Guénaël Renault 
email: guenael.renault@lip6.fr
  
Tristan Vaccon 
email: vaccon@rikkyo.ac.jp
  
  
  
  
On the p-adic stability of the FGLM algorithm

Keywords: I.1.2 [Computing Methodologies]: Symbolic and Algebraic Manipulations-Algebraic Algorithms Algorithms, Theory Gröbner bases, FGLM algorithm, p-adic precision, p-adic algorithm, Smith Normal

Nowadays, many strategies to solve polynomial systems use the computation of a Gröbner basis for the graded reverse lexicographical ordering, followed by a change of ordering algorithm to obtain a Gröbner basis for the lexicographical ordering. The change of ordering algorithm is crucial for these strategies. We study the p-adic stability of the main change of ordering algorithm, FGLM.

We show that FGLM is stable and give explicit upper bound on the loss of precision occuring in its execution. The variant of FGLM designed to pass from the grevlex ordering to a Gröbner basis in shape position is also stable.

Our study relies on the application of Smith Normal Form computations for linear algebra.

INTRODUCTION

The advent of arithmetic geometry has seen the emergence of questions that are purely local (i.e. where a prime p is fixed at the very beginning and one can not vary it). As an example, one can cite the work of Caruso and Lubicz [START_REF] Caruso | Linear algebra over Zp[[u]] and related rings[END_REF] who gave an algorithm to compute lattices in some p-adic Galois representations. A related question is the study of p-adic deformation spaces of Galois representations. Since the work of Taylor and Wiles [START_REF] Taylor | Ring-theoretic properties of certain Hecke algebras[END_REF], one knows that these spaces play a crucial role in many questions in number theory. Being able to compute such spaces appears then as

Notations

Throughout this paper, K is a field with a discrete valuation val such that K is complete with respect to the norm defined by val. We denote by R = OK its ring of integers, mK its maximal ideal and k = OK /mK its fraction field. We denote by CDVF (complete discrete-valuation field) such a field. We refer to Serre's Local Fields [START_REF] Serre | Local fields[END_REF] for an introduction to such fields. Let π ∈ R be a uniformizer for K and let SK ⊂ R be a system of representatives of k = OK /mK. All numbers of K can be written uniquely under its π-adic power series development form:

k≥l a k π l for some l ∈ Z, a k ∈ SK.

The case that we are interested in is when K might not be an effective field, but k is (i.e. there are constructive procedures for performing rational operations in k and for deciding whether or not two elements in k are equal). Symbolic computation can then be performed on truncation of π-adic power series development. We will denote by finite-precision CDVF such a field, and finite-precision CDVR for its ring of integers. Classical examples of such CDVF are K = Qp, with p-adic valuation, and Q[[X]] or Fq[[X]] with X-adic valuation. We assume that K is such a finite-precision CDVF.

The polynomial ring K[X1, . . . , Xn] will be denoted A, and u = (u1, . . . , un) ∈ Z n ≥0 , we write x u for X u 1 1 . . . X un n .

Mains results

In the context of p-adic algorithmic, one of the most important behavior to study is the stability of computation: how the quality of the result, in terms of p-adic precision, evolves from the input. To quantify such a quality, it is usual to use an invariant, called condition number, related to the computation under study. Thus, we define such an invariant for the change of ordering.

Definition 1.1. Let I ⊂ A be a zero-dimensional ideal. Let ≤1 and ≤2 be two monomial orderings on A. Let B ≤ 1 and B ≤ 2 be the canonical bases of A/I for ≤1 and ≤2. Let M be the matrix whose columns are the N F ≤ 1 (x β ) for x β ∈ B ≤ 2 . We define the condition number of I for ≤1 to ≤2, with notation cond ≤ 1 ,≤ 2 (I) (or cond ≤ 1 ,≤ 2 when there is no ambiguity) as the biggest valuation of an invariant factor of M .

We can now state our main result on change of ordering of p-adic Gröbner basis.

Theorem 1.2. Let ≤1 and ≤2 be two monomial orderings. Let G = (g1, . . . , gt) ∈ K[X1, . . . , Xn] t be an approximate reduced Gröbner basis for ≤1 of the ideal I it generates, with dim I = 0 and deg I = δ, and with coefficients known up to precision O(π N ). Let β be the smallest valuation of a coefficient in G. Then, if N > cond ≤ 1 ,≤ 2 (I), the stabilized FGLM Algorithm, Algorithm 3, computes a Gröbner basis G2 of I for ≤2. The coefficients of the polynomials of G2 are known up to precision

N + n 2 (δ + 1) 2 β -2cond ≤ 1 ,≤ 2 . The time-complexity is in O(nδ 3 ).
In the case of a change of ordering from grevlex to lex, we provide a more precise complexity result: Theorem 1.3. With the same notations and hypothesis as in Theorem 1.2. If ≤1, ≤2 are respectively instantiated to grevlex and lex, and if we assume that the ideal I is in shape position. Then, the adapted FGLM Algorithm for general position, Algorithm 6, computes a Gröbner basis G2 of I for lex, in shape position. The coefficients of the polynomials of G2 are known up to precision

N + βδ -2cond ≤ 1 ,≤ 2 . The time-complexity is in O(nδ 2 ) + O(δ 3 ).
In order to obtain these results, one has to tackle technical problems related to the core of the FGLM algorithm. Thus, we first present a summary of some important facts on this algorithm. Then we present more precisely the underlying problems in the p-adic situation.

