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ABSTRACT 

We propose a visual interactive method for the identification of the Prime Implicants (PIs) of dynamic non-

coherent systems. Visual interactive methods integrate mathematical and symbolic models with runtime 

interaction and real-time graphic display, which allow visualizing the underlying physical relationships 

among process parameters. The proposed method is based on a parallel coordinates data mining tool that 

relies on an innovative pruning procedure which, on the basis of a proper selection of characteristic features 

of the accident sequences, retrieves the PIs among the whole set of Implicants in terms of process 

parameters values and/or components failure states. The method is exemplified on an artificial case study 

and, then, applied for the dynamic reliability analysis of the Airlock System (AS) of a CANDU reactor.  

 

1. INTRODUCTION 

Dynamic reliability methods aim at complementing the capability of traditional static approaches 

(e.g. Event Trees (ETs) and Fault Trees (FTs)) by accounting for the system dynamic behavior and 

its interactions with the system state transition process [Devooght, 1992; Aldemir et al., 2008; Zio 

et al., 2009; Di Maio et al., 2011a]. An important task to be accomplished by dynamic reliability 

methods is the identification of Prime Implicants (PIs), which extend the traditional concept of 

minimal cut sets (mcs) for systems with dynamic interactions among physical parameters of the 

process, stochastic discrete failure events and hardware/software/human errors [Aldemir et al., 

2013]: PIs are, thus, defined as the minimal sets of process parameters values and/or components 
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failure states that are sufficient to cause a failure (top event) of a dynamic system. The logic behind 

these systems is that failed and working states of the same components can both lead the system to 

failure, i.e., systems have a non-coherent structure function. As an example, a system composed by 

components A, B and C for which a PI that causes a system failure is , ,A B C  (components A and B 

failed, and component C working) is a non-coherent system. Traditionally, non-coherent structure 

functions have been interpreted as indication of poor system design. On the other hand, in [Beeson, 

2002] it has been shown that an effective prioritization of maintenance actions can be done only by 

PIs identification of non-coherent structure functions. With respect to the previous example: if 

components A, B and C have failed, C should be the last component to be repaired in order to avoid 

system failure. Furthermore, PIs identification allows taking additional counteracting measures to 

prevent system failure, for example by forcing failure of component C when component A and B 

have already failed [Sharvia et al., 2008]. 

In the circumstance of non-coherent structure functions, traditional methods, e.g. based on mcs 

analysis, cannot be applied for the identification of PIs [Zio et al., 2009]. Analytical methods 

[Quine, 1952; McCluskey, 1956] and graphical methods [Karnaugh, 1953] have been introduced, 

even if the actual implementation of these methods becomes very time-consuming when the number 

of variables in the structure function is large [Sen, 1993] and when the failure dependencies render 

the problem combinatorial [Di Maio et al., 2013a]. The issue is one of completeness, i.e., one 

situation is when one has on hand an incomplete set of implicants from which he/she wants to 

identify the subset of PIs (which will also be incomplete); another is when one wants to identify a 

complete set of PIs. This latter situation is the one that has been daunting researchers and is here 

addressed. Dynamic Flowgraph Methodology (DFM) provides a modeling and analysis 

environment in which the system variables are represented by a finite number of states and the 

system dynamics is expressed by cause-and-effect relationships among these states. DFM is based 

on parameter values discretization and can produce “timed FTs”, which are FTs in which timing 

relations among failure events are systematically taken into account [Yau et al., 1998; Guarro et al., 

2012]. Then, based on an optimized modification of the analytical method initially developed by 

Quine and McCluskey [Quine, 1952; McCluskey, 1956], DFM yields “time stamped” PIs by 

deductive/inductive analysis aimed at determining how the system reaches a certain failure state. 

Another approach resorts to the formulation of the PIs identification problem as a covering 

problem, i.e., the problem of covering a complete set of implicants by a given subset of PIs. In this 

form, the problem has been solved by transforming it into an optimization problem, where we look, 

resorting to evolutionary algorithms, such as Genetic Algorithm (GA) [Sen, 1993] and Differential 

Evolution (DE) [Di Maio et al., 2013b], for the minimum combination of implicants that can 



guarantee the best coverage of all the process parameters values and/or components failure states 

that make the system fail. These techniques have proven very effective, with significant 

computational savings, but often remain “black boxes” as to the interpretation of the physical 

relationships among process variables and component failure occurrences. 

In this work, a visual interactive method is proposed to overcome this latter limitation and increase 

the confidence in the provided PIs: interactions make users feel “participants rather than spectators” 

[Hurrion, 1980] and grasp complex and extensive information on the system behavior at the same 

time [Schramm et al., 2007], so that the decision making task can be facilitated [Wagner et al., 

1996].  

According to the degree of interaction between the user and the model, three classes of interaction 

and visualization can be described: post-processing, tracking and steering [Bell et al., 1986; 

Marshall et al., 1990]. Post-processing methods do not allow the user to observe intermediate 

results during the simulation and she/he has no control over the process parameters that are driven 

by a third phenomenological model; output data are stored in a database and later retrieved for 

being treated. Tracking methods offer intermediate observations of the results and the user may 

follow the simulation by means of various visualization tools (e.g., multiple windows, charts 

animations). Finally, steering methods allow the user to interact with the system model during 

simulation, following the changes generated in the results [Wagner et al., 1996]. 

