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In this work, a sensitivity analysis framework is presented to identify the relevant input variables of a severe accident code, based on an incremental Bayesian ensemble updating method. The proposed methodology entails: i) the propagation of the uncertainty in the input variables through the severe accident code; ii) the collection of bootstrap replicates of the input and output of limited number of simulations for building a set of Finite Mixture Models (FMMs) for approximating the probability density function (pdf) of the severe accident code output of the replicates; iii) for each FMM, the calculation of an ensemble of sensitivity measures (i.e., input saliency, Hellinger distance and Kullback-Leibler divergence) and the updating when a new piece of evidence arrives, by a Bayesian scheme, based on the Bradley-Terry model for ranking the most relevant input model variables. An application is given with respect to a limited number of simulations of a MELCOR severe accident model describing the fission products release in the LP-FP-2 experiment of the Loss Of Fluid Test (LOFT) facility, which is a scaled-down facility of a pressurized water reactor (PWR).

INTRODUCTION

Simulation codes used for thermal hydraulic (TH) or severe accident calculations are very complex and, therefore, computationally burdensome. For this reason, one attempts to perform sensitivity analysis with minimal computational burden, for an effective dimensionality reduction of input variables, which can speed up calculations without diminishing the code capability of representing the real system response. Sensitivity analysis can, indeed, inform on the input variables most affecting the simulation results of the system results [Saltelli, 2002;Pourgol-Mohammad, 2009;Di Maio et al., 2014]. However, most sensitivity analysis methods can turn to be themselves computationally expensive [Secchi et al., 2008;[START_REF] Carlos | Using finite mixture models in thermal hydraulics system code uncertainty analysis[END_REF]Di Maio et al., 2014;Pengfei et al., 2014].

In this work, the focus is on the implementation of a sensitivity analysis method to perform input variables ranking with an affordable computational effort. Different solutions have been proposed in literature. One could make theoretical efforts for developing insightful simple novel sensitivity measures [START_REF] Liu | A new importance measure for sensitivity analysis[END_REF][START_REF] Plischke | Global sensitivity measures from given data[END_REF] or resort to traditional sensitivity measures (such as Variance Decomposition method [Helton, 1993;MacKay, 1995;Borgonovo, 2007;Cadini et al., 2007], Sobol Indices [Sobol et al., 1995;[START_REF] Saltelli | A quantitative model-independent method for global sensitivity analysis of model output[END_REF]) in combination with surrogate models like Artificial Neural Networks (ANNs) [Cadini et al., 2007] and Response Surface Methods (RSMs) [Hoseyni et al., 2014], where the idea is to use the surrogate models as substitutes of the complex simulation codes, in the quantification of the contribution of each parameter to the model output.

Alternatively, a relatively novel methodology for global sensitivity analysis is proposed in [Carlos et al., 2013;Di Maio et al., 2015] that does not resort to any surrogate model. The sensitivity results are drawn directly by analyzing Finite Mixture Models (FMMs) built on the results of an uncertainty propagation of the input variables uncertainties onto the simulation code. Ensemble of sensitivity measures can be used [Di Maio et al., 2014], where a set of alternative input variable rankings are aggregated to overcome possible misjudgments of the single sensitivity measure in case of a limited number of code runs. The aggregation methods commonly used are the "majority voting" and "sum" [Kukkonen et al., 2007], where the former consists in assigning the ranking position to each input variable which has been voted by the majority of the calculated sensitivity measures, whereas the latter aggregates by taking the sum of the ranking positions for each input variable provided by the individual sensitivity measures and, then, sorts them with respect to their scores.

The limitations of these two traditional aggregation strategies are that "majority voting" fails in the case of no agreement among the ranking orders provided by the different sensitivity measures, whereas the "sum" strategy fails when the evidence of the superior capability of one (or more) sensitivity measure(s) cannot be accommodated over the remaining ones, within its rigorous assignment of equal weights (equal preferences) to the outcomes of the sensitivity measures considered.

