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1. Introduction

Since Deslaurier and Dubuc (Deslauriers and Dubuc (1987)), Lagrange
interpolatory subdivision schemes have been intensively used. Originally,
they are designed for generating curves starting from initial control polygons
by repeated refinements. These schemes and their extensions are working
horses for multi-scale approximation and are used in many applications of
numerical analysis including numerical solutions of partial differential equa-
tions, data reconstruction or image and signal analysis. Their convergence is
well understood (at least when they remain linear). Smooth curves can then
be generated, leading to efficient tools for approximation problems. Their
major drawback lays in the existence of Gibbs oscillations for the limit curve
when initial data exhibit strong gradients (see Figure B.4 top left). These
oscillations are connected to the oscillations of the coefficients involved in
the Lagrange scheme (the set of these coefficients is called the mask of the
scheme).

Adaption of the schemes to strong gradients is the motivation of a large
family of recently developed schemes: these schemes can be position depen-
dent, as in Baccou and Liandrat (2005) where the monitoring of the position
dependency is performed through a segmentation of the data performed a
priori, or data dependent (and therefore non-linear) as in Cohen et al. (2003)
where the adaption is performed at each application of the scheme, according
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to the data. In all these examples, the schemes remain interpolatory. Our
goal in this paper, is to introduce a new approach that allows to transform
locally an interpolatory scheme into a non interpolatory one, more robust
to jump discontinuities. According to the way this approach is applied, it
can lead to position dependent schemes (as described in Section 5 of this pa-
per) or to data dependent schemes, as it will be described in a forthcoming
publication.

This paper is then devoted to a new approach of Lagrange schemes that
allows to transform them locally into non interpolatory ones. The starting
point is a recent paper, (Baccou and Liandrat (2013)), where the mask of
the Lagrange interpolatory subdivision schemes appeared as the limit mask
of a non-stationary subdivision scheme based on Kriging approach. Kriging,
(Cressie (1993)), is a stochastic data modeling and reconstruction tool widely
used in the framework of spatial data analysis. Its main advantages stand in
the possibility to integrate in the reconstruction the spatial dependency of the
available data and to quantify the precision of the reconstruction thanks to
the model describing this dependency. When they are interpolatory, Kriging
schemes are subject to Gibbs oscillations, (Si et al. (2014)), in the vicinity
of strong gradients. However, this drawback can be corrected introducing
a so called error variance vector, (Chiles and Delfiner (1999)). This vector
can be interpreted as a penalization of the oscillations of the subdivision
mask coefficients that appear, in the Kriging approach, as solution of an
optimization procedure.

The new approach developed in this paper mimics the use of error variance
in Kriging to generate new schemes derived from the Lagrange interpolatory
framework. They will be called penalized Lagrange subdivision schemes. The
paper is organized as follows: after a quick overview of binary subdivision
schemes in Section 2, we establish in Section 3 the connection between the
Lagrange and Kriging frameworks. It leads to the construction of penalized
Lagrange subdivision schemes. This new type of schemes is fully analyzed
in Section 4 in the case of a 4-point centered prediction. Then, in Section
5, it is coupled with a zone-dependent strategy in order to accurately re-
construct discontinuous or locally noisy data. The convergence of this new
zone-dependent scheme is studied. Finally, Section 6 provides several numer-
ical tests in order to point out the efficiency of these schemes compared to
standard approaches.
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2. Basic notations and results for binary subdivision schemes

2.1. Lagrange interpolatory subdivision scheme

A (univariate and binary) subdivision scheme S is defined by a linear
operator S : l∞(Z)→ l∞(Z) constructed from a real-valued sequence (ak)k∈Z
with finite support (called mask of S) such that

(fk)k∈Z ∈ l∞(Z) 7→ ((Sf)k)k∈Z ∈ l∞(Z) with (Sf)k =
∑
l∈Z

ak−2lfl.

The mask plays a key role in the subdivision process and there exist
many works dealing with its construction. Among them, one can mention
Dyn (1992), Cohen et al. (2003) and Baccou and Liandrat (2005), that are
devoted to interpolatory Lagrange-based schemes. These schemes use masks
having (l + r + 1) non zero coefficients ( a0 and a2k+1,−l ≤ k ≤ r − 1) and
interpolatory polynomials of degree l+r−1. The sets of non zero coefficients
of even index (resp. odd index) of the mask are called the stencils of the
scheme. For interpolatory schemes, the even indexed coefficients of the mask
are characterized by a0 = 1, a2k = 0 for k 6= 0. In the case of Lagrange
schemes the odd indexed coefficients of the mask are given by,

a2k+1 = Ll,rk (−1

2
),−l ≤ k ≤ r − 1,

where Ll,rk is the elementary Lagrange interpolatory polynomial defined by:

Ll,rk (x) = Πr−1
n=−l,n6=k

x− n
k − n

.

In this article, we will mainly consider the 4-point centered Lagrange
interpolatory scheme corresponding to l = r = 2. It can be written as:

{
(Sf)2k = fk,
(Sf)2k+1 = − 1

16
fk−1 + 9

16
fk + 9

16
fk+1 − 1

16
fk+2,

(1)

Subdivision is iterated from an initial sequence (f 0
k )k∈Z to generate (f jk)k∈Z

for j ≥ 1 as

f j+1 = Sf j, j ≥ 0.

Parameter j is called the scale parameter and is linked to the dyadic grid
Xj = {k2−j, k ∈ Z}. If the coefficients of the masks are scale invariant, the
scheme is stationary whereas it is non-stationary when they depend on j.
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2.2. Convergence of subdivision schemes

The uniform convergence of subdivision schemes is made precise in the
following definition.

Definition 1.
The subdivision scheme S is said to be uniformly convergent if for any real se-
quence (f 0

k )k∈Z, there exists a continuous function f (called the limit function
associated to f 0) such that: ∀ε,∃J such that ∀j ≥ J, ‖ Sjf 0−f

(
.

2j

)
‖∞≤ ε.

Following Dyn (1992), the convergence of stationary linear subdivision
schemes can be analyzed from the scheme S1 associated to the differences
δf jk = f jk+1 − f

j
k that exists (i.e δf j+1 = S1δf

j) as soon as the initial scheme
S reproduces constants, i.e

∀k ∈ Z, fk = 1⇒ ∀k ∈ Z, (Sf)k = 1.

More precisely, we have:

Theorem 1.
Let S be a stationary subdivision scheme reproducing constants and S1 be the
scheme associated to the differences. S is uniformly convergent if and only
if (S1)jf 0 converges uniformly to the zero function, when j goes to infinity,
for all initial data f 0.

For non-stationary subdivision schemes, the convergence analysis is gener-
ally more involved (see Dyn and Levin (1995)). However, the convergence of
the mask towards a fixed mask associated to a convergent stationary scheme
can be used to reach the result. This will be fully specified in Section 5.

3. From ordinary Kriging to penalized Lagrange subdivision

The main steps related to the definition of a Kriging reconstruction are
first recalled in the following section. For sake of clarity, they are described
independently of the subdivision framework.
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3.1. Overview of ordinary Kriging reconstruction

Considering N observations of a function, f ∈ F , {fi}i=0,...,N−1 on the
grid {xi}i=0,..,N−1, Kriging addresses the problem of the reconstruction of
f at a new location x?. Ordinary Kriging (Cressie (1993)) belongs to the
class of stochastic reconstruction methods. It is assumed that {fi}i∈Z are
realizations of a subset of random variables {F(xi), i ∈ Z} coming from a
random process F(x) that can be decomposed as F(x) = m+ δ(x), where m
is the constant deterministic mean structure of F(x) and δ(x) is a spatially
correlated random process. Under stationarity assumptions and constant de-
terministic mean structure, the spatial structure associated to δ(x) is iden-
tified to the spatial correlation of the data and is exhibited by computing
the semi-variogram, γ(h) = 1

2
E((F(x + h) − F(x))2), where E denotes the

mathematical expectation1. The ordinary Kriging estimator of the random
process F at a new location x? is denoted P(F , x?). It is the linear, unbiased
predictor2 minimizing the estimation variance σ2

K = var(F(x?)−P(F , x?)).
It is written as

P(F , x?) =
N−1∑
i=0

λiF(xi), (2)

where {λi}i=0,...,N−1 are called the Kriging weights. In the case of continuous
semi-variograms, expanding the estimation variance as a function of γ and
taking into account the unbiased condition, the Kriging weights are solutions
of the classical constrained optimization problem (Wackernagel (1998)):

{
min{λi}i=0,...,N−1

J (x?;λ0, . . . , λN−1) ,∑N−1
i=0 λi = 1,

(3)

with J (x?;λ0, . . . , λN−1) = −1
2

∑N−1
i=0

∑N−1
n=0 λiλnγ(||xi − xn||2)

+
∑N−1

i=0 λiγ(||xi − x?||2) where ||.||2 stands for the l2 Euclidean norm. De-
noting by the upper-script T the transpose operator and introducing Λ =
(λ0, . . . , λN−1)T , Problem (3) leads to the following linear system:

1Let X be a real random variable of density fX . Its mathematical expectation is
defined as the integral over the realizations x of X weighted by the density function i.e.
E(X) =

∫
IR
xfX(x)dx. Moreover, its variance is written as var(X) = E(X2)− (E(X))

2

2P(F , x) is an unbiased estimator if and only if E (P(F , x)−F(x)) = 0.
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[
R 11
11T 0

] [
Λ
µ

]
=

[
b
1

]
, (4)

whereR =


0 γ(||x0 − x1||2) ... γ(||x0 − xN−1||2)

γ(||x1 − x0||2) 0 ... γ(||x1 − xN−1||2)
... ... ...