In this work, we aim at developing a visual interactive post-processing method for treating a large 

number of accident sequences for retrieving (mining) the PIs of a dynamic system. Historically, one 

of the first visual data mining techniques being introduced is the grand tour [Buja et al., 1985; 

Wegman, 2003], which is an animation of the data and whose basic idea is to look at a data cloud 

from all possible points of view; another useful technique for the visualization of high-dimensional 

and multivariate datasets on a two-dimensional plot is the parallel coordinates diagram [Inselberg, 

1985], which is in many senses a generalization of a two-dimensional cartesian plot: parallel 

coordinates are based on nodes which are on the parallel axis and on edges, which are those 

polylines linking the nodes on two neighboring axes [Zhou et al., 2008]. However, the 

representation of massive amount of data can lead to a considerable overplotting and it can be 

misleading for the analysts [Wegman et al., 1997]. 

To tackle this problem in the context of PIs identification, in this paper we innovatively propose to 

implement an automatic pruning procedure of a parallel coordinates diagram that can be used for 

visualizing the accident sequences of a system and for reducing the whole set of Implicants into PIs. 

The key aspect of the automatic pruning procedure consists of the identification of a proper feature 

of the accident sequences that is directly related to the characteristics of “minimal sets of process 



parameters values and/or components failure states that are sufficient to cause a failure (top event) 

of a dynamic system”, i.e., the PI. This feature is the literal cost of the implicant (i.e., the number of 

components whose behavior is specified in the accident sequence). This technique can be seen as if 

implemented on a touch screen, where the analyst can interact with the model in order to prioritize 

the accident sequences according to their importance with respect to the system end state of interest, 

at the same time easily interpreting the relationships among the process parameters. 

The paper is organized as follows. In Section 2, the rationale behind the selection of literal cost as 

key feature for an effective implementation of a visual interactive method used for PIs identification 

is introduced. In Section 3, the artificial case study is presented, highlighting its non-coherence. In 

Section 4, the case study of the CANDU AS is shown. In Section 5, the proposed technique is 

applied to the case studies of Sections 2 and 3, and the results discussed. Conclusions and remarks 

are given in Section 6. 

2. THE METHOD 

In this work, we propose a novel method for PIs identification of a dynamic non-coherent system 

that aims at guaranteeing interpretability of the representation and of the results, with a controlled 

computational burden with respect to other dynamic reliability methods. The method is based on an 

innovative pre-selection of the feature that characterizes the accident sequences to be analyzed, in 

order to retieve (mine) within the whole set of implicants, those sequences that are PIs of the 

dynamic system under analysis. In particular, our method can be resumed into four successive steps, 

namely: 

1. Feature selection: this step marks the difference with other methods implemented for PI 

identification (e.g., analytical methods [Quine, 1952; McCluskey, 1956], graphical methods 

[Karnaugh, 1953], DFM [Yau et al., 1998; Guarro et al., 2012], Meta-products Binary 

Decision Diagrams (BDDs) [Coudert et al., 1992; Rauzy et al, 1997] or consensus BDDs 

[[Beeson, 2002]: the component state is not the only information used for retrieving 

(mining) from the set of Implicants the whole set of PIs, but insightful features of the 

accident sequences can also be considered variables, such as continuous process variables, 

(i.e., temperature and pressure) or stochastic discrete variables (i.e., timing of component 

failure events and the number of components whose behavior is specified in the accident 

sequence). For our aim, since PIs are the minimal combination of process parameters values 

and/or components failure states among the whole list of conditions that bring the system 

into failure, we innovatively select the timing of components failures and the literal cost 

(i.e., the number of components whose behavior is specified in the accident sequence) as the 



most important features for PIs identification according to a parsimony principle: PIs are 

indeed those combinations with as few as possible values and events that are capable of 

leading the system into a failure state [Rocco et al., 2004]. 

2. Simulation of accident sequences: depending on the problem at hand, a suitable simulation 

tool for the accident evolution simulation is run (e.g., a thermal hydraulic code, a 

computational fluid dynamics code, a structural analysis code, a finite elements code, etc.) 

to collect the values of the optimally selected features of Step 1 for all possible accident 

sequences, and identify all the combinations of process variables values and events which 

lead to the failure mode under analysis (implicants); among these, PIs have to be searched. 

3. Representation of the accident sequences: visualization of the accident sequences leading to 

the failure mode of interest is done by a parallel coordinates diagram. The idea of the 

parallel coordinates is to sacrifice the orthogonal axis in order to obtain a planar diagram, 

where each accident sequence is represented by a polyline that connects nodes on adjacent 

parallel axes. In agreement with the feature selection step, if the considered system is made 

up by n components, then the first n parallel coordinates represent the states of the n 

components, while the n+1th axis corresponds to the literal cost of the simulated accident 

sequences. Note that, concerning the first n coordinates, if the components are Boolean they 

can assume only two possible states (e.g. working/failed at a specific time instant); 

otherwise, if the components can be found in different states of functioning or can fail at 

different times, it is necessary to resort to a multistate description. In our case, the different 

value levels of the multistate variables indicate the different time instants at which the 

components fail. In particular, with respect to a generic component X, the multistate variable 

can assume four different values: 

