
HAL Id: hal-01265887
https://hal.science/hal-01265887v1

Preprint submitted on 1 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A COMPUTATIONAL FRAMEWORK FOR PRIME
IMPLICANTS IDENTIFICATION IN

NON-COHERENT DYNAMIC SYSTEMS
Francesco Di Maio, Samuele Baronchelli, Enrico Zio

To cite this version:
Francesco Di Maio, Samuele Baronchelli, Enrico Zio. A COMPUTATIONAL FRAMEWORK FOR
PRIME IMPLICANTS IDENTIFICATION IN NON-COHERENT DYNAMIC SYSTEMS. 2016.
�hal-01265887�

https://hal.science/hal-01265887v1
https://hal.archives-ouvertes.fr


Corresponding author: Francesco Di Maio, francesco.dimaio@polimi.it, tel: +39 02 2399 6372, fax: +39 02 2399 6309 

 

A COMPUTATIONAL FRAMEWORK FOR PRIME IMPLICANTS 

IDENTIFICATION IN NON-COHERENT DYNAMIC SYSTEMS 

Francesco Di Maio1, Samuele Baronchelli1, Enrico Zio1,2 

 
1 Energy Department, Politecnico di Milano 

Via Ponzio 34/3, 20133 Milano, Italy 

francesco.dimaio@polimi.it 

2 Chair on System Science and Energetic Challenge 

European Foundation for New Energy – Electricite de France 

Ecole Centrale, Paris, and Supelec, Paris, France 

 

 

ABSTRACT 

Dynamic reliability methods aim at complementing the capability of traditional static approaches (e.g., 

Event Trees (ETs) and Fault Trees (FTs)) by accounting for the system dynamic behavior and its interactions 

with the system state transition process. For this, the system dynamics is here described by a time-dependent 

model that includes the dependencies with the stochastic transition events. In this paper, we present a novel 

computational framework for dynamic reliability analysis whose objectives are i) accounting for discrete 

stochastic transition events and ii) identifying the prime implicants (PIs) of the dynamic system. The 

framework entails adopting a Multiple-Valued Logic (MVL) to consider stochastic transitions at discretized 

times. Then, PIs are originally identified by a Differential Evolution (DE) algorithm that looks for the 

optimal MVL solution of a covering problem formulated for MVL accident scenarios. For testing the 

feasibility of the framework, a dynamic non-coherent system composed by five components that can fail at 

discretized times has been analyzed, showing the applicability of the framework to practical cases.  

Keywords: Dynamic reliability, Prime Implicants, Multiple-Valued Logic, Differential Evolution. 

1. INTRODUCTION 

Probabilistic Risk Assessment (PRA) aims at capturing the scenarios of failure that can affect the 

system, and quantifying the likelihood of their occurrence and the consequences they may produce 

[Stuk, 1993]. The assessment is based on static system modeling tools, such as Fault Trees (FTs) 

and Event Trees (ETs), which allow describing the logic of system failure and accident evolution, 

and quantifying the related probabilities [Rosenberg, 1996; Zio, 2007]. However, FTs and ETs 

cannot adequately account for the impact of the dynamic interactions among continuous physical 
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parameters of the process (temperature, pressure, speed, etc.), stochastic discrete failure events of 

the hardware and software components, and human operators actions dynamic systems 

[Marseguerra et al., 1996; Devooght, 1997; Pate´-Cornell, 2002; Li et al., 2005; Kirschenbaum  et 

al., 2009; Aldemir, 2013]. PRA of dynamic systems calls also accounting for sequence and timing 

of the events, because these influence the development of the accident scenario, and Minimal Cut 

Sets (MCS), i.e., the minimal combination of elementary events that make the whole system fail 

within a static reliability analysis [Quine, 1952], lose their meaning [Morreale, 1967]. In these 

cases, PIs have been introduced as an extension of MCSs to convey the information on the 

minimum combinations of failures (with a certain order and timing) that lead the system to failure 

and that cannot be covered by more general implicants [Garret et al., 1999]. Moreover, the logic 

behind these dynamic interactions can give rise to non-coherent structure functions, where both 

failed and working states of the same components can lead the system to failure. As an example of 

non-coherent system, suppose that a system is composed by the components J,K and L and that the 

combination of events , ,J K L  (components J and K failed and component L working) causes a 

catastrophic system failure, i.e., the system has a non-coherent structure function. PIs identification 

can help developing an effective maintenance schedule for non-coherent systems: if components J, 

K and L have failed, L should be the last component to be repaired in order to avoid system failure 

and additional counteracting measures could be taken to prevent system failure, for example by 

forcing failure of component L when component J and K have already failed [Sharvia et al., 2008]. 

Moreover, a realistic reliability analysis should consider failures that can occur at any continuous 

time, with any order and magnitude: when component failures occur at different times and/or with 

different magnitudes, the same combination of failed components does not lead unequivocally to 

one failure mode and the same scenario can result in different failure modes [Devooght, 1992]. 

