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This paper presents a gesture recognition/adaptation system for Human Computer Interaction applications
that goes beyond activity classification and that, complementary to gesture labeling, characterizes the move-
ment execution. We describe a template-based recognition method that simultaneously aligns the input ges-
ture to the templates using a Sequential Montecarlo inference technique. Contrary to standard template-
based methods based on dynamic programming, such as Dynamic Time Warping, the algorithm has an
adaptation process that tracks gesture variation in real-time. The method continuously updates, during ex-
ecution of the gesture, the estimated parameters and recognition results which offers key advantages for
continuous human-machine interaction. The technique is evaluated in several different ways: recognition
and early recognition are evaluated on a 2D onscreen pen gestures; adaptation is assessed on synthetic data;
and both early recognition and adaptation is evaluation in a user study involving 3D free space gestures.
The method is not only robust to noise and successfully adapts to parameter variation but also performs
recognition as well or better than non-adapting offline template-based methods.
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tion]: Implementation
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1. INTRODUCTION
Gesture is increasingly used in Human Computer Interaction (HCI) involving several
forms of activity recognition. This is a need to elaborate interaction paradigms based
on body movements (e.g. hand, whole body) or tangible interfaces [Dourish 2004; Jordà
2008] that could enable natural and fluid interaction. Methods for gesture recognition
[Mitra and Acharya 2007] and continuous gesture recognition [Weinland et al. 2011]
have been proposed and successfully implemented. These methods have been devel-
oped for the most part to label gesture. We propose a technique that goes beyond clas-
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:2 B. Caramiaux et al.

sification by, complementary to gesture labeling, characterizes movement execution,
providing the possibility of innovative interaction scenarios.

Movement-based interactive systems generally assume a closed action-perception
loop, especially in cases of continuous control. This means that the users continuously
adapt their movements, relying for example on visual or sound feedback. In other
words, the gesture being recognised might appear as “distorted” compared to gesture
references. A robust recognition system should be able to adapt to such changes. In
addition, it would be useful to estimate parameters of the gesture execution incremen-
tally during the performance, for two reasons. First, it allows the system to take into
account variations occurring during the motion and update the motion model accord-
ingly. Second, such parametrization could be directly used in the design of interaction:
for example gesture size variation might allow continuous control over an expressive
component of the interaction.

We propose a gesture recognition system that is designed to take into account move-
ment variation incrementally during the performance and to provide users real-time
parameter feedback. It can accommodate a broad set of gesture variations within each
class, for example in the speed, the amplitude or the orientation. Importantly, these
variations can be estimated continuously during gesture execution.

This system is suited for trajectory-based gestures such as finger trajectories on a
tablet, hand motions manipulating an interface (e.g. game interface or mobile phones)
or free space body movements. It can be seen as an extension of a previous system we
developed called Gesture Follower [Bevilacqua et al. 2010; Bevilacqua et al. 2011b],
that was found to be effective in recognizing and synchronizing continuous execution
of gesture to media such as sounds and visuals [Bevilacqua et al. 2012; Caramiaux
et al. 2010]. It was shown to be successful for musical control using tangible inter-
faces [Rasamimanana et al. 2011; Zamborlin et al. 2014], music and dance pedagogy
[Bevilacqua et al. 2011a; Bevilacqua et al. 2007] and gesture-based gaming systems
[Rasamimanana and Bevilacqua 2012]. This body of work allowed us to establish a
series of requirements that guided the development of the method we report in this
paper:

(1) The training procedure must be based on a single template, to allow users to define
their gesture vocabulary with simple and direct procedures.

(2) Results should be updated continuously during the gesture. In order to allow them
to be used in continuous interaction paradigms or for anticipation (as proposed for
example by Bau et al. [Bau and Mackay 2008]). This generally requires taking into
account the gesture’s fine temporal structure.

(3) Gesture variations that occur during execution should be taken into account and
estimated as a way to encode expressive aspects of the performance.

The Gesture Follower (GF) handles Points 1 and 2 above, but does not handle Point
3. The method presented here is a state-space model where states are variations to be
estimated online. To do so, the method makes use of Particle Filtering that tackles the
challenge of continuously adapting to the gesture variation. The goal of this paper is to
formally introduce the method and to show its accuracy with both real world databases
and interactive applications.

The paper is structured as follows. First, we review the state of the art on gesture
recognition systems for interaction (Section 2). This provides the technical motiva-
tion for the design of our method. In addition, in Section 3 we present the interaction
model that informs the design from an applicative point of view. The computational
model is presented in Section 4. In Section 5 we present an evaluation on recognition
with adaptation performed on real data in the case of 2D pen-gestures from the state
of the art. Then, in Section 6, we evaluate the process of adaptation to movement vari-
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Adaptive Gesture Recognition with Variation Estimation for Interactive Systems :3

ations on synthetic data. This is followed by a user study assessing the ability of the
method to adapt in realtime in an interactive context (Section 7). The results obtained
in the previous sections are discussed in Section 8 together with technical and human
constraints of using gesture variations for HCI. Finally we conclude in Section 9.

2. RELATED WORK
In this section we review the methods most often used to recognize gestures repre-
sented as multidimensional times series for human-computer interaction. Note that
the multidimensional time series represent the trajectory of one point on a surface or
in the 3-dimensional space.

For 2D drawing gestures, several basic methods take advantage of simple distance
functions between gestures. Rubine [Rubine 1991] proposes a geometric distance mea-
sure based on examples of single-stroke gestures. Wobbrock et al. propose a simple
template-based method that makes use of Euclidean distance [Wobbrock et al. 2007],
after a pre-processing stage in order to take into account geometric variations (such as
scaling and rotation) and speed variations (by uniformly resampling the data).

Several methods are based on Dynamic Programming (DP) to handle local time
variations. The most widely used technique is Dynamic Time Warping (DTW), that
requires the storage of the whole gesture temporal structure [Gavrila and Davis 1995;
Liu et al. 2009]. A similarity matrix is computed between the test gesture and a ref-
erence template and the optimal path is computed, representing the best alignment
between the two time series. There are various applications such as gesture control
[Merrill and Paradiso 2005], communicative gesture sequences [Heloir et al. 2006],
querying based on human motion [Forbes and Fiume 2005]. An extension to DTW has
been proposed by Bobick et al. [Bobick and Wilson 1997], to take into account sev-
eral examples, using principal curve in DP computation. A similar approach by Yacoob
et al. [Yacoob and Black 1998] considers an “EigenCurve” representation of several
examples and carries out recognition based on this representation. One of the main
drawbacks of methods based on DP is that they do not provide an explicit noise model,
and do not prevent errors due to unexpected or lost observations in the incoming se-
quence.

Statistical methods, such as the widely used Hidden Markov Model (HMM) [Ra-
biner 1989] prevent such shortcomings. HMMs are based on a probabilistic interpre-
tation of observations (gesture samples) and can model the gesture’s temporal tra-
jectory through a compact representation. HMMs have been successfully applied in
human motion recognition from vision-based data [Mitra and Acharya 2007]. HMM-
based methods are generally robust since they rely on learning procedures that use
large databases, allowing a model of variations occurring within a gesture class to be
created [Bilmes 2002].

Variation in gesture are thus handled for the most part by methods like HMM
that use comprehensive databases taking into account all possible variations. They
typically require cumbersome training procedures. Consequently, several authors pro-
pose so-called adaptive systems, where the system adapts to variability of input, user
[Licsár and Szirányi 2005; Wilson 2000; Caridakis et al. 2009], or sensor location
[Chavarriaga et al. 2013]. These systems are fundamentally not designed to take into
account variations that occur during the movement performance.

In this paper, we refer to variations occurring within gesture classes. Wilson and Bo-
bick propose a model that takes into account parametric changes in execution [Wilson
and Bobick 1999]. They describe an application where bi-handed gesture semantics
are related to global trajectories (for example actions on an object) while variations
provide additional meaning (for example the size of the object). In this case, the ampli-
tude is defined globally on the whole gesture (see also [Brand and Hertzmann 2000]).
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In [Wilson and Bobick 2000], Wilson and Bobick describe an online learning method
that can be applied to each different user. A case study is described, where simple
gestures such as ”rest”, ”down”, and ”up” are recognized.

The Gesture Follower described above makes use of the HMM statistical framework,
but with an approach that differs from standard implementations. Initially, the aim of
the GF method was to estimate the time progression of a gesture in real-time, using
a template reference [Bevilacqua et al. 2012]. The time progression information can
then be used in the interaction. Similarly to DTW, this method uses the whole time se-
ries and assigns a state to each sample. This allows for the modeling of fine-temporal
gestural structure (similarly to the approach of Bobick and Wilson in [Bobick and Wil-
son 1997]). The system makes use of a forward procedure simultaneously on several
template gestures, which allows for the estimation, during the gesture performance,
of its time progression and likelihood related to each template. However, GF cannot
adapt to variations occurring during the gesture.