In this work, a novel sequential Bayesian approach is embedded into the framework of ensemblebased sensitivity analysis proposed in [Di Maio et al., 2014] for the aggregation of sensitivity measures, so as to overcome the above-mentioned deficiencies. The proposed sensitivity analysis approach is applied to the LP-FP-2 severe accident following a Loss Of Coolant Accident (LOCA) of the Loss of Fluid Test (LOFT) facility, which is a scaled-down facility of a Pressurized Water Reactor (PWR). The most relevant input variables affecting the output of the MELCOR severe accident model are identified.

The novel sequential approach resorts to the FMMs built based on a limited number of code simulations for approximating the probability density function (pdf) of the severe accident model output variables (i.e., the fission products releases during the LOCA) and uses three alternative sensitivity measures, input saliency [START_REF] Law | [END_REF], Hellinger distance [START_REF] Gibbs | [END_REF]Diaconis et al., 1982] and Kullback-Leibler divergence [START_REF] Gibbs | [END_REF]Diaconis et al., 1982], to identify the input variables bearing the most pronounced effects on the output variable, and make their aggregated ranking.

The novelty of the Bayesian aggregation stems from the capability of providing weights to the sensitivity measures and aggregating them according to the degree of belief that one could have on the calculated measures. In other words, the evidence that one sensitivity measure overcomes the others (i.e., the larger degree of belief/weight on one sensitivity measure over the others) is, in principle, obtained by performing a set of sequential experiments with the same Design Of Experiments (DOEs). When the sequential experiments cannot be performed, one could resort to bootstrapped samples of the original outcomes of the experiments to build the FMMs replicates. For each new FMM, the values of sensitivity measures are calculated and treated as the new data (under the same DOE) within a Bayesian updating scheme of the original sensitivity values. A Bradley-Terry model is devised for Bayesian updating [START_REF] Weng | [END_REF] of the sensitivity measures of the provided input variable ranking orders, that is a full-pair comparison scheme for on-line ranking of multiple players (e.g., input variables) in successive matches (i.e., experiments).

The paper is organized as follows. Section 2 discusses the principles of the ensemble-based sensitivity analysis along with the description of FMMs and the three sensitivity measures used. In Section 3, a definition is given for the Bayesian aggregation approach, the bootstrap technique and the updating rules. Section 4 presents the case of study. Section 5 analyses the results of the implementation of the proposed Bayesian ensemble strategy on the case of study. Conclusions are made in Section 6.

Ensemble-based sensitivity analysis

In this Section, a brief summary is provided of the ensemble-based approach for sensitivity analysis presented in [Di Maio et al., 2014]. As shown in Fig. 1, the idea is to rely on a limited number N of code simulations to build a FMM that reproduces the multimodal pdf of the output variable (Section 2.1). In order to identify the input variables with most pronounced effects on the severe accident model output variable, three alternative sensitivity measures are computed (i.e., input saliency [START_REF] Law | [END_REF], Hellinger distance [START_REF] Gibbs | [END_REF]Diaconis et al., 1982] and Kullback-Leibler divergence [START_REF] Gibbs | [END_REF]Diaconis et al., 1982]) (Section 2.2). The reliability of the sensitivity measures is quantified by the sequential Bayesian scheme that aggregates the rankings according to the degree of belief that one could have on the calculated measures (Section 2.3).

Fig.1 Flowchart of ensemble-based methodology

FMM model

Let y represent the output of a complex code model m, viz: y =m (x1; x2; . . . ; xl; . . . ; xD) l= 1, . . . ,D

where xl is the realization of the l-th input variable of the model, whose inputs are distributed with pdf () l fx . The random output variable y follows a finite mixture density f(y) with K models if [START_REF] Carlos | Using finite mixture models in thermal hydraulics system code uncertainty analysis[END_REF]:
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where ( | ) kk fy  are K different probability density functions, k  is the set of parameters of the k-th model of the mixture and k  are the mixing probabilities that satisfy:
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The Expectation Maximization (EM) algorithm [Mc Lachlan et al., 2000] is used to fit f(y) to the N available data y = (y1, . . ., yN), i = 1, . . ., N and for the identification of parameters θ and π [Di Maio et al., 2014]. Once the parameters θ and π of the mixture models are known, the best approximation of the pdf of the output of the model is completely characterized with small number of code simulations.