- @ 0X t  , if X fails at t=0 (“early failure”)  

- @ 2X t  , if X fails at t=2 (“intermediate failure”)  

- @ 5X t  , if X fails at t=5 (“late failure”) 

- X , if X does not fail 

The concepts of PI can be applied to multistate components as well, provided that the 

variables that represent the components states are Multi Valued Logic (MVL) rather than 

Boolean [Di Maio et al., 2013c]. In fact, when dealing with an MVL model where 

continuous variables have been discretized to represent their most significant "ranges of 

state", it is very common for such states not to automatically be definable as "success" or 

"failure" states, because it is common that a given "value range" of such variables may 

correspond to system success or failure, depending on what the states of other system 



variables may be. That is, logic models that use such a type of representation are almost 

always non-coherent. As an example, the PI | @ 2| | @ 5|   | @ 0|A t B C t E t     of a 

generic dynamic system of five components A, B, C, D and E stands for an accident 

sequence where component B continues working, the state of component D is negligible for 

the determination of the system failure mode (“do not care” value, |   | ), component A fails 

at t=2, component C at t=5 and component E at t=0. 

4. Pruning of the parallel coordinates diagram: traditionally within the MVL framework, 

implicants can be reduced analytically by consensus operation to yield the PIs [Ogunbiyi et 

al., 1981]: reduced implicants are created starting from the whole list of those leading the 

system to the failure mode of interest. For interpretability, we innovatively propose to do 

this by an iterative procedure, composed by the following steps: 

a) The accident sequences associated with the lowest literal cost are selected and stored 

as PIs (for example, in case the procedure is implemented on a touch screen, by 

clicking on the corresponding node of the literal cost axis). In fact, these are the most 

reduced sequences (i.e., with least number of events) that cannot be covered by any 

other implicant and, thus, these are PIs by definition. 

b) PIs selected in a) are removed from the diagram, together with those accident 

sequences that are visually verified to be covered by the selected PIs (i.e., implicants 

which have the same component states variables defining the removed PI and other 

values for the variables whose component state is not defined into the removed PI (or 

it is a “do not care” value)). As an example, in Fig. 1 an application of this pruning is 

shown for a group of 25 accident sequences, in which the states of components C, D 

and E are the same in all the sequences, whereas each sequence has a different 

combination of the states of components A and B, which can be in any state. The 

sequence with the minimal literal cost is selected as PI and it is shown in continuous 

line: it covers all accident sequences where C, D fail at t=0 and E does not fail. The 

sequences (Implicants) shown in dashed lines can then be directly removed from the 

plot, because they are covered by the solid line PI, independently of the states of A 

and B. It is worth noticing that the problem of scalability that often arises when the 

number of accident sequences grows for very complex systems with a large number 

of components and states, can be easily dealt with the method here proposed for 

retrieving (mining) the “hidden” PIs from the set of implicants: any initial implicant 

sharing the accident sequence characteristics of the identified PI (but with larger 

literal cost) will be covered by the identified PI. 



c) Step a) and b) must be repeated on the remaining accident sequences until none is 

left on the diagram.  

At the end, the stored accident sequences are the PIs for the system failure mode under analysis. 

 

 

Fig. 1. Visualization of the pruning procedure on a parallel coordinates diagram 

 

3. ARTIFICIAL CASE STUDY 

For illustration of the method proposed, we resort to an artificial case study built by simulating 

accident sequences for a system composed by 5 components (coded as A, B, C, D and E) that can 

fail at pre-defined discrete times, giving rise to different sequences whose evolutions are 

represented by a monitored safety-relevant signal [Di Maio et al., 2013c]. Multiple component 

failures can occur during the system life, set to T=7 [h]. Each of the 5 components can fail at t=0, 

t=2 and t=5; therefore, the possible component states are: “No failure”, “Failure at t=0”, “Failure at 

t=2”, “Failure at t=5”. The equations used to simulate the safety-relevant signal evolution y(t) 

during each of the system configurations are shown in Tab. 1. The values of c, d, α1, α2 and α3 are 

listed in Tab. 2 and contribute to determining the magnitude of the failure events of the components 

A, B, C, D and E.  
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Tab. 1. Equations used to simulate the safety-relevant signal evolution for each failed component  

Parameter Value (in arbitrary units) 

1  0.4 

2  1.05 

3  0.4 

c 1.3 

d 1.3 

 

Tab. 2. Parameters value  

A safety-relevant signal is monitored against pre-defined safety thresholds: if it exceeds the upper 

threshold value of 2.5 (in arbitrary units), the system fails in the “High” failure mode; if it decreases 

below the lower threshold value of -1.5, the system failure mode is “Low”. Examples of the safety-

relevant signal, simulated for some accident sequences, are reported in Fig. 2.  

 

Fig 2. Evolution of the safety-relevant signal during simulated accident sequences 

 

These simulated accident sequences aim at reproducing real conditions that can be envisaged in real 

complex systems, such as Nuclear Power Plants (NPPs). One example could be the average 

temperature of the diathermic oil of the secondary loop of a Lead Bismuth Eutectic eXperimental 

Accelerator Driven System (LBE-XADS): if it goes beyond the upper threshold of 340 °C, the oil 

physical and chemical properties could be degraded, whereas if it goes below the lower threshold of 

280 °C the structural components of the reactor could suffer of thermal shock [Zio et al., 2012]. 



