCPd) ⊗ Σ(T⊥CPd) splits into subbundles of
the form Σ(TCPd) ⊗ γmd for some integer m. Since this splitting is orthogonal and parallel, it is also
preserved by the corresponding twisted Dirac operator. Hence it suffices to describe the Dirac operator
of the twisted spinor bundle Σ(TCPd)⊗ γmd over CPd as an infinite sum of matrices, where m ∈ Z is an
arbitrary (non-necessarily positive) integer. The Dirac eigenvalues of Σ(TCPd)⊗γmd have been computed
by M. Ben Halima in [3, Thm. 1]. Indeed, we have

Theorem 4.5 For an odd integer d let CPd be endowed with its Fubini-Study metric of constant holo-
morphic sectional curvature 4. For an arbitrary m ∈ Z let the mth power γmd of the tautological bundle of
CPd be endowed with its canonical metric and connection. Then the eigenvalues (without multiplicities)
of the square of the Dirac operator of CPd twisted by γmd are given by the following families:

1. 2(r+l)·(d+1+2(l−m−ε)), where r ∈ {1, . . . , d−1}, ε ∈ {0, 1} and l ∈ N with l ≥ max(ε, d+1
2 −r+m).

2. 2l(2l + d− 1− 2m), where l ∈ N, l ≥ max(0,m+ d+1
2 ).

3. 2(d+ l)(d+ 1 + 2(l −m)), where l ∈ N, l ≥ max(0,m− d+1
2 ).

The first family of eigenvalues corresponds to an irreducible representation of SUd+1 with highest weight
given by [3, Prop. 2]

(r+2l−d− 1
2
−m−ε, r + l − d− 1

2
−m, . . . , r + l − d− 1

2
−m︸ ︷︷ ︸

r−1

, r+l−d+ 1
2
−m+ε, r + l − d+ 1

2
−m, . . . , r + l − d+ 1

2
−m︸ ︷︷ ︸

d−r−1

).

Similarly, the second family of eigenvalues corresponds to the highest weight

(2l − d+ 1
2
−m, l − d+ 1

2
−m, . . . , l − d+ 1

2
−m︸ ︷︷ ︸

d−1

).

The last family of eigenvalues corresponds to

(2l +
d+ 1

2
−m, l +

d+ 1
2
−m, . . . , l +

d+ 1
2
−m︸ ︷︷ ︸

d−1

).

In the following, we will determine the multiplicities of the eigenvalues in Theorem 4.5. Indeed, we have

Lemma 4.6 Let d ≥ 1 be an odd integer and m ∈ Z.
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1. The multiplicities of the first family of the eigenvalues are equal to

d(d+1
2 + r −m+ 2l − ε)

(r + l)(d+1
2 −m+ l − ε)

·
(
d+ l − ε

d

)
·
(

d− 1
d− r − ε

)
·
(

d−1
2 + r −m+ l

d

)
.

2. For the second family, we have

d∏
k=2

(1 +
l

k − 1
) · (1 +

2l − d+1
2 −m
d

) ·
d∏
j=2

(1 +
l − d+1

2 −m
d− j + 1

).

3. For the last family of eigenvalues, the multiplicities are equal to

d∏
k=2

(1 +
l

k − 1
) · (1 +

2l + d+1
2 −m
d

) ·
d∏
j=2

(1 +
l + d+1

2 −m
d− j + 1

).

In our convention, a product taken on an empty index-set is equal to 1.

Proof: The required multiplicity can be computed with the help of the Weyl’s character formula [2]∏
α∈∆+

(
1 +

〈λ, α〉
〈δ+, α〉

)
,

where λ is a highest weight of an irreducible SUd+1-representation and ∆+ is the set of positive roots,
i.e.