Sensitivity Measures

Input saliency

In the case of independence of input variables, the FMM of Eq. (2) can be rewritten as a function of the D input variables of the model:
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where m is the severe accident model function and

( | ) l kl fx
is the pdf of the l-th input x that determines the output y to belong to the k-th cluster. The l-th input does not affect the output if its distribution is independent from the cluster, i.e., it follows its common density

( | ) l kl
qx  among all the clusters [START_REF] Pudil | [END_REF]Vaithyanathan et al., 1999]. The decomposition of the term qx  , yields to:
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The saliency ρl is the importance of the l-th input in affecting the output y. In fact, if ρl is large, it means that the input variable distribution varies significantly from one cluster to another of the "natural" clusters corresponding to each model and, thus, the input is important in determining the variability of the output. On the other hand, if ρl is small, the inputs follow the common distribution in any cluster and, thus, the input is not relevant in shaping the distribution of the output [Di Maio et al., 2014].

The estimation of the input variable importance ρl is a model parameter identification problem that does not admit any closed form analytical solution [START_REF] Figueiredo | [END_REF]; thus, it can be tackled by the Expectation Maximization (EM) algorithm as proposed in [START_REF] Mclachlan | [END_REF]Di Maio et al., 2014].

Hellinger distance

The Hellinger distance measures the difference between the pdf of the l-th input contributing to shape the k-th cluster qx  [START_REF] Gibbs | [END_REF]Diaconis et al., 1982] by:
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The importance of the l-th input variable in affecting the output y is computed as:
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The l-th input variable is important if HLl is large (in relative terms).

Kullback-Leibler divergence

The Kullback-Leibler divergence measures the different information carried by the pdf of the l-th input in the k-th cluster qx  [START_REF] Gibbs | [END_REF]Diaconis et al., 1982]:
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The importance of the l-th input variable in affecting the output y is quantified as:
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The l-th input variable is important if KLl is large (in relative terms).

Aggregation

The idea of the ensemble is particularly useful for sensitivity analysis when the number N of code simulations is deliberately kept low to control computational cost. As a consequence, due to the limited quantity of data, individual sensitivity methods would mislead the individual rankings because, as shown in Section 2.2, input saliency, Hellinger distance and Kullback-Leibler divergence would quantify different aspects of the input variables importance. On the other hand, the ensemble approach is expected to generate reliable rankings by agreement among the rankings produced by the individual methods without requiring any additional simulation. Thus, the advantage of the ensemble approach is twofold: it can overcome possible misjudgments of the individual methods when alternative sensitivity measures disagree, and, furthermore, it is possible to gain more confidence on the ranking when they agree.

The central issue is to decide how to aggregate the sensitivity ranking outcomes provided by the different methods in the ensemble [Baraldi et al., 2011;Di Maio et al., 2012].

In this paper, we propose a novel Bayesian approach for the aggregation of sensitivity measures results. Classically, in the Bayesian process, for a given prior distribution, one can update the state of knowledge once a new piece of data or evidence becomes available. In the proposed framework, the prior is the value of the sensitivity measures obtained for each parameter from the original FMM; the new evidence (for updating the state of knowledge about the three sensitivity measures) consists in the values of the sensitivity measures derived from the bootstrapping procedure (to mimic the repetitions of experiments under the same DOE).

The ranking results obtained by using the proposed Bayesian approach will be compared with the rankings obtained by traditional ensemble methods such as "majority voting" and "sum" [Kukkonen et al., 2007], where the "majority voting" method fails in the case of no agreement among any of the ranking orders provided by the different sensitivity measures, whereas the "sum" strategy can be proven to be ineffective when the evidence of the superior capability of one (or more) sensitivity measure(s) over the remaining ones cannot be accommodated within its rigorous assignment of equal weights to the outcomes of the involved sensitivity measures.