Other examples are the fuel cladding temperature of the High Temperature-Pebble Modular Reactor 

(HTR-PM), that must remain below the upper limit of 1600 °C to provide the safety function of 

fission products retain [Di Maio et al., 2011b] or water level of a pressurizer in a Pressurized Water 

Reactor (PWR), that must remain above a minimum level to avoid uncovering of the electric heaters 

[Baraldi et al., 2013]. 

The artificial case study created to reproduce the trend conditions of a non-coherent system; in fact, 

as shown in Fig. 3 and Fig. 4, both failed and working states of a same set of components can 

contribute to the failure of the system. In Fig. 3 (left), the safety-relevant signal evolution is shown 

when components B and D work for all the mission time, whereas component A fails at t=0, C at 

t=2 and E at t=2: this combination of failures allows the system to work in “Safe” conditions 

throughout the mission time. On the other hand, in Fig. 3 (upper right) the same signal is plotted 

when components B, D and E (recovered) work for all the mission time, and component A fails at 

t=0 and C at t=2: the safety-critical signal evolves to cross the lower threshold before the mission 

time, leading the system to the “Low” failure mode. Finally, when components B, C and D 

(recovered) work for all the mission time, and component A fails at t=0 and E at t=2 as in Fig. 3 

(lower right), the system failure mode is “High”. 

Another example of non-coherence is shown in Fig. 4. A combination of three failures allows the 

system to work in “Safe” conditions (left), whereas the recovery of component C leads the system 

into “High” failure mode (upper right) and the recovery of component B into “Low” (lower right). 

In general, it can be concluded that the same combination of failed components does not lead 

unequivocally to one failure mode: when component failures occur at different times and/or with 

different magnitudes, the resulting failure mode can be different. For example, intuitively if a 

failure occurs “late” in the mission time (as opposed to an “early” failure event), it may not lead to 

system failure or viceversa (if the system is non-coherent) [Di Maio et al., 2011a]. 



 

Fig 3. Example of non-coherence 

 

 

 

Fig. 4. Example of non-coherence 



 

4. CANDU AIRLOCK SYSTEM 

As real case study, we have considered the Airlock System (AS) of a Canadian Deuterium Uranium 

(CANDU) reactor. This is a safety system required to keep the pressure of the inner side of the 

reactor vault lower than the outer side in order to avoid the dispersion of contaminants out of the 

reactor bay, in case of accident (Figure 5 (left)). Therefore, to keep the leakages as low as possible, 

the only physical accesses to the reactor vault are the ventilation air piping system, the water piping 

system used for filling the water tank that feeds the over-pressure abatement sprays to be used in 

case of over-pressure accident, and the building access airlock system. This latter system consists of 

a vessel in the containment wall of the reactor vault, with two doors in order to allow the inspection 

of the vault: one door opens towards the inside of the reactor vault, the other towards the outside; 

so, at least one airlock door, whose seals are inflated via the air system, must be closed by a latch 

with sufficient pressure in the seals to fulfill its safety function (Figure 5 (right)). 

This model has been developed for analyzing a sequence that involves a Design Basis Accident 

(DBA) occurred in 2011 in the AS of a CANDU nuclear power plant (NPP) [Lee et al., 2012]. 

During the accident, the inflation of the seals switched to the back-up air supply tank and the 

considered failure event is the incapability of the AS to maintain the pressure boundary [Lee et al., 

2012]. The possible causes for this event can be: the pressure equalizer valve fails (V1), doors fail 

to close because latches are not locked (D1) and seals are cracked or cannot be inflated (S1). The 

pressure equalizer valves are designed to equalize the pressure between the reactor bay and the 

service side and, therefore, to allow controlled flow between these two areas. The pressure 

equalization can fail due to gear box failure (G1) that may limit the vents from opening and closing, 

to the presence of leakages in the piping system (P1/P2) or to the failure of the exhaust pipe (E1). 

The airlock doors must be closed by a latch, otherwise the pressure equalizer valves and seals 

cannot be called in operation on demand. In addition, the possibility is considered that the back-up 

tank is already empty (T1) or fails to engage (T2) when the inflation of the seals is switched to the 

back-up air supply system. The basic failure events that can give rise to the AS failure are listed in 

Table 3. 

 Basic Failure Events ID Code 

1. Pressure equalizer valve is failed V1 

2. Doors fail to close and lock D1 

3. Seals are cracked S1 

4. Gearbox fails G1 

5. The piping system presents minor leakages P1 

6. The piping system presents major leakages P2 



7. Exhaust pipe fails open E1 

8. Back up tank is empty T1 

9. Back up tank fails to engage T2 

 

Tab. 3. Basic failure events and ID codes for the CANDU AS. 