The FGLM algorithm

For a given zero-dimensional I in a polynomial ring A, the FGLM algorithm [START_REF] Faugère | Efficient computation of zero-dimensional Gröbner bases by change of ordering[END_REF] is mainly based on computational linear algebra in A/I. It allows to compute a Gröbner basis G2 of I for a monomial ordering ≤2 starting from a Gröbner basis G1 of I for a first monomial ordering ≤1. To solve polynomial systems, one possible method is the computation of a Gröbner basis for lex. However, computing a Gröbner basis for lex by a direct approach is usually very time-consuming. The main application of the FGLM algorithm is to allow the computation of a Gröbner basis for lex by computing a Gröbner basis for grevlex then by applying a change of ordering to lex. The superiority of this approach is mainly due to the fact that the degrees of the intermediate objects are well controlled during the computation of the grevlex Gröbner basis. The second step of this general method for polynomial system solving, is what we call the FGLM algorithm. Many variants and improvements (in special cases) of the FGLM algorithm have been published, e.g. Faugère and Mou in [FM11, [START_REF] Faugère | Sparse FGLM algorithms[END_REF][START_REF] Mou | Solving Polynomial Systems over Finite Fields: Algorithms, Implementation and Applications[END_REF] and Faugère, Gaudry, Huot and Renault [START_REF] Faugère | Polynomial Systems Solving by Fast Linear Algebra[END_REF][START_REF] Faugère | Sub-cubic Change of Ordering for Gröbner Basis: A Probabilistic Approach[END_REF][START_REF] Huot | Résolution de systèmes polynomiaux et cryptologie sur les courbes elliptiques[END_REF] takes advantages of sparse linear algebra and fast algorithm in linear algebra to obtain efficient algorithms. In this paper, as a first study of the problem of loss of precision in a change of ordering algorithm, we follow the original algorithm. This study already brings to light some problems for the loss of precision and propose solutions to overcome them. Thus, the FGLM algorithm we consider can be sketched as follows:

1. Order the images in A/I of the monomials of A according to ≤2.

2. Starting from the first monomial, test the linear independence in A/I of a monomial x α with the x β smaller than it for ≤2.

3. In case of independence, x α is added to the canonical (for ≤2) basis A/I in construction.

4. Otherwise, x α ∈ LM (I) and the linear relation with the x β smaller than it for ≤2 give rise to a polynomial in I whose leading term is x α .

Precision problems arise in step 2 and 4. The first one is the issue of testing the independence of a vector from a linear subspace. While it is possible to prove independence when the precision is enough, it is usually not possible to prove directly dependence. It is however possible to prove some dependence when there is more vectors in a vector space than the dimension of this vector space. It is indeed some dimension argument that permits to prove the stability of FGLM. We show (see Section 3) that it is enough to treat approximate linearly dependence (up to some precision) in the same way as in the non-approximate case and to check at the end of the execution of the algorithm that the number of independent monomials found is the same as the degree of the ideal. The second issue corresponds to adding the computation of an approximate relation. We show that the same idea of taking approximate linear dependence as nonapproximate and check at the end of the computation is enough.

Linear algebra and Smith Normal Form

As we have seen, the FGLM algorithm relies mainly on computational linear algebra: testing linear independence and solving linear systems.

The framework of differential precision of [START_REF] Caruso | Tracking p-adic precision[END_REF] has been applied to linear algebra in [START_REF] Caruso | p-Adic Stability In Linear Algebra[END_REF] for some optimal results on the behavior of the precision for basic operations in linear algebra (matrix multiplication, LU factorization). From this analysis it seems clear, and this idea is well accepted by the community of computation over p-adics, that using the Smith Normal Form (SNF) to compute the inverse of a matrix or to solve a well-posed linear system is highly efficient and easy to handle. Moreover, it always achieves a better behavior than classical Gaussian elimination, even allowing gain in precision in some cases. Its optimality re-mains to be proved but in comparison with classical Gaussian elimination, the loss of precision is far fewer. 1This is the reason why we use the SNF in the p-adic version of FGLM we propose in this paper. In Section 2 we briefly recall some properties of the SNF and its computation. We also provide a dedicated version of SNF computation for the FGLM algorithm. More precisely, to apply the SNF computation to iterative tests of linear independence (as in step 2), we adapt SNF computation into some iterative SNF in Algorithm 4. This allows us to preserve an overall complexity in O(nδ 3 ).

SNF AND LINEAR SYSTEMS

SNF and approximate SNF

We begin by presenting our main tool, the SNF of a matrix in Mn,m(K):

Proposition 2.1. Let M ∈ Mn,m(K). There exist some P ∈ GLn(OK ), val(det P ) = 0, Q ∈ GLm(OK ), det Q = ±1 and ∆ ∈ Mn,m(K) such that M = P ∆Q and ∆ is diagonal, with diagonal coefficients being π a 1 , . . . , π as , 0, . . . , 0 with a1 ≤ • • • ≤ as in Z. ∆ is unique and called the Smith Normal Form of M , and we say that P, ∆, Q realize the SNF of M . The ai are called the invariant factors of M.

