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CLASSICAL AND QUANTUM FIELDS ON LORENTZIAN
MANIFOLDS

CHRISTIAN BAR AND NICOLAS GINOUX

ABSTRACT. We construct bosonic and fermionic locally covariant quemn
field theories on curved backgrounds for large classes afstielVe investigate
the quantum field and-point functions induced by suitable states.

1. INTRODUCTION

Classical fields on spacetime are mathematically modeleskbons of a vector
bundle over a Lorentzian manifold. The field equations arealls partial dif-
ferential equations. We introduce a class of differentjarators, called Green-
hyperbolic operators, which have good analytical soltybfiroperties. This class
includes wave operators as well as Dirac type operators.

In order to quantize such a classical field theory on a curesttdround, we need
local algebras of observables. They come in two flavors, tiosdgebras encoding
the canonical commutation relations and fermionic algelerecoding the canoni-
cal anti-commutation relations. We show how such algebaasbe associated to
manifolds equipped with suitable Green-hyperbolic opggat We prove that we
obtain locally covariant quantum field theories in the seofsfL1]. There is a
large literature where such constructions are carriedaytdrticular examples of
fields, see e.gl [14, 17, 118,120,/ 26/ 38]. In all these papersvidl-posedness of
the Cauchy problem plays an important role. We avoid usiegauchy problem
altogether and only make use of Green’s operators. In tBjseat, our approach
is similar to the one in[39]. This allows us to deal with largéasses of fields,
see Section 217, and to treat them systematically. Mucheoé#hlier work on con-
structing observable algebras for particular examplesbeasubsumed under this
general approach.

It turns out that bosonic algebras can be obtained in mucle g@neral situations
than fermionic algebras. For instance, for the classicea®iield both construc-
tions are possible. Hence, on the level of observable agelthere is no spin-
statistics theorem. In order to obtain results like TheoBemnin [41] one needs
more structure, namely representations of the observidbras with good prop-
erties.

In order to produce numbers out of our quantum field theorydaa be compared
to experiments, we need states, in addition to observabMes show how states
with suitable regularity properties give rise to quanturtdeandn-point functions.
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2 CHRISTIAN BAR AND NICOLAS GINOUX

We check that they have the properties expected from toaditiquantum field
theories on a Minkowski background.
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“Globale Differentialgeometrie” and SFB 647 “Raum-Zeitatdrie”, both funded
by Deutsche Forschungsgemeinschaft, for financial support

2. FIELD EQUATIONS ONLORENTZIAN MANIFOLDS

2.1. Globally hyperbolic manifolds. We begin by fixing notation and recalling
general facts about Lorentzian manifolds, see é.d. [30Mbifdr more details.
Unless mentioned otherwise, the p@#, g) will stand for a smootim-dimensional
manifold M equipped with a smooth Lorentzian metgcwhere our convention
for Lorentzian signature i$— +---+). The associated volume element will be
denoted by dV. We shall also assume our Lorentzian manitdidy) to be time-
orientable, i.e., that there exists a smooth timelike vegtd onM. Time-oriented
Lorentzian manifolds will be also referred to ggacetimesNote that in contrast
to conventions found elsewhere, we do not assume that atspads connected
nor do we assume that its dimensionrbe- 4.

For every subseA of a spacetimé/l we denote the causal future and pasfon

M by J, (A) andJ_(A), respectively. If we want to emphasize the ambient space
M in which the causal future or past Afis considered, we writd)! (A) instead of
J; (A). Causal curves will always be implicitly assumed (futurgast) oriented.

Definition 2.1. A Cauchy hypersurfacén a spacetimgM,g) is a subset oM
which is met exactly once by every inextensible timelikeveur

Cauchy hypersurfaces are always topological hypersigfdme need not be
smooth. All Cauchy hypersurfaces of a spacetime are homeatrico

Definition 2.2. A spacetime(M,g) is calledglobally hyperbolicif and only if it
contains a Cauchy hypersurface.

A classical result of R. Geroch [21] says that a globally mgpéc spacetime can
be foliated by Cauchy hypersurfaces. Itis a rather receshivary important result
that this also holds in the smooth category:

Theorem 2.3(A. Bernal and M. Sanchez|[6, Thm. 1.1])et (M, g) be a globally
hyperbolic spacetime.

Then there exists a smooth manifdd a smooth one-parameter-family of Rie-
mannian metricgg;): on < and a smooth positive functigh on R x X such that
(M, g) is isometric to(R x =, —Bdt? @ g). Each{t} x X corresponds to a smooth
spacelike Cauchy hypersurface(M,g).

For our purposes, we shall need a slightly stronger versidmeoren{ 2.8 where
one of the Cauchy hypersurfacflg x Z can be prescribed:

Theorem 2.4(A. Bernal and M. Sanchez|[7, Thm. 1.2])et (M, g) be a globally
hyperbolic spacetime aria smooth spacelike Cauchy hypersurfacéNhg).
Then there exists a smooth splittifig, g) = (R x Z, —Bdt? g as in Theorer 213
such that corresponds tq0} x =.

We shall also need the following result which tells us that can extend any com-
pact acausal spacelike submanifold to a smooth spacelikeh@ahypersurface.
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Here a subset of a spacetime is cabbedusalif no causal curve meets it more than
once.

Theorem 2.5(A. Bernal and M. Sanchez|[7, Thm. 1.1])et (M,q) be a glob-
ally hyperbolic spacetime and let & M be a compact acausal smooth spacelike
submanifold with boundary.

Then there exists a smooth spacelike Cauchy hypersufatéM, g) with K C .

Definition 2.6. A closed subsef C M is calledspacelike compadf there exists
a compact subsét C M such thath ¢ IM(K) := IM(K) u I (K).

Note that a spacelike compact subset is in general not cdmpadts intersection
with any Cauchy hypersurface is compact, see glg. [4, Cot4A.

Definition 2.7. A subsetQ of a spacetiméM is calledcausally compatibléf and
only if I2(x) = IM(x) N Q for everyx € Q.

This means that every causal curve joining two pointf2imust be contained
entirely inQ.

2.2. Differential operators and Green’s functions. A differential operatorof
order (at mostk on a vector bundl&— M overK =R or K = C is a linear map
P:C*(M,S) —C>®(M,S) which in local coordinatezs = (x*,...,x™) of M and with
respect to a local trivialization looks like

06!

P= Z Aa(x)ﬁ.

laf<k
Here C*(M,S) denotes the space of smooth sections f> M, a =
(a,...,0m) € Ng x --- x Ng runs over multi-indices|a| = a1 + ... + an and
L aldl

T = BV The principal symbolop of P associates to each covector

& € /M alinear mapop(&) : Sc — Sk Locally, it is given by
(&)=Y Aa(x)&?
|a]=k

whereg® = & ... £9mandé = ¥ &;dx. If P andQ are two differential operators

of orderk and/ respectively, the® o P is a differential operator of ordér+ ¢ and

0Qop(§) = 0q(&) 0 0p(&).
For any linear differential operatd? : C*(M,S) — C*(M,S) there is a unique
formally dual operatoP* : C*(M, S*) — C*(M, S*) of the same order characterized
by
[ @.Puav= [ P¢.p)av
M M

for all ¢ € C*(M,S) and¢ € C*(M,S") with supg(¢) Nsupg () compact. Here
(-,-) : S*® S— K denotes the canonical pairing, i.e., the evaluation ofeslifiorm

in S; on an element o§,, wherex € M. We haveop: (&) = (—1)%op(&)* wherek

is the order oP.

Definition 2.8. Let a vector bundl&— M be endowed with a non-degenerate inner
product(-,-). A linear differential operatoP on Sis calledformally self-adjointf
and only if

[ Po.wyav= [ (p.Py)av
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holds for all¢, ¢ € C*(M,S) with supg¢) Nsupg ) compact.
Similarly, we callP formally skew-adjoinif instead

J,Po.wiav=— [ (s.Py)av.

We recall the definition of advanced and retarded Green’satpes for a linear
differential operator.

Definition 2.9. Let P be a linear differential operator acting on the sections of a
vector bundleS over a Lorentzian manifoltl. An advanced Green’s operatdor
PonM is alinear map

G, :C(M,5 —C*(M,9)

satisfying:

(Gl) Po G+ = idcff(M.-S);

(G2) Gyo Hcg%m.S) = IdCE?(M,S);

(G3) supeG. ¢) C IM(sup¢)) for any$ € C2 (M, S).
A retarded Green’s operatdior PonM is a linear mais_ : CZ (M, S) — C*(M, S)
satisfying (G), (G), and

(G3) suppG_¢) C M(supf¢)) for anyd € CZ(M,S).

Here we denote b€ (M, S) the space of compactly supported smooth sections of
S

Definition 2.10. LetP:C*(M, S) — C*(M, S) be a linear differential operator. We
call P Green-hyperbolidf the restriction ofP to any globally hyperbolic subregion
of M has advanced and retarded Green’s operators.

Remark 2.11. If the Green's operators of the restriction®to a globally hyper-
bolic subregion exist, then they are necessarily uniqueRsmark 3.7.

2.3. Wave operators. The most prominent class of Green-hyperbolic operators
are wave operators, sometimes also called normally hyperteerators.

Definition 2.12. A linear differential operator of second order: C*(M,S) —
C*(M,S) is called awave operatorif its principal symbol is given by the
Lorentzian metric, i.e., for af € T*M we have

0p(§) = —(£.€) -id.

In other words, if we choose local coordinates. .., x™ on M and a local trivial-
ization of S, then
m 2 m

" i,Jzzlg ™) g0 +glAJ () o TBX)

whereA; andB are matrix-valued coefficients depending smoothlyamd (g')

is the inverse matrix ofg;j) with gij = (%, %y If P is a wave operator, then so

is its dual operatoP*. In [4, Cor. 3.4.3] it has been shown that wave operators are
Green-hyperbolic.

Example 2.13(d’Alembert operator) Let Sbe the trivial line bundle so that sec-
tions of Sare just functions. The d’Alembert operater= 0 = —divograd is a
formally self-adjoint wave operator, see elg. [4, p. 26].
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Example 2.14(connection-d’Alembert operatorMore generally, leEbe a vector
bundle and letd be a connection o6. This connection and the Levi-Civita con-
nection onT *M induce a connection oh*M ® S, again denotedl. We define the
connection-d’Alembert operatar” to be the composition of the following three
maps

C°M,9) ZC°M, T*"M®9) 2 CM, T"MeT*M e S) —72%, c*(M, )

where tr :T*M ® T*M — R denotes the metric trace,(§ro n) = (&,n). We
compute the principal symbol,

050(&)9 = —(r@ids)ooy(§) 00n(&)(9) = —(reids)(E @@ d) =—(&, ) ¢.

HenceO" is a wave operator.

Example 2.15(Hodge-d’Alembert operatar)Let S = AKT*M be the bundle of
k-forms.  Exterior differentiationd : C*(M,AKT*M) — C*(M,A1T*M) in-
creases the degree by one while the codiffererdiat d* : C*(M,AKT*M) —
C*(M,A*"1T*M) decreases the degree by one. Whilés independent of the
metric, the codifferentiab does depend on the Lorentzian metric. The operator
P = —dd — dd is a formally self-adjoint wave operator.

2.4. The Proca equation. The Proca operator is an example of a Green-
hyperbolic operator of second order which is not a wave dper#irst we need
the following observation:

Lemma 2.16. Let M be globally hyperbolic, let S; M be a vector bundle and let
P and Q be differential operators acting on sections of Sp8se P has advanced
and retarded Green'’s operators.Gand G .