   

Fig. 5. Scheme of a CANDU reactor bay (left) [adapted from https://canteach.candu.org] and 

scheme of a typical airlock system for accessing the reactor building (right) 

 

5. RESULTS 

5.1 ARTIFICIAL CASE STUDY 

In what follows, without loss of generality, we focus on the “Low” failure mode only, for which 

there are 1166 sequences (Step 2 of Section 2) of different literal costs (Step 1 of Section 2). In Fig. 

6, we represent the accident sequences on a parallel coordinates diagram (Step 3 of Section 2), 

where the first five axes represent the state of the five components of the artificial case (component 

A, B, C, D and E, respectively), whereas the sixth axis is the literal cost of each implicant. Each 

component is represented by a multistate variable, which can assume different values indicating 

“No failure”, “Failure at t=0”, “Failure at t=2, “Failure at t=5”. For ease of representation, polylines 

have been slightly displaced in order to show the density of states in the diagram, so that the 

analysts can identify which states are the most common ones, and therefore which states most 

probably are those accident sequences that can be PIs for the “Low” failure mode. 

Ventilation air 

Building 

access airlock 

Reactor 

Dousing sprays 

Dousing tank 



 

Fig. 6. Representation in parallel coordinates of the accident sequences of the artificial case study 

It is evident from Fig. 6 that some nodes (states) appear more often in the accident sequences: in 

particular, the state corresponding to “No failure” for components A, B and E and the state 

corresponding to “Failure at t=0” for components C and D. This can be confirmed by engineering 

judgment. The failure of components A, B and E can cause the safety-relevant signal to increase 

(limiting the possibilities to go below the lower threshold), whereas the early failure of components 

C and D produce a decrease in the safety-relevant signal favoring the “Low” failure mode. For the 

same reason, “Failure at t=0” of components A, B and E and “No failure” of components C and D 

are the least dense nodes in the plot. Another interesting characteristic of Fig. 6 is the fact that some 

adjacent nodes are not connected. As an example, the nodes corresponding to “No failure” for 

components C and D are not connected by any accident sequence. This means that there is no 

accident sequence where components C and D both appear in the “No failure” state: simulations 

show that components C and D are the only ones which can produce a “Low” failure mode, and 

therefore if they do not fail, the “Low” failure mode cannot be reached. An additional example of 

the important support provided by the parallel coordinates in interpreting and analyzing the accident 

sequences, is that the “No failure” state of component D and the “Failure at t=0” state for 

component E are not connected: thus, we can be sure that the “Low” failure mode is avoided when 

component E is failed at t=0 but component D is safe. It is worth noticing that this first analysis of 

the accident sequences, even if qualitative and non-exaustive, is more informative than solely 

relying on the list of accident sequences (in terms of MVL sequences) that are of difficult 

interpretability, if not supported by an interaction and visualization, as it is for the parallel 

coordinates diagram. 



After the qualitative analysis of the accident sequences, we can move to Step 4 of Section 2. If we 

select from Fig. 6 the accident sequences with the minimal literal cost (equal to 3), we identify 69 

PIs, (reported in Appendix A in rows from 1 to 69). Then, we can delete the 69 PIs from Fig. 6, 

together with the sequences that they cover. The remaining sequences are showed in Fig. 7. 

 

Fig. 7. Visualization of the results of the first iteration of the pruning step on the accident sequences 

of the artificial case study 

In the second iteration, the 101 implicants with the second lowest literal cost (equal to 4) are 

selected from Fig. 7 as PIs (Appendix A, rows from 70 to 170). Then, we can delete the 101 PIs 

from Fig. 6, together with the sequences that they cover. The remaining sequences are showed in 

Fig. 8. 

 



Fig. 8. Visualization of the results of the second iteration of the pruning step on the accident 

sequences of the artificial case study 

It is evident from Fig. 8 that all 10 sequences that are left on the plot have the same minimal literal 

cost, and they are all stored as PIs (Appendix A, rows from 171 to 180). Then, pruning is terminated 

and 180 PIs of the “Low” failure mode of the system have been found (Appendix A). 

In order to validate the results obtained by the visual interactive method, we resort to an analytical 

technique, the consensus method for identifying PIs [Ogunbiyi et al., 1981]. With this algorithm, we 

can identify the PIs from all the accident sequences by consensus operation: reduced implicants are 

created starting from the whole list of those leading the system to the failure mode of interest. The 

basic simplifying operation, called merging rule, is: if s implicants are the same except for exactly 

one s-th event entry (where s is the number of states that the variables that represent each 

component can assume, equal to 4 in this case), and all the s possible states of the input variable 

exist in these implicants, then the s implicants can be merged and form a more reduced implicant 

[Ogunbiyi et al., 1981]. In Tab. 4 an example of the merging rule is shown: 4 implicants are listed 

where components B, C, D and E appear in the same state (B failed at t=5, C failed at t=0, D failed 

at t=0 and E working), while component A appears with a different state in each implicant. By 

application of the merging rule, a reduced implicant is obtained, as reported in the last row of Tab. 

3.  