In a finite-precision context, we introduce the following variant of the notion of SNF: Definition 2.2. Let M ∈ Mn,m(K), known up to precision O(π l ). We define an approximate SNF of M as a factorization M = P ∆Q with P ∈ Mn(R), val(det P ) = 0, Q ∈ Mm(R) with det Q = ±1 known up to precision O(π l ) and ∆ ∈ Mn,m(K) such that ∆ = ∆0 + O(π l ), where ∆0 ∈ Mn,m(K) is a diagonal matrix, with diagonal coefficients of the form ∆0[1, 1] = π α 1 , . . . , ∆0[min(n, m), min(n, m)] = π α min(n,m) with α1 ≤ • • • ≤ α min(n,m) . αi = +∞ is allowed. (P, ∆, Q) are said to realize an approximate SNF of M.

To compute an approximate SNF, with use Algorithm 1.

Algorithm 1: SNFApproximate: Computation of an approximate SNF

Input : M ∈ Mn×m(K), known up to precision O(π l ), with l > cond(M) Output: P, ∆, Q realizing an approximate SNF of M.
Find i, j such that the coefficient Mi,j realize min k,l val(M k,l ) ; Track the following operations to obtain P and Q ; Swap rows 1 and i and columns 1 and j ; Normalize M1,1 to the form π a 1 + O(π l ) ; By pivoting reduce coefficients Mi,1 (i > 1) and M1,j (j > 1) to O(π l ). ; Recursively, proceed with M i≥2,j≥2 ; Return P, M, Q ;

Behaviour of Algorithm 1 is given by the following proposition:

Proposition 2.3. Given an input matrix M , of size n × m, with precision (O(π l ) on its coefficients, Algorithm 1 terminates and returns U, ∆, V realising an approximate SNF of M . Coefficients of U, ∆ and V are known up to precision O(π l ). Time complexity is in O(min(n, m) max(n, m) 2 ) operations in K at precision O(π l ). Now, it is possible to compute the SNF of M , along with an approximation of a realization, from some approximate SNF of M with Algorithm 2. Algorithm 2: SNFPrecised : from approximate SNF to SNF Input : (U, ∆, V ) (precision O(π l )) realizing an approximate SNF of M ∈ Mn×m(K), of full rank. We assume cond(M) < l. Output: ∆0 the SNF of M, and U ′ , V ′ known with precision 

O(π l-cond(M ) ) such that M = U ′ ∆0V ′ , val(det U ′ ) =
(π l-cond(M ) ). Time- complexity is in O(max(n, m) 2 ).
We refer to [START_REF] Vaccon | Matrix-F5 algorithms over finite-precision complete discrete valuation fields[END_REF][START_REF] Vaccon | p-adic precision[END_REF] for more details on how to prove this result. We can then conclude on the computation of the SNF: Theorem 2.5. Given an input matrix M , of size n × m, with precision O(π l ) on its coefficients (l > cond(M )), then by applying Algorithms 1 and 2, we compute P, Q, ∆ with M = P ∆Q and ∆ the SNF of M . Coefficients of P and Q are known at precision O(π l-cond(M ) ). Time complexity is in O(max(n, m) 2 min(n, m)) operations at precision O(π l ).

Solving linear systems

Computation of P and Q in the previous algorithms can be slightly modified to obtain (approximation of) P -1 and Q -1 , and thus M -1 . Proposition 2.6. Using the same context as the previous theorem, by modifying Algorithms 1 and 2 using the inverse operations of the one to compute P and Q, we can obtain P -1 and Q

-1 with precision O(π l-cond(M ) ). When M ∈ GLn(K), using M -1 = Q -1 ∆ -1 P -1 , we get M -1 with precision O(π l-2cond(M ) ). Time complexity is in O(n 3 ) operations at precision O(π l ).
We can then estimate the loss in precision in solving a linear system: Theorem 2.7. Let M ∈ GLn(K) be a matrix with coefficients known up to precision O(π l ) with l > 2cond(M ). Let Y ∈ K n be known up to precision O(π l ). Then one can solve Y = M X in O(n 3 ) operations at precision O(π l ). X is known at precision O(π l-2cond(M ) ).

When the system is not square but we can ensure that Y ∈ Im(M ), then we have the following variant: Proposition 2.8. Let M ∈ Mn,m(K) be full rank matrix, with coefficients known at precision O(π l ), with l > 2cond(M ). Let Y ∈ K n known at precision O(π l ) be such that Y ∈ Im(M ). Then, we can compute X such that Y = M X, with precision O(π l-2cond(M ) ) and time-complexity O(nm max(n, m)) operations in K at precision O(π l ). Error if the precision is not enough. Compute the multiplication matrices T1, . . . , Tn for I and ≤ with Algorithm 5 ; 