∆+ = {θj − θk, 1 ≤ j < k ≤ d, θj +
d∑
k=1

θk, 1 ≤ j ≤ d}

and δ+ =
∑d
k=1(d − k + 1)θk is the half-sum of the positive roots of SUd+1, see [3, p. 442]. Here the

scalar product < ., . > is the Riemannian metric on the dual of a maximal torus of SUd+1, which
is defined by the following product of matrices < λ, λ′ >= λ.β.tλ′ where β is the matrix given by

2
d+1

(
− 1 + (d + 1)δjk

)
1≤j,k≤d. To compute the quotient in the Weyl’s character formula, we treat the

three cases separately:
1. Consider α of the form α = θj − θk for some 1 ≤ j < k ≤ d. Note that this form for α can only exist if
d > 1. We compute

β · α = β ·



0
...
0
1
0
...
0
−1
0
...
0


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=
2

d+ 1


d −1 . . . −1

−1
. . .

...
...

. . . −1
−1 . . . −1 d

 ·



0
...
0
1
0
...
0
−1
0
...
0



=
2

d+ 1



0
...
0

d+ 1
0
...
0

−d− 1
0
...
0


= 2(θj − θk).

Therefore,

〈δ+, α〉 = 2(d, d− 1, . . . , 1) ·



0
...
0
1
0
...
0
−1
0
...
0


= 2(d− j + 1− (d− k + 1))
= 2(k − j).

For the highest weight λ corresponding to the first family of eigenvalues, we denote by u′ the first
component, ~u+ the r − 1 components, u the r-components and by ~u− the last d − r − 1 components.
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Thus, we have

〈λ, α〉 = 2(u′, ~u+, u, ~u−) ·



0
...
0
1
0
...
0
−1
0
...
0



=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2(u′ − u+) case j = 1, k ∈ {2, . . . , r}
2(u′ − u) case j = 1, k = r + 1
2(u′ − u−) case j = 1, k ∈ {r + 2, . . . , d}
0 case j, k ∈ {2, . . . , r}
2(u+ − u) case j ∈ {2, . . . , r}, k = r + 1
2(u+ − u−) case j ∈ {2, . . . , r}, k ∈ {r + 2, . . . , d}
2(u− u−) case j = r + 1, k ∈ {r + 2, . . . , d}
0 case j, k ∈ {r + 2, . . . , d}

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2(l − ε) case j = 1, k ∈ {2, . . . , r}
2(l + 1− 2ε) case j = 1, k = r + 1
2(l + 1− ε) case j = 1, k ∈ {r + 2, . . . , d}
0 case j, k ∈ {2, . . . , r}
2(1− ε) case j ∈ {2, . . . , r}, k = r + 1
2 case j ∈ {2, . . . , r}, k ∈ {r + 2, . . . , d}
2ε case j = r + 1, k ∈ {r + 2, . . . , d}
0 case j, k ∈ {r + 2, . . . , d}.

We obtain, for α = θj − θk with 1 ≤ j < k ≤ d:

1 +
〈λ, α〉
〈δ+, α〉

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

l−ε+k−j
k−j case j = 1, k ∈ {2, . . . , r}

l+1−2ε+k−j
k−j case j = 1, k = r + 1

l+1−ε+k−j
k−j case j = 1, k ∈ {r + 2, . . . , d}

1 case j, k ∈ {2, . . . , r}
1−ε+k−j
k−j case j ∈ {2, . . . , r}, k = r + 1

1+k−j
k−j case j ∈ {2, . . . , r}, k ∈ {r + 2, . . . , d}
ε+k−j
k−j case j = r + 1, k ∈ {r + 2, . . . , d}

1 case j, k ∈ {r + 2, . . . , d}.

Now choose α = θj +
∑d
k=1 θk with j ∈ {1, . . . , d}, then

β · α = β ·



1
...
1
2
1
...
1


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=
2

d+ 1


d −1 . . . −1

−1
. . .

...
...

. . . −1
−1 . . . −1 d

 ·



1
...
1
2
1
...
1



=
2

d+ 1



0
...
0

2d− (d− 1)
0
...
0


= 2θj .

Therefore,

〈δ+, α〉 = 2(d, d− 1, . . . , 1) ·



0
...
0
1
0
...
0


= 2(d− j + 1).