A  @ 5B t   @ 0C t   @ 0D t   E  

@ 0A t   @ 5B t   @ 0C t   @ 0D t   E  

@ 2A t   @ 5B t   @ 0C t   @ 0D t   E  

@ 5A t   @ 5B t   @ 0C t   @ 0D t   E  

- @ 5B t   @ 0C t   @ 0D t   E  
 

Tab. 4. Example of application of the merging rule 

The PIs identification by consensus operation proceeds iteratively to the reduction of the list of 

implicants until all PIs are found (in ~2 seconds on an Intel Core2Duo P7550). In the artificial case 

study considered, the consensus method finds the same PIs for the “Low” failure mode as obtained 

by the proposed visual interactive method. In addition to the former one, the latter offers greatly 

improved interpretability of the results and insightful information for qualitative analysis of the 

accident sequences (as previously discussed). This is due to the proper selection of the features 

characterizing the accident sequences and the straightforward algorithm for pruning the parallel 

coordinates diagram based on the information of the literal cost of the accident sequences. These 



results are obtained in in ~1.5 seconds on an Intel Core2Duo P7550, that is computational time i) 

comparable to other PI identification methods, and ii) accounts for the 25% savings when applied 

on a problem of up-scaled complexity with respect to the consensus method. 

 

5.2 CANDU AIRLOCK SYSTEM 

The simulation of the accident sequences (Step 2 of Section 2) allows to find 16867 sequences of 

different literal costs leading the AS to failure (Step 1 of Section 2). In Fig. 9, we represent the 

accident sequences on a parallel coordinates plot (Step 3 of Section 4), where the first nine axis 

represent the occurrence or non-occurrence of the nine basic failure events of Tab. 3, whereas the 

10th axis shows the literal cost of each sequence. 

The first iteration of the pruning step (Step 4 of Section 2) leads to the identification of 4 implicants 

of minimal literal cost equal to 1 as PIs (Appendix B, rows from 1 to 4). Then, we can delete the 4 

PIs from Fig. 9, together with all sequences they cover. The remaining sequences are showed in Fig. 

10. In the second iteration of the pruning step (Step 4 of Section 2), the 3 sequences of second 

lowest literal cost (equal to 2) are selected as PIs (Appendix B, rows from 5 to 7). These are 

removed from the diagram, together with those covered by them. After this step, no sequences are 

left on the plot, which means that all PIs found cover all the 16867 accident sequences. The 

procedure has led to the identification of the 7 PIs, which are the same as those identified in [Lee et 

al., 2012]. 

 

 

Fig. 9. Representation in parallel coordinates of the accident sequences of the CANDU AS 



 

 

Fig. 10. Visualization of the results of the first iteration of the pruning step on the accident 

sequences of the CANDU AS 

 

6. CONCLUSIONS 

In this paper, we presented a visual method for the identification of PIs. The method is based on a 

representation of the failure sequences on a parallel coordinates plot, which is suitable for 

processing a massive quantity of information. By way of an artificial example first, and a real case 

study then, we have shown that the proposed visual procedure is easy to handle and fast to be 

implemented. Indeed, it is suitable for implementation on a touch screen, where the user can select 

the accident sequences just by touching on the screen. In addition, it allows identifying the 

dependencies among failure events and intuitively understanding the physical relationships among 

them.  
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APPENDIX A 
 

For the artificial case study, the list of PIs for the “Low” failure mode, identified through the visual 

interactive method is reported below. The state of component X (where X stands for the component 

code) can assume four different values: 

- @ 0X t  , if X fails at t=0  

- @ 2X t  , if X fails at t=2  

- @ 5X t  , if X fails at t=5  

- X , if X does not fail. 

 