The benefit of the proposed Bayesian aggregation is to provide weights to the sensitivity measures and aggregate them according to the degree of belief that one could have on the calculated measures.

The rationale behind the evidence that one sensitivity measure has larger degree of belief than the others can be obtained (in principle) by performing a set of sequential experiments with the same DOEs; otherwise, when the sequential experiments cannot be performed, one could resort to bootstrapped samples of the original outcomes of the experiments to build the FMMs replicates. In other words, a weight (performance) is assigned to each sensitivity measure in order to i) reward the sensitivity measure with high-ranking stability (reproducibility) during the updating process and ii) penalize the measures with fluctuating orders throughout the successive ranking that treats the successively accumulated evidences (i.e., the repeated experiments under the same DOE/bootstrapped repetitions).

The Bayesian aggregation approach

The proposed approach entails: i) the generation of B bootstrapped samples of the original N code outputs dataset to build B new FMMs replicates (Section 3.1); ii) the evaluation of the three sensitivity measures for each new FMM, that is, thus, treated as a new piece of evidence for the Bayesian updating of the original sensitivity values (Section 3.2) by the Bradley-Terry model [Hunter, 2004;[START_REF] Weng | [END_REF]. Finally, the aggregation of the sensitivity measures is obtained (Section 3.3).

The Bootstrap

The bootstrap is a computer-based method for assessing the accuracy of statistical estimates with very little assumptions or analysis [Efron et al., 1993]. It is used in different frameworks, e.g., in an order statics framework for computing the TH code uncertainties in order to estimate the safety margins using limited samples of Thermal-Hydraulic (TH) code execution [START_REF] Pourgol-Mohammad | Integrated Methodology for Thermal-Hydraulic Code Uncertainty Analysis with Application[END_REF]Zio et al., 2008], or in a framework to propagate uncertainties in TH code calculations [Probst et al., 2006]. The main benefit of bootstrapping approach is to avoid additional computational burden and rely on the available data from the results of uncertainty analysis already performed. In general, 100-200 bootstrap replications are enough to obtain a good estimate [Zio et al., 2008].

The basic idea is to generate a number B of bootstrap samples drawn at random with replacement from the original training set of N input/output patterns. The generic bootstrapped sample b-th is constituted by the same number N of input/output, although, due to sampling with replacement, some of the input/output will appear more than once whereas some will not appear at all [Efron et al, 1993].

In the proposed approach, the bootstrap technique is employed for generating B times the N replicates from the original dataset of the code as shown in Fig. 1. In other words, each bootstrap process takes samples of the original output dataset and generates a new dataset. The FMMs are built on these new data and used for the calculation of sensitivity measures. Thus, new data/evidences are available for use in the Bayesian updating process.

Bayesian updating of the sensitivity measures

A Bayesian updating process is implemented to derive simple analytic rules for updating the ranking of the code input variables based on the outcomes of the sequential experiments [START_REF] Weng | [END_REF],

based on the Bradley-Terry model (typically used for ranking competitive games) [Hunter, 2004].

The proposed process for updating the sensitivity measures of the input variables (that can be seen as players) uses data provided by the bootstrapped FMMs replicates (that can be seen as consecutive games). With this premises, it can be said that the l-th player (input variable) beats the q-th player (input variable) if the first one has lower rank position (higher strength) than the latter. The resulting sensitivity measures represent the games results and, thus, an input variable is more relevant if its sensitivity measure value is higher.

Given a prior distribution of a random variable, Bayesian process allows updating its knowledge when new data or evidence becomes available. In our case, the prior knowledge is the value of the sensitivity measures obtained for each input variable from the original FMM, whereas the new information used for updating the state of knowledge about the three above mentioned sensitivity measures are the values of the sensitivity measures derived from the B replicates of the original N simulations.