Therefore, the so-called dynamic reliability methods have been developed aiming at explicitly 

modeling these interaction phenomena [Devooght, 1997]. Dynamic reliability methods can be 

categorized into continuous and discrete approaches [Aldemir, 2013]: the former entail, at each 

point of time, to model the stochastic variability of accident scenarios evolution, whereas the latter 

consider discrete times of failure events. 

Continuous Event Trees (CETs) [Devooght et al., 1992; Kopustinskas et al., 2005] provide a 

realistic framework for all possible failure events due to process/hardware/software/firmware/ 

human interactions into a single integrated model. However, the application of this and other 

continuous time techniques is limited by their computationally intensive nature and by the need of 

tailoring their algorithms to the system under consideration. 



The conceptually simpler discrete time approach by direct Monte Carlo Simulation (MC) 

[Marseguerra et al., 1996; Labeau, 2006] generates most probable time branchings for the ET to 

simulate a discrete set of accident scenarios. Dynamic Event Trees (DETs) [Hofer et al., 2004; 

Hakobyan et al., 2008] determine the system responses to different accident events timings and 

sequences by branching conditions selected by the analyst. The major challenge of DETs is the need 

of processing a massive amount of data for any single initiating event considered and, thus, it 

requires an efficient post-processing tool for treating the accumulated information [Di Maio et al., 

2011a]. Petri Nets allow dynamic reliability analysis by modeling the system in terms of 

information transmission between nodes of a graph structure [Petersen, 1981]: nodes represent a set 

of all possible system states, links are possible state transitions and an initial token placed into one 

of the nodes represents the initial system state condition at the initial time. Discrete state 

simulations are run moving tokens among places, recording system state changes and treating 

parameter evolution [Labeau et al., 2000]. Dynamic Flowgraph Methodology (DFM) provides a 

modeling and analysis environment in which the system variables are represented by a finite 

number of states and the system dynamics is expressed by a cause-and-effect relationship between 

these states [Aldemir, 2013]. DFM is based on parameter values discretization and can produce 

“timed FTs”, which are FTs in which timing relations are systematically taken into account [Garret 

et al., 1999]. The FTs can then be analyzed to determine how the system can reach a certain failure 

mode by backtracking faults by deductive/inductive analysis [Aldemir, 2013], yielding the Prime 

Implicants (PIs), i.e., the minimal sets of component failure events that are sufficient to cause a 

failure (top event) of a dynamic system and that cannot be covered by a more general implicant 

[Quine, 1952]. 

The objective of this work is to develop a discrete time framework for the dynamic reliability 

analysis of non-coherent systems, which i) discretizes continuous variables ii) accounts for 

stochastic discrete events iii) identifies the prime implicants (PIs) of a dynamic system, where the 

time of occurrence of each component failure is important for the determination of the system 

parameters evolution. We use Multiple-Valued Logic (MVL) theory for accurately modeling the 

behavior of the system, where timing and sequences of component failure events can be critical in 

determining the system failure mode. In fact, MVL theory increases the limited description 

capability of binary variables in real cases [Garibba et al., 1985], and components can thus be in 

different states of operation (for example, a valve that can be closed, partially closed or fully open, 

or can fail at different times). For ease of illustration of the continuous to discrete time 

representation proposed, we resort to a case study composed by five components that can fail at 

different discrete times with random magnitudes, where the time of occurrence of each component 



failure is important for the determination of the system parameters evolution and its failure mode. 

These simulated accident scenarios aim at reproducing real conditions that can be envisaged in real 

complex systems, as in the Residual Heat Removal system (RHRs) in the High Temperature-Pebble 

Modular Reactor (HTR-PM) [Zio et al., 2010; Di Maio et al., 2011b], where specific components 

failures influence the outlet water temperature. 

PIs identification is here tackled as an optimization problem, which is a Set Covering Problem 

(SCP) [Beasley et al., 1996] defined by the MVL accident scenarios, whose solution amounts to 

finding the minimum combination of implicants that can guarantee the best coverage of all the 

minterms that make the system fail. The difficulty in developing efficient methods for PIs 

identification lies in the fact that each subset of implicants has an associated cost proportional to its 

dimension and the objective of the problem is to choose the smallest group of subsets whose union 

contains the whole set with minimal cost (this will be explained in details in what follows).To 

overcome this hurdle, the optimization problem for PIs identification is here solved in an original 

way with a short computational time, by a Differential Evolution (DE)-based algorithm [Storn et al., 

1996] previously applied for the identification of MCSs [Di Maio et al., 2013]. 

The paper is organized as follows. In Section 2, the case study used to generate the accident 

scenarios for the dynamic reliability analysis is presented, its non-coherence is shown and the 

limitation of a static reliability analysis is highlighted in that it may lead to a conservative PIs 

identification. In Section 3, MVL theory is introduced with reference to the case study considered. 