We will show in this paper that an adaptive approach using an extended state model
and a different decoding scheme is possible. We do this by considering the recogni-
tion problem as a tracking problem, where Particle Filtering (PF) techniques have
been widely used, and have been proved effective adapting continuously features of
the tracked objects. An exhaustive review of particle filtering literature is beyond the
scope of this paper, and we refer the reader to [Arulampalam et al. 2002] and [Doucet
et al. 2001] for more specific theoretical works on PF. For example, methods based on
PF for tracking were used on hand gestures and faces [Bretzner et al. 2002; Zhou et al.
2004; Mitra and Acharya 2007; Shan et al. 2007]. In these previous works, PF is used
to estimate the position of the area of importance in image sequences. PF has also been
proved efficient when the training and testing data may have significant differences
(see for instance [Wei et al. 2013] for such application) which will be the case in our
context of application.

The method we propose is inspired by the work of Black et al. [Black and Jepson
1998a], based on the condensation algorithm [Isard and Blake 1998], for the recog-
nition of spatio-temporal gesture templates. The model was applied to data recorded
using a 2-dimensional augmented whiteboard. The implementation allowed for the
tracking of speed and scaling variation. It will be denoted PF–condensation. A similar
inference model has been used by Visell et al. [Visell and Cooperstock 2007] to esti-
mate parameters of a non-linear dynamical system for the analysis and rehabilitation
of gait using non-visual feedback. However, no experimental results are reported.

In this paper, we generalize the approach by [Black and Jepson 1998a] by estimating
not only scaling but also other parameters such as rotation, and propose a different ob-
servation function that facilitates parameter estimation. We also propose and evaluate
the explicit use of the estimated variations in interaction.

Since the method we propose can be seen as an extension of our Gesture Follower
system in order to allow for following variation in the gesture, we will refer it as Ges-
ture Variation Follower (GVF).

3. INTERACTION PRINCIPLES
We present interaction principles that we consider important for target applications in
sound manipulation or visual processing in contexts such as gaming, interactive art, or
rehabilitation. These interaction principles are grounded in prior works in interaction
design.

According to Verplank [Verplank et al. 2001], both discrete and continuous com-
mands are critical to the design of interaction based on motion. Our interaction model
incorporates these two types of control, to return not only which gesture is performed
but also how it is performed. This paradigm can be explained with an example taken
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from musical performance. A musician performs actions that articulate discrete notes
but also modify continuous parameters such as amplitude and timbre. Continuous
variation takes place while playing the note. Hence, in our interaction model, a com-
bination of which and how is seen as critical for expressive interaction [Caramiaux
2012].

The schematic view of the interaction model is seen in Figure 1. User body move-
ment (fingers, hands, whole body) are captured by a sensor system. The data can be
represented as a multidimensional time series. From this representation, the proposed
algorithm is able to recognize the gesture performed, adapt to its variation and return
variation parameters based on a previously learned template. Consequently, the model
output has two components: an index for the recognized gesture, and a vector of con-
tinuous values estimating the variation. Importantly, recognition and adaptation are
performed in real-time which implies that the algorithm continuously updates and
outputs the recognized gesture and variation values during gesture execution.

Mapping Gesture Capture

Core Algorithm

Application
(rendering processes)

Audio / Visual outputs

Feedback

Realtime
Recognition

Adaptation to
Gesture Variation

Discrete
Command

Continuous
Command

Fig. 1. Interaction Model. User body motion are sensed by a motion capture device. The proposed algorithm
is then able to recognize the gesture performed, adapt to its variation and return variation parameters con-
sidering previously learned templates. Recognition and adaptation are performed in real-time which implies
that the algorithm outputs continuously updated recognized gesture and variation values during the perfor-
mance. An application is then plugged to the system and returned processed/synthesized audio/graphics.

It is also important that the user be able to easily establish the reference ges-
tures/actions in order to facilitate fast testing sessions. The learning procedure should
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therefore remain as simple as possible. Based on this, we explicitly designed our learn-
ing system to require only a single template for defining a given gesture class.

The interaction model can be applied in a range of different application scenarios. In
the user study described in Section 7, we focus on realtime audio manipulation that,
due to the temporal nature of sound, is suitable for continuous interaction. Motion-
based sonic interaction has been used in various applicative contexts such as for inter-
active motion sonification to help people with visual impairments in various activities
such as sport [Höner and Hermann 2005]; audio-motor loop for stroke rehabilitation
[Boyer et al. 2013]; everyday activity sonification [Rocchesso et al. 2009]; or musical
applications and gaming [Rasamimanana and Bevilacqua 2012]. In these examples,
interaction depends on continuous mapping between movement and audio feedback.
Sound brings an additional information channel to vision that has been shown relevant
for temporal data and temporal data with recurrent patterns [Barrass and Kramer
1999].

To that extent, we designed a computational model motivated by the presented in-
teraction principles and types of application. The next section presents the technical
description of the method whose main features, gesture recognition and adaptation to
movement variation, will be evaluated in the subsequent sections.

4. COMPUTATIONAL MODEL
Our working definition of gesture is body limb movement represented by a temporal
series of a fixed number of parameters. For a given input gesture, the recognition task
selects the best match among a set of pre-recorded template gestures. The input ges-
ture is denoted z = z1 . . . zN (or z1:N ) and the template gesture is denoted g = g1 . . .gT
(or g1:T ). z can be of different length than g. As described in the next section, we use
a Bayesian approach with a continuous state representation. The model is inspired
by the work of Black et al. [Black and Jepson 1998b]. In our system, we explicitly
changed the latent state space in order to fit the constraints of the interaction sce-
narios described above. In addition, we propose the use of an alternative observation
distribution allowing for less dependency on the model parameters, which has critical
consequences for its practical use.

4.1. Continuous state model
The model can be formulated with the following dynamical system:{

xk = fTR(xk−1,vk−1)
zk = fOB(xk,wk;g) (1)

where, at discrete time k,

— xk is a vector representing the system state, state elements are the varying gesture
characteristics;

— fTR is a (possibly non linear) function that governs the evolution of the system state,
depending on xk−1 and an independent and identically distributed (i.i.d.) process
noise sequence vk;

— fOB is a (possibly non-linear) function that generates the observations zk, depending
on the system state xk, an i.i.d. measurement noise sequence wk and a template
gesture g.

The problem is formulated as a tracking problem, i.e. tracking and adapting to
the values of xk. Precisely, state variables xk are the varying gesture characteristics
(speed, size, etc.) that are chosen depending on the input signal and the context, as
detailed in Section 4.2. Estimation of varying characteristics is governed by the par-
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ticular form of transition between states, fTR (described in Section 4.3) and an ob-
servation function fOB (Section 4.4) used to compute the likelihood of the estimation
according to the incoming gesture z and the template gesture g. The extension of the
tracking algorithm for the recognition task is detailed in Section 4.6. The inference is
based on particle filtering with a resampling process. The inference used in the model
is reported in Appendix A.1.

4.2. State space model
A critical aspect of the model design is defining the state space. The state of the system
is composed of the varying gesture characteristics that have to be estimated over time.
In other words, the state space comprises the features we are able to assess online and,
consequently, used as continuous outputs during the interaction (see Figure 1).

The process is adaptive since the features are updated at each time step. Formally,
the system state at instant k is denoted as:

xk =

 xk(1)
...

xk(D)

 ∈ RD

where D is the dimensionality of the state space.
In our model, the first dimension xk(1) is set to be the phase pk at discrete time

k, which represents the alignment between the template gesture and the incoming
gesture at time k, as illustrated in Figure 2 (or in other words, pk can be seen as the
time progression of the gesture). The phase is normalized in the [0,1] range (0 being
the beginning and 1 the end of the gesture time).

Gesture

Estimated Phase

Timek
pk

Estimated Scale sk

Incoming 
gesture z

Template
gesture g

Fig. 2. Illustration of the alignment and adaptation. An incoming gesture z is aligned onto a template
gesture g based on the continuous adaptation of gesture features xk illustrated as pk and sk in the figure.

The second dimension xk(2) is set to be the speed vk at k. The speed vk is actually a
speed ratio between the speed of the incoming gesture (first derivative of the phase) to
the speed the template gesture.

The state space can contain additional dimensions. In particular, we will extend it
to include to other features such as the scaling (i.e. amplitude ratio, see Figure 2), and
the rotation angles in 3-dimensions.