If Q commutes with P, then it also commutes with&hd with G._.

Proof. Assume[P, Q] = 0. We consider
Gy :=G.+[G4,Q): C2(M,s) = CHM,S).
We compute oIt (M, S):
GiP=G.P+G.QP—QG.P=id+G.:PQ—Q=id+Q—Q=id

and similarIyPGi = id. HenceG.. are also advanced and retarded Green'’s opera-
tors, respectively. By Rematk 2]11, Green’s operators migue, hencé., = G..
and thereforéG_, Q] = 0. O

Example 2.17 (Proca operator) The discussion of this example follows [39,
p. 116f], see alsd [20] where is the discussion is based oC#uehy problem.
The Proca equation describes massive vector bosons. We&take*M and let
my > 0. The Proca equation is

(1) P¢ := &d¢ + mip =0

where¢ € C*(M,S). Applying 6 to (1) we obtain, using? = 0 andmy # O,
2 0¢p=0

and hence

(3) (d3 + 6d)¢ +mgg = 0.

Conversely,[(R) and [3) clearly implil(1).
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SinceP :=dd + dd + n’é is minus a wave operator, it has Green's opera@rs
We define

Gi:CP(M,S) - CLM,S), G :=(my2dd+id)oGy = Gyo(my2ds +id).

The last equality holds becaudeand 8 commute withP. For ¢ € CZ(M,S) we
compute

G.P¢ = G.(my?dd+id)(6d +mg)¢p = G.Pp = ¢
and similarlyPG. ¢ = ¢. Since the differential operatcmgzd5+ id does not in-
crease supports, the third axiom in the definition of advdracel retarded Green’s
operators holds as well.
This shows thats, andG_ are advanced and retarded Green’s operator® for
respectively. Thu® is not a wave operator but Green-hyperbolic.

2.5. Dirac type operators. The most important Green-hyperbolic operators of
first order are the so-called Dirac type operators.

Definition 2.18. A linear differential operatob : C*(M,S) — C*(M,S) of first
order is calledf Dirac type if —D? is a wave operator.

Remark 2.19. If D is of Dirac type, then times its principal symbol satisfies the
Clifford relations
(i0p(8))? = —0p2(&) = —(£,¢) -id,

hence by polarization

(iop(&))(ion(n)) +(iop(n))(iop(&)) = —2(£,n) -id.

The bundleSthus becomes a module over the bundle of Clifford algebré¥ @)
associated witT M, (-,-)). Seel[5, Sec. 1.1] or [27, Ch. I] for the definition and
properties of the Clifford algebra (M) associated with a vector spaéevith inner
product.

Remark 2.20. If D is of Dirac type, then so is its dual opera®@t. On a globally
hyperbolic region lelG, be the advanced Green’s operator B which exists
since —D? is a wave operator. Then it is not hard to check thatG, is an
advanced Green’s operator for see e.g. the proof of Theorem 2.3(in][14] lor][29,
Thm. 3.2]. The same discussion applies to the retarded Greparator. Hence
any Dirac type operator is Green-hyperbolic.

Example 2.21(Classical Dirac operatar)f the spacetiméM carries a spin struc-
ture, then one can define the spinor burfgife M and the classical Dirac operator

m
D:C*(M,2M) —C*(M,ZM), D¢ :=i} &e;-Ug 9.
=1

Here(ej)1<j<m is a local orthonormal basis of the tangent bund|es (ej,€)) =
+1 and “” denotes the Clifford multiplication, see e.@l [5] or [3,6S&]. The
principal symbol oD is given by

op(E)Y=i&"-y.

Here&? denotes the tangent vector dual to the 1-fdrwia the Lorentzian metric,
i.e., (E%Y) = &(Y) for all tangent vectory¥ over the same point of the manifold.
Hence

Op2(&) = 0p(&)op(§)Y=—&- & = (E,&) .
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ThusP = —D? is a wave operator. Moreoved is formally self-adjoint, see e.g.
[3, p. 552].

Example 2.22(Twisted Dirac operators)More generally, leE — M be a com-
plex vector bundle equipped with a non-degenerate Hemmiitiaer product and a
metric connectiori]l® over a spin spacetimié. In the notation of Example 2.21,
one may define the Dirac operatorMftwisted withE by

m
DE =i > ey Oz :C"(M,ZM ® E) — C*(M,ZM @ E),
=1

whereJ*M#E is the tensor product connection BN ® E. Again,DF is a formally
self-adjoint Dirac type operator.

Example 2.23 (Euler operator) In Example[Z2.15, replacind\"T*M by S :=
AT*M®C = )_AT*M ® C, the Euler operatdd = i(d — &) defines a formally
self-adjoint Dirac type operator. In cadé is spin, the Euler operator coincides
with the Dirac operator o twisted withZM if mis even and wittEM & =M if m

is odd.

Example 2.24(Buchdahl operators)On a 4-dimensional spin spacetirvk con-
sider the standard orthogonal and parallel splitiivy= >, M &2 _M of the com-
plex spinor bundle oM into spinors of positive and negative chirality. The fi-
nite dimensional irreducible representations of the sjagoinnected Lie group
SpirP(3,1) are given byZS'_‘/Z) o2 wherek, ¢ € N. Herezﬁf/z) = Z?Fk is the
k-th symmetric tensor product of the positive half-spingpresentatiorz, and
similarly for 5“2 Let the associated vector bundlﬁg/ M carry the induced
inner product and connection.

Forse N, s> 1, consider the twisted Dirac operatdf® acting on sections of

M @ =& P/2M. In the induced splitting

sMes Y IM =5, MesP IMes Mes!® D2 u

o DY
D¥ 0

because Clifford multiplication by vectors exchanges thieatities. The Clebsch-

s-1
Gordan formulas [10, Prop. 11.5.5] tell us that the représton 2, ®ZSFZ ) splits
as

the operatoD® is of the form

s-1 s s_
Z+®ZE&-2):ZS-2)@ZS_2 1).
Hence we have the corresponding parallel orthogonal grojec
st 3 s-1 s
B sMes 2 Mo3sPM and izMes(?'M s Uv

tl
On the other hand, the representatibn® Z(ﬁ ) is irreducible. NowBuchdahl
operatorsare the operators of the form

B(S [ M- T+ H2- 4 D(,S)
Ha, M2, H3 - D(s) U3 -id
+
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wherepy, U, i3 € C are constants. By definitionﬁiﬂuz’us is of the formD(® + b,

whereb is of order zero. In particuI(';IIB&SBJ,Z’H3 is a Dirac-type operator, hence it is
Green-hyperbolic.

If M were Riemannian, theB(® would be formally self-adjoint. Hence the oper-
atorBEff}uz,u3 would be formally self-adjoint if and only if the constants, L, L3
are real. In Lorentzian signatur, M and>_M are isotropic for the natural inner
product onzM, so that the bundles on which the Buchdahl operators ac¥; nar
natural non-degenerate inner product.

For a definition of Buchdahl operators using indices we refdt2,[13] 44] and to
[28, Def. 8.1.4, p. 104].

2.6. The Rarita-Schwinger operator. For the Rarita-Schwinger operator on Rie-
mannian manifolds, we refer to [43, Sec. 2], see also [8, Hedtn this section let
the spacetim@ be spin and consider the Clifford-multiplication T*M @ =M —
M, 8@ — 6% -, whereXM is the complex spinor bundle &. Then there is
the representation theoretic splitting™fM ® ZM into the orthogonal and parallel
sum

T*M®3M =1(EM) & %2\,
whereZ%?M :=ker(y) andi () ;= —x 7, & ®e; - (. Here agair(e))i<j<mis a
local orthonormal basis of the tangent bundle. &Zegbe the twisted Dirac operator
onT*M® M, thatis,Z :=i- (id ® y) o 00, whereD denotes the induced covariant

derivative onT*M @ =M.

Definition 2.25. The Rarita-Schwinger operatoon the spin spacetimil is de-
fined by 2 := (id—10y)0 2 :C*(M,Z%2M) — C*(M, Z3/2M).

By definition, the Rarita-Schwinger operator is pointwis#ained as the orthog-
onal projection ont@®/?M of the twisted Dirac operata? restricted to a section
of £3/2M. Using the above formula far, the Rarita-Schwinger operator can be
written down explicitly:

m m
L 2
QU =i- Z SR Z Ea(€a - Ue, ¥p — —€3 - Ue, Pa)
B=1 a=1 m

forall ¢ = 7, & ® Y € C*(M,2%2M), where here] is the standard connec-
tion onZM. It can be checked tha? is a formally self-adjoint linear differential
operator of first order, with principal symbol

0o(&) w il e g2 Y goe.(Ey)).
g=1

forall =33 6@ yp € ¥3/2M. HereX iy denotes the insertion of the tangent
vectorX in the first factor, that isX.y = zgzleE(X)wB.

Lemma 2.26. Let M be a spin spacetime of dimension>n8. Then the char-
acteristic variety of the Rarita-Schwinger operator of Mramdes with the set of
lightlike covectors.

Proof. By definition, the characteristic variety a® is the set of nonzero co-
vectorsé for which o4(&) is not invertible. Fix an arbitrary point € M. Let
¢ € T;M\ {0} be non-lightlike. Without loss of generality we may assume
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that £ is normalized and that the Lorentz orthonormal basis is ema® that
&' =e). Henceg =1 if & is spacelike and; = —1 if & is timelike. Take
W=73F 160 Yp € ker(gg(E)). Then

m 2 m
0 = Ze}}@el-tl,l ——Zeﬁ@eﬁ-wl
= M=

il 2
- pseen

which impliese; - Y3 = %eﬁ -yn for all g € {1,...,m}. ChoosingB =1, we
obtaine; - Y1 = 0 becausen > 3. Hencey, = 0, from whichyz = O follows for
all B €{1,...,m}. Hencey = 0 andoy(&) is invertible.
If & € T, M\ {0} is lightlike, then we may assume théit= e; + e, whereg; = —1
ande&; = 1. Chooseys € Z,M \ {0} with (e; + &) - 1 = 0. Such ay; exists
because Clifford multiplication by a lightlike vector islpotent. Set, .= —yn
andy =€ @Y1+ Y. Theny e ZE/ZM \ {0} and

2

. , 2,
—iog()(W) = e (a+e) Y——ewe - (Yr+yp) =0.

SHE —

This shows € ker(g»(€)) and hencery (&) is not invertible. O

The same proof shows that in the Riemannian case the Ratitai$ger operator
is elliptic.

Remark 2.27. Since the characteristic variety of the Rarita-Schwingearator is
exactly that of the Dirac operator, Lemina 2.26 together yidth Thms. 23.2.4 &
23.2.7] imply that the Cauchy problem f&# is well-posed in cas# is globally
hyperbolic. This implies they? has advanced and retarded Green’s operators.
Hence2 is not of Dirac type but it is Green-hyperbolic.

Remark 2.28. The equations originally considered by Rarita and Schwinge
[33] correspond to the twisted Dirac operat@rrestricted toz%2M but not pro-
jected back t&%/2M. In other words, they considered the operator

D|comzoom :C(M,Z¥2M) —» C*(M, T"M @ IM).

These equations are over-determined. Therefore it is natpgise that non-trivial
solutions restrict the geometry of the underlying manifaédobserved by Gibbons
[22] and that this operator has no Green’s operators.