Using the same notations as above, we compute

〈λ, α〉 = 2(u′, ~u+, u, ~u−) ·



0
...
0
1
0
...
0



=

∣∣∣∣∣∣∣∣
2u′ case j = 1
2u+ case j ∈ {2, . . . , r}
2u case j = r + 1
2u− case j ∈ {r + 2, . . . , d}

=

∣∣∣∣∣∣∣∣
2(u− + 1 + l − ε) case j = 1
2(u− + 1) case j ∈ {2, . . . , r}
2(u− + ε) case j = r + 1
2u− case j ∈ {r + 2, . . . , d}.

We obtain, for α = θj +
∑d
k=1 θk with j ∈ {1, . . . , d}:

1 +
〈λ, α〉
〈δ+, α〉

=

∣∣∣∣∣∣∣∣∣
u−+1+l−ε+d−j+1

d−j+1 case j = 1
u−+1+d−j+1

d−j+1 case j ∈ {2, . . . , r}
u−+ε+d−j+1

d−j+1 case j = r + 1
u−+d−j+1
d−j+1 case j ∈ {r + 2, . . . , d}.
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In order to compute the product we separate both cases ε = 0 and ε = 1.
• Case ε = 0: Then

∏
α∈∆+

(
1 +

〈λ, α〉
〈δ+, α〉

)
= (

r∏
k=2

l + k − 1
k − 1

) · (
d∏

k=r+1

l + k

k − 1
) · (

r∏
j=2

d∏
k=r+1

k + 1− j
k − j

) ·

u− + l + d+ 1
d

· (
r∏
j=2

u− + d− j + 2
d− j + 1

) · (
d∏

j=r+1

u− + d− j + 1
d− j + 1

)

=
(l + 1) · . . . · (l + r − 1) · (l + r + 1) · . . . · (l + d)

1 · 2 · . . . · (d− 1)
·

(
r∏
j=2

(r + 2− j) · . . . · (d+ 1− j)
(r + 1− j) · . . . · (d− j)

) · u− + l + d+ 1
d

·

(u− + d) · . . . · (u− + d− r + 2)
(d− 1) · . . . · (d− r + 1)

· (u− + d− r) · . . . · (u− + 1)
(d− r) · . . . · 2 · 1

=
d

l + r
· (l + d)!
d! · l!

· (
r∏
j=2

d+ 1− j
r + 1− j

) · u− + l + d+ 1
u− + d− r + 1

· (u− + d)!
d! · u−!

=
d

l + r
·
(
l + d
d

)
· (d− 1) · . . . · (d+ 1− r)

(r − 1) · . . . · 2 · 1
· u− + l + d+ 1
u− + d− r + 1

·
(
u− + d
d

)
=

d(u− + l + d+ 1)
(l + r)(u− + d− r + 1)

·
(
l + d
d

)
·
(
d− 1
r − 1

)
·
(
u− + d
d

)
,

which gives for the multiplicity in this case (replace u− by r − d+1
2 −m+ l):

∏
α∈∆+

(
1 +

〈λ, α〉
〈δ+, α〉

)
=
d(d+1

2 + r −m+ 2l)
(r + l)(d+1

2 −m+ l)
·
(
d+ l
d

)
·
(
d− 1
d− r

)
·
(

d−1
2 + r −m+ l

d

)
.

• Case ε = 1: Then

∏
α∈∆+

(
1 +

〈λ, α〉
〈δ+, α〉

)
= (

r+1∏
k=2

l + k − 2
k − 1

) · (
d∏

k=r+2

l + k − 1
k − 1

) · (
r+1∏
j=2

d∏
k=r+2

k + 1− j
k − j

) ·

u− + l + d

d
· (
r+1∏
j=2

u− + d− j + 2
d− j + 1

) · (
d∏

j=r+2

u− + d− j + 1
d− j + 1

)

=
l · . . . · (l + r − 1) · (l + r + 1) · . . . · (l + d− 1)

1 · 2 · . . . · (d− 1)
·

(
r+1∏
j=2

(r + 3− j) · . . . · (d+ 1− j)
(r + 2− j) · . . . · (d− j)

) · u− + l + d

d
·

(u− + d) · . . . · (u− + d− r + 1)
(d− 1) · . . . · (d− r)

· (u− + d− r − 1) · . . . · (u− + 1)
(d− r − 1) · . . . · 2 · 1

=
d

l + r
· (l + d− 1)!
d! · (l − 1)!