The DE-based approach is presented is Section 4 and, then, applied for PIs identification in the 

dynamic case study of Section 5. Conclusions and remarks are given in Section 5. 

 

2. CASE STUDY 

2.1  Static reliability analysis 

In order to show the way of general applicability of the proposed framework of PIs identification 

for dynamic and non-coherent systems, we consider a system composed by 5 components (A, B, C, 

D and E), that can fail at continuous random times with random magnitudes, giving rise to different 

scenarios, e.g., like those plotted in Fig. 1 with reference to a safety-relevant signal (continuous 

line) which needs to remain bounded within pre-defined thresholds for safety (dotted and dashed 

lines) [Baraldi et al., 2012]. The system life is set to T=7 [h]. If the safety-relevant signal exceeds 

the upper threshold value of 2.5, the system fails in the “High” failure mode; if it decreases below 

the lower threshold value of -1.5, the system failure mode is “Low”.  



 

Fig 1. Evolution of the safety-relevant signal during simulated accident scenarios 

For example, the average temperature of the diathermic oil of the secondary loop of a Lead Bismuth 

Eutectic eXperimental Accelerator Driven System (LBE-XADS) can be considered as safety-

relevant signal: if it goes beyond the upper threshold of 340 °C, oil physical and chemical properties 

could be degraded, whereas if it goes below the lower threshold of 280 °C the structural 

components of the reactor could suffer of thermal shock [Zio et al., 2012]. Other examples of 

physical thresholds are: the upper limit of 1600 °C for the fuel cladding temperature of the High 

Temperature-Pebble Modular Reactor (HTR-PM), that allows the safety function of fission products 

retain [Di Maio et al., 2011b] or the lower limit of the water level of a pressurizer in Pressurized 

Water Reactor (PWR), that avoids the undesirable state of uncovered electric heaters [Baraldi et al., 

2013]. 

A real system which has a strong similarity with the proposed case is the Residual Heat Removal 

system (RHRs) of the HTR-PM whose function is removing the residual heat from the core after a 

reactor shut-down [Di Maio et al., 2011b]. This safety system is composed of two circuits (trains) 

dedicated to heat removal, each one being connected to a loop of the primary circuit. The function 

of the RHRs trains is to transfer heat by natural convection from the reactor vessel through the 

water cooling wall and pipes to the air-cooling heat exchanger located in the air-cooling tower. The 

outlet temperature in each one of the two trains represents the equivalent of our safety-relevant 

signal. In fact, the outlet temperature cannot exceed 126 °C (upper threshold) because otherwise its 

thermal transmission properties would deteriorate and drive the system into the “High” failure 

mode. On the other hand, a temperature value equal to that of the cold sink of the air-water 

exchanger in the air cooling tower (lower threshold) would put the train out of service into the 

“Low” failure mode, and, therefore, cause a sharp increase in the outlet temperature of the other 

train [Di Maio et al., 2011b]. 



The basic failure events which can produce an increase of the outlet temperature can be: the 

reduction of the number of air cooling pipes in the two air-water heat exchangers (e.g. failure of 

components A and B), the reduction of the number of water cooling wall pipes connecting the two 

RHRs trains with the primary circuit (e.g., failure of component E), whereas the temperature 

decrease can be caused by the blockage of the inlet shutters of the air cooling tower (e.g. failure of 

components C and D) [Di Maio et al., 2011b]. 

In our case study, a Monte Carlo sampling procedure injects faults of random magnitudes at t=0 for 

all possible combinations of components failures (Tab. 1). The number of components that fail in an 

accident scenario is sampled from a binomial distribution with parameters n=5 (the number of 

components) and p=0.8 (so that even rare multiple fault events are included in the set of accident 

scenarios simulated [Zio et al., 2009]). 

The equations used to simulate the safety-relevant signal evolution y(t) during each of the system 

configurations of Tab. 1 are shown in Tab. 2. Parameters a, b, c, d, ω, α1, α2 and α3 are randomly 

sampled from the distributions listed in Tab. 3 and can be interpreted as determining the magnitude 

of the failure events of the components A, B, C, D and E. They are obtained by stratified sampling 

[Di Maio et al., 2011a].  