The configuration of the state space depends on two independent criteria. First the
input data drives the type of feature we can track. As an example, the notion of rotation
does not represent the same feature for 2-dimensional shapes performed on a tactile
surface and for 3-dimensional accelerometer data. Second, the applicative context also
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:8 B. Caramiaux et al.

drives the state space in order to make the estimated features suitable and usable in
a given scenario, something we will discuss below.

Note that defining the state space does not depend on the gesture template g.

4.3. State transition
In the proposed model, the state transition function fTR (see Equation (1)) is linear,
given by the matrix A, and modeled probabilistically as a Gaussian distribution:

p(xk|xk−1) = N (xk|Axk−1,Σ)

Σ = diag (σ1 . . . σD)
(2)

We choose to add a constraint, by setting the relationship between the phase and
the velocity, corresponding to a first-order motion equation (other choices can easily be
made):

pk = pk−1 +
vk
T

+N (0, σ1) (3)

where T is the template’s length and σ1 is the first element in the diagonal of Σ. This
constraint can simply be taken into account by setting the first row of the matrix A to
(1 1

T 0 · · · 0). The other terms, set to zero in the first row of the matrix A, implies that
the estimation of the phase is independent of the other features (xk(j), j > 2).

The transition parameters play an important role on adaptation as we will show
in Sections 5 and 7. They govern the dynamic of the variation estimations, in other
words: the speed of convergence to the accurate estimation and the precision of the
estimation.

4.4. Observation function
The observation function evaluates the accuracy of the state estimation according to
the input observation and the template. Parameters of the observation function govern
how discriminant the method is.

In our model, the observation function fOB (see Equation (1)) is chosen to be a Stu-
dent’s t-distribution that depends on three parameters: the mean µ, the covariance
matrix Σ and the degree of freedom ν. For a K-dimensional input vector zk at time k,
the Student’s t-distribution is as follows:

St(zk|f(xk,g(pk)),Σ, ν) = C(Σ, ν)

(
1 +

d2(zk, f(xk,g))

ν

)− ν+K
2

(4)

where

C(Σ, ν) =
Γ(ν/2 +K/2)

Γ(ν/2)

|Σ|−1/2

(νπ)K/2

where f(xk,g) is a function of the template g and the state value at k. Precisely,
f(xk,g) adapts the expected template sample g(pk), given the phase pk at k. The dis-
tance d between the adapted template sample and the incoming observation is given
by:

d(zk, f(xk,g)) =

√
[zk − f(xk,g)]

T
Σ−1 [zk − f(xk,g)] (5)

The choice of Student’s t-distribution is motivated by its heavier tails compared to
Gaussian distribution (i.e. the distribution is wider around the mean). In the limit
ν → ∞, the t-distribution reduces to a Gaussian with mean µ and covariance Σ. We
will see in Section 5 that the choice of the Student’s t-distribution has interesting
properties that can reduce the sensitivity of the system to the covariance matrix.
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4.5. Inference and implementation
Realtime estimation of the state values (inference) is performed using Particle Filter-
ing, a special case of sequential Montecarlo method. Sequential Montecarlo methods
work by recursively approximating the current distribution of the system state using
the technique of Sequential Importance Sampling: state samples are drawn from a
simpler distribution and then weighted according to their importance in estimating
the “true” distribution. Importance is driven by incoming samples. At each step k, a
particle xik represents a possible value of the state space which is weighted by its prob-
ability wik. The expected value of the features, at time k, is:

x̂k =

Ns∑
i=1

wikx
i
k

where Ns denotes the number of particles. Inferred feature values x̂k constitute the
adaptation process since at each time k, we assess the variation values defined as state
variables. The particle filtering algorithm is reported in Algorithm 2 in Appendix A.1
together with the GVF algorithm pseudo code (Algorithm 1)1.

4.6. Handling recognition
Finally, we extend the model to handle recognition by taking into account several tem-
plates. To do so, we must change the state space in order to estimate the likeliest
template in addition to the varying gesture characteristics.

Consider M templates of respective length L1 . . . LM denoted g1 . . .gM . At initial-
ization, we assign to each state particle xik a gesture index between 1 . . .M (denoted
mk), based on a initial distribution. Generally, a uniform distribution is chosen, that
is, by distributing particles evenly across the gesture templates. This extends the state
configuration applied to each particle as follows:

xik =


xik(1)

...
xik(D)
mk

 ∈ RD × N (6)

The transition probability is then adapted as follows:

p(xik|xik−1) = N (xik|Axik−1,Σ)

Σ = diag (σ1 . . . σD 0)
(7)

By summing the weights wik corresponding to the particles’ gesture indexes, it is
straightforward to compute the probability of each gesture:

p(glk|gmk ) =
∑
j∈J

wjk , ∀l ∈ [1,M ], ∀m ∈ [1,M ],m ̸= l

where J =
{
j ∈ [1, Ns]/xjk(D + 1) = l

}
(8)

5. RECOGNITION TASKS ON REAL-WORLD 2-DIMENSIONAL GESTURE DATA
The goal of the experiment is to assess the recognition accuracy of the proposed method
on a database from the state of the art and comparing it with established techniques.

1Note that the algorithm has been implemented in C++ and it is also available online and starts to be used
in other projects: http://www.github.com/bcaramiaux/gvf.
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We use Wobbrock’s [Wobbrock et al. 2007] database of 2-dimensional pen gestures2.
The database contains 16 gestures that are meant to be commands for selection, ex-
ecution and entering symbols in HCI applications (Figure 3). It has been created as
follows. Ten participants were recruited to perform 16 gestures. For each gesture in
the vocabulary, “subjects entered one practice gesture before beginning three sets of
10 entries at slow, medium, and fast speeds” [Wobbrock et al. 2007]. Hence, the whole
database contains: 10 participants × 16 gestures × 3 speeds × 10 trials = 4800 gesture
examples.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Fig. 3. Gesture vocabulary from [Wobbrock et al. 2007].

We used this database to test the recognition accuracy of GVF. We used the same
evaluation procedure than in [Wobbrock et al. 2007], based on a statistical “leave-one-
out” approach. One template per gesture is randomly chosen from the 10 trials, and one
test example is chosen randomly from the remaining trials. This process is repeated
100 times. The procedure is applied in four distinct tests: 1) Replicated Wobbrock’s
evaluation procedure; 2) Looked at the effect of changing distribution parameters; 3)
Took training and testing examples randomly from different speeds; and 4) Assessed
the recognition accuracy on partial gestures as the testing gesture is being performed.
In tests 1, 2, and 4, the training examples and the testing examples are taken from the
same speed (either slow, medium, or fast). In test 3 the training and testing examples
are taken from two different speeds.

Wobbrock uses the database to propose a simple gesture recognition method that
performs pre-processing step to rotate, scale and translate data before applying differ-
ent recognition algorithms. Importantly, the rotation angle and the scaling coefficient
are considered to be invariant in the recognition process.

Our proposed method, GVF, on the other hand, adapts to, and is able to report on
variations in these characteristics. Consequently, the state space xk is comprised of
four elements: the phase pk, the speed vk, a scaling coefficient sk and the angle of
rotation αk. The number of particles is set to Ns = 2000. The complete model used for
2-dimensional input is detailed in Appendix A.2.1.

2Database available at: http://depts.washington.edu/aimgroup/proj/dollar/
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5.1. Recognition results for same-speed examples
GVF was compared to three other methods using mean and standard deviations for
recognition rate (Table I). Two of the methods ($1 recognizer and DTW) are offline
methods. They both ran following a pre-processing step to correct for variations in
scaling and rotation. $1 recognizer is based on the Euclidean distance between the
uniformly resampled template and test shape. DTW is based on the Euclidean distance
between the temporally aligned template and test shape. The other two methods, GVF
and GF are online methods, reporting results as the gestures are performed. Contrary
to GF, GVF can incrementally adapt to dynamic scaling and rotation variation.

Table I. Results obtained on a unistroke gesture database presented in [Wobbrock et al. 2007].
Our model has the following parameterization: σ = 130, ν = 0.1.

$1 recognizer DTW GF GVF
offline online online

operated after no adaptation of incremental adaptation of
scaling and scaling neither scaling and

rotation estimation rotation rotation
Mean 97.27 % 97.86 % 95.78 % 98.11 %
Std 2.38 % 1.76 % 2.06 % 2.35 %

First, a comparison of recognition rates of the on-line methods show that GVF gives
better results than GF (98, 11% vs 95, 78%). This is due to the fact that GVF adapts
to scaling and rotation. Next, comparing our method with the off-line methods, GVF
gives slightly better results to the $1 recognizer and to DTW. These results are con-
sistent with what was expected, confirming that the incremental adaptation of GVF is
effective, and that the recognition accuracy of this on-line method can be at least as
equivalent to standard off-line methods that correct for invariance.