γ(||xN−1 − x0||2) γ(||xN−1 − x1||2) ... 0

 ,
b = (γ(||x0 − x?||2), . . . , γ(||xN−1 − x?||2))T and 11 = (1, . . . , 1)T . Here, µ

is the Lagrange multiplier enforcing the unbiasedness of the estimator.
With these notations, the minimization problem (3) can be reformulated as:

{
minΛ∈IRN

(
−1

2
< RΛ,Λ >2 + < b,Λ >2

)
,

< Λ, 11 >2= 1,
(5)

where < , >2 is the Euclidean scalar product. The matrix R is symmetric,
Toeplitz if the grid {xi}i=0,..,N−1 is regular, with positive coefficients and
has a null main diagonal. By definition (Wackernagel (1998)), it satisfies
< Rv, v >2< 0,∀v ∈ IRN such that v 6= 0 and

∑N
i=1 vi = 0. Since any

vector Λ satisfying < Λ, 11 >2= 1 can be decomposed as Λ = v + 1
N

11 with

< v, 11 >2=
∑N

i=1 vi = 0,

−1
2
< RΛ,Λ >2 + < b,Λ >2 = −1

2
< Rv, v >2 + < b, v >2 − 1

N
< Rv, 11 >

− 1
2N2

∑N
i=1

∑N
n=1Ri,n + 1

N
< b, 11 >2 .

Therefore, using the symmetry of R and introducing b∗ = b − 1
N
R11,

minimizing −1
2
< RΛ,Λ >2 + < b,Λ >2 under the constraint < Λ, 11 >2= 1

is equivalent to minimize −1
2
< Rv, v >2 + < b∗, v >2. Since R is negative

definite on the convex set {v ∈ RN ,
∑N

i=1 vi = 0} the minimum exists and is
unique. Therefore the Kriging weights are well defined.

The previous Kriging estimator (2) is an exact interpolator, since the
reconstruction at any position x? = xi is exactly fi. The constraint of exact
interpolation can be released introducing non-zero coefficients on the diagonal
of R i.e. replacing R by R− C where:

C =


c1 0 ... 0
0 c2 0 0
... ... ...
0 0 ... cN

 (6)
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with ∀i, ci ≥ 0. We call

C = (c1, ..., cN) (7)

the vector of error variance (Chiles and Delfiner (1999)) (C = diag(C =
(c1, ..., cN))) since it allows to take into account measurement errors or un-
certainties on the data. As a result, the corresponding prediction is no more
interpolating at points where the error variance vector is non-zero. The op-
timization problem (5) becomes in this case:

{
minΛ∈IRN

(
−1

2
< RΛ,Λ >2 +1

2
< CΛ,Λ >2 + < b,Λ >2

)
,

< Λ, 11 >2= 1.
(8)

and the vector C can be interpreted as a penalization of the l2-norm of Λ, i.e
as a penalization of the oscillations of the coefficients of Λ, keeping in mind
that < Λ, 11 >2= 1. With the same arguments as previously, the minimum
of (8) exists and is unique.

This short review shows that the Kriging approach is flexible enough
to include interpolatory and non-interpolatory reconstructions in the same
framework. In the next section, this flexibility is adapted to the Lagrange
framework by reformulating the Lagrange subdivision scheme as a Kriging-
like reconstruction at dyadic points, i.e. by constructing linear systems of
type (4) which solution are the Lagrange stencils. Then (Section 4), a pe-
nalization vector C is introduced and a general class of penalized Lagrange
schemes is derived and studied.

3.2. Combining interpolatory and non-interpolatory reconstructions within
the Lagrange scheme framework

The reformulation of the 4-point interpolatory Lagrange subdivision scheme
inside the Kriging framework is summarized in the following proposition, re-
calling that the Lagrange stencils are

(
− 1

16
, 9

16
, 9

16
,− 1

16

)
and (0, 1, 0, 0):

Proposition 1.
For any (b0 6= 0, b1 6= 0), let us introduce the polynomial Pj(x) = b02−2jx2 +
b12−4jx4 and define the matrix
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R =


0 Pj(1) Pj(2) Pj(3)

Pj(1) 0 Pj(1) Pj(2)
Pj(2) Pj(1) 0 Pj(1)
Pj(3) Pj(2) Pj(1) 0

 , (9)

as well as the vectors
b =

(
Pj(

3
2
), Pj(

1
2
), Pj(

1
2
), Pj(

3
2
)
)T

(resp. b = (Pj(1), Pj(0), Pj(1), Pj(2))T ).

The unique solutions of Equation (4) are
(
− 1

16
, 9

16
, 9

16
,− 1

16
, µL
)

(resp.
(0, 1, 0, 0, 0)) where µL = Pj(

3
2
)−

(
9
16
Pj(1) + 9

16
Pj(2)− 1

16
Pj(3)

)
.

Proof:

The details of the proof are not given in the sequel. The result stated by
this proposition can be obtained by performing the same calculation as in the
proof of Proposition 4.3 (Step 3) in Baccou and Liandrat (2013) dealing with
the asymptotical analysis of Kriging-based subdivision schemes. In this pa-
per, the polynomial Pj that appeared was 2−2jx2−1

2
2−4jx4 as the first terms of

the Taylor expansion of the Gaussian semi-variogram γ(x) = 1−e−2−2jx2 .The
proof was based on two steps: we first verified that the Lagrange stencils are
solutions of Equation (4) with µ = µL or µ = 0, then proved the uniqueness
of the solution. This last point was not straightforward since the polynomial
involved in (9) is not a semi-variogram (Wackernagel (1998)) meaning that
the stochastic argument classically used to ensure the invertibility of Kriging
systems is not valid in this case. However, studying the kernel of the left
hand side matrix of (4), one can derive a linear system involving a Vander-
monde matrix that leads to the expected result.

Remark 1.
The main ingredient of the previous proof is the connection between asymp-
totical Kriging-based subdivision schemes and Lagrange ones. The choice of
the polynomials Pj in Proposition 1 that generalize the two first terms of the
Taylor expansion of a Gaussian semi-variogram is just a consequence of this
key point.

As in the previous section, one can now introduce a penalization vector C
of type (7) to modify the diagonal of R (9). Provided the new matrix R−C

8



is invertible (this point is addressed in the next section), it is easy to check
that the solution of this new system does not lead to an interpolatory scheme
but to a new class of penalized Lagrange schemes that are fully specified in
the next section.

4. A new class of penalized Lagrange subdivision schemes

4.1. Construction of the schemes

Starting from (1), the following definition introduces this new type of
schemes.

Definition 2.
Let {Ci}i∈ZZ be a set of penalization vectors and assume that the matrices
R − Ci (i ∈ ZZ) are invertible. The penalized Lagrange subdivision scheme
associated to {Ci}i∈ZZ is then written :

{
(Sf)2i =

∑3
m=0 λ

2i,Ci
m fi−1+m,

(Sf)2i+1 =
∑3

m=0 λ
2i+1,Ci
m fi−1+m, ,

(10)

where {λ2i,Ci
m }m∈{0,...,3} (resp. {λ2i+1,Ci

m }m∈{0,...,3}) are the four first com-
ponents of the unique solutions of Equation (4) with R (given by Equa-

tion (9)) is replaced by R − Ci and b =
(
Pj(

3
2
), Pj(

1
2
), Pj(

1
2
), Pj(

3
2
)
)T

(resp.

b = (Pj(1), Pj(0), Pj(1), Pj(2))T ).

By definition, the choice of the penalization vector plays a key role in
the construction of such schemes. Similarly to the Kriging with error vari-
ance approach, this quantity can be used to integrate in classical Lagrange
schemes extra information on the data. For example, in signal processing
or risk analysis studies, it can be associated to noise or uncertainty in the
observations and the corresponding subdivision schemes will lead to a pre-
diction more adapted to the data. More generally, the penalized Lagrange
approach offers more flexibility in the stencil construction since the choice of
the penalization vector allows to switch from interpolatory (Ci is the null vec-
tor) to non-interpolatory prediction just by recomputing the left-hand-side
matrix of the matricial equation satisfied by the stencil. This property can
be point-wise controlled by modifying some components of the penalization
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vector. As a result, it allows to affect more importance to a given set of
observations. This advantage is exploited in Section 5 (Definition 3) for the
prediction of non-regular data.