 

System 

configuration 

Components that do not fail Components that fail 

1 A, B, C, D and E - 

2 B, C, D and E A 

3 A, C, D and E B 

4 A, B, D and E C 

5 A, B, C and E D 

6 A, B, C and D E 

7 C, D and E A and B 

8 B, D and E A and C 

9 B, C and E A and D 

10 B, C and D A and E 

11 A, D and E B and C 

12 A, C and E B and D 

13 A, C and D B and E 

14 A, B and E C and D 

15 A, B and D C and E 

16 A, B and C D and E 

17 D and E A, B and C 

18 C and E A, B and D 

19 C and D A, B and E 

20 B and E A, C and D 

21 B and D A, C and E 

22 B and C A, D and E 



23 A and E B, C and D 

24 A and D B, C and E 

25 A and C B, D and E 

26 A and B C, D and E 

27 E A, B, C and D 

28 D A, B, C and E 

29 C A,B, D and E 

30 B A, C, D and E 

31 A B, C, D and E 

32 - A, B, C, D and E 

Tab. 1. Possible system configurations for the case study 
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Tab. 2. Equations used to simulate the safety-relevant signal evolution for each failed component  

Parameter Distribution Mean value Standard deviation 

a Gaussian 0.4 0.017 

b Gaussian 0.4 0.017 

c Gaussian 1.3 0.033 

d Gaussian 1.3 0.017 

1  Gaussian 1 0.083 

2  Gaussian 1.05 0.033 

3  Gaussian 1 0.033 

ω Gaussian 0 1 

 

Tab. 3. Distribution of the parameters of the Equations of Tab. 2  

Without loss of generality, among the system configurations of Tab. 1 (also referred to as 

minterms), we search for those leading to the failure mode “Low”. PIs are those minterms whose set 

of variables (that in this case are Boolean and indicate if at t=0 components A, B, C, D or E are 



failed ( )X  or not ( )),X  represent minimal accident component failures necessary for the failure 

mode occurrence and cannot be covered by a more reduced implicant [Quine, 1952]. The PIs 

identification is performed in an original way with a DE-based algorithm (see Section 4), which has 

been proven to provide a faster search than Quine-McCluskey algorithm [Di Maio et al., 2013]. As 

we shall see, DE is fed with a set of NP chromosomes 
1 2

( , ,..., )
R

x x x x , each one representing a 

possible solution made of R Boolean implicant values xi, equal to 1 if the i-th Boolean implicant is 

considered in the solution, otherwise 0.  

The 7 PIs, all of third-order (i.e., three components are listed for each implicant) are listed in Tab. 4. 

Notice the non-coherence of the system, as both failed and safe components contribute to the 

system failure mode.  

Prime Implicants (static reliability analysis) 

|   |   |   |A C E  

|   |   |   |B C E  

|   |  |   |A D E  

|   |  |   |B D E  

|   |  |   |C D E  

|   |   |   |B C D  

|   |   |   |A C D  

Tab. 4. PIs of the “Low” failure mode in the static reliability analysis 

 

2.2  Dynamic reliability analysis 

 

The assumption that all components that fail in a scenario do so all at the same time t=0 is 

unrealistically conservative. In a realistic (but computationally intractable) analysis one should 

consider failures that can occur at any continuous time, with any order and magnitude [Devooght, 

1992]. As a tractable approximation, we propose a computational framework that assumes that the 

components can fail at discrete times, e.g. values: t=0 [h], t=2 [h] and t=5 [h] for our case study, 

representative of “early”, “intermediate” and “late” failures, respectively, rather than only at t=0 as 

in the previous analysis of Section 2.1.  

With these settings, it can be concluded that the same combination of failed components does not 

lead unequivocally to one failure mode: when component failures occur at different times and/or 

with different magnitudes, the resulting failure mode can be different. For example, if a failure 



occurs “late” in the mission time (as opposed to an “early” failure event), it may not lead to system 

failure or viceversa (if the system is non-coherent) [Di Maio et al., 2011a]. This is shown in Fig. 2 

where the frequencies of the three system failure modes (“High”, “Safe” and “Low”) are plotted for 

the 32 system configurations of Tab. 1, when times of failures are sampled from discrete 

distributions and failure magnitudes from continuous distributions. 

In Fig. 3 the same plot for the frequencies of system failure modes are reported for system 

configurations generated with continuous random times and magnitudes. It can be seen from the 

similarity of the histograms of Fig. 2 and Fig. 3 that the hypothesis of discrete (early, intermediate 

and late) failure times is a good approximation. 

 

 

Fig. 2. Histograms of the frequency of the failure modes for each of the 32 system configurations of 

Tab. 1, simulated with discrete failure times 

 



 

Fig. 3. Histograms of the frequency of the failure modes for each of the 32 system configurations of 

Tab. 1, simulated with random failure times and magnitudes 

 

 

Note that non-coherence of the system is maintained: some of the 32 system configurations do not 

end in the same failure mode all the time. In fact, as shown in Fig. 4 and Fig. 5, both failed and 

working states of a set of components can contribute to the failure of the system. In Fig. 4 (left) the 

safety-relevant signal evolution is shown when components B and D continue working for the 

whole mission time, whereas component A fails at t=0, C at t=2 and E at t=2: this combination of 

failures allows the system to work in “Safe” conditions. On the other hand, in Fig. 4 (upper right) 

the same signal is plotted when components B, D and E (recovered) continue working for all the 

mission time, component A fails at t=0 and C at t=2, leading the system to “Low” failure mode; 

when components B, C and D (recovered) continue working for all the mission time, component A 

fails at t=0 and E at t=2 as in Fig. 4 (lower right), the system failure mode is “High”. 