2.7. Combining given operators into a new one.Given two Green-hyperbolic
operators we can form the direct sum and obtain a new openeadrivial fashion.
It turns out that this operator is again Green-hyperbolioteNhat the two operators
need not have the same order.

Lemma 2.29. Let §,S — M be two vector bundles over the globally hyperbolic
manifold M. Let P and B be two Green-hyperbolic operators acting on sections
of § and S respectively. Then

PLoP = (Fg §2> C°(M,§58S) -C°M,50S)

is Green-hyperbolic.
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Proof. If G; andG; are advanced Green'’s operatorsPpandP, respectively, then
clearly (%1 g2> is an advanced Green’s operator Rt P,. The retarded case
is analogous. d

It is interesting to note thd® andP, need not have the same order. Hence Green-
hyperbolic operators need not be hyperbolic in the usuadeseMoreover, it is
not obvious that Green-hyperbolic operators have a welegaCauchy problem.
For instance, ifP; is a wave operator ané, a Dirac-type operator, then along a
Cauchy hypersurface one would have to prescribe the noreratative for the
Si-component but not for thg,-component.

3. ALGEBRAS OF OBSERVABLES

Our next aim is to quantize the classical fields governed Be@hyperbolic dif-
ferential operators. We construct local algebras of olad#eg and we prove that
we obtain locally covariant quantum field theories in thesgeof [11].

3.1. Bosonic quantization. In this section we show how a quantization process
based on canonical commutation relations (CCR) can beedaout for formally
self-adjoint Green-hyperbolic operators. This is a furiatgprocedure. We define
the first category involved in the quantization process.

Definition 3.1. The categonGlobHypGreen consists of the following objects and
morphisms:

e An object inGlobHypGreen is a triple(M, S,P), where
» M is a globally hyperbolic spacetime,
» Sis areal vector bundle ovéM endowed with a non-degenerate inner
product(-,-) and
» Pis a formally self-adjoint Green-hyperbolic operator agton sec-
tions of S.
e A morphism between two objectgM;,S,P1) and (M2, S,P) of
GlobHypGreen is a pair(f,F), where
» fisatime-orientation preserving isometric embeddihg— M, with
f(M1) causally compatible and open i,
» F is afiberwise isometric vector bundle isomorphism olveuch that
the following diagram commutes:

(a) C*(Mp, S) —2> C*(M2, )

=3
C*(M1,S1) —=C*(My,Sy),
where resp) :=F lo¢ o f for everyg € C*(M,, S).

Note that morphisms exist only if the manifolds have equatatision and the
vector bundles have the same rank. Note furthermore, thantter product-,-)
on Sis not required to be positive or negative definite.
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The causal compatibility condition, which is not automallic satisfied (see e.g.
[4] Fig. 33]), ensures the commutation of the extension asttiction maps with
the Green'’s operators:

Lemma 3.2. Let (f,F) be a morphism between two objedtgl;,S;,P;) and
(M2,$,P,) in the categoryGlobHypGreen and let(G; )+ and(G2)+ be the respec-
tive Green’s operators for{Rand B. Denote byext(¢) € C° (M2, S) the extension
byOof Fogof=1: f(M;) = S to My, for everyd € C¥(M1,S;). Then

reso (Gy)y oext= (Gy)4.

Proof. Set(Gy). := reso (Gy). oext and fixp € C?(My,S;). First observe that
the causal compatibility condition ohimplies that

SUpH(G1)<(9)) = f (SUpH(Ge)= oext(9)))
f-4(3¥(suprext(¢))))
= I (f(supH9))))
= I (supn¢)).

In particular,((?l)i(tp) has spacelike compact supporthh and((?l)i satisfies
Axiom (Ggz). Moreover, it follows from[(#) thaP, o ext= exto P, onCZ(M1,S;),
which directly implies tha{G;). satisfies AxiomsG;) and (G,) as well. The
uniqueness of the advanced and retarded Green’s operanthjeIds((?l)i =
(G1)+. O

N

Next we show how the Green's operators for a formally sejbiatl Green-
hyperbolic operator provide a symplectic vector space iargonical way. First
we see how the Green’s operators of an operator and of itsafyritual operator
are related.

Lemma 3.3. Let M be a globally hyperbolic spacetime and &_ the advanced
and retarded Green’s operators for a Green-hyperbolic apar P acting on sec-
tions of S— M. Then the advanced and retarded Green’s operatorsa@d G-
for P* satisfy

[ eo.wav= [ (9.6:)av
M M
forall ¢ € CZ(M,S") andy € CZ(M,S).

Proof. Axiom (G;) for the Green’s operators implies that
| ©o.wav = | (619.PG)av
= [ (P(GL9).Gzwav

~ [ 9.c-wav.
where the integration by parts is justified since S@ipp) N supgGsy) C
IM(supr(¢)) N IM(supe(y)) is compact. O

Proposition 3.4. Let (M,S P) be an object in the categor§lobHypGreen. Set
G:=G, —G_,where G,G_ are the advanced and retarded Green’s operator for
P, respectively.
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Then the paif SYMPL(M, S,P), w) is a symplectic vector space, where

SYMPL(M,SP):=CZ(M,S)/ker(G) and w([¢],[y]) = / (Go,y)av.
M
Here the square brackeig denote residue classes modukx(G).
Proof. The bilinear form(¢, ) — [,,(G¢, ) dV onCZ (M, S) is skew-symmetric
as a consequence of Leminal3.3 becdseformally self-adjoint. Its null-space

is exactly ke(G). Therefore the induced bilinear form on the quotient space
SYMPL(M, S P) is non-degenerate and hence a symplectic form. a

PutCa(M,S) := {¢ € C*(M,S) |supp¢) is spacelike compagt The next result
will in particular show that we can consider SYMP\L, S P) as the space of
smooth solutions of the equati®® = 0 which have spacelike compact support.

Theorem 3.5. Let M be a Lorentzian manifold, let-S M be a vector bundle, and
let P be a Green-hyperbolic operator acting on sections dfe3. G, be advanced
and retarded Green'’s operators for P, respectively. Put

G:=G,—-G_:CZ(M,9 = C&(M,S9).
Then the following linear maps form a complex:
(5) {0} > CZ(M,9 5 C2(M,S) % CyM, ) = CHUM, S).

This complex is always exact at the firgt@®, S). If M is globally hyperbolic, then
the complex is exact everywhere.

Proof. The proof follows the lines of |4, Thm. 3.4.7] where the résuhs shown
for wave operators. First note that, byg(}Gin the definition of Green’s operators,
we have thaG, : CZ(M,S) — C(M, ). Itis clear from (@) and (@) thatPG =
GP=00nCZ(M,S), hencel(b) is a complex.

If ¢ € CZ(M,9) satisfiesP¢ = 0, then by (G) we havep = G, P¢ = 0 which
shows thaﬂcw’s) is injective. Thus the complex is exact at the fiE§t(M, S).

From now on letM be globally hyperbolic. Lepp € CZ(M,S) with G¢ =0, i.e.,
G ¢ =G_¢. Weputy :=G, ¢ =G_¢ € C*(M,S) and we see that supp) =
SUPEG; @) NsupgG_¢) C I (sup¢)) NJI_(supg@)). Since(M,g) is globally
hyperbolicJ, (supg¢)) N J_(sup¢)) is compact, hencg € CZ(M,S). From
Py =PG, ¢ = ¢ we see thap € P(CZ(M,S)). This shows exactness at the second
CZ(M,S).

It remains to show that any € C3(M,S) with P¢ = 0 is of the form¢ = Gy
with ¢ € CZ(M, S). Using a cut-off function decompogeas¢ = ¢, — ¢_ where
supp(¢-) C J.(K) whereK is a suitable compact subsetMf Theny := P¢., =
P¢_ satisfies supfy) C J.(K)NJ_(K). Thusy € CZ(M,S). We check that
G,y = ¢,. Namely, for ally € CZ(M,S") we have by Lemma3.3

| (x:6-Pp)av= [ (G x.Po )V = [ (PG x.p)aV = [ (x.p:)aV.

The integration by parts in the second equality is justifiedduse sug@g, )N
Supp(G* x) C J+(K)NJ_(supfx)) is compact. Similarly, one shovz ¢ = ¢_.
Now Gy =G,y —G_¢ = ¢, — ¢_ = ¢ which concludes the proof. a



CLASSICAL AND QUANTUM FIELDS ON LORENTZIAN MANIFOLDS 13

In particular, given an objedtM,S P) in GlobHypGreen, the mapG induces an
isomorphism from

SYMPL(M,S,P) =CZ(M,S)/ker(G) = ker(P)NCZ(M, S).

Remark 3.6. Exactness at the fir€’(M,S) in sequencel(5) says that there are
no non-trivial smooth solutions d¥¢ = 0 with compact support. Indeed, M is
globally hyperbolic, more is true.

If ¢ €C*(M,S) solves B = 0andsupp¢) is future or past-compact, theh= 0.
Here a subset C M is called future-compact AN J, (X) is compact for anx € M.
Past-compactness is defined similarly.

Proof. Let ¢ € C*(M,S) solveP¢ = 0 such that sup@) is future-compact. For
anyx € CZ(M,S") we have

| x#rav= [ e x.e)av= [ (G x.Pg)av -0

This shows¢ = 0. The integration by parts is justified because $@igx) N
sup @) C J; (supp(x)) Nsupg ¢) is compact, see [4, Lemma A.5.3]. O

Remark 3.7. Let M be a globally hyperbolic spacetime afid, S, P) an object in
GlobHypGreen. Then the Green’s operators.Gand G_ are unigue. Namely, if
G, andG, are advanced Green’s operators Borthen for anyg € CZ(M,S) the
sectiony := G, ¢ — G. ¢ has past-compact support and satisRg¢s= 0. By the
previous remark, we hawg = 0 which showsz, = G, .

Now, let(f,F) be a morphism between two obje¢id;,S;,P1) and(M2, S, P) in
the categoryGlobHypGreen. For ¢ € C°(M;,S) consider the extension by zero
ext(¢) € CX (M2, ) as in Lemma3]2.

Lemma 3.8. Given a morphism(f,F) between two objectéM;,S;,P;) and
(M2,$,P,) in the categoryGlobHypGreen, extension by zero induces a symplectic
linear mapSYMPL(f,F) : SYMPL(M1,S;,P1) — SYMPL(M2,$,P,).

Moreover,

(6) SYMPL(idw, ids) = idsympL(m,sP)
and for any further morphisrtf’,F’) : (M2, $,P) — (M3, S3,Ps) one has
7) SYMPL((f',F') o (f,F)) = SYMPL(f',F") o SYMPL(f,F).

Proof. If ¢ = Piy € ker(G1) = Pi(CZ(M1,S1)), then extd) = Pu(ext(y)) €
P(CZ(M2,S)) = ker(Gy). Hence ext induces a linear map

SYMPL(f,F):CZ(M1,S1)/ker(G1) — CZ (M2, S)/ ker(Gy).
Furthermore, applying Lemnia 3.2, we have, for gny € CZ(M1,S)
| (Galextd)) extw))av = [ (resoGroext@),w)dv = [ (Gig,w)av.
Ma My M1
hence SYMPLf,F) is symplectic. Equatiori{6) is trivial and extending once or
twice by 0 amounts to the same, B0 (7) holds as well. O

Remark 3.9. Under the isomorphism SYMRM, S P) — ker(P) NCg(M, S) in-
duced byG, the extension by zero corresponds to an extension as alsswation
of P¢ = 0 with spacelike compact support. This follows directlynfrbemmd 3.2.
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In other words, for any morphisnif,F) from (My,S,P1) to (M2, $,P,) in
GlobHypGreen we have the following commutative diagram:

SYMPL(f,F)

SYMPL(My,S;, Py) SYMPL(M2, S, P,)

ul lu

o extensionas .
ker(P]_) mCSC(M]_,S_L) W ker(Pz) mCSC(Mz,SZ).
Let Sympl denote the category of real symplectic vector spaces wittpgctic
linear maps as morphisms. Lemmal3.8 says that we have cctestra covariant
functor

SYMPL : GlobHypGreen — Sympl.