Remark 2. It is clear that the parameterization of the stencil construction
induces some extra costs in the application of the scheme. Such extra costs
also appear in classical position dependent (Baccou and Liandrat (2005)) or
non-linear(Cohen et al. (2003)) schemes.

According to Definition 2, the existence of penalized Lagrange stencils
relies on the invertibility of the matrices R−Ci, i ∈ ZZ which is fully studied
in the next section.

4.2. Existence and expression of the stencils

The following propositions are devoted to the analysis of the linear system
(4) written with R−C where R is the matrix (9) and C the matrix (6). For
induction argument, this global matrix is denoted A0 when C =0, where 0
stands for the null matrix, and is then used to provide the existence and the
expression of the stencils associated to the penalized Lagrange scheme when
C 6= 0.

Proposition 2.
Denoting the general term of the symmetric matrix A−1

0 by [A−1
0 ]in = A

(0)
(i−1)(n−1), 1 ≤

i, n ≤ 5, then

∀0 ≤ i ≤ 3,



A
(0)
i0 = 24j

b1

(α1,i

24
+

α2,i

6
+ 11

24
α3,i

)
− α3,ib026j

48b21
,

A
(0)
i1 = 24j

b1
(−α1,i

8
− 5

12
α2,i − 3

4
α3,i) +

α3,ib026j

16b21
,

A
(0)
i2 = 24j

b1
(
α1,i

8
+ 1

3
α2,i + 3

8
α3,i)− α3,ib026j

16b21
,

A
(0)
i3 = 24j

b1
(−α1,i

24
− 1

12
α2,i − 1

12
α3,i) +

α3,ib026j

48b21
,

(11)
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with 
α0,0 α0,1 α0,2 α0,3

α1,0 α1,1 α1,2 α1,3

α2,0 α2,1 α2,2 α2,3

α3,0 α3,1 α3,2 α3,3

 =


1 0 0 0

−11
6

3 −3
2

1
3

1 −5
2

2 −1
2

−1
6

1
2
−1

2
1
6

 .

Proof:

In this proof, we show how to derive the first equation of System (11).
The other equations can be obtained following the same track.

The first column of A−1
0 , (A

(0)
00 , A

(0)
10 , A

(0)
20 , A

(0)
30 , A

(0)
40 )T , is the solution of

A0(A
(0)
00 , A

(0)
10 , A

(0)
20 , A

(0)
30 , A

(0)
40 )T = (1, 0, 0, 0, 0)T (12)

Introducing the polynomial K(x) = A
(0)
00 Pj(x)+A

(0)
10 Pj(x−1)+A

(0)
20 Pj(x−

2) + A
(0)
30 Pj(x− 3) + A

(0)
40 − L

0,4
0 (x), (12) leads to ∀i ∈ {0, . . . , 3}, K(i) = 0.

Therefore K has 4 roots. Since A
(0)
00 + A

(0)
10 + A

(0)
20 + A

(0)
30 = 0 (last equation

of (12)), K is a polynomial of degree 3, and finally ∀x ∈ IR, K(x) = 0. It
implies that the coefficients associated to each power of x are equal to 0, i.e.

for x3 : −4b12−4j
∑3

i=0 iA
(0)
i0 + 1

6
= 0,

for x2 : 6b12−4j
∑3

i=0 i
2A

(0)
i0 − 1 = 0,

for x : −4b12−4j
∑3

i=0 i
3A

(0)
i0 + 11

6
− 22jb0

12b1
= 0,

for 1 : 2−2jb0(A
(0)
10 + 4A

(0)
20 + 9A

(0)
30 ) + 2−4jb1(A

(0)
10 + 16A

(0)
20 + 81A

(0)
30 ) + A

(0)
40 − 1 = 0,

leading to 
1 1 1 1

0 1 2 3

0 1 4 9

0 1 8 27



A

(0)
00

A
(0)
10

A
(0)
20

A
(0)
30

 =


0

1
24b1

24j

1
6b1

24j

11
24b1

24j − b0
48b21

26j

 , (13)
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and A
(0)
40 = 1− 2−2jb0(A

(0)
10 + 4A

(0)
20 + 9A

(0)
30 )− 2−4jb1(A

(0)
10 + 16A

(0)
20 + 81A

(0)
30 ).

If M stands for the left hand side matrix in Equation (13), our goal is to cal-
culate M−1. Since M is a Vandermonde matrix, its transpose MT connects
the basis (1, x, x2, x3) to the basis (L0,4

0 (x), L0,4
1 (x), L0,4

2 (x), L0,4
3 (x)). There-

fore, writing ∀i ∈ {0, . . . , 3}, L0,4
i (x) = α3,ix

3 + α2,ix
2 + α1,ix + α0,i, we

have

MT


α0,i

α1,i

α2,i

α3,i

 = ∆i,

where ∆i is the vector such that ∀n ∈ {1, . . . , 4}, (∆i)n = δin. It then
comes out that (α0,i α1,i α2,i α3,i)

T is the ith column of (MT )−1. Therefore,
after a short calculus,

M−1 =


α0,0 α0,1 α0,2 α0,3

α1,0 α1,1 α1,2 α1,3

α2,0 α2,1 α2,2 α2,3

α3,0 α3,1 α3,2 α3,3

 =


1 0 0 0

−11
6

3 −3
2

1
3

1 −5
2

2 −1
2

−1
6

1
2
−1

2
1
6

 .

Coming back to (13), it finally provides the first equation of System (11).
That concludes the proof.

The previous proposition is now used to study the existence of the so-
lutions associated to the penalized Lagrange system. The expression of the
solution, derived for the reconstruction of f jk , (k, j) ∈ ZZ2 when k = 2i and
k = 2i+ 1 provides the stencils of the penalized Lagrange scheme (10). Ob-
viously, this analysis depends on the number and on the position of non-zero
coefficients in the penalization vector. For sake of simplicity and without loss
of generality, we focus on four cases corresponding to the following penal-
ization vectors: (c1, 0, 0, 0), (c1, c2, 0, 0), (c1, c2, c3, 0) and (c1, c2, c3, c4) with
ci > 0. The four left hand side matrices involved in the penalized Lagrange
system (4) are written as:

12



Am =


−c1 Pj(1) Pj(2) Pj(3) 1
Pj(1) . . . Pj(1) Pj(2) 1
Pj(2) Pj(1) −cm Pj(1) 1
Pj(3) Pj(2) Pj(1) 0 1

1 1 1 1 0

 , m ∈ {1, . . . , 4}, (14)

and the corresponding solution is written Λ(m) =
(
λ

(m)
0 , λ

(m)
1 , λ

(m)
2 , λ

(m)
3 , µ(m)

)T
.

As previously, we write the general term [A−1
m ]in ofA−1

m as [A−1
m ]in = A

(m)
(i−1)(n−1), 1 ≤

i, n ≤ 5. In the following propositions, we focus on the existence and the
computation of {λ(m)

i }i=0,...,3 associated to the systems AmΛ(m) = f where
f = (Pj(1), Pj(0), Pj(1), Pj(2), 1)T and f = (Pj(

3
2
), Pj(

1
2
), Pj(

1
2
), Pj(

3
2
), 1)T .

Proposition 3.
For any j ∈ ZZ, if c1 ∈ Dj,1 where Dj,1 = {c1 > 0/c1 6= 1

24j

72b1
+26j

b0
288b12

}

then the solutions of the penalized Lagrange system including one non-zero
penalization coefficient exist. They satisfy:

• if k = 2i:


λ

(1)
0

λ
(1)
1

λ
(1)
2

λ
(1)
3

 =


0

1

0

0

 . (15)

• if k = 2i+ 1:


λ

(1)
0

λ
(1)
1

λ
(1)
2

λ
(1)
3

 =



− 1
16
− c1A

(0)
00

16(1−c1A(0)
00 )

9
16
− c1A

(0)
10

16(1−c1A(0)
00 )

9
16
− c1A

(0)
20

16(1−c1A(0)
00 )

− 1
16
− c1A

(0)
30

16(1−c1A(0)
00 )


, (16)
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where {A(0)
i0 }i=0,...,3 is given in Proposition 2, System (11).

Proof:

• Existence of the solutions:

Splitting A1 as A1 = A0 + Ã1 and writing, since A−1
0 exists, A1 = A0(I +

A−1
0 Ã1), the invertibility of A1 is ensured as soon as B0 = (I + A−1

0 Ã1) is
invertible. B0 can be expressed as:

B0 =


1− c1A

(0)
00 0 0 0 0

−c1A
(0)
10 1 0 0 0

−c1A
(0)
20 0 1 0 0

−c1A
(0)
30 0 0 1 0

−c1A
(0)
40 0 0 0 1

 , (17)

and det(B0) = 1− c1A
(0)
00 . According to the first equation of System (11),

det(B0) = 1− c1

(
24j

72b1

+ 26j b0

288b2
1

)
. (18)

It then implies that for any j ∈ ZZ, B0 is invertible (and therefore the
solutions of the penalized Lagrange system exist) if c1 6= 1

24j

72b1
+26j

b0
288b12

.