· (
r+1∏
j=2

d+ 1− j
r + 2− j

) · u− + l + d

u− + d− r
· (u− + d)!
u−! · d!

=
d(u− + l + d)

(l + r)(u− + d− r)
· (l + d− 1)!
d! · (l − 1)!

· (d− 1)!
r! · (d− r − 1)!

· (u− + d)!
u−! · d!

=
d(u− + l + d)

(l + r)(u− + d− r)
·
(
l + d− 1

d

)
·
(
d− 1
r

)
·
(
u− + d
d

)
,

16



which, replacing u− by r − d+1
2 −m+ l, gives

∏
α∈∆+

(
1 +

〈λ, α〉
〈δ+, α〉

)
=
d(d−1

2 + r −m+ 2l)
(r + l)(d−1

2 −m+ l)
·
(
d+ l − 1

d

)
·
(

d− 1
d− r − 1

)
·
(

d−1
2 + r −m+ l

d

)
.

This shows 1.
2. Consider α of the form α = θj − θk for some 1 ≤ j < k ≤ d. We have already shown in the first part
that 〈δ+, α〉 = 2(k − j). Let us denote by v+ the first component and v the d − 1 components of the
highest weight corresponding to the second family of eigenvalues. We have

〈λ, α〉 = 2(v+, v, . . . , v) ·



0
...
0
1
0
...
0
−1
0
...
0


=

∣∣∣∣ 2l case j = 1
0 case j > 1.

Choosing α = θj +
∑d
k=1 θk with j ∈ {1, . . . , d}, we already know that 〈δ+, α〉 = 2(d− j + 1). Moreover,

〈λ, α〉 = 2(v+, v, . . . , v) ·



0
...
0
1
0
...
0


=

∣∣∣∣ 2(v + l) case j = 1
2v case j > 1.

Hence the product is given by

∏
α∈∆+

(
1 +

〈λ, α〉
〈δ+, α〉

)
=

d∏
k=2

(1 +
l

k − 1
) · (1 +

v + l

d
) ·

d∏
j=2

(1 +
v

d− j + 1
).

Of course only the central factor appears in case d = 1. Replacing v by its respective value gives 2. and
3. and concludes the proof. �

As a consequence of Lemma 4.5 and Lemma 4.6, we obtain the

Theorem 4.7 Let d be a positive odd integer and m ∈ Z be arbitrary. Denote by γd the tautological
bundle of CPd. Then the spectrum of the square of the Dirac operator of CPd twisted with γmd is given by
the following family of eigenvalues:

1. 2(r+l)·(d+1+2(l−m−ε)), where r ∈ {1, . . . , d−1}, ε ∈ {0, 1} and l ∈ N with l ≥ max(ε, d+1
2 −r+m).

The multiplicity of the eigenvalue corresponding to the choice of a triple (r, ε, l) as above is given by

d(d+1
2 + r −m+ 2l − ε)

(r + l)(d+1
2 −m+ l − ε)

·
(
d+ l − ε

d

)
·
(

d− 1
d− r − ε

)
·
(

d−1
2 + r −m+ l

d

)
.
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2. 2l(2l + d− 1− 2m), where l ∈ N, l ≥ max(0,m+ d+1
2 ), with multiplicity

d∏
k=2

(1 +
l

k − 1
) · (1 +

2l − d+1
2 −m
d

) ·
d∏
j=2

(1 +
l − d+1

2 −m
d− j + 1

).

3. 2(d+ l)(d+ 1 + 2(l −m)), where l ∈ N, l ≥ max(0,m− d+1
2 ), with multiplicity

d∏
k=2

(1 +
l

k − 1
) · (1 +

2l + d+1
2 −m
d

) ·
d∏
j=2

(1 +
l + d+1

2 −m
d− j + 1

).

Note that, since CPd is a symmetric space, the spectrum of every Dirac operator twisted with a homoge-
neous bundle over CPd is symmetric about the origin. Hence the spectrum of the Dirac operator of CPd

twisted with γmd can be easily deduced from that of its square.