In order to obtain an algebra-valued functor, we compose BYMith the func-
tor CCR which associates to any symplectic vector space @y @Algebra. Here
“CCR” stands for “canonical commutation relations”. Thsésa general algebraic
construction which is independent of the context of Gregmerbolic operators
and which is carried out in Sectibn A.2. As a result, we obth@functor

Apos:= CCRo SYMPL : GlobHypGreen — C*Alg,

whereC*Alg is the category whose objects are the unitalal®ebras and whose
morphisms are the injective unit-preserving-@orphisms.

In the remainder of this section we show that the functor CGGYMPL is a
bosonic locally covariant quantum field theory. We call twibregionsM, and
M, of a spacetiméM causally disjointif and only if IM(M;) "Mz = 0. In other
words, there are no causal curves joinMgandMo.

Theorem 3.10. The functorpes: GlobHypGreen — C*Alg is a bosonic locally
covariant quantum field theory, i.e., the following axionoddh
(i) (Quantum causality) Let(Mj,S;,P;) be objects irGlobHypGreen, j=1,2,3,
and (f;,Fj) morphisms fromM;,S;,P;) to (M3, $3,Ps), j = 1,2, such that
f1(M1) and §(M,) are causally disjoint regions in y
Then the subalgebras  Apos( f1, F1)(Abos(M1,S1,P1)) and

leOS( f27 F2) (leOS(M27 827 PZ)) Of Q’[bOS(M?)v 8\37 P3) CommUte

(i) (Timeslice axiom) Let(M;,S;,P;j) be objects irGlobHypGreen, j=1,2, and
(f,F)amorphism fronfMy, S, Py ) to (M2, S, P») such that there is a Cauchy
hypersurface& C M for which f(%) is a Cauchy hypersurface ofMThen

Apos( f,F) : Apos(M1,S1,P1) — Apos(M2, S, P2)
is an isomorphism.

Proof. We first show({i). For notational simplicity we assume withfmss of gen-
erality thatf; andF; are inclusionsj = 1,2. Let¢; € CZ(M;,S;). SinceM; and
M, are causally disjoint, the sectiof@&p, and ¢, have disjoint support, thus

(93], [02) = [ (Gpr.d2)aV =0,
Now relation [i¥) in Definitior A1l tells us
W([d1]) - w([¢2]) = w([¢1] + [¢2]) = W([2]) - w([¢1])-
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Sincepos( f1, F1) (™Apos(M1,S1,P1)) is generated by elements of the fom[¢;])
and 2Apos( f2, F2) ([Apos(M2, S, P,)) by elements of the formw([¢-]), the assertion
follows.

In order to prove[(ji) we show that SYMRE, F) is an isomorphism of symplec-
tic vector spaces providetl maps a Cauchy hypersurface Mf onto a Cauchy
hypersurface oM,. Since symplectic linear maps are always injective, we only
need to show surjectivity of SYMRIE,F). This is most easily seen by replacing
SYMPL(M;,S;,P;) by ker(P;) NC&(M;,S;) as in Remark 319. Again we assume
without loss of generality that andF are inclusions.

Let ¢ € C3(M2,S) be a solution o,y = 0. Letd be the restriction ofy to M;.
Then¢ solvesP,¢ = 0 and has spacelike compact suppovinby Lemma 311
below. We will show that there is only one solution My with spacelike com-
pact support extending. It will then follow that  is the image ofp under the
extension map corresponding to SYMHLF ) and surjectivity will be shown.

To prove uniqueness of the extension, we may, by linearggume thatp = 0.
Theny, defined by

w(x), if xed¥(z),
0, otherwise,

P (x) = {

is smooth sincey vanishes in an open neighborhoodoMNow (s, solveskPy, =
0 and has past-compact support. By Remark §6,= 0, i.e., ¢ vanishes on
J™(%). One shows similarly thap vanishes od™2(%), hencey = 0. O

Lemma 3.11. Let M be a globally hyperbolic spacetime and let MM be a
causally compatible open subset which contains a Cauchgrlydace of M. Let
A C M be spacelike compact in M.

Then ANM' is spacelike compact in M

Proof. Fix a common Cauchy hypersurfaZeof M’ andM. By assumption, there
exists a compact subsétc M with A c JM(K). ThenK’ := JM(K)NZ is compact
[4, Cor. A.5.4] and contained iW’.

MoreoverA c JM(K’): let p € Aand lety be a causal curve (i) from p to some

k € K. Theny can be extended to an inextensible causal cuniM,imhich hence
meets> at some point. Because ofj € =N JIM(k) c K’ one hagp € JM(K').
ThereforeAn M’ ¢ JM(K) M’ = IV (K’) because of the causal compatibility of
M’ in M. The lemma is proved. O

The quantization process described in this subsectioriempiol particular to for-
mally self-adjoint wave and Dirac-type operators.

3.2. Fermionic quantization. Next we construct a fermionic quantization. For
this we need a functorial construction of Hilbert spacetaathan symplectic
vector spaces. As we shall see this seems to be possible ndér tmuch more
restrictive assumptions. The underlying Lorentzian n@diM is assumed to be
a globally hyperbolic spacetime as before. The vector muBdé assumed to be
complex with Hermitian inner produgt, -) which may be indefinite. The formally
self-adjoint Green-hyperbolic operatBiis assumed to be of first order.

Definition 3.12. A formally self-adjoint Green-hyperbolic operaterof first order
acting on sections of a complex vector bun8lever a spacetim#l is of definite
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typeif and only if for anyx € M and any future-directed timelike tangent vector
n € TyM, the bilinear map

S(XS(—>(Ca (¢,ll])i—><i0'p(ﬂb)'¢,w>,

yields a positive definite Hermitian scalar product®n

Example 3.13.The classical Dirac operatérfrom Examplé 2.2/ is, when defined
with the correct sign, of definite type, see eld. [5, Sec5ldr.[3, Sec. 2].

Example 3.14.If E — M is a semi-Riemannian or -Hermitian vector bundle en-
dowed with a metric connection over a spin spacetihehen the twisted Dirac
operator from Example_2.22 is of definite type if and only i¢ tinetric onE is
positive definite. This can be seen by evaluating the tenstrinner product on
elements of the forno ® v, wherev € Ey is null.

Example 3.15. The operatoP = i(d — ) on S= AT*M ® C is of Dirac type but
not of definite type. This follows from Example 3|14 appliedBExample 2.23,
since the natural inner product @M is not positive definite. An alternative el-
ementary proof is the following: for any timelike tangentci@ n on M and the
corresponding covector, one has

(iop(W)0’,10") = —(0’ A’ —nn’,0’) = (n,n)(1,n") = 0.

Example 3.16. The Rarita-Schwinger operator defined in Secfion 2.6 is fiot o
definite type if the dimension of the manifolds s> 3. This can be seen as
follows. Fix a pointx € M and a pointwise orthonormal basig;)1<j<m of M
with e, timelike. The Lorentzian metric induces inner products2dn and on
3/2M which we denote by:-,-). Choosef := &, € T:M and € 37/°M. Since

02(&) is pointwise obtained as the orthogonal projectiorogf§) onto 532\,
one has

oo @)W w) = ((de&)w,w) —%z (€ @ ep- Y. )

:O
m

=1

Choose, as in the proof of Lemina 2.26) & Zi’/zM with yx =0forall 3<k<m.

For such ap the conditiony € Zf(’/zM becomes; - Y = & - Yhr. As in the proof
of Lemmd2.26 we obtain

(—i02(&)Y, @) = —(e1- Y2, P2) + (e1- Yo, Ypr) =0,

which shows that the Rarita-Schwinger operator cannot lokefifite type.

We define the categoi§lobHypDef, whose objects are the triplél, S P), where

M is a globally hyperbolic spacetim8,is a complex vector bundle equipped with
a complex inner product ,-), andP is a formally self-adjoint Green-hyperbolic
operator of definite type acting on sectionsSofThe morphisms are the same as in
the categonyGlobHypGreen.

We construct a covariant functor froGiobHypDef to HILB, whereHILB denotes
the category whose objects are complex pre-Hilbert spawtsvhose morphisms
are isometric linear embeddings. As in Secfiod 3.1, the nyidg vector space
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is the space of classical solutions to the equaR¢n= 0 with spacelike compact
support. We put

SOLM,SP) :=ker(P)NC(M,S).
Here “SOL” stands for classical solutions of the equatfgn= 0 with spacelike
compact support.

Lemma 3.17. Let (M, S P) be an object inrGlobHypDef. LetZ C M be a smooth
spacelike Cauchy hypersurface with its future-oriented mormal vector fieldn
and its induced volume elemet#. Then

® (6.9):= [ion(r)- 9.0 0A

yields a positive definite Hermitian scalar product®®L(M, S P) which does not
depend on the choice af

Proof. First note that supf@ ) N X is compact since supp) is spacelike compact,
so that the integral is well-defined. We have to show that @sdoot depend on
the choice of Cauchy hypersurface. 3#tbe any other smooth spacelike Cauchy
hypersurface. Assume first thatand X’ are disjoint and leQ be the domain
enclosed by and%’ in M. Its boundary i®Q = > UZ'. Without loss of generality,
one may assume that ¢ JM(%). By the Green’s formuld[40, p. 160, Prop. 9.1]
we have for allp, € Ce(M, S),

© [ (Po.w)—(0.Py)) oV = [ (0p(w)0,¥)dA~ [ (op(w)p, ) oA
For¢,y € SOLM, S P) we haveP¢$ = Py = 0 and thus

0= [ (p(w)9,4) dA~ [ (op(w)p. ) oA

This shows the result in the caBe12’ = 0.
If £N3' # 0 consider the subsé¥ (=) NIM(Z') of M where, as usualM (%) and
IM(%) denote the chronological future and past of the suBsatM, respectively.
This subset is nonempty, open, and globally hyperbolic.s Thllows e.g. from
[4, Lemma A.5.8]. Hence it admits a smooth spacelike Caugipetsurface>”
by Theoreni_Z3. By constructio” meets neithek nor ¥’ and it can be easily
checked thak” is also a Cauchy hypersurface Mf The result follows from the
argument above being applied first to the gairX~”) and then to the paiz”,%’).
O

Remark 3.18. If one drops the assumption thBtbe of definite type, then the
above sesquilinear forrt,-) on ke(P) NCg(M, S) still does not depend on the
choice ofZ, however it need no longer be positive definite and can evetlebe
generate. Pick for instance the spin Dirac operBigassociated to the underlying
Lorentzian metriay on a spin spacetim®l (see Examplé_2.21) and, keeping the
spinor bundleZgM associated t@, change the metric okl so that the new met-
ric g has larger future and past cones at each point. Note thaintpiges that
any globally hyperbolic subregion M, d') is also globally hyperbolic iriM, g).
Then, denoting byy the formal adjoint ofDg with respect to the metrig/, the

operator( Dg ) on>ygM @ ZgM remains Green-hyperbolic but it fails to be

D O
9
of definite type, since there exist timelike vectors gbwhich are lightlike forg.
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Hence the principal symbol of the operator becomes noriile and the bilinear
form in (8) becomes degenerate for thgséimelike covectors.