• Expression of the solutions:

Using B0, the solutions can be evaluated as Λ(1) = B−1
0 A−1

0 f that, ex-
ploiting Proposition (1) and (17), leads to (15) and (16).

The previous proposition can be extended to more than one non-zero
penalization constant as follows.

Proposition 4.
For any j ∈ ZZ and 2 ≤ m ≤ 4, let us assume that c1 ∈ Dj,1 and denote

14



Dj,m = {{ck}2≤k≤m/ck > 0, ck 6= 1

A
(k−2)
(k−1)(k−1)

+
ck−1(A

(k−2)
(k−2)(k−1))

2

1−ck−1A
(k−2)
(k−2)(k−2)

where for all

1 ≤ k ≤ m− 1, {A(k)
in }(i,n)∈{0,...,3}2 satisfy the following recursive relation

A
(k)
in = A

(k−1)
in +

ckA
(k−1)
i(k−1)A

(k−1)
(k−1)n

1− ckA(k−1)
(k−1)(k−1)

. (19)

If {ck}2≤k≤m ∈ Dj,m, the solutions of the penalized Lagrange system in-
cluding m non-zero penalization coefficients exist. They can also be expressed
recursively as:

∀2 ≤ k ≤ m, λ
(k)
i = λ

(k−1)
i +

ckA
(k−1)
i(k−1)

1− ckA(k−1)
(k−1)(k−1)

λ
(k−1)
k−1 . (20)

Proof:

It is performed by induction.

When m = 2, the proof is similar to the previous one taking into account
that A1 is invertible (Proposition 3). More precisely, splitting A2 as A2 =
A1 + Ã2, the invertibility of A2 is connected to the invertibility of B1 =
(I +A−1

1 Ã2). According to the previous proof, A−1
1 = B−1

0 A−1
0 with B0 given

by (17). It is then straightforward that {A(1)
in }(i,n)∈{0,...,3}2 satisfies (19) with

k = 1. Since B1 can be written:

B1 =


1 −c2A

(1)
01 0 0 0

0 1− c2A
(1)
11 0 0 0

0 −c2A
(1)
21 1 0 0

0 −c2A
(1)
31 0 1 0

0 −c2A
(1)
41 0 0 1

 , (21)

one can deduce that det(B1) = 1− c2A
(1)
11 . It then comes out that for any

j ∈ ZZ and any c1 ∈ Dj,1, B1 is invertible (and therefore the solutions of
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the penalized Lagrange problem exist) if c2 6= 1

A
(0)
11 +

c1(A
(0)
01 )

2

1−c1A
(0)
00

. Finally, noticing

that

B−1
1 =



1
c2A

(1)
01

1−c2A(1)
11

0 0 0

0 1 +
c2A

(1)
11

1−c2A(1)
11

0 0 0

0
c2A

(1)
21

1−c2A(1)
11

1 0 0

0
c2A

(1)
31

1−c2A(1)
11

0 1 0

0
c2A

(1)
41

1−c2A(1)
11

0 0 1


, (22)

and since Λ(2) = B−1
1 A−1

1 f, (22) leads to (20).

Assuming that the solutions of the penalized Lagrange problem including
m non-zero coefficients exist and satisfy (20), it remains to show that it is
still true for (m+ 1) non-zero coefficients. This proof is again similar to the
previous and won’t be provided in the sequel. It is based on the decomposi-
tion of Am+1 as Am+1 = Am + Ãm+1 exhibiting that the invertibility of Am+1

is connected to the invertibility of Bm = (I + A−1
m Ãm+1). Using a straight-

forward generalization of (21) and (22) to get an expression of Bk and B−1
k

with respect to {A(k)
ik }i∈{0,...,3}, k ≥ 1, one can get the expected result.

4.3. Asymptotical behavior of the stencils

Propositions 3 and 4 provide the expression of the stencils for any j and
any {ci}i∈{1,...,4}.In this section, the limits of these stencils when the scale,
j, or the penalization intensity, ||C||∞, goes to infinity are investigated. The
first limit will be useful for the convergence analysis of Section 5 while the
second is important, in practice, to choose the values of the penalization
vector.

4.3.1. Limit analysis when j goes to infinity

The following proposition holds:

16



Proposition 5.
For any (c1, c2, c3, c4)) ∈ (IR+)

4
, there exists j∗ > 0 such that for all j ≥ j∗,

the solutions of the penalized Lagrange system exist. Moreover, when j →
+∞ their limit are the following asymptotical stencils:

• One non-zero penalization coefficient (m = 1):

– if k = 2i:
(
λ

(1)
0 , λ

(1)
1 , λ

(1)
2 , λ

(1)
3

)
= (0, 1, 0, 0),

– if k = 2i+1:
(
λ

(1)
0 , λ

(1)
1 , λ

(1)
2 , λ

(1)
3

)
→j→+∞

(
0, L1,2

−1(−1
2), L1,2

0 (−1
2), L1,2

1 (−1
2)
)

.

• Two non-zero penalization coefficients (m = 2):

– if k = 2i:
(
λ

(2)
0 , λ

(2)
1 , λ

(2)
2 , λ

(2)
3

)
→j→+∞

(
0, 0, L0,2

0 (−1), L0,2
1 (−1)

)
,

– if k = 2i+1:
(
λ

(2)
0 , λ

(2)
1 , λ

(2)
2 , λ

(2)
3

)
→j→+∞

(
0, 0, L0,2

0 (−1
2), L0,2

1 (−1
2)
)

.

• Three non-zero penalization coefficients (m = 3): if k ∈ {2i, 2i+ 1}:(
λ

(3)
0 , λ

(3)
1 , λ

(3)
2 , λ

(3)
3

)
→j→+∞ (0, 0, 0, 1).

• Four non-zero penalization coefficients (m = 4): if k ∈ {2i, 2i+ 1}:(
λ

(4)
0 , λ

(4)
1 , λ

(4)
2 , λ

(4)
3

)
→j→+∞ (

Π4
i=1,i 6=mci∑4

n=1 Π4
i=1,i 6=nci

)1≤m≤4

Proof:

The proof of existence as well as the expression of the limit stencils for one,
two and three non-zero penalization coefficients are based on the expression
of {A(m)

in }(m,i,n)∈{1,2}×{0,...,3}2 obtained combining (11) with (19). For four
non-zero penalization coefficients, the limit of A4 is invertible. Therefore, for
sake of simplicity, we focus only in the sequel on the cases of one and four
non-zero penalization coefficient(s). The interested reader can find the full
proof for two and three non-zero penalization coefficients in the Annex.

• One non-zero penalization coefficient:

From (18), it is straightforward that for any c1 ∈ IR+, det(B0) ∼j→+∞
−26jc1

b0
288b21

. Therefore, for large enough j, B0 is invertible and the solution

exists.
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Moreover, according to (11), we get:
A

(0)
10 = − 1

16b1
24j − b0

96b21
26j,

A
(0)
20 = 1

24b1
24j + b0

96b21
26j,

A
(0)
30 = 1

144b1
24j − b0

288b21
26j.

(23)

Plugging the previous expressions in (16) leads to limj→+∞

(
λ

(1)
0 , λ

(1)
1 , λ

(1)
2 , λ

(1)
3

)
=(

0, 3
8
, 3

4
,−1

8

)
, which is the expected expression when k = 2i+ 1.

• Four non-zero penalization coefficients:

Coming back to the linear equation (4), let us first notice that limj→+∞A4 =
G and limj→+∞ f = g with

G =



−c1 0 0 0 1

0 −c2 0 0 1

0 0 −c3 0 1

0 0 0 −c4 1

1 1 1 1 0


and g = (0, 0, 0, 0, 1)′ .

Since G is invertible, limj→+∞ Λ(4) = G−1g and the solution exists. One
can easily check that the unique solution of GU = g satisfies ∀m ∈ {1, . . . , 4},
Um =

Π4
i=1,i 6=mci∑4

n=1 Π4
i=1,i 6=nci

. That concludes the proof.

Following the same track, a similar analysis can be performed to exhibit
the limit stencils when the penalization vectors are of types (0, c2, c3, c4),
(0, 0, c3, c4) and (0, 0, 0, c4). They are given in Table B.1 and will be used in
Section 5.

[Table 1 about here.]