Prime Implicants 

1. | @ 0| @ 0| |C t D t E   91. | | @ 5| @ 2| @ 2|A B t D t E t    

2. | @ 0| @ 0| @ 5|C t D t E t    92. | | @ 5| @ 2| @ 5|A B t D t E t    

3. | @ 0| @ 0| @ 2C t D t E t    93. | | @ 5| @ 5| |A B t D t E   

4. | @ 0| @ 2| |C t D t E   94. | | @ 5| @ 5| @ 5|A B t D t E t    

5. | @ 0| @ 2| @ 5|C t D t E t    95. | | @ 5| @ 0| @ 2|A B t C t E t    

6. | @ 0| @ 2| @ 2C t D t E t    96. | | @ 5| @ 2| @ 2|A B t C t E t    

7. | @ 0| @ 5| |C t D t E   97. | | @ 5| @ 0| @ 5|A B t C t E t    

8. | @ 0| @ 5| @ 5|C t D t E t    98. | | @ 5| @ 2| @ 5|A B t C t D t    

9. | @ 2| @ 0| |C t D t E   99. | | @ 5| @ 5| |A B t C t E   

10. | @ 2| @ 0| @ 5|C t D t E t    100. | | @ 5| @ 5| @ 5|A B t C t E t    

11. | @ 2| @ 0| @ 2C t D t E t    101. | | @ 5| @ 5| @ 2|A B t C t D t    

12. | @ 2| @ 2| |C t D t E   102. | | @ 5| @ 5| @ 5|A B t C t D t    

13. | @ 2| @ 2| @ 5|C t D t E t    103. | @ 5| @ 5| @ 2| @ 2|A t B t D t E t     

14. | @ 2| @ 5| |C t D t E   104. | @ 2| @ 2| @ 2| @ 2|A t C t D t E t     

15. | @ 2| @ 5| @ 5|C t D t E t    105. | @ 2| | @ 2| @ 5|A t B D t E t    

16. | @ 5| @ 0| |C t D t E   106. | @ 2| | @ 5| |A t B D t E   

17. | @ 5| @ 0| @ 5|C t D t E t    107. | @ 2| | @ 2| @ 5|A t B C t E t    

18. | @ 5| @ 2| |C t D t E   108. | @ 2| | @ 2| @ 5|A t B C t D t    

19. | @ 5| @ 2| @ 5|C t D t E t    109. | @ 2| | @ 5| |A t B C t E   

20. | | @ 0| |B D t E  110. | @ 2| | @ 5| @ 2|A t B C t D t    

21. | | @ 0| @ 5|B D t E t   111. | @ 5| @ 5| @ 2| @ 5|A t B t D t E t     

22. | | @ 2| |B D t E  112. | @ 5| @ 5| @ 5| |A t B t D t E    

23. | | @ 0| |B C t E  113. | @ 2| @ 2| @ 0| |A t B t D t E    

24. | | @ 0| @ 5|B C t E t   114. | @ 2| @ 2| @ 2| |A t B t D t E    

25. | | @ 0| @ 0|B C t D t   115. | @ 2| @ 2| @ 0| |A t B t C t E    

26. | | @ 0| @ 2|B C t D t   116. | @ 2| @ 2| @ 0| @ 2|A t B t C t D t     

27. | | @ 0| @ 5|B C t D t   117. | @ 2| @ 2| @ 2| |A t B t C t E    

28. | | @ 2| |B C t E  118. | @ 2| @ 2| @ 2| @ 0|A t B t C t D t     

29. | | @ 2| @ 0|B C t D t   119. | @ 2| @ 2| @ 2| @ 2|A t B t C t D t     

30. | | @ 2| @ 2|B C t D t   120. | @ 2| @ 5| @ 2| @ 5|A t B t D t E t     

31. | @ 5| @ 2| |B t D t E   121. | @ 2| @ 5| @ 2| @ 5|A t B t C t E t     

32. | | @ 5| @ 0|B C t D t   122. | @ 2| @ 2| @ 2| @ 2|B t C t D t E t     

33. | @ 2| @ 0| @ 0|B t C t D t    123. | @ 2| @ 5| @ 2| @ 5|A t B t C t D t     

34. | @ 5| @ 2| |A t D t E   124. | @ 2| @ 5| @ 5| |A t B t C t E    

35. | @ 5| @ 0| |A t C t E   125. | @ 2| @ 5| @ 5| @ 2|A t B t C t D t     

36. | @ 5| @ 0| |A t D t E   126. | | @ 5| @ 2| @ 2|A C t D t E t    

37. | | @ 0| |A D t E  127. | | @ 5| @ 5| |A C t D t E   



38. | @ 5| @ 0| |B t D t E   128. | | @ 5| @ 5| @ 5|A C t D t E t    

39. | @ 5| @ 0| @ 0|A t C t D t    129. | | @ 2| @ 5| @ 2|A C t D t E t    

40. | @ 5| @ 0| @ 2|A t C t D t    130. | @ 5| @ 5| @ 5| @ 5|A t B t D t E t     

41. | @ 5| @ 0| |B t C t E   131. | @ 5| @ 5| @ 0| @ 2|A t B t C t E t     

42. | @ 5| @ 0| @ 5|B t C t E t    132. | @ 5| @ 5| @ 2| @ 2|A t B t C t E t     

43. | @ 5| @ 0| @ 0|B t C t D t    133. | @ 5| @ 5| @ 2| @ 5|A t B t C t E t     

44. | @ 5| @ 0| @ 2|B t C t D t    134. | @ 5| @ 5| @ 2| @ 5|A t B t C t D t     

45. | @ 5| @ 0| @ 5|B t C t D t    135. | @ 5| @ 5| @ 5| @ 5|A t B t C t D t     

46. | @ 5| @ 2| |B t C t E   136. | @ 5| @ 5| @ 2| @ 5|A t B t C t E t     

47. | @ 5| @ 2| @ 0|B t C t D t    137. | @ 5| @ 5| @ 5| |B t C t D t E    

48. | @ 5| @ 2| @ 2|B t C t D t    138. | | @ 2| @ 5| @ 2|B C t D t E t    

49. | @ 5| @ 0| @ 5|A t C t D t    139. | @ 5| @ 5| @ 5| @ 2|A t B t C t D t   
 

50. | @ 5| @ 5| @ 0|B t C t D t    140. | @ 5| @ 5| @ 0| @ 2|A t B t D t E t     

51. 