For any objec{M, S P) in GlobHypDef we will from now on equip SO[M, S P)
with the Hermitian scalar product ifil(8) and thus turn SMLS P) into a pre-
Hilbert space.

Given a morphism(f,F) from (M1,S;,P;) to (M2,$,P,) in GlobHypDef, then
this is also a morphism irGlobHypGreen and hence induces a homomor-
phism SYMPL f,F) : SYMPL(My,S;,P1) — SYMPL(M2,$,P,). As explained
in Remark3.D, there is a corresponding extension homorsmpBOL(f,F) :
SOL(M1,S;,P1) — SOL(M2, S, P,). In other words, SOLf,F) is defined such
that the diagram

f
(10) SYMPL(My, S, Pp) —MPHTE)

|

SOL(M1,S;,P1)

SYMPL(M2, S, P,)

lz

f
SOUE) . soLMy, S, Py)

commutes. The vertical arrows are the vector space isonsonghinduced be the
Green's propagatorG; andGy, respectively.

Lemma 3.19. The vector space homomorphiS®L(f,F) : SOL(M1,5,P1) —
SOL(M2, S, P,) preserves the scalar products, i.e., itis an isometricdimembed-
ding of pre-Hilbert spaces.

Proof. Without loss of generality we assume tHaandF are inclusions. Lek;
be a spacelike Cauchy hypersurfaceMaf Let ¢, 1 € Co(M1,S;). Denote the
extension ofp; by ¢, := SOL(f,F)(¢1) and similarly fory;.

Let K1 C M1 be a compact subset such that siggp C JMZ(Kl) and suppyn) C
IM2(Ky). We choose a compact submanifdfdc ; with boundary such that
IMi(K;)NZ; € K. SinceZ; is a Cauchy hypersurface iM;, JM(K;) C
JMl(JMl(Kl) N Zl) C JMl(K).

By Theorem Zb there is a spacelike Cauchy hypersurlace M, containing
K. SinceZ; is a Cauchy hypersurface 8 (wherei = 1,2), it is met by every
inextensible causal curvie [30, Lemma 14.29]. Moreover,dfiniion of a Cauchy
hypersurfacez; is achronal inM;. Since it is also spacelikg; is even acausal [30,
Lemma 14.42]. In particular, it is metxactly onceby every inextensible causal
curve inM;.

This impliesM2(K) ¢ IM2(K) (see Figure below): namely, pigge JM2(K;)
and a causal curvgin M, from p to somek; € K;. Extendy to an inextensible
causal curvgy in My, Theny meetsZ, at some pointp,, because, is a Cauchy
hypersurface iM,. But yn M is also an inextensible causal curveNii, hence
it intersectsX; at a pointqy, which must lie inK by definition ofK. Because of
K C %, and the uniqueness of the intersection point, onejhasqg,. In particular,
p e M (K).
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IM2(Ky) € IM2(K)

We conclude sup.) ¢ JM?(K). SinceK C I, we have supfp) N3, C
IM2(K)N'Z, and IM2(K) N Z, = K using the acausality oE,. This shows
sup@2) N X = supg ¢1) N 21 and similarly fory,. Now we get

(¢2,¢'2)=/Z <iUP2(“b)'¢27llf2>dA:/z (iop, (") - b1, Y1) A = (1, Y1)

2 1

and the lemma is proved. O

The functoriality of SYMPL and diagrani_(IL0) show that SOL iuactor from
GlobHypDef to HILB, the category of complex pre-Hilbert spaces with isometric
linear embeddings. Composing with the functor CAR (seei&@&&.1]), we obtain
the covariant functor

Uterm = CAR0 SOL : GlobHypDef —3 C*Alg.

The fermionic algebra8iem(M, S, P) are actuallyZ,-graded algebras, see Propo-

sition[A.5 (ii).

Theorem 3.20. The functoRlserm : GlobHypDef — C*Alg is a fermionic locally
covariant quantum field theory, i.e., the following axionotdh
(i) (Quantum causality) Let (M;,S;,P;) be objects inGlobHypDef, j =1,2,3,
and (f;,Fj) morphisms fromM;,S;,P;) to (M3, $3,Ps), j = 1,2, such that
f1(M1) and §(M,) are causally disjoint regions in b
Then the subalgebras  Aterm(f1, F1) (Rserm(M1,S1,P1)) and
RAterm( f2, F2) (Aterm(M2, S, P2)) of term(Ms, S3, P3) super-commu
(i) (Time slice axiom) Let (M;,S;,P;) be objects inGlobHypDef, j =1,2, and
(f,F)amorphism fronfMy, S, Py ) to (M2, S, P») such that there is a Cauchy
hypersurface& C M for which f(X) is a Cauchy hypersurface ofMThen

Qlferm(faF) : Q[ferm(MLSL Pl) — Q[ferm(M27SZ7 PZ)
is an isomorphism.

IThis means that the odd parts of the algebras anti-commuite thle even parts commute with
everything.
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Proof. To show [[j), we assume without loss of generality thaandF; are inclu-
sions. Letp; € SOL(M1,S;,P1) andyy € SOL(M2, S, P,). Denote the extensions
to M3 by ¢, := SOL(f1,F1)(¢1) and P, := SOL(f2,F,) (). Choose a compact
submanifoldK; (with boundary) in a spacelike Cauchy hypersurfagef M; such
that supp¢1) N X1 C Ky and similarlyK; for ¢». SinceM; and M, are causally
disjoint, K; UKj is acausal. Hence, by Theoréml|2.5, there exists a Cauchy-hype
surfaceZz of M3 containingK; andKs. As in the proof of Lemma 3.19 one sees
that suppg2) N%3 = supd$1) NZ; and similarly fory,. Thus, when restricted
to X3, ¢, and Y, have disjoint support. Hencg, Y) = 0. This shows that
the subspaces SQfy, F;)(SOL(M1,S;,P1)) and SOL f2, F,) (SOL(M2, S, P,)) of
SOL(M3, S3,P;) are perpendicular. Definitidn_A.1 shows that the correspand
CAR-algebras must super-commute.

To see[(ii) we recall thaff,F) is also a morphism irGlobHypGreen and that
we know from Theorem 3.10 that SYMPL,F) is an isomorphism. From dia-
gram [10) we see that SQL, F) is an isomorphism. Henc¥sem(f,F) is also an
isomorphism. O

Remark 3.21. Since causally disjoint regions should lead to commuting ob
servables also in the fermionic case, one usually considehs the even part
ALVCN(M, S P) (or a subalgebra thereof) as the observable algebra whaléuth

ferm

algebrallserm(M, S, P) is called thefield algebra

There is a slightly different description of the funct¥f;n. Let HILBgr denote
the category whose objects are the real pre-Hilbert spawtsvhose morphisms
are the isometric linear embeddings. We have the functorIRBALB — HILBg
which associates to each complex pre-Hilbert spaté ,-)) its underlying real
pre-Hilbert spacéV,Re(-,-)). By RemarKAID,

Qlferm — CAdeO REAL ¢} SOL

Since the self-dual CAR-algebra of a real pre-Hilbert spad¢ke Clifford algebra
of its complexification and since for any complex pre-Hitbggacev we have

REAL(V)®gC =V &V*,

Arerm(M, S P) is also the Clifford algebra of SAM,SP) ® SOL(M,SP)* =
SOL(M,Sa S, P@ P*). This is the way this functor is often described in the
physics literature, see e.(. [39, p. 115f].

Self-dual CAR-representations are more natural for relldieLetM be globally
hyperbolic and leE— M be areal vector bundle equipped with a real inner product
(-,-). A formally skew—adjoilﬂ differential operatotP acting on sections dbis
called ofdefinite typef and only if for anyx € M and any future-directed timelike
tangent vecton € T,M, the bilinear map

SxS =R, (¢,0) > (0p(W)- ¢, ),

yields a positive definite Euclidean scalar productSanAn example is given by
the real Dirac operator

m
D=7 ¢iej [
=1
acting on sections of the real spinor bungfem.

2instead of self-adjoint!
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Given a smooth spacelike Cauchy hypersurface M with future-directed time-
like unit normal fieldn, we define a scalar product on SQI, S P) = ker(P) N
Cee(M, S P) by

(¢, ¢) 1=/Z<Up(nb)-¢|z,w|z>dA.

With essentially the same proofs as before, one sees thatstlalar product
does not depend on the choice of Cauchy hypersurfaeed that a morphism
(f,F): (M1,S,P) — (M2, S, P,) gives rise to an extension operator SOLF ) :
SOL(M1,S1,P1) — SOL(M2, S, ) preserving the scalar product. We have con-
structed a functor

SOL : GlobHypSkewDef — HILBg

whereGlobHypSkewDef denotes the category whose objects are tripksS P)
with M globally hyperbolic,S— M a real vector bundle with real inner product
andP a formally skew-adjoint, Green-hyperbolic differentigdevator of definite
type acting on sections & The morphisms are the same as before.

Now the functor

Q[fsgrm := CARgg0 SOL : GlobHypSkewDef — C*Alg

is a locally covariant quantum field theory in the sense thaofeni 3.20 holds
with serm replaced by2($d

ferm-

4. STATES AND QUANTUM FIELDS

In order to produce numbers out of our quantum field theorydha be compared
to experiments, we need states, in addition to observahMesbriefly recall the
relation between states and representations via the GNSraotion. Then we
show how the choice of a state gives rise to quantum fieldsigoaint functions.

4.1. States and representations.Recall that astateon a unital C-algebraA is a
linear functionalr : A — C such that

(i) tis positive, i.e.T(a*a) > 0forallac A;

(i) tisnormed,i.e.rf(1)=1.
One checks that for any state the sesquilinear formA — C, (a,b) — 1(b*a),
is a positive semi-definite Hermitian product ajida)| < ||al| for all a€ A. In
particular,T is continuous.
Any state induces a representation/of Namely, the sesquilinear form(b*a)
induces a scalar produ¢t-); onA/{ac A| 1(a*a) = 0}. The Hilbert space com-
pletion of A/{a € A| t(a*a) = 0} is denoted bys#;. The action ofA on J#; is
induced by the multiplication i,

m:(a)[b]r := [ab],

where[a]; denotes the residue class @& A in A/{ac A| t(a*a) = 0}. This
representation is known as tfENS-representatiomduced byr. The residue class
Q; :=[1]; € s# is called thevacuum vectorBy construction, it is a cyclic vector,
i.e., the orbitr (A) - Qr = A/{a€ A| 1(a*a) = 0} is dense in;.

The GNS-representation together with the vacuum vectowalto reconstruct the
state since

(11) 1(a) = 1(1al) = (m (a)Qr, Q¢ )z
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If we look at the vector staté : £ () — C, T(8) = (aQ¢,Q¢)r, on the C-
algebra? (.7#;) of bounded linear operators o#;, then [11) says that the diagram

T ()
A

commutes. One checks that || < 1, seel[2, p. 20]. In particulary : A— £ (77)
is continuous.

See e.g.[]2, Sec. 1.4] orl[9, Sec. 2.3] for details on statdsrepresentations of
C*-algebras.