B2 := {1} ; v = [ t (1, . . . , 0)] ; G2 := ∅ ; L := {(1, n), (1, n -1), . . . , (1, 1)} ; Q1, Q2, P 1, P 2, ∆ := I1, I1, I δ , I δ , v ; while L = ∅ do m := L[1] ; Erase m of L ; j := m[1] ; i := m[2] ; v := Tiv[j] ; s := card(B2) ; λ = t (
:= G2 ∪ {B2[j]xi -s l=1 W l B2[l]} else B2 := B2 ∪ {B2[j]xi} ; v = v ∪ [v] ; L := IncreasingSort(L ∪ [(s + 1, l)|1 ≤ l ≤ n], ≤2) ; Remove the repeats in L ; Update(v, s, P1, P2, Q1, Q2, ∆) ;
Remove from L all the multiples of LM ≤ 2 (G2) ;

if card(B2) = δ then Return G2 ; else Return "Error, not enough precision"

STABILITY OF FGLM

A stabilized algorithm

This section is devoted to the study of the FGLM algorithm at finite precision over K. More precisely, we provide a stable adaptation of this algorithm. The main difference with the classical FGLM algorithm consists in the replacement of the row-echelon form computations by SNF computation, as in Section 2. This way, we are able to take advantage of the smaller loss in precision of the SNF, and the nicer estimation on the behaviour of the precision it yields.

FGLM is made of Algorithms 5, 3 and 4, with Algorithm 3 being the main algorithm.

Remark 3.1. For the linear systems solving in Algorithm 3, we use the computation of a SNF from an approximate SNF thanks to Algorithm 2, and then solve the system as in 2.8. The remaining of this Section is devoted to the proof of our main theorem 1.2.

Proof of the algorithm

To prove Theorem 1.2 regarding the stability of Algorithm 3, we first begin by a lemma to control the behaviour of the condition number of v during the execution of the algorithm, and then apply it to prove each component of the proof one after the other.

A preliminary remark can be given: over infinite precision, correction and termination of Algorithm 3 are already known. Indeed, the only difference in that case with the classical FGLM algorithm is that the independence testing and linear system solving are done using (iterated) SNF instead of reduced row-echelon form computation.

Growth of the condition in iterated SNF

In order to control the condition number of v during the execution of the algorithm, and thus control the precision, we use the following lemma: Lemma 3.2. Let M ∈ M s,δ (K) be a matrix, with s < δ being integers. Let v ∈ K δ be a vector and M ′ ∈ M s+1,δ (K) the matrix obtained by adjoining the vector v as an (s + 1)th column for M. Let c = cond(M ), and c ′ = cond(M ′ ). We assume c, c ′ = +∞ (i.e., the matrices are of full-rank). Then c ≤ c ′ .

Proof. We use the following classical fact : let d ′ s be the smallest valuation achieved by an s × s minor of M ′ , and d ′ s+1 the smallest valuation achieved by an (s + 1)

× (s + 1) minor of M ′ , then 2 c ′ = d ′ s+1 -d ′ s . In our case, let P, Q, ∆ be such that ∆ is the SNF of M, P ∈ GL δ (R), Q ∈ GLs(R) and P M Q = ∆. Then, by augmenting trivially Q to get Q ′ with Q ′ s+1,s+1
= 1, we can write:

P M ′ Q ′ = π a 1 w1 0 π as 0 w δ                           .
In this setting, c = as. Moreover, we can deduce from this equality that d ′ s+1 is of the form a1 + • • • + as + val(w k ) for some k > s. Indeed, the non-zero minors (s + 1) × (s + 1) of P M ′ Q ′ are all of the following form: they correspond to the choice of (s + 1) row linearly independent, and all the rows of index at least (s + 1) are in the same one-dimensional sub-space. With such a choice of rows, the corresponding minor is the determinant of a triangular matrix, whose diagonal coefficients are π a 1 , . . . , π as , w k .

On the other hand, a1+• • •+as-1+val(w k ) is the valuation of an s×s minor of P M ′ Q ′ . By definition, we then have

d ′ s ≤ a1 +• • •+as-1 +val(w k ). Since d ′ s+1 = a1 +• • •+as +val(w k ) and c ′ = d ′ s+1 -d ′ s
, we deduce that c ′ ≥ as = c, q.e.d..

We introduce the following notation:

Definition 3.3. Let E be an R-module and X ⊂ E a finite subset. We write V ectR(X) for the R-module generated by the vectors of X.

The previous lemma has then the following consequence:

Lemma 3.4. Let I, G1, ≤, ≤2, B ≤ , B ≤ 2 be as in Theorem 1.2. Let x β ∈ B ≤ 2 (I). Let V = V ectR({N F ≤ (x α )|x α ∈ B ≤ 2 , x α < x β }) then N F ≤ (x β ) ∈ π -cond ≤,≤ 2 (I) V
Proof. The proof of the correction of the classical FGLM algorithm shows that, if v is a matrix whose columns are the N F ≤ (x α ) with x α ∈ B ≤ 2 and x α < x β (written in the basis B ≤ ), then N F ≤ (x β ) ∈ Im(v).

By applying the proof of the Proposition 2.8, we obtain that N F

≤ (x β ) ∈ π -cond(v) V ectR({N F ≤ (x α )|x α ∈ B ≤ 2 , x α < x β }).
Finally, Lemma 3.2 implies that cond(v) ≤ cond ≤,≤ 2 (I). The result is then clear.

Correction and termination

We can now prove the correction and termination of Algorithm 3 under the assumption that the initial precision is enough. Which precision is indeed enough is addressed in the following Subsubsection.