 

| @ 5| @ 2| @ 0|A t C t D t    141. | @ 5| @ 5| @ 2| @ 2|B t C t D t E t     

52. | @ 5| @ 2| @ 2|A t C t D t    142. | @ 5| @ 2| @ 5| @ 2|A t C t D t E t     

53. | @ 5| @ 2| |A t C t E   143. | @ 5| @ 5| @ 5| @ 5|B t C t D t E t     

54. | @ 5| @ 0| @ 5|A t C t E t    144. | @ 5| @ 2| @ 5| @ 2|B t C t D t E t     

55. | | @ 0| @ 5|A D t E t   145. | @ 5| @ 5| @ 2| @ 2|A t C t D t E t     

56. | | @ 2| |A D t E  146. | @ 5| @ 5| @ 5| |A t C t D t E    

57. | | @ 0| |A C t E  147. | @ 5| @ 5| @ 5| @ 5|A t C t D t E t     

58. | | @ 0| @ 5|A C t E t   148. | @ 5| | @ 0| @ 2|A t B D t E t    

59. | | @ 0| @ 0|A C t D t   149. | @ 5| | @ 2| @ 2|A t B D t E t    

60. | | @ 0| @ 2|A C t D t   150. | @ 5| | @ 2| @ 5|A t B D t E t    

61. | | @ 0| @ 5|A C t D t   151. | @ 5| | @ 5| |A t B D t E   

62. | | @ 2| |A C t E  152. | @ 5| | @ 5| @ 5|A t B D t E t    

63. | | @ 2| @ 0|A C t D t   153. | @ 5| | @ 0| @ 2|A t B C t E t    

64. | | @ 2| @ 2|A C t D t   154. | @ 5| | @ 2| @ 2|A t B C t E t    

65. | @ 5| @ 0| @ 5|A t D t E t    155. | @ 5| | @ 2| @ 5|A t B C t E t    

66. | | @ 5| @ 0|A C t D t   156. | @ 5| | @ 2| @ 5|A t B C t D t    

67. | @ 5| @ 5| @ 0|A t C t D t    157. | @ 5| | @ 5| |A t B C t E   

68. | @ 5| @ 0| @ 5|B t D t E t    158. | @ 5| | @ 5| @ 5|A t B C t E t    

69. | @ 2| @ 0| @ 0|A t C t D t    159. | @ 5| | @ 5| @ 2|A t B C t D t    

70. | | | @ 0| @ 2|A B D t E t   160. | @ 5| | @ 5| @ 5|A t B C t D t    

71. | | | @ 2| @ 2|A B D t E t   161. | @ 5| @ 2| @ 2| @ 5|A t B t D t E t     

72. | | | @ 2| @ 5|A B D t E t   162. | @ 5| @ 2| @ 5| |A t B t D t E    

73. | | | @ 5| |A B D t E  163. | @ 5| @ 2| @ 2| @ 5|A t B t C t E t     

74. | | | @ 5| @ 5|A B D t E t   164. | @ 5| @ 2| @ 2| @ 5|A t B t C t D t     

75. | | | @ 0| @ 2|A B C t E t   165. | @ 5| @ 2| @ 5| |A t B t C t E    



76. | | | @ 2| @ 2|A B C t E t   166. | @ 5| @ 2| @ 5| @ 2|A t B t C t D t     

77. | | | @ 2| @ 5|A B C t E t   167. | | @ 5| @ 2| @ 2|B C t D t E t  
 

78. | | | @ 2| @ 5|A B C t D t   168. | | @ 5| @ 5| |B C t D t E   

79. | | | @ 5| |A B C t E  169. | | @ 5| @ 5| @ 5|B C t D t E t    

80. | | | @ 5| @ 5|A B C t E t   170. | @ 2| @ 5| @ 5| |A t B t D t E    

81. | | | @ 5| @ 2|A B C t D t   171. | @ 2| @ 2| @ 5| @ 5| |A t B t C t D t E     

82. | | | @ 5| @ 5|A B C t D t   172. | | @ 2| @ 5| @ 5| @ 2|A B t C t D t E t     

83. | | @ 2| @ 2| @ 5|A B t D t E t    173. | @ 2| | @ 5| @ 5| @ 2|A t B C t D t E t     

84. | | @ 2| @ 5| |A B t D t E   174. | @ 2| @ 2| @ 2| @ 5| @ 2|A t B t C t D t E t      

85. | | @ 2| @ 2| @ 5|A B t C t E t    175. | @ 2| @ 2| @ 5| @ 0| @ 2|A t B t C t D t E t      

86. | | @ 2| @ 2| @ 5|A B t C t D t    176. | @ 2| @ 2| @ 0| @ 5| @ 2|A t B t C t D t E t      

87. | | @ 2| @ 5| |A B t C t E   177. | @ 2| @ 2| @ 5| @ 2| @ 2|A t B t C t D t E t      

88. | | @ 2| @ 5| @ 2|A B t C t D t    178. | @ 2| @ 2| @ 5| @ 5| @ 5|A t B t C t D t E t      

89. | @ 5| @ 5| @ 5| |A t B t C t E    179. | @ 2| @ 5| @ 5| @ 5| @ 2|A t B t C t D t E t      

90. | | @ 5| @ 0| @ 2|A B t D t E t    180. | @ 5| @ 2| @ 5| @ 5| @ 2|A t B t C t D t E t      

 

 

APPENDIX B 
 

For the AS CANDU reactor case study, the list of PIs identified through the visual interactive 

method is reported below. The state of component X (where X stands for the component ID code) 

can assume two different values: 

- X , if X is failed 

- X , if X  is safe. 

Prime Implicants 

1. | 1|D  

2. | 2 |P  

3. | 2 |T  

4. | 1|V  

5. | 1| 1|E G  

6. | 1| 1|P T  

7. | 1| 1|S T  

 