A

4.2. Bosonic quantum field. Now let (M,SP) be an object inGlobHypGreen
andr a state on the corresponding bosonic algeltyg(M, S P). Intuitively, the
quantum field should be an operator-valued distribuoon M such that

e =w([f])

for all test sectionsf € C3(M,S). Here [f] denotes the residue class in
SYMPL(M,S,P) =C2(M,S)/kerG andw : SYMPL(M, S,P) — Apos(M,S,P) is
as in DefinitioCA.T]l. This suggests the definition

. d
d(f):=—i at t:Ow(t[f]).
The problem is thatv is highly discontinuous so that this derivative does notenak
sense. This is where states and representations come énpdeth We call a state
T on Apos(M, S P) regular if for each f € C¥(M,S) and eachh € J# the map
t — 1 (w(t[f]))h is continuous. Them — 7% (W(t[f])) is a strongly continuous
one-parameter unitary group for afiye CZ (M, S) because

R (w((t + 9)[F])) = 7w (€S 2wt )w(s[ 1)) = (W) 7 (w(s[ ).

Here we used Definition A.11 {iv) and the fact thatis skew-symmetric so that
w(t[f],5f]) = 0. By Stone’s theoren [34, Thm. VII1.8] this one-parametesup
has a unique infinitesimal generator, i.e., a self-adjgianerally unbounded oper-
ator @ (f) on.# such that

PN = m (w(t[f])).
For allh in the domain ofd;(f) we have

®(f)h=—i % . m(w(t[f]))h.

We call the operator-valued mdp— ®.(f) thequantum fielc&corresponding ta.

Definition 4.1. A regular stater on2pos(M, S P) is calledstrongly regularif

(i) there is a dense subspa@e C .77 contained in the domain @b ( f) for any
feCZ(M,S);
(i) @(f)(Zr) C Z; forany f € CX(M,S);
(iii) the mapCZ(M,S) — 77, f +— ®(f)h, is continuous for every fixed € 7.
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For a strongly regular statewe have for allf,g € CZ (M, S), a, 3 € Randh € Z;:

®:(af+pgh=—i G| mwitlaf+pg)h
z—.%to{é“ﬁ“ 9072 (w(at]f])) 7 (w(Bt[g]) )0}
i3  mwa{f))n-— % _mwBiig))h

= a®(f)h+ B (g)h.

Henced(f) depends linearly oti. The quantum fieldp; is therefore a distribu-
tion onM with values in self-adjoint operators oi;.
Then-point functionsare defined by

Tn(f1,..., fn) = (Pr(f1) - D (Fr)Qr, Qr)r
- T(q)r(fl)"'q)r(fn))

—f ((—i ditl - rrr(w(tl[fl]))> <—i %

0”

- T et
= (=) oty an dtn t1:...:tn:of(T[T(W(tl[fl]) “W(tn[fn])))
= (i () wil ).

For a strongly regular state the n-point functions are continuous separately in
each factor. By the Schwartz kernel theorém [23, Thm. 5tRdh-point function

T, extends uniquely to a distribution dvl x --- x M (n times) in the following
sense: Le§ X -- XIS be the bundle ove¥l x - -- x M whose fiber ovefxg, ..., X,)

is given byS, ®---®S; . Then there is a unique distribution dhx --- x M in the
bundleS'X--- X S, again denoted,, such that for allf; € C(M, S),

Tn(fl,..., fn) == Tn(fl®® fn)
where(fi®@ - ® fn)(X1,..., %) := f1(X1) ® -~ @ fa(Xn).

Theorem 4.2.Let(M, S P) be an object irGlobHypGreen and 1 a strongly regular
state on the corresponding bosonic algeBfgy,s(M,S P). Then

(i) P®; =0 and Prp(fy,..., fj_1,-, fj+1,..., fn) = 0 hold in the distributional
sense wherecfe CT (M, S), k# |, are fixed;
(i) the quantum field satisfies the canonical commutatidatiens, i.e.,

(@2 (f), e (g)]h = i/M<Gf,g>dV.h

forall f,g e CZ(M,S) and he Z;
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(i) the n-point functions satisfy the canonical commigtatrelations, i.e.,

Tny2(fo,o fjog, By, fipn, o i)
- Tn+2(fl, [ERE fj*l) fj+l7 fj7 fj+27 AR fn+2)

:i/M<Gf,-,f,-+1>dv.rn(f1,...,f,-,1, fiizreens fas2)
forall f,..., fo2 €CE(M,S).

Proof. SinceP is formally self-adjoint an@&P f = 0 for any f € C7(M, S), we have
foranyh € 2;:

(Po)(h=d,(PHh=—i &

S m(wPr)h=

_| R
t=0 ~ dt t=0

h=0.

This showsPd; = 0. The result for the@-point functions follows andl(i) is proved.
To show [(il) we observe that by Definition All1(iv) we have be bne hand

w([f +g]) = €208 2w ([ f])w([g))
and on the other hand
w([f +g]) = 21D 2w [gw([f]),

hence

w([f)w([g]) = e (D w([g])w([f]).
Thus

=— o= (e 1S9 w(slg] wit[]))h

t=s=0

- _ at—as t_bo{eiw(t[f]as[g]) . nT(W(S[g])W(t[f]))h}
=iw([f],[g))h+ P (9)P:(f)h
:i/h;l(Gf,g>dV-h+d>r(9)d>r(f)h.

This shows|(ji). Assertiorijii) follows frond{ji). O

Remark 4.3. As a consequence of the canonical commutation relationsetve g
[®(f), P:(9)] =0

if the supports off andg are causally disjoint, i.e., if there is no causal curve from
supg f) to supfg). The reason is that in this case the support&dfandg are
disjoint. A similar remark holds for the-point functions.

Remark 4.4. In the physics literature one also finds the statendgft) = ®(f)*.
This simply expresses the fact that we are dealing with aryheer the reals. We
have encoded this by considering real vector bunflege Definitio 3]1, and the
fact thatd(f) is always self-adjoint.
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4.3. Fermionic quantum fields. Let (M,S P) be an object inGlobHypDef and
let T be a state on the fermionic algelam(M,S P). For f € CZ(M,S) we put

®(f) = —m(a(Gf)Y),

@7 (f) = m(aGf)),
wherea s as in Definitiod A.ll (comparé [18, Sec. lII.B, p. 141]). &1, a, and
G are sequentially continuous (f@ see [4, Prop. 3.4.8]), so ark; and®; . In
contrast to the bosonic case, no regularity assumption ismeeded. Henc®;

and®; are distributions oM with values in the space of bounded operators on
7. Note that®; is linear while®; is anti-linear.

Theorem 4.5. Let (M, S P) be an object inGlobHypDef and 7 a state on the
corresponding fermionic algebferm(M, S, P). Then

(i) P®; = P®; =0 holds in the distributional sense;
(i) the quantum fields satisfy the canonical anti-commatatelations, i.e.,

(@(1).91(0)) = {9} (). (@)=0.
@007 @) = i( [ (©fgav) iy
forall f,geCZ(M,S).

Proof. SinceGP=00nCZ (M, S), we haveP®d(f) =P, (Pf)=—m(a(GPf)*) =
0 and similarly for®; . This proves assertiofi (i).
Using DefinitiorA.1 [(il) we compute

{®:(F),®:(9)} = {m(a(Gf)"), 7 (a(Gg)") }
= ({a(Gf)",a(Gg)"'})
)

= 1 ({a(Gg),a(Gf)}*
=0.

Similarly one see§®; (f),®;(g)} = 0. Definition[A.1 [ii) also yields
{@(), 07 (9)} = —({a(Gf)",a(Gg)}) = —(GT,Gg) -id 4.
To prove assertior_{ii) we have to verify
(12) (61,69 =i [ (Gf.gaV
M

LetZ C M be a smooth spacelike Cauchy hypersurface. Since(6umgy is past-
compact, we can find a Cauchy hypersurfatec M in the past ofz which does
not intersect supi..g) C J¥(supp(g)). Denote the region betweghands’ by
Q'. The Green’s formuld{9) yields

(61.6,9) = [ fiop(x)- GF.G.g)dA
:/z/aap(nb).Gf,G+g>dA+i/g'y(<PGf,G+g>—<Gf,PG+g>)dv

:—i/Q/(Gf,g>dV

becausePG, g =g andPGf = 0. SinceX’ can be chosen arbitrarily to the past,
this shows

(13) (Gf,G,g) = _i/J'(Z)<Gf,g>dv.

O o
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A similar computation yields

(14) (Gf,G_g) = i/J REELY

Subtracting[(14) from(13) yields (1.2) and concludes th@podassertion[(i). [

Remark 4.6. Similarly to the bosonic case, we find

{®(f),®7(g)} =0
if the supports off andg are causally disjoint.

Remark 4.7. Using the anti-commutation relations in Theorem 455 (g tom-
putation ofn-point functions can be reduced to those of the form

Tn (f1,. s fo, 01, O) = (Qr, @r(f1) - D ()T (91) - - PF (G ) Q1)
As in the bosonic case, threpoint functions satisfy the field equation in the distri-
butional sense in each argument and extend to distributiohd x - -- x M.

If one uses the self-dual fermionic algelﬁt%rm(M ,S P) instead ofRlterm(M, S P),
then one gets the quantum field

Wi (f) == m(b(GT))
whereb is as in Definitior . A.6. Then the analogue to Theofenh 4.5 is

Theorem 4.8. Let (M, S P) be an object irGlobHypSkewDef and 1 a state on the
corresponding self-dual fermionic algebﬁégrm(M,S P). Then

(i) P¥Y; =0holds in the distributional sense;
(i) the quantum field takes values in self-adjoint operaf&t; (f) = W, (f)* for
all f eC2(M,S);
(iii) the quantum fields satisfy the canonical anti-comntiotarelations, i.e.,

(r(1).9:(0)} = [ (GT.0/0V id,
forall f,geCZ(M,S).

Remark 4.9. Itis interesting to compare the concept of locally covarumantum
field theories as proposed in]11] to the axiomatic approacfuantum field theory
on Minkowski space based on the Garding-Wightman axiomexpssed in[[35,
Sec. 1X.8]. Property 1 (relativistic invariance of statasid Property 6 (Poincaré
invariance of the field) in_[35] are replaced by functorial{tovariance). Prop-
erty 4 (invariant domain for fields) and Property 5 (regijaof the field) have
been encoded in strong regularity of the state used to ddfenguantum field in
the bosonic case and are automatic in the fermionic caspeRyo/ (local commu-
tativity or microscopic causality) is contained in Theosd2 and 4)5. Property 3
(existence and uniqueness of the vacuum) has no analogue eemlaced by the
choiceof a state. Property 8 (cyclicity of the vacuum) is then awtnby the
general properties of the GNS-construction.

There remains one axiom, Property 2 (spectral conditioh)clvwe have not dis-
cussed at all. It gets replaced by the Hadamard conditiohestate chosen. It was
observed by Radzikowski [32] that earlier formulationshaé tcondition are equiv-
alent to a condition on the wave front set of the 2-point fiorct Much work has
been put into constructing and investigating Hadamaréstat various examples
of fields, see e.gl.[15, 16, 19,125, 36] 37,,[38, 42] and theerntas therein.
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APPENDIXA. ALGEBRAS OF CANONICAL (ANTI-) COMMUTATION
RELATIONS

We collect the necessary algebraic facts about CAR and Qgdbias.

A.1l. CAR algebras. The symbol “CAR” stands for “canonical anti-commutation
relations”. These algebras are related to pre-Hilbertepad/e always assume the
Hermitian inner product-,-) to be linear in the first argument and anti-linear in
the second.