5.2. Influence of the observation distribution parameters
We describe here how the parameters, standard deviation σ and Student’s ν (used
in the observation function, section 4.4), influence recognition accuracy. Results were
obtained for a fixed set of these two parameters, and we report on the recognition rate
for a large set of σ values (from 10 to 150 with step= 10) and ν values (0.5, 1.0, 1.5
and ∞ = Gaussian distribution). Note that these values are related to the range of the
input data. In the case of the database considered here, the range is [5, 181].

The variability of the recognition rate is plotted in Figure 4, superimposed on the
results obtained with the $1 recognizer and DTW (methods that do not depend on
distribution parameters)

Two important points must be noted. First, the best recognition rate is obtained, as
expected, for a restricted range of σ and ν values. Nonetheless, the recognition varies
smoothly, with a single maximum (no other local maxima). Second, the Student’s t-
distribution is advantageous to the Gaussian distribution (ν = ∞), since it significantly
reduces the sensitivity of the recognition rate to σ values. This demonstrates that data
specific training procedures may not be required, since the recognition remains optimal
over a large range of the Student’s t-distribution parameters.

5.3. Recognition results for cross-speed examples
Complementary to the previous tests, we conducted an evaluation of recognition ac-
curacy taking a training example from a given speed and testing with an example
from the database at another speed. Table II reports the mean recognition accuracy in
percent.
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Table II. Cross-speed results obtained on a unistroke gesture database presented in [Wob-
brock et al. 2007] considering training and testing examples from different speeds σ = 130,
ν = 0.1.

TRAINING EXAMPLES
Slow Medium Fast

$1 GVF $1 GVF $1 GVF
TESTING Slow 96.2% 97.3 % 94.9% 93.2 % 91.6% 85.9 %

EXAMPLES Medium 96.1% 95.4 % 97.1% 98.6 % 94.1% 96.6 %
Fast 92.9% 88.3 % 94.6 % 97.5 % 95.5% 98.2 %

The results show that the global recognition rate obtained with GVF remains high
at 94.6% (std=4.6%) and is equivalent with the $1 method that obtains a recognition
rate of 94.8% (std=1.7%). The lowest rates are obtained when both the testing and
training examples are taken from contrasted speeds: either slow–fast (recognition rate
at 88.3%) or fast–slow (recognition rate at 85.9%).

5.4. Early Recognition Results
Finally we assess the evolving recognition rate while the testing gesture is performed,
also called early recognition. Figure 5 illustrates the results that are compared to the
GF early recognition rates. The recognition rate obtained with GVF attains 67% when
just 10% of the gesture has been performed, and goes up as more of the entire gesture
is available for continual testing. 90% recognition is reached at 40% of the gesture on
average. On the contrary, GF globally attains lower recognition accuracy.

5.5. Observations from the evaluation on 2-dimensional gesture database
The experiment on 2D drawing gestures presented in this section confirms that the
GVF method works equally or better than state-of-the-art recognition methods. This
demonstrates that the on-line scaling, rotation and speed estimation of the GVF
method performs at least as efficiently as standards off-line methods ($1 recognizer
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Fig. 5. Early recognition rates obtained with GVF and GF (for a more complete study of the GF evaluation
on the same database, please refer to [Zamborlin et al. 2014])

and DTW implementation of Wobbrock et al. [Wobbrock et al. 2007]). The GF, which
does not taking into account such invariance, performs worse.

Compared to the GF method that uses a Gaussian distribution for observation like-
lihood function, the GVF method uses a Student’s t-distribution. This choice signifi-
cantly reduces the sensitivity of the standard deviation parameter σ. Since this pa-
rameter which might a priori be difficult to estimate with limited training data, the
use of Student’s t-distribution can broaden the applicability of the method.

In addition, the results obtained with GVF are remarkable considering the fact that
it operates in a causal manner: the recognition results and the parameters adaptation
are updated each time a new sample is received. On the contrary, standard recogni-
tion schemes compute the results only once the gesture is finished (as DTW, Rubine or
$1 recognizer), which generally allows for a more comprehensive decoding algorithm.
Thus, it demonstrates that the causal inference is robust, thanks to the coupling im-
posed between the phase and velocity estimation. Precisely, the phase and velocity are
coupled through a kinematic model (similarly to a Kalman filter, see 4.3). This forces
the tracking to be continuous along the state sequence.

Finally, the early recognition has been shown to be accurate. Indeed, we reached a
recognition rate of 65% by considering only the first 5% of the gesture performed. In
comparison, GF needs almost 35% of the gesture to be completed before reaching the
same level of recognition accuracy. This is a clear advantage for the aimed interactive
applications.

6. ASSESSING ADAPTATION ON SYNTHETIC DATA
In this section we present an evaluation of GVF for the adaptation task, independent
of recognition. Since it would not be possible for a human user to provide ground truth
on which we could evaluate the ability of the algorithm to adapt to varying features,
we use synthetic data as a means to provide controlled, quantitative variations. We
consider two different cases. In the first, only the phase and scaling are adapted in the
inference. In the second case, the system also adapts to rotation angle.

In both cases, we consider synthetic data obtained by using Viviani’s curve:

C(t) =

{
x(t) = a(1 + cos(t))
y(t) = a sin(t)
z(t) = 2a sin(t/2)

(9)
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6.1. Temporal Alignment Assessment
We define two distinct curves for the test and template data. The template gesture is
obtained by a regular sampling of the curve described by Equation (9), and the input
gesture is obtained by a non-linear sampling (t 7→ t3) of the same function, and by
adding a uniformly distributed noise. We denote with C and Ĉ, the original and the
resampled curves, respectively.

Ĉ(t) = C(t3) +N (0, σC) (10)

For this first case, we used a state space defined as a three-dimensional vector, con-
sisting of the phase pk, the speed vk and the scale sk (this model is similar to the one
presented in [Black and Jepson 1998a]):

xk = (pk, vk, sk)
T ∈ [0, 1]× R2

The phase feature pk lies in the interval [0, 1]. The velocity vk and scale sk are nor-
malized, a value of 1 corresponding to the speed (resp. scale) of the template. The
f function involved in the distance function for the observation likelihood (cf. Equa-
tion (5)) is

f(xk,g) = diag(sk)g(pk)

where diag(sk) is the diagonal matrix, of size 3 × 3, which elements are equal to the
scaling sk. The scaling coefficient is identical for all three input observations x(t), y(t),
z(t) (homothetic transformation).

In this first experiment, we compare GVF with the GF model. To do so, we set ν → ∞,
converging to the gaussian distribution with standard deviation σ used in the GF. The
influence of the ν value will be discussed in Section 5.

We present here results to do with the estimation of the phase pk, that describes the
alignment between the test and template data. For each test, our model returns the
estimated phase pk which, in this evaluation, should ideally follow the cubic function
that was used to synthesize the curve Ĉ. From this, we calculated the mean square
error between pk and the ground-truth cubic function k3. The number of particles was
set to Ns = 1800.

In addition, we compare the estimated phase pk obtained by GVF against the same
estimated alignment feature obtained by GF. The results are seen in Figure 6. The
estimated phase pk is plotted along the cubic function (at the top of Fig. 6). For both
models, the estimated pk is close to the expected curve (Figure 6, middle and bottom
plots). The average error for GVF (resp. GF) is 1.3 sample with std=0.7 (resp. 2.3 sam-
ples with std=1.4).

We further examined the influence of the parameter σ, used in the probability dis-
tribution, as well as the noise level in the input data (measured as the signal-to-noise
ratio [SNR] in dB). Figure 7 shows those results. On the leftmost plot, we varied σ
between 0.05 and 1.0 (with a step of 0.05), for both GVF and GF. On the rightmost plot,
we varied the noise level in the input data (SNR was varied between 12dB and 45dB).
In both plots, the gray curve is the error curve obtained from the GF model and the
black curve is from our model.

We found, first that, for all σ values between 0.05 and 1.0, the errors for our model are
lower than for the HMM-based model (Figure 7, left). Interestingly our model, based
on approximative inference (particle filter), can obtain better results than the exact
inference of GF (forward procedure). This is due to the continuous latent model that
better represents the data as well as the fact that pk and vk values are linked through
a first order motion equation, while such a constraint is not taken into account in the
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Gaussian noise.