Let l  be the strength, i.e. the sensitivity measure value of the l-th input variable whose value is to be estimated. The Bradley-Terry Bayesian ranking method starts by assuming that l  has a prior , i.e., the ranking results, is [START_REF] Weng | [END_REF]:
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where   fZ is the probability of the game outcome  
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The posterior mean * l  and variance 2* l  of ηl for each l-th input variable, where l = 1,2,…, D, are related to Zl [START_REF] Weng | [END_REF]:
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The expectation terms in Eqs. ( 13) and ( 14 The approximating expectations are, thus, given by:
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where [START_REF] Weng | [END_REF]:
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and  is a lower bound to ensure a positive 2 l  .

Notice that, the posterior density of  is expected to be centered in  and, thus, the derivative terms are evaluated at 0  Z so that the Finally, we can calculate the probability (after any of the B updates) that variable l is more relevant than variable q as: P(player "l" beats "q") * ** ()
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where
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and  is a positive constant [START_REF] Weng | [END_REF].

The pseudo-code of the Bradley-Terry model for full-pair comparison tailored to the ranking updating problem is as follows:

1. Calculate l  and l  with l=1, 2, …, D.

For l=1, 2, …, D

2.1 For q=1, 2, …, D, with q ≠ l, () l q q lq ql lq pp c

Calculate

   ( 26 
)
where s is equal to:
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and q  is an arbitrary parameter [START_REF] Weng | [END_REF]. 15) and ( 16), respectively.

Calculate

Weighting the sensitivity measures within the Bayesian updating procedure

The bootstrapped FMMs replicates and, thus, the input variables sensitivity measures can fluctuate due to the randomness of the sampling (e.g., the uncertainties of the measures in the real experiments with the same DOE) that might lead to wrong ranking results. To counterbalance possible misleading results, we build an ensemble of sensitivity measures introducing a weight (performance) to each sensitivity measure in order to i) reward the sensitivity measure with high-ranking stability (reproducibility) during the updating process and ii) penalize the measures with fluctuating orders throughout the successive ranking that treats the successive accumulated evidences (i.e., the repeated experiments under the same DOE/bootstrapped repetitions). The weight (performance index) of the sensitivity measure, sm= 1, 2, 3 for input saliency, Hellinger divergence and Kullback Leibler, respectively, is defined using the Coefficient Of Variation (COV) as:

1,2,3 1 (1 )
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The COV of each 'sm' is the mean value of the COV of the sensitivity measures evaluated on all the code input variables at the last update, accounting for the input variables sensitivity measures variability in relation to their mean value, i.e., COV aims to describe the goodness of each sensitivity measure in terms of the relative sizes of the squared residuals and mean values. The higher the COV, the greater the dispersion in the sensitivity measures evaluated on all the code input variables;

whereas, the lower the COV, the smaller the residuals relative to the sensitivity measures mean value.

COV is defined as [START_REF] Cadini | A Neural-networkbased Variance Decomposition Sensitivity Analysis[END_REF]:

l l l COV    ( 31 
)
where l=1, 2, ….D.

Once the weights are calculated for each SA measure, the Bayesian aggregation of their values quantifies for each l-th input variable an ensemble of the three SA measures as the weighted sum of the three l  : 
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Description of LOFT LP-FP-2 experiment

The LOFT experimental facility [Kmetyk, 1992] was designed to simulate the major components and system responses of a current-generation Pressurized Water Reactor (PWR) during a LOCA. The experimental subsystems include the reactor vessel, the intact loop, the broken loop, the Blow-down Suppression Tank (BST) system, and the Emergency Core Cooling System (ECCS). The layout of the major LOFT components for test LP-FP-2 is shown in Fig. 3. LOFT is a PWR model with a rated power of 50 MWth, including all systems and components needed to simulate a severely damaged core assembly and to determine the fission product release and transport to the piping system [Lewis et al., 2008]. The LOFT-FP project, completed in 1985[IRSN-200783, 2007] This test has provided very interesting data on core degradation and fission product release and transport in a V-type LOCA sequence, under low system pressure, in a decay-heated bundle, and at a larger scale compared with other bundle in-reactor tests. The test confirmed the damage zones observed in Three Mile Island-2, showed the inability of blockages to stop fuel oxidation, and showed significant damage and enhanced hydrogen production occurrence during the reflood. Quantitative measurements of fission product deposition have been made. The test has shown a dominance of silver iodide (AgI) as chemical form of Iodine (I).