Definition A.1. A CAR-representatiorof a complex pre-Hilbert spaq¥, (-,-)) is
a pair(a,A), whereA is a unital C-algebra andh:V — A is an anti-linear map
satisfying:

(i) A=C(a(Vv)),

(i) {a(v1),a(v2)} =0and
(III) {a(vl)*,a(vz)} = (V]_,Vz) -1,
forallvy,vo € V.

We want to discuss CAR-representations in terms ‘6f00fford algebras, whose
definition we recall. Given a complex pre-Hilbert vectorap@/, (-, -)), we denote

by Vc :=V ®g C the complexification o¥/ considered as a real vector space and
by qc the complex-bilinear extension &fe(-,-) to Vc. Let Clag(Ve,qc) be the
algebraic Clifford algebra ofVc,qc). It is an associative complex algebra with
unit and containd/c as a vector subspace. Its multiplication is called Clifford
multiplication and denoted by-". It satisfies the Clifford relations

(15) V-W+W-v=—2qc(v,w)1

for all vyw € V. Define thex-operator on Glg(Vc,gc) to be the unique anti-
multiplicative and anti-linear extension of the anti-menapVe — V¢, vi +ivo —
—(v1+ivp) = —(v1 —ivp) for all vi, v, € V. In other words,

*( z iy, k4 - 'Zik) = (_1)k z iy, i G- 4y

i1<..<lk 1< <ik

forallk e Nandz,,...,z, € Vc. Let|| - ||~ be defined by
8]l := sup ([[m(a)])

neRepV)
for everya € Clyg(Vc,0c), where RepV) denotes the set of all (isomorphism
classes ofk-homomorphisms from G(Vc,qc) to C*-algebras. Thetf - ||, can
be shown to be a well-defined*@orm on Cl4(Vc,qc), see e.gl[31, Sec. 1.2].

Definition A.2. The C'-Clifford algebra of a pre-Hilbert spag¥, (-,-)) is the C-
completion of Clig(Vc,qc) with respect to the Gnorm|| - || and the star operator
defined above.

Theorem A.3. For every complex pre-Hilbert spacg¥, (-, -)), the C-Clifford al-
gebraCl(Vc, gc) provides aCAR-representation ofV, (-, -)) viaa(v) = 3(v+iJv),
where J is the complex structure of V.

Moreover, CAR-representations have the following universal propertyet A
be any unital C-algebra anda:VvV — A be any anti-linear map satisfying Ax-
ioms (i) and (i) of Definition[A.l. Then there exists a uniqué-i@orphism
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@ : CI(Ve,qc) — A such that

)

v A
al b?
Cl(Ve, qc)

commutes. Furthermore; is injective.

Proof. Defineps :V — Cl(V¢,qc) by p- (V) := 3(v+iJv) andp. (V) i= 3(v—iJv).
Sincep_(Jv) = —ip_(v), the mapa = p_ is anti-linear. Because @fv) —a(v)* =
p-(V) + p+(v) = v, the C-subalgebra of GQV¢,qc) generated by the image of
a containsV. Hencea(V) generates QVc,qc) as a C-algebra. Axiom((i) in
Definition[A.] is proved.

Letvy,vo €V, then

{a(vi),a(v2)} = p-(vo)-p-(v2) +p_(V2) - p-(v1)
= —20c(p-(v1),p-(v2))-1
= 0,
which is Axiom [ii) in Definition[A.1. Furthermore,
{a(v1)*,a(V2)} = —py(va)-p-(V2) — p-(V2) - P4 (V1)

= 20c(py(va), p-(Vv2))-1
= ﬂ%e(vl,vz) 1+ i%e(vl,Jvz) -1

= (V1>V2) : 17

which shows Axiom[(iii) in Definitio_A.lL. Thereforéa, Cl(Vc,qc)) is a CAR-
representation ofV, (-,-)).

The second part of the theorem follows from(\&l,qc) being simple, i.e.,
from the non-existence of non-trivial closed two-sidethvariant ideals, se¢ [31,
Thm. 1.2.2]. Leta:V — A be any other anti-linear map satisfyirig (ii) andl (iii)
in Definition[A.J. Sincea anda are injective (which is clear by Axioni_{jii)) one
may seta (a(v)) :=a(v) for all ve V. Axioms (ii) and [ii) allow us to extendr
to a C-morphismd : C*(a(V)) = Cl(V¢,qc) — A. The injectivity ofa implies the
non-triviality of a which, together with the simplicity of QV¢,qc), provides the
injectivity of &@. Therefore we found an injective*@norphisma : Cl(V¢,qc) — A
with @ oca=a. Itis unique since it is determined laanda on a subset of genera-
tors. This concludes the proof of TheorEmIA.3. O

For an alternative description of the CAR-representatioterms of creation and
annihilation operators on the fermionic Fock space we ref¢®, Prop. 5.2.2].

Corollary A.4. For every complex pre-Hilbert spag¥, (-, -)) there exists £AR-
representation ofV, (-,-)), unique up to C-isomorphism.

Proof. The existence has already been proved in The@rem A.S(él,&) be any
CAR-representation ofV, (-,-)). Theoren_A.B states the existence of a unique
injective C-morphismd : CI(Ve,qc) — A such thatd oa=a. Now @ has to be
surjective since Axiont{i) holds fof@, A). O



CLASSICAL AND QUANTUM FIELDS ON LORENTZIAN MANIFOLDS 29

From now on, given a complex pre-Hilbert spag&(-,-)), we denote the C
algebra C(Vc,qc) associated with the CAR-representati¢a Cl(Vc,qc)) of
(V,(+,)) by CAR(V,(-,-)). We list the properties of CAR-representations which
are relevant for quantization, see alsb [9, Vol. Il, Thm.5,p. 15].

Proposition A.5. Let (V,(-,-)) be a complex pre-Hilbert space and
(a,CAR(V,(-,-))) its CAR-representation.

(i) For every ve V one hadla(v)|| = |v| = (v,v)%, where|| - || denotes the G
norm onCAR(V, (-, -)).
(i) The C'-algebraCAR(V,(-,-)) is simple, i.e., it has no closed two-sided
ideals other thar{0} and the algebra itself.
(iii) The algebraCAR(V,(-,-)) is Z,-graded,

CAR(V, (-,-)) = CAR®®V, (-,.)) & CARMV, (-, ),

anda(V) c CARCY(V, (-,.)).

(iv) Let f:V — V' be an isometric linear embedding, whe¥£, (-,-)’) is another
complex pre-Hilbert space. Then there exists a uniqueting€ -morphism
CAR(f): CAR(V,(-,-)) = CAR(V',(-,-)") such that

f

| |
CAR(V,(-,-)) AR CAR(\V',(-,-)")

commutes.

Proof. We show assertiori] (i) . On the one hand, thiep@operty of the nornj| - ||
implies

law)* = favaw)|?

= [l(a(vja(v)*)?l.
On the other hand,

(av)av))? = aWv){av)*,av)jav)’
= M*ava(v)",
where we used(v)2 = 0 which follows from the second axiom. We deduce that
law|* = |vI*-Ja(v)a(v)"||
= vM* llaw)].

Sincea is injective, we obtain the result.

Assertion [(i) follows from C{V¢,qc) being simple, seé [31, Thm. 1.2.2]. Alterna-
tively, it can be deduced from the universal property forawed in Theorerh Al3.
To see((ili) we recall that the Clifford algebra (@t,qc) has aZ,-grading where
the even part is generated by products of an even number tirgeo Ve and,
similarly, the odd part is the vector space span of produtenoodd number of
vectors inVg, seel[31, p. 27]. This is compatible with the Clifford retats [15).
Clearly,a(V) ¢ CARYV, (-, ).

It remains to show (iv). Itis straightforward to check that f satisfies Axioms[(ji)
and (i) in Definition[A.1. The result follows from Theorem.Z O



30 CHRISTIAN BAR AND NICOLAS GINOUX

One easily sees that CAR) =id and that CARf’o f) = CAR(f") o CAR(f) for

all isometric linear embeddingé v v, Therefore we have constructed a
covariant functor
CAR:HILB — C*Alg,

whereHILB denotes the category whose objects are the complex prertibaces
and whose morphisms are the isometric linear embeddings.
Forreal pre-Hilbert spaces there is the concepseff-dual CAR-representations.

Definition A.6. A self-dual CAR-representationof a real pre-Hilbert space
(V,(+,-)) is a pair(b,A), whereA is a unital C-algebra and :V — Ais anRR-
linear map satisfying:

(i) A=C*(b(V)),

(i) b(v) =b(v)* and

(i) {b(v1),b(v2)} = (v1,v2)-1,

forallv,vi,vo € V.

Given a self-dual CAR-representation, one can extend a C-linear map from
the complexificatiotVc to A. This extensiom : Ve — Athen satisfied(v) = b(v)*
and {b(v1),b(v2)} = (v1,v2) - 1 for all v,v1,v, € Vc. These are the axioms of a
self-dual CAR-representation asin [1, p. 386].

Theorem A.7. For every real pre-Hilbert spacéV, (-, -)), the C-Clifford algebra
Cl(Vc,qc) provides a self-duaCAR-representation ofV, (-,-)) viab(v) = %v.
Moreover, self-dualCAR-representations have the following universal property:
Let A be any unital C-algebra andb : V — A be anyR-linear map satisfying
Axioms(i) and QHD of Definition[A.6. Then there exists a uniqué-i@orphism

B :Cl(Vc,qc) — A such that

vV — > A
l B .-
b|
Cl(Ve, qc)

commutes. Furthermoré is injective.

Corollary A.8. For every real pre-Hilbert spacéV,(-,-)) there exists &CAR-
representation ofV, (-,-)), unique up to C-isomorphism.

From now on, given a real pre-Hilbert spa@é(-,-)), we denote the Galgebra
Cl(Vc,qc) associated with the self-dual CAR-representationCl(Vc,qc)) of

(V7 ( s )) by CARSd(Vv ( 5 ))
Proposition A.9. Let (V,(-,-)) be a real pre-Hilbert space and
(b,CARgy(V, (+,-))) its self-dualCAR-representation.
(i) For every ve V one hag|b(v)|| = %M, where|| - || denotes the Gnorm on
CAde(V,(-,-)).
(i) The C'-algebraCARsq4(V, (-,-)) is simple.
(iii) The algebraCAde( (- 1)) is Zz—graded
CARg((V, (-,-)) = CARZENV, (-,-)) @ CARYV, (-, ),

andb(V) CAROdd( (-5).



CLASSICAL AND QUANTUM FIELDS ON LORENTZIAN MANIFOLDS 31

(iv) Let f:V — V' be an isometric linear embedding, whe¥£, (-,-)’) is another
real pre-Hilbert space. Then there exists a unique injec®-morphism
CARgy(f) : CARgy(V, (-,-)) = CARsy(V/, (-,-)") such that

f

v v/
£ o
CARg(f)
CARgq(V, (-, +)) ——="> CARsq(V', (-,-)")

commutes.

The proofs are similar to the ones for CAR-representatidsmplex pre-Hilbert
spaces. We have constructed a functor

CARgq: HILBg — C*Alg,

whereHILBR denotes the category whose objects are the real pre-Hgpades
and whose morphisms are the isometric linear embeddings.