Another example of non-coherence is shown in Fig. 5. A combination of three failures allows the 

system working in “Safe” conditions (left), whereas the recovery of component C leads the system 

into “High” failure mode (upper right) and the recovery of component B into “Low” (lower right). 

 

 



 

Fig 4. Example of non-coherence 

 

Fig. 5. Example of non-coherence

 

 

 

3. MULTIPLE-VALUED LOGIC FOR PIs IDENTIFICATION 

In a dynamic and non-coherent system as the one described in Section 2.2, the PIs identification is 

challenged by the need of representing the components that fail at discrete times (“early”, 

“intermediate” and “late”). For this, we originally adopt a MVL rather than the Boolean logic. In 

our case, the different value levels of the multistate variables indicate the different time instants at 

which the components fail.  In particular, with respect to component X, the multistate variable can 

assume four different values: 

- @ 0X t  , if X fails at t=0 (“early failure”)  

- @ 2X t  , if X fails at t=2 (“intermediate failure”)  

- @ 5X t  , if X fails at t=5 (“late failure”) 

- X , if X does not fail 

The concepts of minterm and PI can be applied to multistate components as well, provided that the 

variables that represent the components states are MVL rather than Boolean.  

As an example, the minterm | @ 2| | @ 5|   | @ 0|A t B C t E t     stands for an accident scenario 

where component B continues working, the state of component D is negligible for the determination 

of the system failure mode (“don’t care” value, |   | ), component A fails at t=2, C at t=5 and E at 

t=0. Similarly, we can extend the definition of MVL to implicants and PIs. 
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Traditionally, within the MVL framework, implicants can be reduced analytically by consensus 

operation yielding PIs [Ogunbiyi et al., 1981]: reduced implicants are created starting from the 

whole list of those leading the system to the failure mode of interest. The basic simplifying 

operation, called merging rule, is easy to apply: if s implicants are the same except for exactly one 

s-th event entry (where s is the number of states that the variables that represent each component 

can assume, equal to 4 in this case), and all the s possible states of the input variables exist in these 

implicants, then the s implicants can be merged and form a more reduced implicant [Ogunbiyi et al., 

1981]. In Tab. 5, an example of the merging rule is shown: 4 implicants are listed where 

components  B, C,  D and E appear in the same state (B failed at t=5, C failed at t=0, D failed at t=0 

and E working), while component A appears with a different state in each implicant. Therefore, we 

can apply the merging rule and obtain the reduced implicant shown on the last row of Tab. 5.  

 

A  @ 5B t   @ 0C t   @ 0D t   E  

@ 0A t   @ 5B t   @ 0C t   @ 0D t   E  

@ 2A t   @ 5B t   @ 0C t   @ 0D t   E  

@ 5A t   @ 5B t   @ 0C t   @ 0D t   E  

- @ 5B t   @ 0C t   @ 0D t   E  
 

Tab. 5. Example of an application of the merging rule 

The PIs identification method by consensus operation [Ogunbiyi et al., 1981] proceeds iteratively to 

the reduction of the list of implicants until the whole list of PIs are found. In the case of the system 

of Section 2.2 with respect to the “Low” failure mode, the consensus method finds the PIs listed in 

Appendix A. This method is simple to be implemented although it proves to be burdensome when 

applied to a complex dynamic system. For this reason, we resort to the powerful DE algorithm, 

whose basic concepts are quickly recalled in the next Section. 

 

4. DIFFERENTIAL EVOLUTION ALGORITHM 

DE belongs to the class of Evolutionary Algorithms (EAs) [Holland, 1975], which have proven 

effective in tackling optimization problems with high complexity, number of variables and 

dimensionality [Storn et al., 1996]. DE search for the optimum entails three phases, called mutation, 

crossover and selection [Wang et al., 2010]. In the mutation phase, a probability estimation vector 

       1 2
, , ,

R
P x P x P x P x     is created for each chromosome 

1 2
( , ,..., )

R
x x x x  present in the 

population at the g-th generation, g=1, 2,..., G: 
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where [6,9]b  is a positive real constant, the weighting factor [0,2]F  is a user-defined parameter, 

kept constant during the optimization and ,  and l k m

r r r
x x x  are the r-th bits of three randomly chosen 

individuals, with indexes  , , 1,2,...,l k m NP . From ( ),
r

P x  the corresponding bit of the noisy vector 

v  of the current chromosome x  are generated by sampling: 

1          if ( )

0          otherwise

r

r

rand P x
v


 
  

where rand is a uniform random number in [0,1). 