The last limit stated by Proposition 5 provides an important result for
practical issues. Indeed, for linear subdivision schemes, the variations of sign
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of the coefficients in the stencil are responsible for the oscillations of the limit
functions and, as a consequence, of the oscillations of the reconstructed data
in the vicinity of strong gradients (Gibbs phenomenon). The constant sign
of the coefficients of the limit stencil for four non-zero penalization coeffi-
cient scheme implies that, to the limit, the corresponding scheme does not
generate the Gibbs oscillations. We refer to Section 6 for an application of
this property (Figure B.4, bottom, right).

4.3.2. Limit analysis when the penalization constants go to infinity

We now focus on the situation where the penalization vector satisfies
ci = c, 1 ≤ i ≤ m (m ∈ {1, . . . , 4}) and study the limit of the stencils when
c goes to infinity.
From Expressions (16) and (20), the limit coefficients depend on {A(m)

nm }(m,n)∈{0,...,3}2

and therefore possibly on j. As a result, for a fully exhaustive description
of the limits, many configurations have to be taken into account according
to the position and the number of zero coefficients in the previous sequence.
For sake of simplicity, in the next proposition, we focus on the case A

(m)
nm 6= 0,

∀(m,n) ∈ {0, . . . , 3}2. This is not restrictive to keep the generality of the

results since the subset of scales I
(m)
nm = {j ∈ IN+/A

(m)
nm = 0} is finite. Mim-

icking what has been done when j → +∞ and introducing J (m) = ∪3
n=0I

(m)
nm ,

we have:

Proposition 6.
For any j ∈ IN+\ ∪3

m=0 J
(m) there exists c? such that for all c ≥ c?, the

solutions of the penalized Lagrange systems exist. Moreover,when c → +∞
their limit are the following:

• One non-zero penalization coefficient:

– if k = 2i:
(
λ

(1)
0 , λ

(1)
1 , λ

(1)
2 , λ

(1)
3

)
= (0, 1, 0, 0),

– if k = 2i+ 1:
(
λ

(1)
0 , λ

(1)
1 , λ

(1)
2 , λ

(1)
3

)
→c→+∞(

0, 9
16
− 3b022j+18b1

16b022j+64b1
, 9

16
+ 3b022j+12b1

16b022j+64b1
,− 1

16
+ −b022j+2b1

16b022j+64b1

)
.

• Two non-zero penalization coefficients:

– if k = 2i:
(
λ

(2)
0 , λ

(2)
1 , λ

(2)
2 , λ

(2)
3

)
→c→+∞

(
0, 0, 2b022j+8b1

b022j+b1
,− b022j+7b1

b022j+b1

)
,
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– if k = 2i+ 1:
(
λ

(2)
0 , λ

(2)
1 , λ

(2)
2 , λ

(2)
3

)
→c→+∞(

0, 0, limc→+∞ λ
(1)
2 + 2b022j+8b1

b022j+b1
limc→+∞ λ

(1)
1 , limc→+∞ λ

(1)
3 − b022j+7b1

b022j+b1
limc→+∞ λ

(1)
1

)
.

• Three non-zero penalization coefficients: if k ∈ {2i, 2i+ 1}:(
λ

(3)
0 , λ

(3)
1 , λ

(3)
2 , λ

(3)
3

)
→c→+∞ (0, 0, 0, 1).

• Four non-zero penalization coefficients: if k ∈ {2i, 2i+ 1}:(
λ

(4)
0 , λ

(4)
1 , λ

(4)
2 , λ

(4)
3

)
→c→+∞ (1

4
, 1

4
, 1

4
, 1

4
).

Proof:

The limit stencils are again evaluated using the limit of {A(m)
in }(m,i,n)∈{1,...,3}×{0,...,3}2

obtained combining (11) with (19). For sake of simplicity, we focus on the
case of one penalization coefficient.

From (18), it is straightforward that for any j ∈ IN+\∪3
m=0J

(m), det(B0) ∼c→+∞

−c( 24j

72b1
+ 26j b0

288b12
). Therefore, for large enough c, B0 is invertible and the

solution exists.
Moreover, plugging the value of A

(0)
10 , A

(0)
20 , A

(0)
30 given by (23) into Expres-

sion (16), it comes out

lim
c→+∞

(
λ
(1)
0 , λ

(1)
1 , λ

(1)
2 , λ

(1)
3

)
=

(
0,

9

16
− 3b022j + 18b1

16b022j + 64b1
,

9

16
+

3b022j + 12b1
16b022j + 64b1

,− 1

16
+
−b022j + 2b1

16b022j + 64b1

)
,

which is the announced expression when k = 2i+ 1.
The corresponding limits for two, three and four non-zero penalization

coefficients can be derived following Expression (20).

4.4. Numerical study

In this numerical study, the polynomial Pj is defined by Pj(x) = 100(2−2j)x2−
2−4jx4. Moreover, we still consider a penalization vector characterized by a
single coefficient c following our assumption in subsection 4.3.2.

4.4.1. Critical values of the penalization constant

Let us first focus on the critical values of c provided by Propositions 3
and 4. These values have to be avoided in order to ensure the existence of
the stencils. Table B.2 gives their numerical values for j ≤ 2 when they are
positive.

20



[Table 2 about here.]

As expected, the critical values decrease with respect to the scale. There-
fore, when j ≥ 1, the stencils associated to the 4 penalized schemes always
exist when c ∈ {0} ∪ [1,∞[. This result will be used in Section 6.

4.4.2. Stencils dependance on scale and penalization

We numerically investigate the variations of the stencils according to j
and c. This study is restricted to the case of a penalization vector with 4
non-zero coefficients that is mainly involved in the zone-dependent subdivi-
sion scheme constructed in Section 5.

Figure B.1 displays the stencil coefficients from j = 0 to j = 10 when
c = 2.

[Figure 1 about here.]

As expected from Proposition 5, the stencils for large enough values of j
converge to

(
1
4
, 1

4
, 1

4
, 1

4

)
; moreover, they are of constant positive sign for j ≥ 2.

Figure B.2 displays the evolution of the stencil coefficients from c = 0 to
c = 100 when j = 0. In both plots, the coefficients slowly evolve from the
interpolatory Lagrange ones corresponding to c = 0 towards the limit ones
for large c. Note that the limit is not yet reached for c = 100. However, it
appears that all the coefficients become non-negative for c ≥ 38 if k = 2i and
for c ≥ 8 if k = 2i+ 1, a property important to keep in mind when trying to
reduce the Gibbs phenomenon.

[Figure 2 about here.]

Table B.3 deals with the limit values of the coefficients. More precisely, it
exhibits for each scale the value of c required to obtain the limit

(
1
4
, 1

4
, 1

4
, 1

4

)
up to a l2-error bounded by 10−3. On one hand it shows that for large j
(j ≥ 4) the coefficients reach their limit values for very small c; on the other
hand, it points out that for 0 ≤ j ≤ 3, there exists a large range of values of
c where the coefficients evolve from the interpolatory Lagrange coefficients
to the limits.

[Table 3 about here.]
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5. Zone-dependent penalized Lagrange subdivision scheme

The penalized Lagrange subdivision schemes are here coupled to a zone-
dependent strategy in order to derive a new type of subdivision schemes
improving the reconstruction of locally non-regular or noisy data. Its defini-
tion as well as its convergence analysis are fully specified in what follows.

5.1. Construction of the scheme

The scheme is based on the 4-point Lagrange interpolatory scheme asso-
ciated to a penalization function depending on the position. More precisely:

Definition 3.
The zone-dependent strategy on the real line IR is characterized by:

• A partition of IR in p zones: IR = ∪0≤i≤p−1Ii where ∀i ≤ p − 2, Ii =
]yi, yi+1] and Ip−1 =]yp−1, yp[ with y0 = −∞, yp = +∞ and, for 0 ≤
i ≤ p− 1, yi < yi+1.

• A penalization function, P, defined piecewise on each interval Ii and
taking positive values.

For each position (2i2−(j+1) or (2i+ 1)2−(j+1)), the linear system that defines
the stencils of the scheme is of type (4) with a left hand side matrix Am given
by (14) and C = (P((i− 1)2−j),P(i2−j),P((i+ 1)2−j),P((i+ 2)2−j)).

For sake of clarity and without loss of generality, we focus in the sequel
of this section on a three zones partition as ]−∞, y1]∪]y1, y2]∪]y2,+∞[. The
penalization function P is piecewise constant with a non-zero value, c, only
in the interval I1 (Figure B.3).

[Figure 3 about here.]

The reconstruction therefore relies on three different kinds of local pre-
dictions based on

• an interpolatory Lagrange subdivision scheme in the interior3 of Zones
I0 and I2,

3If (l, r) characterizes the stencil of the subdivision scheme, the in-
terior of the zone I at level j is the set Ije ∪ Ijo with Ije ={
x = 2i2−j , such that ∃ at least l − 1, resp. r, points of Xj−1 ∩ I on the left, resp. right, of x

}
and Ijo =

{
x = (2i+ 1)2−j , such that ∃ at least l, resp. r, points of Xj−1 ∩ I on the left, resp. right, of x

}
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• a penalized Lagrange subdivision scheme with four non-zero penaliza-
tion coefficients in the interior of I1,

• subdivision schemes mixing non-zero penalization vectors of types (0, 0, 0, 0),
(0, 0, 0, c), (0, 0, c, c), (0, c, c, c) and (c, c, c, c) in the vicinity of y1 and
of types (c, c, c, c), (c, c, c, 0), (c, c, 0, 0), (c, 0, 0, 0) and (0, 0, 0, 0) in the
vicinity of y2.