To show the applicability of the proposed framework of Section 3 for the sensitivity analysis of the MELCOR code simulating the prediction of the fission product release in LOFT LP-FP-2 experiment, the "Xenon release fraction" under CORSOR modeling option is considered as output y of interest.

MELCOR model nodalization is shown in Fig. 4. A total of N = 100 runs of the code have been done, each one with a different batch of input variables values sampled from the distributions listed in Table 1 [Hoseyni et al., 2014]. The very small number of samples has been chosen with the aim of challenging the proposed method: as we shall see in what follows, we will be able, by bootstrapping B=100 times the N samples, to collect different replicates of the code output under the same DOE and to provide an effective input variables ranking as compared with other aggregation methods of literature that have been proposed for sensitivity analsysis [Di Maio et al., 2014]. 

Fig. 4 MELCOR model nodalization for LOFT-LP-FP2 experiment

Sensitivity analysis results for the LOFT LP-FP-2 model

Based on the N = 100 original code runs [Hoseyni et al., 2015], the histogram of Xenon release is shown in Fig. 5, where several maxima can be seen to be approximated by a multimodal analytical distribution. Therefore, in Fig. 5 it is also shown the analytical reconstruction (solid line) of the prior distribution of the Xenon release function, () fy, that has been obtained by the FMM method, where the number K of clusters is set equal to 3 and the parameters values of the K Gaussian models have been obtained by Expectation Maximization algorithm [START_REF] Carlos | Using finite mixture models in thermal hydraulics system code uncertainty analysis[END_REF]. The choice of using three Gaussian distributions for the FMM parameters identification is the result of a trial and error

procedure. An automatic optimization of the number K of distributions in the FMM is also possible [START_REF] Figueiredo | [END_REF]. As a last remark, it is worth pointing out that the common distributions q(x)

used in this application are, instead, uniform distributions. Without loss of generality, the updated mean * l  (Eq. 15), updated variance 2* l  (Eq. 16) and the updated rank position for input variable l = 19 as a function of the b-th updating step are shown in Fig. 6. Whatever the sensitivity measure considered, Fig. 6 shows that:

1) the variance decreases as the updating procedure proceeds;

2) the mean and, consequently, the rank behave differently from the variance, and fluctuate.

3) the Hellinger distance and Kullback-Leibler divergence show larger stability than input saliency in the updating procedure (i.e., smaller ripples in the plot of the mean).

Input Saliency Hellinger Kulback-Leibler Fig. 6: Updated mean, variance and rank for input variable 19 of Table 1 We, then, perform the Bayesian ensemble by calculating the weighted sum of Eq. ( 32) with the weights listed in Table 2 (Section 3.3), where the acknowledged better stability of Hellinger distance and Kullback-Leibler divergence with respect to input saliency is rewarded with larger weights, that account, indeed, for the high-ranking stability (reproducibility) of the sensitivity measure during the updating process (as pointed out before in Section 3)). The results of the final Bayesian ensemble of sensitivity measures are reported in Table 3 where the first 20 ranking positions are compared by showing the input variables that would have been assigned by the traditional sum (Rsum) and majority voting (Rmv) aggregation approaches [Kukkonen et al., 2007] that are the much easier but approximate methods for sensitivity analysis purposed in [Di Maio et al., 2014].

In fact, it can be seen that, the proposed Bayesian method, Rsum and Rmv approaches agree only on the two most important input variables (i.e., the Minimum Oxide Shell Thickness (OXTHICK) and the Agglomeration Shape Factor (ASF)), whereas they disagree on the other input variables. One might argue that Rsum or Rmv approaches still remain the best choices due to the fact that among themselves they agree on the first four positions, and to their lower computational burden. In fact, Rsum and Rmv are computed using only the B=1 original MELCOR output dataset and, thus, any further bootstrap replication is avoided.