GF model. In other words, the phase pk estimation is made more robust by the joint
estimate of the speed vk. Second, we found that our model better handles the level of
noise in the input data compared to GF (Figure 7, right).
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6.2. Rotation matrix adaptation
In this section, we examine the case where gesture rotation angle varies dynamically
over time. We consider the three angles ϕ, θ, ψ around x, y, z, respectively, in a Carte-
sian coordinate system. Their time series are defined as follows: ϕ(t) = t2

θ(t) = t
ψ(t) = −t1/3

(11)

The 3-dimensional template curve C (equation (9)) is rotated according to this matrix
in the Cartesian frame (x, y, z). The input curve is the rotated version of C with added
gaussian noise:

Ĉ(t) = R(ϕ(t), θ(t), ψ(t))C(t) +N (0, σC)

The rotation matrix R(ϕ(t), θ(t), ψ(t)) is computed each time step. Details on our use
of conventions for angles and rotation in the 3-dimension Cartesian frame are given in
Appendix A.2.

The state space is defined as a 5-dimensional vector that consists of the phase pk,
velocity vk, and the angles ϕk, θk, ψk. The state variable at time k is:

xk = (pk, vk, ϕk, θk, ψk)
T ∈ [0, 1]× R4

The observation likelihood is entirely defined by the following f function:

f(xk,g) = R(ϕk, θk, ψk)g(pk)

Figure 8 shows an example where the estimated angles ϕk, θk, ψk are plotted against
the ground truth (defined by Equation (11)). In this example, the standard deviation
σ is set to the standard deviation of the input data (σ = σC = 0.1). The number of
particles was set to Ns = 1800.
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We performed the same evaluation as the one assessing temporal alignment. We
tested the effect of the standard deviation σ of the Gaussian observation distribution
by varying its value between 0.05 to 1.4 (step= 0.05) as well as the effect of noise in
the input data, varying the SNR between 3dB to 30dB. Figure 9 reports the results.
On the left, we report the error curve function of σ. On the right, we report the error
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curve function of data noise given by the SNR. In both cases, the error is computed
as the mean square error between estimation of the angle ϕ, θ, ψ and the ground truth
angles.
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First, the results illustrate that the standard deviation σ of the observation distri-
bution has a weak influence on the angle accuracy (on the left of Figure 9). For small
values of σ, the error curve shows more variations than for higher values of σ where
the adaptation is more stable.

Second, the noise in the data has a significant influence on the angle accuracy, as
shown on the right of Figure 9. The error curve increases as noise level increases (i.e.
decreasing SNR).

6.3. Observations from the evaluation on synthetic data
The results of this evaluation show that for a fixed parameter σ and a fixed level of
noise, the temporal alignment is reliable (the average absolute error is 2.3 samples
with a standard deviation of 1.4). For an incoming data stream at a sampling period of
20 milliseconds, this means that the results would be estimated with a latency of just
46 ms.

Both evaluations on the temporal alignment and the rotation angles estimation
showed that the errors obtained while varying the parameter σ remains low and barely
varies. This is important considering that only one or few examples are available for
training the model: the σ value can be easily initiated and easily optimized.

The evaluation also shows that the level of noise in the data has an expected effect
on the accuracy. The error can be diminished by increasing the number of particles
(which increases the computational cost) and by optimally adjusting the variance in
the observation distribution. Nevertheless, the algorithm still operates even in the
presence of significant noise.

7. USER STUDY: ADAPTATION AND RECOGNITION IN AN INTERACTIVE SCENARIO
In this section, we present a user study evaluation of the GVF method in an interactive
context using 3-dimensional gestures. We assess the ability of the method to efficiently
recognize real world gestures and adapt to their variation in a context where users’
arm movements manipulate audio playback and processing.
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7.1. Study
7.1.1. Presentation. We built an application that uses of sound feedback to respond to

salient gesture variation. Performing a given gesture initiates a specific sound, which
are then continuously manipulated depending how the gesture is performed. Inter-
action with the application involves the two fundamental aspects of the interaction
model illustrated in Figure 1: selection (discrete command) and manipulation (contin-
uous command).

— Selection. As our method allows for early recognition, recognition output will be
used to trigger a sound associated to the gesture performed while the gesture is still
being executed. We built a vocabulary of 3 gestures taken from the previous experi-
ments presented earlier. Each gesture has a associated sound. Figure 10 illustrates
each gesture and associated sound. Each sound is of short length with an average
length of 4.9 seconds (σ = 0.7 sec).
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Fig. 10. Gesture vocabulary and sounds associated.

Given the ambiguity that continuous recognition has in recognizing at the beginning
of gesture performance, in the application we will trigger the sound as soon as the
recognized gesture has a probability greater than 0.5.

— Manipulation. Variations in gesture characteristics of the recognized gesture are
estimated and used to continuously manipulate characteristics in the sound. In the
application, we allow the following gesture variations: slower/faster, smaller/bigger,
tilt. Variation in gesture speed, relative to the template gesture, is mapped to time
stretching of the sound playback. Variation in size is mapped to the volume of the
sound: a smaller gesture will play a sound more quietly while bigger gestures play
the sound louder. Finally variation in tilt controls the cut-off frequency of a high-
pass filter creating a stifling, distancing effect. Figure 11 illustrates the variations
allowed in the application and their link to the sound manipulation.

7.1.2. Hypothesis and experiment design. In this study we seek to validate the hypothesis
that our algorithm is able to dynamically and accurately adapt to gesture variation in
order to be used in a closed-loop gesture-to-sound interaction.

In order to validate this hypothesis we propose to define a set of tasks asking the
participant to play a given sound and to modify it (through one, or a combination of
multiple, variations). To that extent, the participant must use the sound feedback,
entirely controlled by the estimated variations, in order to achieve the task. A set of 7
sound modifications corresponding to gesture variations (Figure 11) are summarized
in Table III. Note that Task 1 does not involve any variation, Tasks 2 to 4 involve a
global modification of one aspect of the sound, Task 5 involves a dynamic change of one
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Fig. 11. Gesture variations allowed in the application: variations in size, speed and tilt. Each variation is
used to control the sound feedback parameter: loudness, playback speed and filtering.

characteristic and Tasks 6 and 7 involve the global change of two characteristics of the
sound. The study follows a within-subject design with one factor tested: the TASK.

Table III. Set of 7 tasks used in the user
study

Modifications
Id. Description
T1 Original
T2 Louder
T3 Faster
T4 High-pass filtered
T5 Louder then quieter
T6 Slower and quieter
T7 Louder and high-pass filtered

7.1.3. Apparatus. Participants perform free space gestures with their hand. The hand
motion is capture through an infra-red based device tracking finger and hand mo-
tion3. The device returns the position in the 3-dimensional space of the palm’s centroid
sampled at 80 frames per second. The data are then slightly downsampled in the ap-
plication at a rate of 50Hz. The application is implemented in the realtime audiovisual
programming environment Max/MSP4. The raw 3-dimensional gesture data are used
as input data for the GVF implemented as a plug-in in Max/MSP (note that the code
source is open and available online5). The output of the GVF is mapped to parame-
ters of a phase vocoder synthesizer, SuperVP6. Participants listened to stereo audio
feedback through a pair of high quality speakers set up in an isolated control booth.

3Leap Motion, http://www.leapmotion.com
4http://www.cycling74.com
5https://github.com/bcaramiaux/gvf
6http://forumnet.ircam.fr/product/supervp-max/
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7.1.4. Procedure. The procedure is comprised of three steps. In Step 1, the partici-
pants are asked to perform each gesture a few times in order to get accustomed to the
apparatus. The gestures themselves were chosen to be fairly simple and do not require
a time to be mastered by the participants. After the participant has practiced several
times, we record one example of the gestures the GVF template that will subsequently
be used for recognition and adaptation.

In the second step, we introduce the sound playback and processing part of the ap-
plication to the participants. We explain that each sound is associated to one gesture
and we play each of the sounds by way of example. We then explain the mapping,
telling them that performing a gesture will trigger the associated sound and varying
some specific aspect of the sound. In order for them to understand the mapping, we
give them a few minutes to freely explore the interaction.

Step 3 is the main part of the experiment: the controlled session. During this part, for
each of the 3 base sounds, the participants are asked to play the sound by performing
the corresponding gesture and modify it by applying specific variations reported in
Table III. The order of the tasks presented is randomized as well as the order of the
gestures. Participants have an unlimited number of trials to play a sound in a given
task. Once they feel comfortable, they record the gesture 3 times.

7.1.5. Data collection and analysis. We invited 10 participants to be part of the user study.
All the participants have a background in sound or music, meaning that they under-
stood the audio processing nature of the task. We collected a total of 10 (participants)
× 3 (gestures) × 3 (trials) × 7 (tasks) = 630 gesture examples.