Proposition 3.5. Let G1, ≤, ≤2, B ≤ , B ≤ 2 , I be as in Theorem 1.2. Then, assuming that the coefficients of the polynomials of G1 are all known up to a precision O(π N ) for some N ∈ Z>0 big enough, the stabilized FGLM algorithm 3 terminates and returns a Gröbner basis G2 of I for ≤2.

Proof. The computation of the multiplication matrices only involves multiplication and addition and the operation performed do not depend on the precision. This is similar for the computation of the N F ≤ (x α ) processed in the algorithm and obtained as product of Ti's and 1. We may assume that all those N F ≤ (x α ), for |x α |, are obtained up to some precision O(π N ) for some N ∈ Z>0 big enough. Subsubsection 3.2.3 gives a precise estimation on such an N and when it is big enough.

Let M be the matrix whose columns are the N F ≤ (x β ) for x β ∈ B ≤ 2 . Let cond ≤,≤ 2 be as in Definition 1.1.

To show the result, we use the following loop invariant: at the beginning of each time in the while loop of Algorithm 3, we have (i), B2 ⊂ B ≤ 2 and (ii) if x β = B2[j]xi (where (j, i) = m, m taken at the beginning of the loop), then every monomial

x α <2 x β satisfies x α ∈ B ≤ 2 or N F ≤ (x α ) ∈ π N-cond ≤,≤ 2 V ectR(N F ≤ (B ≤ 2 )) + O(π N-cond ≤,≤ 2 ). Here, O(π N-cond ≤,≤ 2 ) is the R-module generated by the π N-cond ≤,≤ 2 ǫ's for ǫ ∈ B ≤ .
We begin by first proving that this proposition is a loop invariant. It is indeed true when entering the first loop since 1 ∈ B ≤ 2 , for I is zero-dimensional.

We then show that this proposition is stable when passing through a loop. Let x β = B2[j]xi with (j, i) = m. By the way we defined it, x β is in the border of B2 (i.e. non-trivial multiple of a monomial of B2). Since B2 ⊂ B ≤ 2 , we deduce that x β is also in either in B ≤ 2 , or in the border of B ≤ 2 , also denoted by B ≤ 2 (I).

We begin by the second case. We then have, thanks to Lemma

3.4, N F ≤ (x β ) ∈ π -cond ≤,≤ 2 V ectR({N F ≤ (x α )|x α ∈ B ≤ 2 , x α < x β }).
Precision being finite, it tells us that λ = P1v = P1N F ≤ (x β ) only appears with coefficients of the form O(π l ′ ) for its coefficients or row of index i > s. This corresponds to being in the image of ∆.

Hence, the if test succeeds, and x β is not added to B2. Points (i) and (ii) are still satisfied.

We now consider the first case, where x β ∈ B ≤ 2 . Once again, two cases are possible. The first one is the following: we have enough precision for, when computing λ = P1v where v = N F ≤ (x β ), we can prove that v is not in V ect(N F ≤ (B ≤ 2 )). In other words, we are in the else case, and x β is rightfully added to B2. The points (i) and (ii) remain satisfied. In the other case: we do not have enough precision for, when computing λ = P1v with v = N F ≤ (x β ), we can prove that v is not in V ect(B ≤ 2 ). In other words, numerically, we get N F N-cond(v) ). In that case, the if condition is successfully passed and, since cond(v) ≤ cond ≤,≤ 2 , the points (i) and (ii) remain satisfied.

≤ (x β ) ∈ π -cond(v) V ectR({N F ≤ (x α )|x α ∈ B ≤ 2 , x α < x β }) + O(π
This loop invariant is now enough to conclude this demonstration. Indeed, since B2 ⊂ B ≤ 2 is always satisfied, we can deduce that L is always included in B ≤ 2 ∪B ≤ 2 (I), and since a monomial can not be considered more than once inside the while loop, there is at most nδ loops. Hence the termination.

Regarding correction, if the if test with card(B2) = δ = card(B ≤ 2 ) is passed, then, because of the inclusion we have proved, we have B2 = B ≤ 2 . In that case, the leading monomials which passed the if are necessarily inside the border of B ≤ 2 (I), and can indeed be written in the quotient A/I in terms of the monomials of B2 smaller than them. In other words, the linear system solving with the assumption of membership indeed builds a polynomial in I. In fine, G2 is indeed a Gröbner basis of I for ≤2.

In the second case, where the if test is failed, with card(B2) = δ, then precision was not enough. 

Analysis of the loss in precision

We can now analyse the behaviour of the loss in precision during the execution of the stabilized FGLM algorithm 3, and thus estimate what initial precision is big enough for the execution to be without error. To that intent, we analyse the precision on the computation of the multiplication matrices and we use the notion of condition number of Definition 1.1 to show that it can handle the behaviour of precision inside the execution the stabilized FGLM algorithm 3. This is what is shown in the following propositions. Lemma 3.6. Let I, G1, ≤, B ≤ , δ, β be as defined when announcing Theorem 1.2. Then the coefficients of the multiplication matrices for I are of valuation at least nδβ.