We point out that the computations done by M. Ben Halima in [3, Thm. 1] contain a minor mistake (his
m should be replaced by −m). It can be also checked that, up to a factor 4(d+ 1) (his convention for the
Fubini-Study metric is different from ours), our values coincide with his (his k is our l and his l is our d−r).

We can now formulate the

Theorem 4.8 Let d < n be positive odd integers. Then the spectrum of the square of the Dirac operator
of CPd twisted with the spinor bundle of the normal bundle of the canonical embedding CPd → CPn is
given by the following family of eigenvalues:

1. 2(r + l) · (2d + 1 − n + 2(s + l − ε)), where r ∈ {1, . . . , d − 1}, s ∈ {0, . . . , n − d}, ε ∈ {0, 1} and
l ∈ N with l ≥ max(ε, n+1

2 − r − s). The multiplicity of the eigenvalue corresponding to the choice
of a 4-tuple (r, s, ε, l) as above is given by

d(d− n−1
2 + r + s+ 2l − ε)

(r + l)(d− n−1
2 + s+ l − ε)

·
(
n− d
s

)
·
(
d+ l − ε

d

)
·
(

d− 1
d− r − ε

)
·
(
d− n+1

2 + r + s+ l
d

)
.

2. 4l(l + s+ d− n+1
2 ), where s ∈ {0, . . . , n− d}, l ∈ N, l ≥ max(0, n+1

2 − s), with multiplicity(
n− d
s

)
·
d∏
k=2

(1 +
l

k − 1
) · (1 +

2l − n+1
2 + s

d
) ·

d∏
j=2

(1 +
l − n+1

2 + s

d− j + 1
).

3. 2(d + l)(2d − n + 1 + 2(l + s)), where s ∈ {0, . . . , n − d}, l ∈ N, l ≥ max(0, n−1
2 − d − s), with

multiplicity(
n− d
s

)
·
d∏
k=2

(1 +
l

k − 1
) · (1 +

2l + d− n−1
2 + s

d
) ·

d∏
j=2

(1 +
l + d− n−1

2 + s

d− j + 1
).

Proof: Recall that, by Corollary 4.4, there exists a unitary and parallel isomorphism

Σ(TCPd)⊗ Σ(T⊥CPd) ∼=
n−d⊕
s=0

(
n− d
s

)
· Σ(TCPd)⊗ γ

n−d
2 −s

d ,

where γd is the tautological bundle of CPd and
(
n− d
s

)
stands for the multiplicity with which the

subbundle Σ(TCPd) ⊗ γ
n−d

2 −s
d appears in the splitting. Therefore, the eigenvalues of the twisted Dirac

operator acting on Σ(TCPd)⊗Σ(T⊥CPd) are those of Σ(TCPd)⊗ γ
n−d

2 −s
d , where s runs from 0 to n− d.

Moreover, the multiplicity of the eigenvalue corresponding to some s is
(
n− d
s

)
times the multiplicity
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computed in Lemma 4.6. Replacing m by n−d
2 − s, Theorem 4.7 gives the result. �

Note that (d+ 1)2 is always an eigenvalue for the squared operator (DΣN
M )2: if d = 1, take s = n−1

2 and
l = 1 in the second family of eigenvalues; if d > 1, take r = d+1

2 , s = n−d
2 and ε = 0 = l in the first family.

Using Theorem 4.8, we are now able to compute the smallest eigenvalue of the twisted Dirac operator:

Proposition 4.9 The lowest eigenvalue for the square of the Dirac operator of CPd twisted with the
spinor bundle of the normal bundle of the canonical embedding CPd → CPn is equal to 0 for d < n+1

2
and to (n+ 1)(2d+ 1− n) for d ≥ n+1

2 .

Proof: Let us consider the first family of eigenvalues with ε = 0 (the same computation remains true for
ε = 1). For r + s ≥ n+1

2 , which implies d− n−1
2 ≤ r, the minimum is attained for l = 0 and we find the

eigenvalues 2r(2d+ 1− n+ 2s), which are increasing functions with respect to s with s ≥ n+1
2 − r. Here

two cases occur:

1. Case where n+1
2 − r ≥ 0, the eigenvalues become 4r(d+ 1− r) and we distinguish the two subcases:

(a) For d ≤ n+1
2 , then the lowest eigenvalue is equal to 4d.