For each gesture collected, we analyzed the data by computing the relative size and
speed. The relative size is given by the square root of the quotient of the area of a given
gesture, performed under task i, divided by the area of the same gesture recorded
as the reference in the first step of the experiment (see Section 7.1.4 for the whole
procedure). Similarly, the relative speed is computed by taking the length of the given
gesture (under task i) divided by the length of the reference gesture. We call such
characteristics we computed offline, post-processing analysis, to distinguish them from
the online estimation returned by GVF.

Statistics on GVF variations estimation is done by taking the estimated value at
75% of the gestures. The rationale behind the choice is that taking the mean over
the whole estimation, from the starting point of the gesture to the ending point, will
underestimate the actual estimation since the starting values (initial conditions) are
always 1 (the original size and speed deviation) or 0 (original angle deviation).

Finally, we compute the characteristics of each sound produced in order to assess if
the participants actually achieved the task. By analyzing the audio signal, we compute
three characteristics: relative amplitude, relative duration and the relative spectral
centroid. The three characteristics are relative to the original sounds in the database.

7.2. Assessing recognition accuracy through selection rate
An initial quantitative evaluation of the recognition was carried out on the GVF esti-
mated gesture probabilities for the three trials recorded by the participants for each
gesture and each task. Here we report the statistics on recognized gestures across all
the participants. Overall we found a recognition rate of 97.3%. In other words, over the
610 gesture examples, the algorithm misclassified only 17 of them.

We then performed an analysis to assess the ability of GVF to provide realtime
recognition of the input gesture. A gesture is considered recognized and triggers the
corresponding sound when its probability with respect to the others is greater than
0.5. We computed the point within the incomplete gesture on average recognition is
achieved. The results (Figure 12) show that recognition is achieved on average at 12.6%
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(std=2.4%) into the gesture (where 0% is the beginning of gesture and 100% is ges-
ture end). Converted to time, the average latency created by this selection criterion is
490.6ms (std=70.2ms).

Temporal mean probabilities along the gesture,
selection when probability is > 0.5, then manipulation
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Fig. 12. Sound selection: proportion of gesture at which the gesture probability attains 0.5 and consequently
the associated sound is selected.

The sound manipulation phase based on variation adaptation starts once the selec-
tion has been made. In the following we turn our attention to this part of the task.

7.3. Adaptation of one characteristic
Participants are asked to change one characteristic of the sound: volume (Task 2), speed
(Task 3), or filter (Task 4). We report on the results from these three tasks below. For
each Task we compared with the statistics obtained from Task 1: playing the original
sound. We used a Student’s T-Test with α = 0.01 to assess differences between mean
values obtained between these two Task.

7.3.1. Task 2: Playing the sound Louder. Figure 13 shows results obtained from Task 2
compared to Task 1. On the left is the average estimation of relative size according
to the task for both the online results reported by GVF (green) plotted next to post-
processing analysis (yellow) as reference. The right side of the figure shows the actual
relative audio amplitude computed by analyzing the sound output.

First, the right side of the figure shows that the participants successfully accom-
plished the task by producing a sound that was louder than the original sound (mean
values for the audio amplitude are significantly different between Task 1 and Task 2,
p < 0.01).

Let us now inspect the gesture sizes on the left side of the figure. The mean relative
size values obtained by post-processing analysis shows a significant increase between
Task 1 and Task 2 (p < 0.01) meaning that participants did actually perform a bigger
gesture. Regarding the estimated relative size by GVF, it also shows a significant in-
crease between these two tasks (p < 0.01). In addition, the estimations values obtained
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Fig. 13. Task 2: Playing the sound louder. Significance code: ∗∗, p < 0.01, ∗, p < 0.05.

from the post-processing analysis and by GVF do not differ at a significant level, which
means that GVF converged to the actual global size of the gesture.

7.3.2. Task 3: Playing the sound Faster. We perform a similar analysis when participants
were asked to play the sounds faster (Task 3) compared to the original (Task 1). The
results obtained are illustrated in Figure 14. The left shows the average estimation of
the relative speed reported online by GVF (green) and by post-processing analysis (yel-
low). On the right, the actual resulting average relative sound durations are calculated
from the recorded sound output.

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

0.5

1

1.5

2

2.5

0.5

re
la

tiv
e

 s
iz

e
 o

ff
lin

e
/o

n
lin

e

1.0

1.5

2.0

0.0
Task 1:

ORIGINAL
Task 3:
FASTER

0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

R
e

la
tiv

e
 a

u
d

io
 d

u
ra

tio
n

Task 1:
ORIGINAL

Task 3:
FASTER

1.0

1.82.5

0.6

0.4

0.2

0.0

1.6

1.4

1.2

** **

Estimated
by GVF

Post-processing
Analysis

GESTURE AUDIO

0.8

Fig. 14. Task 3: Playing the sound Faster. Significance code: ∗∗, p < 0.01, ∗, p < 0.05.

The right side of the figure shows that the mean sound duration is significantly
lower for Task 3 than Task 1 (p < 0.01) which means that the participants achieved the
task by producing faster (i.e. shorter) sounds. Note that participants seemed to play
the sound slightly slower than the real sound when asked to play the original sound
(the mean relative duration is 1.3, std= 0.6).

If we examine the relative speeds of the gestures performed to produce the sounds
(Figure 14, left), the post-processing analysis shows a significant increase of the rel-
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ative speed between Task 1 and Task 3 (p < 0.01) meaning that the participants per-
formed their gesture faster in order to play the sounds faster. Regarding the online
estimation given by GVF, the relative speed also significantly increases between Task
1 and Task 3 (p < 0.01).

7.3.3. Task 4: Playing the sound High-pass filtered. Finally, we examine the angles of rota-
tion estimated in the experiment. The left side of Figure 15 shows the norm of the vec-
tor of the three relative angles (ϕ, θ, ψ) estimated by GVF. Note that the post-processing
analysis is not reported here. Post-processing analysis using Horn’s quaternion-based
method has been tested on the data and returned inconsistency. This was due mainly
to the fact that the tilt was not constant over time due to the lack of physical reference
in free space to maintain constant tilt. On the right, we report the average relative
spectral centroid values computed from the sounds produced for Tasks 1 and 4 com-
pared to the original sound (1.0).
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Fig. 15. Task 4: Playing the sound high-pass filtered. Significance code: ∗∗, p < 0.01, ∗, p < 0.05.

The relative spectral centroid values in the audio output (right) show a significant
increase between both tasks (p < 0.05). In other words, the mean frequency in the
sound produced increases, revealing the application of a high-pass filter. Regarding the
estimation of the angles (left), the norm of the relative angle also increases between
Task 1 and Task 4 (p < 0.01). Note that the angle estimation is not zero for gestures
performed where the task was to play the original sound, leading to a relative spectral
centroid slightly greater than 1.

7.4. Dynamic adaptation of one characteristic: Size
Task 5 involved a dynamic, time varying modification of the volume of the sound. We
asked the participants to play the sound louder at the beginning, gradually becoming
quieter at the end. Figure 16 reports the results by plotting the mean curve of esti-
mated size over the course of gesture execution (in percentage). The mean curve is
reported as the solid black line while dashed lines represent the dynamic standard
deviations.

Considering the values at 0%, 50% and 100%, the statistical test shows that the size
significantly increases between the beginning and the middle of the gesture (p < 0.01)
and significantly decreases between the middle and the end of the gesture (p < 0.01),
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showing that the participants successfully changed the size dynamically according to
the task, relative to the initial amplitude (1.0).
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Fig. 16. Dynamic variations of size in gestures during Task 5. On the left we report the correlation between
both offline and online correlations. On the right we report the size estimations averaged over the first,
second and last third of the gesture.

7.5. Adaptation of two characteristics
The two last tasks involved the joint simultaneous modification of two sound charac-
teristics: Task 6 was to play Slower and Quieter while Task 7 Louder and High-Pass
Filtered.

7.5.1. Task 6: Slower and Quieter. Figure 17 reports the results in a similar way to Fig-
ure 15 but with two graphs, one for each sound feature being modified. The right side
of the figure shows the relative duration (above) and the relative volume (below) of the
sound output . On the left side, the top plot illustrates the estimated speed and below
the relative size of the gesture performed by the user in the task.

The figure shows that the actual duration of sound output significantly increases
(right, top) while the volume significantly decreases (right, bottom) (p < 0.01). This
is linked to the gesture characteristics - faster gesture for shorter sound, and larger
gesture for louder sound. Indeed, the post-processing analysis values (left, yellow) sig-
nificantly decrease when performed Task 6 while the size also decreases (p < 0.01). The
online estimation by GVF gives a similar result (with p < 0.01).