Proof. G1 is a reduced Gröbner basis of a zero-dimensional ideal. Hence, it is possible to build a Macaulay matrix Mac with columns indexed by the monomials of mon := {Xi × ǫ, i ∈ 1, n , ǫ ∈ B ≤ }, in decreasing order for ≤, and rows of the form x α g, with x α a monomial and g ∈ G, such that this matrix is under row-echelon form, (left)-injective and all monomials in mon ∩ LM ≤ (I) are leading monomial of exactly one row of Mac. Since G1 is a reduced Gröbner

Algorithm 3 :

 3 Stabilized FGLM Input : The reduced Gröbner basis G of the zero-dimensional ideal I ⊂ A for a monomial ordering ≤. deg I = δ. B ≤ = (1 = ǫ1 ≤ ǫ2 ≤ • • • ≤ ǫ δ ) the canonical basis of A/I for ≤ . A monomial ordering ≤2. Output: An approximate Gröbner basis G2 of I for ≤2, or

Algorithm 4 :

 4 Update, iterated approximate SNFInput: s ∈ Z ≥0 . A matrix v of size δ × s, P1, Q1, ∆ some matrices such that P1v ′ Q1 = ∆ is an approximate SNF of v ′ with v ′ the sub-matrix of v corresponding to its s -1 first columns. P2, Q2 are the inverses of P1, Q1. Output : P1, P2, Q1, Q2, ∆ updated such that P1vQ1 = ∆ is an approximate SNF of v, and P2, Q2 are inverses of P1, Q1. Augment trivially the matrices Q1, Q2 into square invertible matrices with one more row and one more column ; Compute U1, V1 and ∆ ′ realizing an approximate SNF of P1vQ1, as well as U2, V2 the inverses of U1, V1 for Algorithm 1 ; P1 := U1 × P1 ; Q1 := Q1 × V1 ; P2 := P2 × U2 ; Q2 := V2 × Q2 ; ∆ := ∆ ′ ;

See Chapter 1 of[START_REF] Vaccon | p-adic precision[END_REF] for more details on the comparison between these two strategies.

This is a direct consequence of the fact that for an ideal I in the ring of integers of a discrete valuation field, any element x ∈ I such that val(x) = min val(I ) generates I , with the converse being true.

basis, the first non-zero coefficients of the rows are 1 and all other coefficients are of valuation at least β. Mac has at most nδ columns and rows. The computation of the reduced row-echelon form of Mac yields a matrix whose coefficients are of valuation at least nδβ, except the first non-zero coefficient of each row which is equal to 1.

N F ≤ (x α ) for x α ∈ mon\B ≤ can then be read on the row of Mac of leading monomial x α . It proves that the coefficients of such a N F ≤ (x α ) are of valuation at least nδβ. The result is then clear. Proposition 3.7. Let I, G1, ≤, ≤2, B ≤ , B ≤ 2 be as defined when announcing Theorem 1.2. Let M be the matrix whose columns are the N F ≤ (x β ) for x β ∈ B ≤ 2 . Then, if the coefficients of the polynomials of G1 are all known up to some precision O(π N ) with N ∈ Z>0, N > cond ≤,≤ 2 (M ) + n 2 (δ + 1) 2 β, the stabilized FGLM algorithm 3 terminates and returns an approximate Gröbner basis G2 of I for ≤2. The coefficients of the polynomials of G2 are known up to precision

Proof. We first analyse the behaviour of precision for the computation of the multiplication matrices. There are at most nδ matrix-vector multiplication in the execution of Algorithm 5. The coefficients involved in those multiplication are of valuation at least nδβ thanks to Lemma 3.6. Hence, the coefficients of the Ti are known up to precision O(π N-(nδ) 2 β ).

We now analyse the exection of Algorithm 3. The computation of v involves the multiplication of deg(v) Ti's and 1. Hence, v is known up to precision O(π N-(nδ) 2 β-deg(v)nδβ ), which can be lower-bounded by O(π N-(δ+1) 2 n 2 β ).

As a consequence, all coefficients of M are known up to precision O(π N-(δ+1) 2 n 2 β ) and this is the same for its approximate SNF. Now, we can address the loss in precision for the linear system solving. Thanks to Proposition 2.8, and with the membership assumption of v to Im(v), a precision O(π N ) with N strictly bigger than (δ+1) 2 n 2 β plus the biggest valuation c of an invariant factor of v is enough to solve the linear system vW = v, and the coefficients of W are determined up to precision O(π N-n 2 (δ+1) 2 β-2c ). The Lemma 3.2 then allows us to conclude that at any time, c ≤ cond ≤,≤ 2 (M ), hence the result.

Complexity

To conclude the proof of Theorem 1.2, what remains is to give an estimation of the complexity of Algorithm 3. Regarding to the computation of multiplication matrices, there is no modification concerning complexity, and what we have to study is only the complexity of the iterated SNF computation. This is done in the following lemma: Lemma 3.8. Let 1 ≤ s ≤ δ and prec be integers, k ∈ 1, s and M, C (k) be two matrices in M δ×s (K). We assume that the coefficients of M satisfies Mi,j = mi,jδi,j + O(π prec ) for some mi,j ∈ K and the coefficients of

be the number of operations in K (at precision O(π prec )) applied on rows and columns to compute an approximate SNF for

Proof. We show this result by induction on s. For s = 1, for any δ, prec, k, M and C (k) , the result is clear.