However, even if the proposed Bayesian method uses B=100 bootstraps of the original MELCOR output dataset (i.e., the computational time is B times larger than for Rsum and Rmv), the Bayesian ensemble aggregation is hereafter shown to be preferable because it holds two fundamental properties of Bayesian processes: i) the memory property and ii) the exchangeability property.

The memory property entails a prior belief (e.g., the value of sensitivity measures obtained for each input variable from the original FMM) to be differently updated depending on the quantity and quality of the available evidence (e.g., the new bootstrap replicates) used for computing the posterior [START_REF] Friedman | Sequential update of Bayesian network structure[END_REF]. Consequently, different batches of evidences lead to different posterior distributions (e.g., different sensitivity measures values and ranking positions). Figure 7 shows that the memory property holds in our case: two different batches of evidences of t = 20, 40 successive bootstrap replicates, respectively, are used. Dashed line with circles in Fig. 7 shows the updated aggregated sensitivity measures for input variable 19 for t = 20 successive updates, whereas dotted line with squares are those for t = 40 updates: a perfect matching in the updating process of the aggregated sensitivity measures is obtained using the first and the second batch up to the 20-th bootstrap, due to the use of the same cumulated evidence. Contrarily, assuming that the bootstrap replicates are not available up to t = 20 and that we start calculating from t = 21 up to t = 40, the aggregated sensitivity measures at time t = 40 differ from those of the batch that exploits all the 40 bootstrap replicates, due to the lack of the first 20 evidences (continuous line with triangles in Fig. 7). The exchangeability property entails that the order of the information fed to the Bayesian updating process is irrelevant to the results (e.g., if the order of B = 100 bootstrap replicates is shuffled to updating process leads, independently from the order of the evidences, to the same final ranking).

Again for input variable 19, the ensemble of sensitivity measures calculated with the B = 100 and the same shuffled replicates, differ for less than 1%, which proves that the proposed process possesses the exchangeability property.

This means that the Bayesian ensemble aggregation has to be preferred to Rsum and Rmv because it is robust to the variability of the experiments results to be used for sensitivity analysis as it allows cumulating knowledge (memory property) irrespectively of the occurrences sequence of the experiment results (exchangeability property). 
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 3 Fig. 3: Schematic Diagram of the LOFT Test Facility for Experiment LP-FP-2[Kmetyk, 1992] 
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 5 Fig. 5: reconstructed PDF of the model output based on a three-cluster FMM (solid line) for the original code output dataset.
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Table 1 :

 1 Uncertain Input parameters of LOFT MELCOR model and their distributions[Hoseyni et al., 2014] 

		Input variables	Description	Type of distribution	Mean value µ	Standard deviation 𝞼
	1.	POWER	Fission Power (MW)	normal	28.8E+6	0.467E+6
	2.	SAREA-1	ILCL break flow area (FL415)	normal	0.000683	3.48469E-05
	3.	SAREA-2	LPIS break flow area (FL405)	normal	0.000683	3.484E-05
	4.	BDC-1	ILCL Break Discharge Coefficient (FL415)	normal	1	0.067
	5.	BDC-2	LPIS Break Discharge Coefficient (FL405)	normal	1	0.067
	6.	BLC-1	ILCL Break Loss Coefficient (FL415)	normal	1.005	0.507
	7.	BLC-2	LPIS Break Loss Coefficient (FL405)	normal	1.005	0.507
	8.	RVF1	Core radiation view factors	normal	0.03	0.005
	9.	RVF2	Core radiation view factor 2	normal	0.22	0.01

Table 2 :

 2 Bayesian weights of SA measures for aggregation

	SA Measure	Assigned weight
	ρ	0.0582
	HD	0.4595
	KL	0.4823

Table 3 :

 3 Comparison of the input variables ranking position provided by different approaches

	Rank	Bayesian	Rsum	Rmv
	1	OXTHICK	OXTHICK	OXTHICK
	2	ASF	ASF	ASF
	3	SAREA-1	C7101(3,3,2)	C7101(3,3,2)