(b) For n+1
2 < d, the lowest eigenvalue is (n+ 1)(2d+ 1− n).

2. Case where n+1
2 − r < 0 which implies n+1

2 < d. Hence, the lowest eigenvalue is equal to (n +
1)(2d+ 1− n).

Now for r + s < n+1
2 , we take l = n+1

2 − r − s. Thus the eigenvalues are equal 2(n + 1 − 2s)(d + 1 − r)
which are decreasing functions in s with 0 ≤ s ≤ n−1

2 − r. We have:

1. Case where n−1
2 −r ≤ n−d. We then get the eigenvalues 4(1+r)(d+1−r) with d− n+1

2 ≤ r ≤ n−1
2 .

Here two cases occur:

(a) For d ≤ n+1
2 , the lowest eigenvalue is equal to 8d.

(b) For d > n+1
2 , the lowest eigenvalue is equal to (n+ 3)(2d+ 1− n).

2. Case where n−1
2 − r > n− d, we get the eigenvalues 2(2d− n+ 1)(d+ 1− r) with 1 ≤ r ≤ d− n+3

2 .
In this case, we have that d > n+1

2 and the lowest eigenvalue is equal to (n+ 5)(2d− n+ 1).

For the second family of eigenvalues, we distinguish the cases:

1. Case where n+1
2 − s ≤ 0 which implies that d ≤ n−1

2 , we take l = 0. The lowest eigenvalue is then
equal to 0.

2. Case where n+1
2 −s > 0. The eigenvalues become 2d(n+1−2s) with 0 ≤ s ≤ n−1

2 . Two cases occur

(a) For d ≤ n+1
2 , the lowest eigenvalue is 4d.

(b) For d > n+1
2 , the lowest eigenvalue is 2d(2d+ 1− n)

For the last family of eigenvalues, we consider the two cases:

1. Case where n−1
2 − d − s > 0, which implies that d < n−1

2 , we take l = n−1
2 − d − s. We find the

lowest eigenvalue 0 after substituting.

2. Case where n−1
2 −d− s ≤ 0. In this case l = 0 and we get 2d(2d−n+ 1 + 2s). Here two cases occur:

(a) For d > n−1
2 , the lowest eigenvalue is 2d(2d− n+ 1).

(b) For d ≤ n−1
2 , the lowest eigenvalue is 0.
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Next we show that the estimate (2.7) is not always sharp. We consider the simplest case where d = 1 and

compare the multiplicities of the eigenvalues 0 and 4 with 2
(

n
n+1

2

)
, which is the a priori number of

eigenvalues bounded by 4 in (2.7). The multiplicity of the eigenvalue 0 is equal to

n−3
2∑
s=0

(
n− 1
s

)
(
n− 1

2
− s) +

n−1∑
s= n+1

2

(
n− 1
s

)
(s− n− 1

2
),

which is equal to
∑n−3

2
s=0

(
n− 1
s

)
(n − 1 − 2s) since by replacing s by (n − 1) − s the second sum is

equal to the first one. A short computation gives
∑n−3

2
s=0

(
n− 1
s

)
(n− 1− 2s) = n−1

2 ·
(
n− 1
n−1

2

)
. On

the other hand, the multiplicity of the eigenvalue 4 is equal to 4
(

n
n−1

2

)
. Hence the sum of these two

multiplicities is (n−1
2 + 4) ·

(
n− 1
n−1

2

)
. That number is always greater than 2

(
n
n+1

2

)
. However, if the

multiplicity of the eigenvalue 0 is smaller than 2
(

n
n+1

2

)
for n = 3, 5, 7, it is greater for n ≥ 9. Thus, the

equality in (2.7) is optimal for n = 3, 5, 7 but is never optimal as soon as n ≥ 9. In particular, the twisted
Dirac operator on Kähler submanifolds behaves very differently from that on submanifolds immersed in
real spaceforms, where analogous upper bounds are sharp in any dimension.
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