Let us assume that for some s ∈ Z>0, we have for any δ, prec, k, M and

Then, let us take some δ ≥ s, k ∈ 1, s and rec ∈ Z ≥0 . Let M, C (k) be two matrices in M δ×s (K) such that their coefficients satisfies Mi,j = mi,jδi,j + O(π prec ), for some mi,j ∈ K, and

We apply Algorithm 1 until the recursive call. Let us assume that the coefficient used as pivot, that is, one Ni,j which attains the minimum of the val(Ni,j )'s, is N1,1. Then 1 operation on the columns is done when going through the two consecutives for loops in Algorithm 1. The only other case is that of pivot being some N i,k for some i. Then δ -1 operations on the rows and 1 operation on the columns are done.

The matrix N ′ = N i≥2,j≥2 can be written

By applying the induction hypothesis on N ′ , we obtain that

The result is then proved by induction.

We then have the following result regarding the complexity of Algorithm 3 : Proposition 3.9. Let G1 be an approximate reduced Gröbner basis, for some monomial ordering ≤, of some zerodimensional I ⊂ A of degree δ, and let ≤2 be some monomial ordering. We assume that the coefficients of G1 are known up to precision O(π N ) for some N > cond ≤,≤ 2 . Then, the complexity of the execution of Algorithm 3 is in O(nδ 3 ) operations in K at absolute precision O(π N ).

Proof. Firstly, we remark that the computation of the matrices of multiplication is in O(nδ 3 ) operations at precision O(π N ). Now, we consider what happens inside the while loop in Algorithm 3. The computation of approximate SNF through Algorithm 4 are in O(δ 2 ) operations at precision O(π N ) thanks to Lemma 3.8. The solving of linear systems thanks to Proposition 2.8 are also in O(δ 2 ) operations at precision O(π N ). There is at most nδ entrance in this loop thanks to the proof of termination in Proposition 3.5. The result is then proved.

We can recall that the complexity of the classical FGLM algorithm is also in O(nδ 3 ) operations over the base field.

SHAPE POSITION

In this Section, we analyse the special variant of FGLM to compute a shape position Gröbner basis. We show that the gain in complexity observed in the classical case is still satisfied in our setting. We can combine this result with that of [START_REF] Vaccon | Matrix-F5 algorithms over finite-precision complete discrete valuation fields[END_REF] to express the loss in precision to compute a shape position Gröbner basis starting from a regular sequence.

Grevlex to shape

To fasten the computation of the multiplication matrices, we use the following notion.

Definition 4.1. I is said to be semi-stable for xn if for all x α such that x α ∈ LM (I) and xn | x α we have for all k ∈ 1, n -1 x k xn x α ∈ LM (I). Semi-stability's application is then explained in Proposition 4.15, Theorem 4.16 and Corollary 4.19 of [START_REF] Huot | Résolution de systèmes polynomiaux et cryptologie sur les courbes elliptiques[END_REF] (see also [START_REF] Faugère | Polynomial Systems Solving by Fast Linear Algebra[END_REF]) that we recall here: Proposition 4.2. Applying FGLM for a zero-dimensional ideal I starting from a Gröbner basis G of I for grevlex: 1. Ti1 (i < n) can be read from G and requires no arithmetic operation; 2. If I is semi-stable for xn, Tn can be read from G and requires no arithmetic operation; 3. After a generic change of variable, I is semi-stable for xn.

The FGLM algorithm can then be adapted to this setting in the special case of the computation of a Gröbner basis of an ideal in shape position, with Algorithm 6.

Remark 4.3. If the ideal I is weakly grevlex (or the initial polynomials satisfy the more restrictive H2 of [START_REF] Vaccon | Matrix-F5 algorithms over finite-precision complete discrete valuation fields[END_REF]), then I is semi-stable for xn.

The remaining of this Section is then devoted to the proof of Theorem 1.3.

Correction, termination and precision

We begin by proving correction and termination of this algorithm.

Proposition 4.4. We assume that the coefficients of the polynomials of the reduced Gröbner basis G1 for grevlex are known up to a big enough precision, and that the ideal I = G1 is in general position and semi-stable for xn. Then Algorithm 6 terminates and returns a Gröbner basis for lex of I, yielding an univariate representation. Time complexity is in O(δ 3 ) + O(nδ 2 ).

Proof. As soon as one can certify that the rank of M is δ, the dimension of A/I, then we can certify that I possesses an univariate representation. Correction, termination are then clear. Computing Tn and the Ti1 is free, computing the SNF is in O(δ 3 ) and solving the linear systems is in O(nδ 2 ), hence the complexity is clear. What remains to be analysed is the loss in precision. To that intent, we use again the condition number of I (from grevlex to lex) and the smallest valuation of a coefficient of G1.

Proposition 4.5. Let G1 be the reduced Gröbner basis for grevlex of some zero-dimensional ideal I ⊂ A of degree δ. We assume that the coefficients of the polynomials of G1 are known up to precision O(π N ) for some N ∈ Z>0, except the leading coefficients, which are exactly equal to 1. Let β be the smallest valuation of a coefficient of G1. Let m = cond grevlex,lex (I). We assume that m -δβ < N , that I is in shape position and semi-stable for xn. Then Algorithm 6 computes a Gröbner basis (x1 -h1, . . . , xn-1 -hn-1, hn) of I for lex which is in shape position. Its coefficients are known up to precision O(π N-2m+δβ ). The valuation of the coefficients of hn is at least βδ -m, and those of the hi's is at least β -m.