The trial chromosome u
 
can be obtained by the crossover operator through Eq. (3): 

      if  or ( )

      otherwise

r

r

r

v rand CR r irand R
u

x

 
 
  

where [0,1]CR  is a control parameter which influences the probability for v
 
to be selected for the 

mutation process,  irand(R) is a uniform discrete random number from the set  1,2,..., R , where R is 

the length of the chromosome. Therefore, at least one bit of the trial individual is inherited from the 

mutant individual so that DE is able to avoid duplication individuals and effectively search within 

the neighborhood. 

During the selection process, the population is modified by substitution. Referring to a 

minimization search, if the fitness of the trial chromosome u , i.e., the total cost of all the Π 

belonging to u , is less than the fitness of the optimal chromosome x , the former will be a member 

of the next generation g+1, replacing the target individual, and the trial vector is discarded 

        ( ) ( )

       

u if fitness u fitness x
x

x otherwise


 
  

It can be understood, then, that the selection criterion of DE is greedy, which guarantees that the 

following generation is better than or at least equal to the previous generation. 

 

5. RESULTS 

The results are illustrated for the “Low” failure mode as presented in Section 2.2. The optimization 

task regards the identification of all minterms (635) and implicants (1166) that lead the system to a 

“Low” failure mode, coherently with the NP-complete problem of covering a set (the minterms) 

(1) 

(2) 

(3) 

(4) 



with elements from a given subset (the implicants) [Sen, 1993]: a literal cost is associated to each 

implicant [Di Maio et al., 2014], equal to the number of components whose MVL state is specified 

in the implicant, and the PIs are chosen as the implicants subset which cover all the 635 minterms at 

a minimal literal cost.  

The DE algorithm manipulates R-dimensional chromosomes 
1 2

( , ,..., ),
R

x x x x  where R is equal to 

the number of implicants (equal to 1166 in our case) and a 1 is allocated in the i-th position if the i-

th implicant is chosen to be in the trial solution represented by the chromosome, otherwise a 0. We 

apply the DE algorithm with a “One complement” fitness function [Shackleford et al., 2001]: the 

cost of the solution (chromosome) is mapped into a binary function made up by two parts, where 

the most important digits are determined as the complement to one of the number of uncovered 

minterms, whereas the least important digits are determined as the complement to one of the literal 

cost of the implicants included in the solution. Therefore, we are looking for the solution with the 

highest fitness value. For the ease of clarity, since we have 635 minterms, 10 bits code the 

maximum number of uncovered minterms whereas the sum of the cost of all the 1166 implicants is 

equal to 5320 so that 13 bits code the cost part of the solution. In Fig. 6 the calculation procedure is 

shown for the solution with the highest fitness value (which corresponds to PIs): the uncovered 

minterms are equal to zero, while the total cost of the 180 PIs is equal to 661. The complement to 

one of 0 on 10 bits is equal to 1023, and the complement to one of 661 on 13 bits is equal to 7350: 

joining together the two parts of the fitness function gives a fitness value of 8387946. 

 

 

Fig.6. Procedure for the calculation of the ”One complement”  fitness function 

 

The number of chromosomes, NP, is set equal to 5000 and the maximum generation number, 

MAXGEN, is set equal to 2000. In Fig. 7, Fig. 8, Fig. 9, Fig. 10 and Fig. 11, the fitness values of the 



population in the DE search is plotted at the generation G=1, G=500, G=1000, G=1500 and 

G=2000, respectively. 

 

 

Fig. 7. Fitness values of the population at 

generation G=1 

 

 

Fig. 8. Fitness values of the population at 

generation G=500 

 

Fig. 9. Fitness values of the population at 

generation G=1000 

 

Fig. 10. Fitness values of the population at 

generation G=1500 
 

 

Fig. 11. Fitness values of the best solution 

obtained by the DE search at generation 

G=2000
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The population at the first generation (Fig. 8) is randomly distributed in the search space; then, as 

generations evolve it tends to move toward the optimal solution with largest fitness value (Fig. 11). 

At the beginning, the population tends to cover all the minterms, even if the solutions have high 

literal costs (Figs. 9 and 10); then, when all minterms are covered, the DE algorithm moves toward 

the minimal literal costs (Figs. 10 and 11).   

The optimal solution is composed by 180 PIs, which cover all the 635 minterms with literal cost 

equal to 661. These results are the same as those obtained by the consensus method (Appendix A). 