The resulting scheme is position-dependent (non uniform) and moreover
non-stationary since the coefficients of the masks depend on the scale j.

5.2. Convergence analysis

We prove in this section that the zone-dependent penalized subdivision
scheme is convergent. For sake of clarity, the technical details of the proof are
given in the Annex and we here focus on the main steps leading to the result.

The key starting point is the following theorem taken from Baccou and
Liandrat (2013) that states a sufficient condition of convergence for non sta-
tionary (eventually non uniform) schemes.

Theorem 2.
Let S be a non-stationary subdivision scheme reproducing constants defined
by its masks ajk = {ajk,m}m∈Z, (j, k) ∈ Z2. We suppose that there exists two

constants K < K ′, independent of j and k such that ajk,m = 0 for m > K ′

or m < K. If there exists a convergent stationary subdivision scheme SS of
masks ak = {ak,m}m∈Z, k ∈ Z, with ak,m = 0 for m > K ′ or m < K and
such that

lim
j→+∞

sup
k∈Z
|ajk − ak| = 0 ,

then S is convergent.

Remark 3. In Baccou and Liandrat (2013), this theorem addresses the ques-
tion of the convergence of non-stationary, non-uniform schemes for which
there exist a non-uniform stationary asymptotical (i.e when j → +∞) con-
vergent scheme. The main argument of the proof deals with a contraction
property for the scheme for the differences (δf jk = f jk+1 − f

j
k) that is a suf-

ficient condition for convergence of non stationary schemes and a necessary
and sufficient condition of convergence for stationary schemes. The uniform
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(with the parameter k) convergence (with the parameter j) of the masks in-
deed ensures that the contraction property is reached for large enough values
of j.

This result could be compared to the general analysis of convergence for
asymptotically equivalent schemes derived in Dyn and Levin (1995). There,
with our notations, a sufficient condition for convergence deals with a so
called asymptotical equivalence that reads

∑
j supk∈Z|a

j
k − ak|. This condi-

tion is a stronger condition than the one used here. However this condition
quantifies the distance between the limit functions of the two schemes (non
stationary and stationary), a point that is not considered in our result.

Since the asymptotical stencils associated to the penalized Lagrange pre-
dictions involved in our zone-dependent scheme have already been identified
in Section 4, according to Theorem 2, it is enough to study the convergence
of the zone-dependent (non uniform) stationary limit subdivision scheme.
For sake of simplicity and without loss of generality, we suppose that for
large enough j, y1 ad y2 belongs to the dyadic grid Xj. Precisely, we suppose
that:

Definition 4.
There exists J > 0 such that for any j ≥ J , y1 and y2 are written respectively
as y1 = kj,12−j and y2 = kj,22−j.

Using the previous notations, Table B.4 provides a list of the penalization
vectors and of the different stencils associated to the limit scheme according
to the position of the point to be predicted.

[Table 4 about here.]

According to Theorem 1, the convergence of the asymptotical scheme is
directly connected to the convergence towards 0 of the associated scheme for
the differences. Therefore the proof relies on the analysis of the differences
δf j+1

2i = f j+1
2i+1 − f

j+1
2i and δf j+1

2i+1 = f j+1
2i+2 − f

j+1
2i+1 according to their position

on the line:

• Interior of I0: {δf j+1
2i }0≤i≤kj,1−2 and {δf j+1

2i+1}0≤i≤kj,1−3 are computed
with the classical Lagrange scheme (i.e. with (0, 0, 0, 0) for the penal-
ization vector).
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• Neighboring intervals around y1 (Figure B.9): {δf j+1
2i }kj,1−1≤i≤kj,1+1 and

{δf j+1
2i+1}kj,1−2≤i≤kj,1+1 are computed using predictions mixing different

penalization vectors (i.e. (0, 0, 0, 0)/(0, 0, 0, c) to (0, c, c, c)/(c, c, c, c)).

• Interior of I1: {δf j+1
2i }kj,1+2≤i≤kj,2−2 and {δf j+1

2i+1}kj,1+2≤i≤kj,2−3 are com-
puted with a prediction associated to the same penalization vector
(c, c, c, c).

• Neighboring intervals around y2: {δf j+1
2i }kj,2−1≤i≤kj,2+1 and {δf j+1

2i+1}kj,2−2≤i≤kj,2+1

are computed using predictions mixing different penalization vectors
(i.e. (c, c, c, c)/(c, c, c, 0) to (c, 0, 0, 0)/(0, 0, 0, 0)).

• Interior of I2: {δf j+1
2i }i≥kj,2+2 and {δf j+1

2i+1}i≥kj,2+2 are computed with
the classical Lagrange scheme (i.e. with (0, 0, 0, 0) for the penalization
vector).

It turns out that in the interior zones, the subdivision is performed using
a uniform scheme corresponding to the classical 4-point Lagrange interpo-
latory one in the interior of I0 and I2 and to the scheme associated to the
constant stencil (1

4
, 1

4
, 1

4
, 1

4
) in the interior of I1. The convergence analysis in

the neighboring intervals around y1 and y2 is specific due to the non symme-
try of the different stencils. Since the convergence property of the classical
4-point Lagrange interpolatory scheme is well known (see for instance Dyn
(1992)), the convergence of our scheme is then ensured as soon as the con-
vergence in the interior of I1 and, around y1 and y2 is established. That is
precisely what is studied and proved in the Annex.

6. Numerical applications

This section provides several numerical tests in order to illustrate the
efficiency of the penalized Lagrange subdivision scheme coupled with a zone-
dependent strategy. In this study, the step of zone detection and choice
of the penalization function is decoupled from the prediction one. More
precisely, we focus on the capability of our scheme assuming that the zones
and the shape of the penalization function are known. The question of the
construction of an automatic procedure to achieve the first step is addressed
in Remark 5 and will be largely discussed in a forthcoming paper. In the
following tests, a special attention is devoted to the analysis of the effect on
data reconstruction of the local introduction of a penalization vector. The
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first test is related to the prediction of a discontinuous function while in the
second one, noisy data are considered. Again, in all our tests the polynomial
model is Pj(x) = 100(2−2j)x2 − 2−4jx4.

6.1. Discontinuous data

In this test, we consider, as initial data (j = 0), the sampling of the
following step function

f(x) =

{
10 x ∈]−∞, 8],
−10 x ∈]8,+∞[

that exhibits a discontinuity at x = 8.
We first consider the case of a piecewise constant penalization (Figure

B.3) analyzed in the previous section, with I1 =]y1, y2], y1 = 5 and y2 = 12.
Figure B.4 displays the reconstructed functions starting from a coarse level
j = 0 for different values of the constant 0 ≤ c ≤ 100.

[Figure 4 about here.]

As announced, the convergence of the stencils towards constant sign stencils
close to the initial discontinuity implies that the Gibbs oscillations disap-
pear for large enough value of the parameter c. Moreover, if a too large
c (c = 100) is chosen, the reconstructed jump can be undesirably smeared
out. In this case, the stencil corresponds to the limit one associated to a sta-
tionary scheme. However, our non-stationary scheme offers the possibility to
reduce this smoothing effect by considering intermediate situations between
stationary interpolatory (c = 0) and non-interpolatory (c = 100) schemes as
can be seen on Figure B.4, bottom, left.

Remark 4.
As illustrated previously, the scheme tends to smooth the discontinuity jump.

This is due to the zone-dependent strategy that does not integrate the exact
position of the discontinuity as it is classically done when using a position-
dependent approach (Baccou and Liandrat (2005)). Therefore, in the frame-
work of reconstruction of discontinuous data, our scheme turns out to be a
promising alternative when discontinuity detectors fail and can only provide
a discontinuity set of possible discontinuity positions which is often the case
in practice due to noise or texture in the data. The penalization function can
then be seen as a non-normalized probability density function that controls

26



the “likelihood” that a point in the discontinuity set is the exact discontinuity
position. The constant function in I1 that is considered in this paper implies
that any points of the set is likely to be the discontinuity position. However,
our scheme allows to affect more importance to a (subset of) point(s) within
the set just by switching from the constant function to a piecewise (constant)
linear one.
The flexibility of our scheme can also be exploited to work with scale-dependent
penalization functions. In this case, the zone I1 and the parameter c are re-
defined at each iteration of the subdivision scheme (they are denoted Ij1 and
cj in the sequel) and a new penalization function is computed. Figure B.5
displays an example of reconstructed step function following this strategy with
Ij1 = [8− 3

2j
, 8+ 4

2j
] and cj = c0

24j
. It appears that this adaption of the penaliza-

tion function reduces the smoothing of the discontinuity jump. This kind of
approach leads to non-linear schemes and will be the topic of a forthcoming
paper.