Proof. There is no loss in precision for the computation concerning the multiplication matrices since it only involves reading coefficients on G1. Their coefficients are of valuation at least β. The columns of M := M atB grevlex (N F ≤ (1), . . . , N F ≤ (x δ-1 n )) are obtained using Tn. Their coefficients are known up to precision O(π N+(δ-1)β ) and are of valuation at least (δ -1)β. For z[δ], it is O(π N+δβ ) and δβ. The only remaining step to analyse is then the solving of linear systems, which is clear thanks to Theorem 2.7.

Summary on shape position

Thanks to the results of [START_REF] Vaccon | Matrix-F5 algorithms over finite-precision complete discrete valuation fields[END_REF] and [START_REF] Vaccon | p-adic precision[END_REF], we can express the loss in precision to compute a Gröbner basis in shape position under some genericity assumptions. Let F = (f1, . . . , fn) ∈ R[X1, . . . , Xn] be a sequence of polynomials satisfying the hypotheses H1 and H2 of [START_REF] Vaccon | Matrix-F5 algorithms over finite-precision complete discrete valuation fields[END_REF] for grevlex. Let D be the Macaulay bound of F and I = F . We assume that I is strongly stable for xn. Let δ = deg(I). Let β = -precMF 5(F, D, grevlex) be the bound on loss in precision to compute an approximate grevlex Gröbner basis of [START_REF] Vaccon | Matrix-F5 algorithms over finite-precision complete discrete valuation fields[END_REF]. Let γ = -δβ + 2cond grevlex,lex (I).

Theorem 4.6. If the coefficients of the fi's are known up to precision N > γ, then one can compute a shape position Gröbner basis for I with precision N -γ on its coefficients.

Proof. An approximate reduced Gröbner basis of I for grevlex is determined up to precision N + 2β and its coefficients are of valuation at least β. Thanks to Proposition 4.5, the lexicographical Gröbner basis of I is of the form x1 -h1(xn), . . . , xn-1 -hn-1(xn), hn(xn). Moreover, the coefficients of hn are of valuation at least δβ -cond grevlex,lex (I) and known at precision N -δβ -2cond grevlex,lex (I). For the other hi's, the coefficients are of valuation at least β -cond grevlex,lex (I) and precision N -γ.

Remark 4.7. As a corollary, if xn ∈ R is such that val(f ′ n (x)) = 0, then xn lifts to x ∈ V (I), known at precision N -2γ.

Algorithm 6: Stabilized FGLM algorithm for an ideal in shape postition starting from grevlex

Input

: An approximate reduced Gröbner basis G1 for grevlex of some ideal I ⊂ A of dimension zero and degree δ. I is semi-stable for xn and in in shape position. Output : An approximate Gröbner basis G2 of I for ≤ lex , in shape position, or Error if the precision is not enough. Read the multiplication matrix Tn for I and grevlex using G; G2 := ∅ ; Read the y 

EXPERIMENTAL RESULTS

An implementation in Sage [S + 11] of the previous algorithms is available at http://www2.rikkyo.ac.jp/web/vaccon/fglm.sage. Since the main goal of this implementation is the study of precision, it has not been optimized regarding to timecomplexity. We have applied the main Matrix-F5 algorithm of [START_REF] Vaccon | Matrix-F5 algorithms over finite-precision complete discrete valuation fields[END_REF] to homogeneous polynomials of given degrees, with coefficients taken randomly in Zp (using the natural Haar measure): f1, . . . , fs, of degree d1, . . . , ds in Zp[X1, . . . , Xs], known at precision O(p 150 ), for grevlex, using the Macaulay bound D. We also used the extension to the affine case of [START_REF] Vaccon | Matrix-F5 algorithms over finite-precision complete discrete valuation fields[END_REF] to handle affine polynomials with the same setting (we specify this property in the column aff.). We have then applied our p-adic variant of FGLM algorithm, specialized for grevlex to lex or not , on the obtained Gröbner bases to get Gröbner bases for the lex order. This experiment has been realized nbtest times for each given choice of parameters. We have reported in the previous array the maximal (column max), resp. mean (column mean), loss in precision (in successful computations), and the number of failures. This last quantity is given as a couple: the first part is the number of failure for the Matrix-F5 part and the second for the FGLM part.

We remark that these results suggest a difference of order in the loss in precision between the affine and the homogeneous case. Qualitatively, we remark that, for some given initial degrees, more computation (particularly computation involving loss in precision) are done in the affine case, because of the inter-reduction step. Also, it seems clear that loss in precision decreases when p increases, in particular, on small instances like here, loss in precision when p = 65519 are very unlikely.

FUTURE WORKS

Following this work, it would be interesting to investigate whether the sub-cubics algorithms of [FM11, FM13, Mou13, FGHR13, FGHR14, Huo13] could be adapted to the p-adic setting with reasonable loss in precision. Another possibility of interest for p-adic computation would be the extension of FGLM to tropical Gröbner bases.