A comparison with the PIs listed in Tab. 4 for the static reliability analysis (Section 2.1) highlights 

that the inclusion of the time of component failures in the definition of PIs leads to a significant 

increase of the PIs (from 7 to 180). For example, if we look for the subset of the PIs where 

components A and E do not fail, we find that in the static analysis there are two PIs (rows 1 and 3 of 

Table 4, respectively):  

- | | | |A C E   

- | | | |A D E   

whereas among the dynamic PIs we find: 

- | | @ 0 | |A C t E   

- | | @ 0| |A D t E  

- | | @ 2| |A C t E   

- | | @ 2| |A D t E   

- | | @ 5| @ 5| |A C t D t E    

- | | | @ 5| |A B C t E   

- | | | @ 5| |A B D t E   

- | | @ 2| @ 5| |A B t C t E    

- | | @ 2| @ 5| |A B t D t E    

- | | @ 5| @ 5| |A B t C t E    

- | | @ 5| @ 5| |A B t D t E    

This shows that a number of implicants (listed below) cannot be considered PIs because in the 

dynamic analysis these accident scenarios do not lead the system to the “Low” failure mode, 

although they are included in the set of those covered by rows 1 and 3 of Table 4, herein: 

- | | @ 5 | |A C t E   



- | | @ 5 | |A D t E   

- | | @ 5 | | |A C t D E   

- | | | @ 5 | |A C D t E   

- | | @ 0 | @ 5| |A B t C t E    

- | | @ 0 | @ 5| |A B t D t E    

- | | @ 0 | @ 5| | |A B t C t D E   

- | | @ 0 | | @ 5| |A B t C D t E   

 

6. CONCLUSIONS 

In the risk analysis of dynamic systems, timing of the events influences the development of the 

accident scenario, and, in case of non-coherent systems both failed and working states of the same 

components can lead to system failure. Traditional MCSs lose their meaning in these cases, and for 

this reason, PIs have been introduced as an extension of MCSs to convey the information on the 

minimum combinations of failures (with a certain order and timing) that lead the system to failure. 

In this paper, we have presented an innovative framework for PIs identification in dynamic non-

coherent systems. The proposed framework relies on MVL theory to account for the timing of the 

component failures in the definition of the accident scenarios and on a DE-based optimization 

algorithm for efficiently identifying the PIs. A case study has been solved by the proposed 

framework and the results have been compared to those obtained by a Quine-McCluskey algorithm 

and consensus operation method. The proposed framework has been shown faster than Quine-

McCluskey and consensus operation method, and also the results have confirmed the importance of 

including the dynamic aspects in the reliability analysis of systems for which the timing of events is 

relevant for the accident scenario evolution: indeed, in the example shown, some of the MCSs 

identified cannot be considered mimum combinations of failures leading to system failure, whereas 

PIs are capable of properly capturing the mimimum failure conditions. 
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APPENDIX A 
 

List of PIs for the system with discrete times of failure events (“early”, “intermediate”  and “late”, 

t=0,2,5, respectively) 

 

Prime Implicants (Dynamic Reliability Analysis) 