7.5.2. Task 7: Louder and High-pass Filtered. Figure 18 reports on the results from Task 7.
On the right top we have the Relative Volume and below the Relative Spectral Centroid
of the sound output. The left top plot illustrates the estimated Size and below the norm
of the Angles of rotation.

For the audio (right), the analysis shows that the volume as well as the spectral
centroid significantly increase (p < 0.01). In other words, the sounds produced by the
users’ gestures are globally louder and high pass filtered, showing that the users ac-
complished the given task. The relative gesture size (left) given by post-processing
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Fig. 17. Task 6: Slower and Quieter. Significance code: ∗∗, p < 0.01, ∗, p < 0.05.

calculation significantly increases, p < 0.01, when trying to play the sound louder and
filtered. The online estimation by GVF, parallels the post-processing estimated val-
ues and the size significantly increases (p < 0.01), with the norm of the angles also
increases (p < 0.01).
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7.6. Observations from the user study
Participants in this study were on the whole successful in playing sounds using vari-
ation in their gesture to articulate changes in speed, volume or filtering, and combi-
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nations of these manipulations. The task was understood and successfully fulfilled by
the participants. Audio analysis of the sound output showed that the users succeeded
in modifying the sounds’ characteristics according to the tasks considered. In addi-
tion, the gesture variations used to achieve the tasks were coherent with the sound
produced and the gesture-to-sound mapping implemented. Consequently, the online
estimation by GVF embody the variations asked on the sound either in speed, size or
orientation and converge with the reference post-processing calculation of gesture dif-
ferences. This has been shown to also be accurate when users were asked to vary two
sound characteristics simultaneously.

A very important feature resides in that the adaptation is dynamic, along the ges-
ture progression, starting at the selection. As it was configured, the algorithm imposes
certain initial conditions that are as follows: phase set to 0, scales and speed to 1 and
angles of orientation to 0. Then the algorithm dynamically adapts to the variations
in gesture performance. We saw that the participants were successful in controlling
dynamically the size: bigger at the beginning and smaller at the end.

8. DISCUSSION
We discuss in this section the main features of the algorithm based on the results
obtained from the algorithm evaluation and user study. We look at capability of the
method to carry out early recognition and adaptation, and we outline limitations of
the algorithm and of its use.

8.1. Early recognition and adaptation
Early recognition is a process which performs realtime classification. In other words,
once testing data is received, the process continuously assigns probabilities to each
class of the base vocabulary and returns the class with highest probability. We showed
that the GVF method needs fewer frames than the HMM-based GF method to perform
accurate classification on a database of 2-dimensional pen gestures.

This ability to perform recognition mid-gesture is interesting in the interactive con-
text illustrated in Figure 1. Early recognition allows for the selection of a media asset
(such as sound) at the beginning of a gesture and provides scope for continuous interac-
tion throughout the rest of the gesture. This creates an important gestural interaction
dynamic in which continuous control is coincident with continuous input. On the other
hand, recognition techniques such as the $1 recognizer [Wobbrock et al. 2007] perform
selection after completion of the gesture, not allowing for continuous interaction. The
GVF method has been shown to perform with a recognition accuracy as good as those
methods while allowing low latency selection in a continuous interaction context (Sec-
tion 7).

Continuous interaction leverages the algorithm’s adaptation feature. GVF has been
shown to be able to dynamically adapt to gesture variation. Results obtained in Sec-
tion 7.4 of the user study illustrate the dynamic process of adaptation to gesture size.
It shows that the estimated value starts at 1 (the initial condition) and then converges
towards the correct size values as the users modify the gesture size dynamically: big-
ger gesture at the middle and smaller at the end (see Figure 16). On the other hand,
strategies based on pre-processing used in offline methods such as the ones presented
in [Wobbrock et al. 2007] (based on Euclidean distance or Dynamic Time Warping)
would not be able to handle these dynamically changing variations.

Dynamic adaptation is an advantageous feature for the estimation of variations that
are hard to maintain constant throughout the gesture performance, such as rotation
angles. Given that tilting a gesture in 3 dimensions is a difficult task, users tend to
rotate gestures at angles which are not constant throughout the performance. This
leads to non-affine transformations of the pattern which require us to take into ac-
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count time-varying parameters. GVF is designed to handle such transformations. We
observed that offline methods returned non-consistent estimations of the rotation an-
gles, whereas GVF was able to adapt and report a consistent value.

Note that probabilistic machine learning methods such as HMMs could adapt to
dynamic variations provided prior knowledge on the type and range of variations, but
would require actual examples of these variations. On the contrary our method only
requires one template reference per gesture class and is able to adapt to a wide range
of variations of each gesture without explicit examples. This represents an advantage
in applications for which an exhaustive database containing all gesture variations is
not readily available, or potential gesture variations cannot be known beforehand.

8.2. Limitations
Dynamic adaptation is not instantaneous and implies a latency that must be taken into
account in the application design. In the user study, we showed that the method signif-
icantly converges towards increasing or decreasing speeds but, in the task, Faster, the
algorithm does not attain the actual change in speed: speed is underestimated. This is
a constraint of the algorithm due to the convergence time required by the particle fil-
tering implementation. The time needed by the particle filter to converge to the correct
estimation is longer than the actual duration of the gesture, in the case of a quickly ex-
ecuted variant. The speed of convergence is determined by the noise parameters of the
Gaussian transition distribution, which govern the speed and precision of adaptation.
Hence a trade-off has to be found in order to balance convergence time and estimation
precision. Consequently, this also reveals that the algorithm parameters need to be
fine tuned to the interaction context. These parameters have a direct impact on the
performance of the algorithm but also allows it to be more flexible to different inter-
action scenarios: wide or narrow variations, fast or slow convergence, precise or loose.
Future work would investigate the impact of these parameters on the usability of the
interaction potential provided by GVF.

Note that a possible improvement of the speed of convergence would then be in
adding constraints in the transition model which would require prior knowledge on
variations possible dynamics.

8.3. The user factor
Usability of the proposed method depends on the algorithm itself but also the user’s
ability in controlling variations in their gestures. Indeed, to some extent, gesture char-
acteristics are coupled due to constraints from the human motor system.

The ability of users to reliably control combinations of variations of gesture has
been previously illustrated in [Caramiaux et al. 2013]. While performing a gesture at
normal or fast speeds, the “2/3 Power Law” of motion applies. This law states that
there is a strong correlation between instantaneous speed and curvature [Viviani and
Flash 1995]. This means that the drawing speed cannot be constant over the pattern
(even if the user perceives it as constant), with each drawing pattern having a specific
time/speed profile. Therefore, in order to compare gesture speed across a vocabulary
of different stroke gestures, we need to consider average speed as calculated over the
whole pattern. The law called isochrony further establishes that average execution
speed tends, for a given person, to be constant independent of size. These two laws
clearly establish that speed is not a parameter we are accustomed to controlling or
varying in everyday drawing tasks. These facts only hold for “ballistic gestures”, per-
formed sufficiently quickly without feedback. When performed sufficiently slowly, ges-
tures (non-ballistic in nature) are controlled through a sensorimotor loop using feed-
back such as vision. In such cases, the human motion law we mentioned does not hold
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and an independent control on the variation of gesture characteristics (e.g. speed, size)
is possible.

Based on these results, in the user study presented in Section 7, we placed the partic-
ipants in a closed sensorimotor loop: gesture performed continuously affects a sound
that in turn feedback to influence the gesture being performed. Indeed, the purpose
was to reduce the impact of coupling between gesture characteristics resulting from
motor control. Although, an important future work is to investigate the precise impact
of these laws of motion on 3-dimensional gestures in interactive contexts.

9. CONCLUSION
In this paper, we described a method, called GVF, for gesture recognition that can
adapt and estimate in real-time variations occurring during gesture execution. We
demonstrated in this paper the ability of our method to track changes in phase, scaling
and rotation. Extension of the method to adapt to other types of variation would be
straightforward using the same formalism, and can be defined in a flexible manner.
Feature initial values can be chosen arbitrary in one or several distinct intervals.

GVF belongs by design to the family of template-based methods. Therefore, we com-
pared it with similar approaches such as DTW or more recent methods such as the $1
recognizer [Wobbrock et al. 2007] or GF [Bevilacqua et al. 2010]. It globally obtained
better results in accuracy, either in adaptation only and recognition with adaptation.
We did not to perform comparisons with other methods that require training on a large
number of examples because such approaches do not fit our application constraint of
making the training phase as easy as possible for the end user.