Remark A.10. Let (V,(-,-)) be a complex pre-Hilbert space. If we consitfeas
a real vector space, then we have the real pre-Hilbert spadée(-,-)). For the
corresponding CAR-representations we have

CAR(V, (")) = CARsy(V,Re(-,-)) = Cl(Vc, qc)
and

A.2. CCR algebras. In this section, we recall the construction of the represent
tion of any (real) symplectic vector space by the so-calkaboical commutation
relations (CCR). Proofs can be foundlin [4, Sec. 4.2].

Definition A.11. A CCR-representatiorof a symplectic vector spaq®/, w) is a
pair (w,A), whereA is a unital C-algebra andvis a mapv — A satisfying:
() A=Crw(V)),
(i) w(0) =1,
(i) w(—¢)=w(¢)",
(V) w(g +y) = €20V 2(p) - w(y),
forall ¢,y V.

The mapw is in general neither linear, nor any kind of group homomawh nor
continuous([4, Prop. 4.2.3].

Example A.12. Given any symplectic vector spa¢¥, w), consider the Hilbert
spaceH := L2(V,C), whereV is endowed with the counting measure. Define the
mapw fromV into the space? (H) of bounded endomorphisms bf by

(W(P)F)(p) == 2 PYI2E ( + ),

forall ¢, €V andF € H. It is well-known thatZ'(H) is a C-algebra with the
operator norm as Cnorm, and that the map satisfies the Axiomg{ii)z(iv) from
Definition[A.11, see e.g[ [4, Ex. 4.2.2]. Hence settihg= C*(w(V)), the pair
(w,A) provides a CCR-representation (8 w).

This is essentially the only example of CCR-representation
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Theorem A.13. Let (V,w) be a symplectic vector space al(wﬂr,ﬂ) be a pair
satisfying the Axiomi)-(@iv) of Definition[A.Il. Then there exists a uniquée C
morphism® : A — A such thaib ow = W, where(w, A) is theCCR-representation
from Examplé_A.J2. MoreoveR; is injective.

In particular, (V, w) has aCCRrepresentation, unique up to*dsomorphism.

We denote the CGalgebra associated to the CCR-representatiofVofv) from
Example A 1?2 by CCR/, w). As a consequence of Theorém A.13, we obtain the
following important corollary.

Corollary A.14. Let (V,w) be a symplectic vector space afwl CCR(V, w)) its
CCRrepresentation.
(i) The C-algebraCCR(V, w) is simple, i.e., it has no closed two-sidedtleals
other than{0} and the algebra itself.
(i) Let (V/,w') be another symplectic vector space andf — V' a symplec-
tic linear map. Then there exists a unique injectiver@orphismCCR(f) :
CCR\V,w) — CCR\V', &) such that

f
v Vi
| v
CCRV, ) — Y _ cCcRV/, o)

commutes.
Obviously CCRid) =id and CCRf’o f) = CCR(f') o CCR(f) for all symplectic
linear mapy/ LRVZER V", so that we have constructed a covariant functor
CCR :Sympl — C*Alg.

REFERENCES

[1] H. AraAkI: On quasifree states @AR and Bogoliubov automorphismBubl. Res. Inst. Math.
Sci.6 (1970/71), 385-442.

[2] C. BAR AND C. BECKER: C*-algebras In: C. Bar and K. Fredenhagen (EdQuantum field
theory on curved spacetimels-37, Lecture Notes in Phyg86, Springer-Verlag, Berlin, 2009.

[3] C. BAR, P. GAUDUCHON, AND A. MOROIANU: Generalized Cylinders in Semi-Riemannian
and Spin Geometr\Math. Zeitschr249(2005), 545-580.

[4] C. BAR, N. GINOUX, AND F. PFAFFLE: Wave Equations on Lorentzian Manifolds and Quan-
tization EMS, Zurich, 2007.

[5] H. Baum: Spin-Strukturen und Dirac-Operatoren Uber pseudoriensghen Mannig-
faltigkeiten Teubner, Leipzig, 1981.

[6] A. N. BERNAL AND M. SANCHEZ: Smoothness of time functions and the metric splitting of
globally hyperbolic spacetime€ommun. Math. Phy57 (2005), 43-50.

[7]1 A. N. BERNAL AND M. SANCHEZ: Further results on the smoothability of Cauchy hypersur-
faces and Cauchy time functionsett. Math. Phys77 (2006), 183—-197.

[8] T. BRANSON AND O. Hiiazi: Bochner-Weitzenbdck formulas associated with the Rarita
Schwinger operatorinternat. J. Math13 (2002), 137-182.

[9] O. BRATTELIAND D. W. ROBINSON: Operator algebras and quantum statistical mechanics,
I-1l (second edition). Texts and Monographs in Physics, Sprifgelin, 1997.

[10] T. BROCKER AND T. TOM DIECK: Representations of compact Lie grouf@saduate Texts in
Mathematic®98, Springer-Verlag, New York, 1995.
[11] R.BRUNETTI, K. FREDENHAGEN ANDR. VERCH: The generally covariant locality principle

- a new paradigm for local quantum field theo§ommun. Math. Phy237(2003), 31-68.



CLASSICAL AND QUANTUM FIELDS ON LORENTZIAN MANIFOLDS 33

[12] H. A. BucHDAHL: On the compatibility of relativistic wave equations in R&m spaces. Il
J. Phys. A15(1982), 1-5.

[13] H. A. BucHDAHL: On the compatibility of relativistic wave equations in Ra&m spaces. Il|
J. Phys. A15(1982), 1057-1062.

[14] C. DAPPIAGGI, T.-P. HACK AND N. PINAMONTI: The extended algebra of observables for
Dirac fields and the trace anomaly of their stress-energpaemn Rev. Math. Phys21 (2009),
1241-1312.

[15] C. DAPPIAGGI, V. MORETTI AND N. PINAMONTI: Distinguished quantum states in a class
of cosmological spacetimes and their Hadamard propeltyMath. Phys50 (2009), 062304,
38 p.

[16] C. DAPPIAGGI, N. PINAMONTI AND M. PORRMANN: Local causal structures, Hadamard
states and the principle of local covariance in quantum fibkbry arXiv:1001.0858

[17] J. Dimock: Algebras of local observables on a manifol@ommun. Math. Phys77 (1980),
219-228.

[18] J. Dimock: Dirac quantum fields on a manifald@rans. Amer. Math. So269 (1982), 133—
147.

[19] C.J. EwWSTER ANDR. VERCH: A quantum weak energy inequality for Dirac fields in curved
spacetimeCommun. Math. Phy25(2002), 331-359.

[20] E. FURLANI: Quantization of massive vector fields in curved space:-tim&lath. Phys40
(1999), 2611-2626.

[21] R.P. GeroCcH Domain of dependencd. Math. Phys11 (1970), 437—449.

[22] G. W. GiBBONS: A note on the Rarita-Schwinger equation in a gravitationatkground
J. Phys. A9 (1976), 145-148.

[23] L. HORMANDER: The analysis of linear partial differential operators. lidribution theory
and Fourier analysis2nd ed. Grundlehren der Mathematischen Wissensch2&@rSpringer-
Verlag, Berlin, 1990.

[24] L. HORMANDER: The analysis of linear partial differential operators. .IIPseudodifferen-
tial operators Grundlehren der Mathematischen Wissensch&afi&eh Springer-Verlag, Berlin,
1985.

[25] S. HOLLANDS AND R. M. WALD: Axiomatic quantum field theory in curved spaceti@em-
mun. Math. Phys293(2010), 85-125.

[26] B. S. Kay: Linear spin-zero quantum fields in external gravitationablascalar fields Com-
mun. Math. Phys62 (1978), 55-70.

[27] H. B. LAWSON AND M.-L. MICHELSOHN: Spin GeometryPrinceton University Press,
Princeton, 1989.

[28] R. MUHLHOFF: Higher Spin fields on curved spacetim&splomarbeit, Universitat Leipzig,
2007.

[29] R. MUHLHOFF: Cauchy Problem and Green’s Functions for First Order Diéetial Operators
and Algebraic Quantizatian). Math. Phys52 (2011), 022303, 7 p.

[30] B. O’NEILL: Semi-Riemannian GeometAcademic Press, San Diego, 1983.

[31] R. J. RYMEN AND P.L. ROBINSON: Spinors in Hilbert spaceCambridge Tracts in Mathe-
matics114, Cambridge University Press, Cambridge, 1994.

[32] M. J. Rabzikowski: Micro-local approach to the Hadamard condition in quantuelidithe-
ory on curved space-tim€ommun. Math. Phy4.79(1996), 529-553.

[33] W. RARITA AND J. SCHWINGER: On a Theory of Particles with Half-Integral Spifhys.
Rev.60(1941), 61.

[34] M. REeD AND B. SIMON: Methods of Modern Mathematical Physics |: Functional Asaly
Academic Press, Orlando, 1980.

[35] M. REED AND B. SIMON: Methods of Modern Mathematical Physics Il: Fourier Anadysi
Self-AdjointnessAcademic Press, Orlando, 1975.

[36] H. SAHLMANN AND R. VERCH: Passivity and microlocal spectrum conditioBommun.
Math. Phys214(2000), 705-731.

[37] H. SAHLMANN AND R. VERCH: Microlocal spectrum condition and Hadamard form for
vector-valued quantum fields in curved spacetiRev. Math. Phys13 (2001), 1203-1246.

[38] K. SANDERS: The locally covariant Dirac fieldRev. Math. Phys. 22 (2010), 381-430.

[39] A. STROHMAIER: The Reeh-Schlieder property for quantum fields on statipspacetimes
Commun. Math. Phy215(2000), 105-118.



34 CHRISTIAN BAR AND NICOLAS GINOUX

[40] M. E. TavLOR: Partial Differential Equations | - Basic Theorgpringer-Verlag, New York -
Berlin - Heidelberg, 1996.

[41] R. VERCH: A spin-statistics theorem for quantum fields on curved spraeemanifolds in a
generally covariant frameworlCommun. Math. Phy23(2001), 261—-288.

[42] R. M. WALD: Quantum field theory in curved spacetime and black hole tbdymamics
University of Chicago Press, Chicago, 1994.

[43] McK. Y. WANG: Preserving parallel spinors under metric deformatiohsliana Univ. Math.
J.40(1991), 815-844.

[44] V. WUNscH: Cauchy’s problem and Huygens' principle for relativistigher spin wave equa-
tions in an arbitrary curved space-tim&en. Relativity Gravitatiod7 (1985), 15-38.

UNIVERSITAT POTSDAM, INSTITUT FUR MATHEMATIK , AM NEUEN PALAIS 10, HAUS 8, 14469
PoTspDAM, GERMANY

FAKULT AT FUR MATHEMATIK , UNIVERSITAT REGENSBURG 93040 REGENSBURG GERMANY
E-mail addressbaer@math.uni-potsdam.de
E-mail addressnicolas.ginoux@mathematik.uni-regensburg.de



	1. Introduction
	2. Field equations on Lorentzian manifolds
	2.1. Globally hyperbolic manifolds
	2.2. Differential operators and Green's functions
	2.3. Wave operators
	2.4. The Proca equation
	2.5. Dirac type operators
	2.6. The Rarita-Schwinger operator
	2.7. Combining given operators into a new one

	3. Algebras of observables
	3.1. Bosonic quantization
	3.2. Fermionic quantization

	4. States and quantum fields
	4.1. States and representations
	4.2. Bosonic quantum field
	4.3. Fermionic quantum fields

	Appendix A. Algebras of canonical (anti-) commutation relations
	A.1. CAR algebras
	A.2. CCR algebras

	References