[Figure 5 about here.]

6.2. Locally noisy data

In real situations, available data can be perturbated by noise. Without
specific treatment, the presence of noise strongly deteriorates the reconstruc-
tion when interpolatory subdivision schemes are used. In this example, two
types of noisy data, related to signal prediction and curve generation, are
considered.

6.2.1. Noisy signal

The initial data are first generated by sampling the test function f(x) =
0.4 ∗ sin(x

3
) for x ∈ R. Then a white Gaussian noise (mean 0, variance 0.4)

is added in I1 =]y1, y2] with y1 = 8 and y2 = 17.
A zone-dependent penalized Lagrange subdivision scheme with a piece-

wise constant penalization function is then applied. Figure B.6 exhibits the
reconstructed limit functions for different values of 0 ≤ c ≤ 4000. Moreover,
Table B.5 provides the l2-error between the reconstructed sequences at j = 6
and the sampling of the initial function at the same scale.

It comes out that the introduction of a penalization and its coupling with
the zone-dependent strategy lead to a more robust reconstruction in presence
of noise. For c = 100 (Figure B.6, bottom, right), the effect of the noisy data
is really damped. This strong improvement is quantified in Table B.5 where
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a reduction of a factor 7 in the l2-error between c = 0 and c = 3726 can be
noticed.

[Figure 6 about here.]

[Table 5 about here.]

6.2.2. Curve generation

The same type of zone-dependent penalized Lagrange subdivision scheme
is here applied to curve generation. More precisely, we evaluate the capability
of this approach in presence of noisy control points. Figure B.7 displays
an example of curve reconstruction, where some control points have been
polluted by a white noise.

Again, it appears that interpolatory subdivision schemes such as Lagrange-
based ones are not tailored to handle noisy data and leads to undesirable
oscillations (Figure B.7, left). On the contrary, since the penalized strat-
egy allows to combine interpolatory (in the zone without noise) and non-
interpolatory (in the noisy zone) schemes, the oscillations are reduced and
the reconstructed curve is more satisfactory (Figure B.7, right).

[Figure 7 about here.]

Remark 5.
A full penalized Lagrange procedure requires to dsicreminate the different
zones in the data and to fix the penalization function (shape and parame-
ters). In some situations, the first point is already performed by previous
analysis. It can come for example from a failed discontinuity detection that
is not able to provide the exact discontinuity position (see Remark 4) but a set
of possible ones. In case of data with uncertainty, it can also be the results
of experts’ analysis such as in risk studies. However, for an automatical
segmentation, a simple way is to proceed by cross-validation (Wackernagel
(1998)). More precisely, each observation is removed in turn from the data
set and a value at that location is predicted using an interpolatory Lagrange
subdivision scheme from the remaining observations. The difference between
the data value and the predicted one is then computed in order to provide an
indication of the local behavior. The different zones can finally be deduced
from the magnitude of this error.
Concerning the choice of the penalization function, it can also be achieved
by cross validation using the penalized Lagrange scheme as it is classically
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done in geostatistics to select the semi-variogram model. This procedure has
to be performed for each shape and parameter value of the penalization func-
tion. Contrarily to the zone detection, the efficiency of each model is not
always based on the error between data value and estimated one but has to
be defined according to the properties to satisfy. For example, in the case
of the prediction of a step function, it can combine both an indicator of the
local change in the sign of the derivative for Gibbs oscillations reduction and
the l2 error to avoid smearing out the jump too much. For noisy data and
under an independence assumption of the noise, the efficiency criterion can
be based on the estimation of the correlation of the errors between data value
and estimated one within I1. More precisely, since the scheme is constructed
for de-noising, this error can be assimilated to the noise in case of efficient
reconstruction and should not be correlated. A (close to) zero correlation
therefore indicates an appropriate choice of the penalization function. This
procedure can be formalized using statistical tests such as the Durbin-Watson
test (Durbin and Watson (1951)).

7. Conclusion

A new type of subdivision schemes combining interpolatory and non-
interpolatory predictions has been constructed in this article. The starting
point is the classical 4-point Lagrange interpolatory scheme. The main in-
gredient to transform this scheme into an approximating one relies on the
connection to Kriging subdivision that offers a more flexible framework to
mix interpolatory and non-interpolatory predictions thanks to the introduc-
tion of error variances. Plugging the determination of the stencils into that
framework allows to define a penalized Lagrange scheme that can be either
interpolatory or non-interpolatory according to the choice of the penalization
constants. After a full theoretical analysis, this original approach is coupled
to a zone-dependent strategy in order to derive non-stationary subdivision
schemes adapted to the local behavior of the data to reconstruct. The nu-
merical applications have shown a strong improvement compared to classical
Lagrange predictions when data exhibit discontinuities or are perturbated by
a noise.
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Appendix A. Existence and expression of the asymptotical sten-
cils (Proof of Proposition 5)

We study for large values of j the quantities det(B1) = 1 − c2A
(1)
11 ,

det(B2) = 1− c3A
(2)
22 and the coefficients given by (20).

Exploiting the symmetrical property of A1 and A2, it is therefore enough to
derive the asymptotical behavior of the subsets {A(1)

01 , A
(1)
02 , A

(1)
03 , A

(1)
11 , A

(1)
12 , A

(1)
13 , A

(1)
22 , A

(1)
23 , A

(1)
33 },

and {A(2)
02 , A

(2)
03 , A

(2)
12 , A

(2)
13 , A

(2)
22 , A

(2)
23 , A

(2)
33 }.

After a technical calculus one gets



A
(1)
01 ∼j→+∞

3
c1
,

A
(1)
02 ∼j→+∞ − 3

c1
,

A
(1)
03 ∼j→+∞

1
c1
,

A
(1)
11 ∼j→+∞

1
24b1

24j,

A
(1)
12 ∼j→+∞ − 1

12b1
24j,

A
(1)
13 ∼j→+∞

1
24b1

24j,

A
(1)
22 ∼j→+∞

1
6b1

24j,

A
(1)
23 ∼j→+∞ − 1

12b1
24j,

A
(1)
33 ∼j→+∞

1
24b1

24j,

and



A
(2)
02 ∼j→+∞

3
c1
,

A
(2)
03 ∼j→+∞ − 2

c1
,

A
(2)
12 ∼j→+∞

2
c2
,

A
(2)
13 ∼j→+∞ − 1

c2
,

A
(2)
22 ∼j→+∞ − 1

2b0
22j,

A
(2)
23 ∼j→+∞

1
2b0

22j,

A
(2)
33 ∼j→+∞ − 1

2b0
22j,

As a result, it is straightforward that for large enough j the determi-
nants are non-zero, ensuring the existence of the stencils. Moreover, keeping
in mind the limit of the stencils in the case of one non-zero penalization
coefficient (Proposition 5), one can deduce that
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limj→+∞

(
λ

(2)
0 , λ

(2)
1 , λ

(2)
2 , λ

(2)
3

)T
=

{
(0, 0, 2,−1)T if k = 2i,(
0, 0, 3

2
,−1

2

)T
if k = 2i+ 1,

and limj→+∞

(
λ

(3)
0 , λ

(3)
1 , λ

(3)
2 , λ

(3)
3

)T
= (0, 0, 0, 1)T for any k ∈ {2i, 2i+1},

which are the announced results. That concludes the proof.

Appendix B. Proof of the convergence of the stationary subdivi-
sion scheme in the interior of I1 and, around y1 and
y2 (Section 5.2)

Interior of I1:

[Figure 8 about here.]

Since f j+1
2i+1 = f j+1

2i = 1
4(f ji−1 + f ji + f ji+1 + f ji+2) and f j+1

2i+2 = 1
4(f ji + f ji+1 +

f ji+2 + f ji+3) (Figure B.8), It comes that:

{
δf j+1

2i = 0 ,

δf j+1
2i+1 = 1

4 [(f ji+3 − f
j
i+2) + (f ji+2 − f

j
i+1) + (f ji+1 − f

j
i ) + (f ji − f

j
i−1)] .

As ∀j, i, δf j+1
2i = 0,

• if i is even (i = 2m), f ji+1−f
j
i = f j2m+1−f

j
2m = δf j2m = 0, and f ji+3−f

j
i+2 =

f j2m+3 − f
j
2m+2 = δf j2m+2 = 0. Therefore,

δf j+1
2i+1 =

1

4
[(f ji+2 − f

j
i+1) + (f ji − f

j
i−1)] ,

• if i is odd (i = 2m + 1), f ji+2 − f ji+1 = f j2m+3 − f j2m+2 = δf j2m+2 = 0,

f ji − f
j
i−1 = f j2m+1 − f

j
2m = δf j2m = 0. Therefore,

δf j+1
2i+1 =

1

4
[(f ji+3 − f

j
i+2) + (f ji+1 − f

j
i )] .