The first important feature of the algorithm is that GVF adapts dynamically to large
differences between the gesture performance and the templates without need for ex-
plicit examples of the variations themselves. This dynamic adaptation is particularly
important since it is aimed to be used where the gesture classes are defined using sin-
gle templates. In practice, this allows user for authoring small gesture datasets while
ensuring good recognition accuracy. In our case, adaptation is used not only to improve
the recognition, as generally found in the state of the art, but also allows us to char-
acterize gesture variation. Such variation estimations are are useful in interaction
design contexts requiring continuous interaction. This feature has been illustrated in
an application involving continuous manipulation of sound playback.

Another important feature of the algorithm resides in causal inference. This repre-
sents a clear advantage for interactive applications, since partial results are available
during the gestures (and not only after gesture completion). This allows the use of
the running estimation of the scaling as a control parameter during the gesture, or to
anticipate which gesture is currently performed by early recognition.

In summary, the GVF method we propose represents an improvement over the pre-
vious GF algorithm. Its contribution lies in the use of a general formalism based on
a particle filtering inference, allowing for the online adaptation of gesture features.
We proved the validity of such an approach on 2-dimensional motion data as well as
on 3-dimensional gestures. In particular we demonstrated recognition accuracy, early
recognition, and adaptation in an end user application.

This research is motivated by the design of expressive interaction models that allow
the use of a mixed strategy between discrete commands and continuous control. It is
influenced by application contexts for the expressive control of digital media (sound
and visuals), with a particular emphasis on low latency, early recognition capabilities.
The method proposed can be seen as part of broader research on adaptive gesture
feature estimation used to describe how a gesture is performed for use in expressive
interaction.
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A. APPENDIX
A.1. Inference and algorithm for the alignment and adaptation
Here we denote by Ns the number of particles used to approximate the distribution.
We denote xik the ith state sample drawn and wik its respective weight at time k. The
weights are normalized such as

∑Ns

i=1 w
i
k = 1. The set of support points and their asso-

ciated weights {xik, wik}
Ns
i=1 is a random measure used to characterize the posterior pdf

p(xk|x0:k−1, z1:k). The continuous ”true” state distribution can be approximated with a
series of weighted Dirac’s Delta functions:

p(xk|x0:k−1, z1:k) ≈
Ns∑
i=1

wikδ(xk − xik)

The term x0 represents the prior distribution (i.e., the initial state), and the posterior
distribution is updated at each time step. Finally, the expected value of the resulting
random measure is computed as x̂k.

An optional resampling step is used to address the degeneracy problem, common
to particle filtering approaches, as discussed in details in [Arulampalam et al. 2002;
Douc and Cappé 2005]. Resampling is introduced because after a few iterations of
the inference algorithm, only a few particles have non-negligible weights (it can be
shown that the variance of the importance weights can only increase over time). The
resampling step corresponds to draw the particles according to the current distribution{
wik
}Ns

i
. Intuitively, resampling replaces a random measure of the true distribution

with an equivalent one (in the limit of Ns → ∞).
In [Black and Jepson 1998b] Black et al. choose to randomly select 5 to 10% of parti-

cles to be replaced by randomly taken initial values. This process is performed during
transition and may introduce discontinuities. In our approach, the degeneracy prob-
lem is handled by defining a criterion based on effective sample size Neff , as specified
by Arulampalam [Arulampalam et al. 2002]: Neff = 1/

∑Ns

i=1(w
i
k)

2 where Neff is an
estimate of the effective sample size, i.e. an approximation of the number of particles
that are contributing significant information to the estimation of the posterior pdf.
The Neff value is used as a criterion to operate the resampling step as shown in the
Algorithm 2.
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ALGORITHM 1: GVF: realtime recognition and adaptation to gesture variations

# T: number of templates

for i = 1 . . . T do
ADDTEMPLATE ( TemplateGesturei )

end

# L: length of incoming gesture TestingGesture

SPREADPARTICLES()

for k = 1 . . . L do
PARTICLEFILTER ( TestingGesture[k] )
P = PROBABILITIES() # P contains gesture probabilities
S = STATUS() # S contains variation estimations (phase, speed, size, angle, etc.)

end

ALGORITHM 2: PARTICLEFILTER(zk): Realtime temporal alignment (step at time k with ob-
servation zk).
for i = 1 . . . Ns do

xi
k ∼ N (xk|Axk−1,Σ)

pik := xi
k(1)

p(zk|xi
k) = St(zk|f(xi

k,g(p
i
k)),Σ, ν)

ŵi
k ← wi

k−1p(zk|x
i
k)

end

wi
k ←

ŵi
k∑

j ŵ
j
k

, ∀i = 1 . . . Ns

Neff ← (

Ns∑
i=1

(wi
k)

2)−1

if Neff < resampling threshold then
resample x1

k . . .x
Ns
k according to ddf w1

k . . . w
Ns
k wi

k ← N−1
s ∀i = 1 . . . Ns

end

return x̂k =

Ns∑
i=1

wi
kx

i
k

ALGORITHM 3: SPREADPARTICLES(): Initial Conditions by spreading particles over the vary-
ing gesture characteristics
# D is the state space dimension
for i = 1 . . . Ns do

for l = 1 . . . D do
xi
0(l) = UNIRANDOM(rangel) # Particle sets to a random value uniformly drawn from

a given range
end
wi = 1/Ns # Uniform distribution over the particle weights

end
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A.2. Rotation matrix convention
Let us consider the Cartesian frame (x, y, z), the three Euler angles ϕ, θ, ψ rotating
vectors about respectively x, y and z induce the three following rotation matrices:

Rϕ =

(
1 0 0
0 cos(ϕ) − sin(ϕ)
0 sin(ϕ) cos(ϕ)

)

Rθ =

(
cos(θ) 0 sin(θ)

0 1 0
− sin(θ) 0 cos(θ)

)

Rψ =

(
cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

)
The rotation matrix in 3-dimension considered in the paper the clockwise rotation de-
fined as: R = RϕRθRψ

A.2.1. Model configuration for 2-dimensional gesture data. The GVF method allows for tak-
ing into account these invariants by defining them as state variables, sk and rk respec-
tively. The gesture features estimated are the following: phase pk, velocity vk, scaling
coefficient sk, rotation angle rk, and the gesture index mk ∈ [1 . . . 16]:

xk = (pk, vk, sk, rk,mk)
T ∈ [0, 1]× R3 × N

The invariance by rotation and scaling leads to the following non linear function of
state variables:

f(xk,g(pk)) = diag(sk)
(
cos(rk) − sin(rk)
sin(rk) cos(rk)

)
g(pk)

The state transition matrix Al, for the template gesture index l ∈ [1,M ] is given by:

Al =


1 1/Tl 0 0 . . .
0 1 0 0 . . .
0 0
0 0 I3
...

...


where Tl is the length of the l-th gesture template.

A.3. Model configuration for 3-dimensional gesture data
The model is configured in order to be able to track variations in speed, scale and
orientation for 3-dimensional gesture inputs. We denote these variations as follows:
phase pk, velocity vk, scaling coefficients sk, rotation angles rk, and the gesture index
mk ∈ [1 . . . 3]. Note that we have to consider scaling along the three dimensions and
rotation in a 3-dimensional space: sk = (sxk, s

y
k, s

z
k), rk = (ϕk, θk, ψk).

xk = (pk, vk, s
x
k, s

y
k, s

z
k, ϕk, θk, ψk,mk)

T ∈ [0, 1]× R7 × N
The invariance by rotation and scaling leads to the following non linear function of
state variables:

f(xk,g(pk)) =

(
sxk 0 0
0 syk 0
0 0 szk

)
R(ϕk, θk, ψk)g(pk)
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where R(ϕk, θk, ψk) is the rotation matrix in three dimensions given by the Euler an-
gles. As previously, we refer the reader to the Appendix A.2 for the rotation conven-
tions. The state transition matrix Al depends on the gesture template l and is written:

Al =


1 1/Tl 0 0 . . .
0 1 0 0 . . .
0 0
0 0 I7
...

...


where I7 is the identity matrix of size 7 × 7 and Tl is the length of the l-th template
gesture.

A.4. Complementary Study: stimuli

1 2 3 4 5 6

7 8 9 10 11 12

Fig. 19. Gesture vocabulary used in the first experiment

Table IV. Set of 11 variations combinations used in
Step 2 of Study 1.

Variations
Id. Description
V1 slower
V2 faster
V3 change size
V4 change orientation
V5 slower and change size
V6 faster and change size
V7 slower and change orientation
V8 faster and change orientation
V9 change size and orientation
V10 slower and change size and orientation
V11 faster and change size and orientation
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