Since |1
4
|+ |1

4
| < 1, δf j+1

2i+1 →j→+∞ 0.

Neighboring intervals around y1:
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[Figure 9 about here.]

We separate the study for differences involving points on the left and on
the right of y1 (Figure B.9).

• Left of y1

Exploiting Table B.4, the differences can be expressed as follows:

δf j+1
2kj,1−3 = f jkj,1−1 −

(
− 1

16
f jkj,1−3 +

9

16
f jkj,1−2 +

9

16
f jkj,1−1 −

1

16
f jkj,1

)
,

= − 1

16
δf jkj,1−3 +

1

2
δf jkj,1−2 +

1

16
δf jkj,1−1,

δf j+1
2kj,1−2 =

(
−1

8
f jkj,1−2 +

3

4
f jkj,1−1 +

3

8
f jkj,1

)
− f jkj,1−1,

=
1

8
δf jkj,1−2 +

3

8
δf jkj,1−1,

δf j+1
2kj,1−1 = f jkj,1 −

(
−1

8
f jkj,1−2 +

3

4
f jkj,1−1 +

3

8
f jkj,1

)
,

= −1

8
δf jkj,1−2 +

5

8
δf jkj,1−1.

All these differences are contractive since |− 1
16
|+|1

2
|+| 1

16
| < 1, |1

8
|+|3

8
| < 1

and |− 1
8
|+ |5

8
| < 1. Moreover, they only involve differences in I0. Combined

with the uniform convergence of the classical Lagrange scheme, it therefore
implies that δf j+1

2kj,1−3 →j→+∞ 0, δf j+1
2kj,1−2 →j→+∞ 0 and δf j+1

2kj,1−1 →j→+∞ 0.

• Right of y1

They are written as:

δf j+1
2kj,1

=

(
−1

2
f jkj,1−1 +

3

2
f jkj,1

)
− f jkj,1 ,

=
1

2
δf jkj,1−1, (B.1)
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δf j+1
2kj,1+1 = f jkj,1 −

(
−1

2
f jkj,1−1 +

3

2
f jkj,1

)
,

= −1

2
δf jkj,1−1, (B.2)

δf j+1
2kj,1+2 = 0, (B.3)

δf j+1
2kj,1+3 =

(
1

4
f jkj,1+1 +

1

4
f jkj,1+2 +

1

4
f jkj,1+3 +

1

4
f jkj,1+4

)
− f jkj,1 ,

= δf jkj,1 +
3

4
δf jkj,1+1 +

1

2
δf jkj,1+2 +

1

4
δf jkj,1+3. (B.4)

Since the differences (B.1) and (B.2) only depend on differences in I0,
it is straightforward that δf j+1

2kj,1
→j→+∞ 0 and δf j+1

2kj,1+1 →j→+∞ 0. Clearly,

Expression (B.4) does not imply a contraction from δf j to δf j+1. However,
since by Definition 4, ∀j > J , kj,1 = 2kj−1,1, it can be written as:

δf j+1
2kj,1+3 = 1

4
δf j2kj−1,1+3

+δf j2kj−1,1
+ 3

4
δf j2kj−1,1+1 + 1

2
δf j2kj−1,1+2.

This expression exhibits a recursive relationship between δf j+1
2kj,1+3 and

δf j2kj−1,1+3 involving the contraction factor 1
4

and a sum of extra terms that,

according to (B.1)-(B.3) converge towards 0. Therefore δf j+1
2kj,1+3 →j→+∞ 0.

Neighboring intervals around y2:

Similarly to the previous case, the convergence study is split in two steps.
We first focus on the right side of y2 then on the left one.

• Right of y2

δf j+1
2kj,2

=

(
3

2
f jkj,2+1 −

1

2
f jkj,2+2

)
−
(

2f jkj,2+1 − f
j
kj,2+2

)
,

=
1

2
δf jkj,2+1,

33



δf j+1
2kj,2+1 = f jkj,2+1 −

(
3

2
f jkj,2+1 −

1

2
f jkj,2+2

)
,

=
1

2
δf jkj,2+1,

δf j+1
2kj,2+2 =

(
3

8
f jkj,2+1 +

3

4
f jkj,2+2 −

1

8
f jkj,2+3

)
− f jkj,2+1,

=
5

8
δf jkj,2+1 −

1

8
δf jkj,2+2,

δf j+1
2kj,2+3 = f jkj,2+2 −

(
3

8
f jkj,2+1 +

3

4
f jkj,2+2 −

1

8
f jkj,2+3

)
,

=
3

8
δf jkj,2+1 +

1

8
δf jkj,2+2,

All these differences are contractive since |1
2
| < 1, |5

8
|+|− 1

8
| < 1, |3

8
|+|1

8
| <

1. Moreover, they only involve differences in I2. Combined with the uniform
convergence of the classical Lagrange scheme, it leads to δf j+1

2kj,2
→j→+∞ 0,

δf j+1
2kj,2+1 →j→+∞ 0, δf j+1

2kj,2+2 →j→+∞ 0 and δf j+1
2kj,2+3 →j→+∞ 0.

• Left of y2

δf j+1
2kj,2−3 = f jkj,2+1 −

(
1

4
f jkj,2−3 +

1

4
f jkj,2−2 +

1

4
f jkj,2−1 +

1

4
f jkj,2

)
,

=
1

4
δf jkj,2−3 +

1

2
δf jkj,2−2 +

3

4
δf jkj,2−1 + δf jkj,2 ,

δf j+1
2kj,2−2 = 0,

δf j+1
2kj,2−1 =

(
2f jkj,2+1 − f

j
kj,2+2

)
− f jkj,2+1,

= −δf jkj,2+1. (B.5)

Since the difference (B.5) only depends on a difference involving points
of I2, δf j+1

2kj,2−1 →j→+∞ 0. Concerning δf j+1
2kj,2−3, the same argument as for

Expression (B.4) is used since according to Definition 4, ∀j > J , kj,2 =
2kj−1,2.
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Penalization vector k = 2i k = 2i+ 1

(0, 0, 0, c4) (0, 1, 0, 0)
(
L2,1
−2(−1

2
), L2,1

−1(−1
2
), L2,1

0 (−1
2
), 0
)

(0, 0, c3, c4) (0, 1, 0, 0)
(
L2,0
−2(−1

2
), L2,0

−1(−1
2
), 0, 0

)
(0, c2, c3, c4) (1, 0, 0, 0) (1, 0, 0, 0)

Table B.1: Limit stencils versus the penalization vector.
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j (c, 0, 0, 0) (c, c, 0, 0) (c, c, c, 0) (c, c, c, c)
0 3 0.31 - 0.16
1 4.5e− 2 4.6e− 3 - 2.3e− 3
2 7e− 4 7e− 5 - 3.5e− 5

Table B.2: Critical values of c. The symbol “-” means that there is no positive value.
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j=0 j=1 j=2 j=3 j=4 j=5 j=6
c 3726 232.9 14.5 9.1e− 1 5.7e− 2 3.5e− 3 2.2e− 4

Table B.3: Inferior bound of c to reach the asymptotical stencil up to a l2-error of 10−3.
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Position Penalization vector Stencil (k = 2i) Stencil (k = 2i+ 1)
0 ≤ i ≤ kj,1 − 2 (0,0,0,0) (0,1,0,0) (- 1

16
, 9

16
, 9

16
,- 1

16
)

i = kj,1 − 1 (0,0,0,c) (0,1,0,0) (-1
8
, 3

4
, 3

8
,0)

i = kj,1 (0,0,c,c) (0,1,0,0) (-1
2
, 3

2
, 0,0)

i = kj,1 + 1 (0,c,c,c) (1,0,0,0) (1, 0, 0,0)
kj,1 + 2 ≤ i ≤ kj,2 − 2 (c,c,c,c) (1

4
, 1

4
, 1

4
,1
4
) (1

4
, 1

4
, 1

4
,1
4
)

i = kj,2 − 1 (c,c,c,0) (0,0,0,1) (0, 0, 0,1)
i = kj,2 (c,c,0,0) (0,0,2,-1) (0, 0, 3

2
,-1

2
)

i = kj,2 + 1 (c,0,0,0) (0,1,0,0) (0,3
8

,3
4

,-1
8
)

i ≥ kj,2 + 2 (0,0,0,0) (0,1,0,0) (- 1
16

, 9
16

, 9
16

,- 1
16

)

Table B.4: Penalization vector and stencil associated to the zone-dependent (asymptotical)
prediction.
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c = 0 c = 1 c = 10 c = 50 c = 100 c = 3726
l2-err 5.6 2.9 2 1.2 1.05 0.85

Table B.5: l2-error between the sampling at level j = 6 and the reconstructed sequence
for different values of c.
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