1. | @ 0| @ 0| |C t D t E   91. | | @ 5| @ 2| @ 2|A B t D t E t    

2. | @ 0| @ 0| @ 5|C t D t E t    92. | | @ 5| @ 2| @ 5|A B t D t E t    

3. | @ 0| @ 0| @ 2C t D t E t    93. | | @ 5| @ 5| |A B t D t E   

4. | @ 0| @ 2| |C t D t E   94. | | @ 5| @ 5| @ 5|A B t D t E t    

5. | @ 0| @ 2| @ 5|C t D t E t    95. | | @ 5| @ 0| @ 2|A B t C t E t    

6. | @ 0| @ 2| @ 2C t D t E t    96. | | @ 5| @ 2| @ 2|A B t C t E t    

7. | @ 0| @ 5| |C t D t E   97. | | @ 5| @ 0| @ 5|A B t C t E t    

8. | @ 0| @ 5| @ 5|C t D t E t    98. | | @ 5| @ 2| @ 5|A B t C t D t    

9. | @ 2| @ 0| |C t D t E   99. | | @ 5| @ 5| |A B t C t E   

10. | @ 2| @ 0| @ 5|C t D t E t    100. | | @ 5| @ 5| @ 5|A B t C t E t    

11. | @ 2| @ 0| @ 2C t D t E t    101. | | @ 5| @ 5| @ 2|A B t C t D t    

12. | @ 2| @ 2| |C t D t E   102. | | @ 5| @ 5| @ 5|A B t C t D t    

13. | @ 2| @ 2| @ 5|C t D t E t    103. | @ 2| @ 0| @ 0|A t C t D t    

14. | @ 2| @ 5| |C t D t E   104. | @ 2| @ 2| @ 2| @ 2|A t C t D t E t     

15. | @ 2| @ 5| @ 5|C t D t E t    105. | @ 2| | @ 2| @ 5|A t B D t E t    

16. | @ 5| @ 0| |C t D t E   106. | @ 2| | @ 5| |A t B D t E   

17. | @ 5| @ 0| @ 5|C t D t E t    107. | @ 2| | @ 2| @ 5|A t B C t E t    

18. | @ 5| @ 2| |C t D t E   108. | @ 2| | @ 2| @ 5|A t B C t D t    

19. | @ 5| @ 2| @ 5|C t D t E t    109. | @ 2| | @ 5| |A t B C t E   

20. | | @ 0| |B D t E  110. | @ 2| | @ 5| @ 2|A t B C t D t    

21. | | @ 0| @ 5|B D t E t   111. | @ 2| | @ 5| @ 5| @ 2|A t B C t D t E t     

22. | | @ 2| |B D t E  112. | @ 2| @ 2| @ 0| |A t B t D t E    

23. | | @ 0| |B C t E  113. | @ 2| @ 2| @ 2| |A t B t D t E    

24. | | @ 0| @ 5|B C t E t   114. | @ 2| @ 2| @ 0| |A t B t C t E    



25. | | @ 0| @ 0|B C t D t   115. | @ 2| @ 2| @ 0| @ 2|A t B t C t D t     

26. | | @ 0| @ 2|B C t D t   116. | @ 2| @ 2| @ 0| @ 5| @ 2|A t B t C t D t E t      

27. | | @ 0| @ 5|B C t D t   117. | @ 2| @ 2| @ 2| |A t B t C t E    

28. | | @ 2| |B C t E  118. | @ 2| @ 2| @ 2| @ 0|A t B t C t D t     

29. | | @ 2| @ 0|B C t D t   119. | @ 2| @ 2| @ 2| @ 2|A t B t C t D t     

30. | | @ 2| @ 2|B C t D t   120. | @ 2| @ 2| @ 2| @ 5| @ 2|A t B t C t D t E t    

 31. | | @ 2| @ 5| @ 2|B C t D t E t  

 

121. | @ 2| @ 2| @ 5| @ 0| @ 2|A t B t C t D t E t      

32. | | @ 5| @ 0|B C t D t   122. | @ 2| @ 2| @ 5| @ 2| @ 2|A t B t C t D t E t    

 33. | | @ 5| @ 2| @ 2|B C t D t E t  

 

123. | @ 2| @ 2| @ 5| @ 5| |A t B t C t D t E     

34. | | @ 5| @ 5| |B C t D t E   124. | @ 2| @ 2| @ 5| @ 5| @ 5|A t B t C t D t E t      

35. | | @ 5| @ 5| @ 5|B C t D t E t    125. | @ 2| @ 5| @ 2| @ 5|A t B t D t E t     

36. | @ 2| @ 0| @ 0|B t C t D t    126. | @ 2| @ 5| @ 2| @ 5|A t B t C t E t     

37. | @ 2| @ 5| @ 5| |A t B t D t E    127. | @ 2| @ 2| @ 2| @ 2|B t C t D t E t     

38. | @ 5| @ 0| |B t D t E   128. | @ 2| @ 5| @ 2| @ 5|A t B t C t D t     

39. | @ 5| @ 0| @ 5|B t D t E t    129. | @ 2| @ 5| @ 5| |A t B t C t E    

40. | @ 5| @ 2| |B t D t E   130. | @ 2| @ 5| @ 5| @ 2|A t B t C t D t     

41. | @ 5| @ 0| |B t C t E   131. | @ 2| @ 5| @ 5| @ 5| @ 2|A t B t C t D t E t      

42. | @ 5| @ 0| @ 5|B t C t E t    132. | @ 5| @ 0| |A t D t E   

43. | @ 5| @ 0| @ 0|B t C t D t    133. | @ 5| @ 0| @ 5|A t D t E t    

44. | @ 5| @ 0| @ 2|B t C t D t    134. | @ 5| @ 2| |A t D t E   

45. | @ 5| @ 0| @ 5|B t C t D t    135. | @ 5| @ 0| |A t C t E   

46. | @ 5| @ 2| |B t C t E   136. | @ 5| @ 0| @ 5|A t C t E t    

47. | @ 5| @ 2| @ 0|B t C t D t    137. | @ 5| @ 0| @ 0|A t C t D t    

48. | @ 5| @ 2| @ 2|B t C t D t    138. | @ 5| @ 0| @ 2|A t C t D t    

49. | @ 5| @ 0| @ 5|A t C t D t    139. | @ 5| @ 2| @ 5| @ 2|B t C t D t E t     

50. | @ 5| @ 5| @ 0|B t C t D t    140. | @ 5| @ 2| |A t C t E   

51. 

 

| @ 5| @ 2| @ 0|A t C t D t    141. | @ 5| @ 5| @ 2| @ 2|B t C t D t E t     

52. | @ 5| @ 5| @ 5| |B t C t D t E    142. | @ 5| @ 2| @ 5| @ 2|A t C t D t E t     

53. | @ 5| @ 2| @ 2|A t C t D t    143. | @ 5| @ 5| @ 5| @ 5|B t C t D t E t     

54. | | @ 0| |A D t E  144. | @ 5| @ 5| @ 0|A t C t D t    

55. | | @ 0| @ 5|A D t E t   145. | @ 5| @ 5| @ 2| @ 2|A t C t D t E t     

56. | | @ 2| |A D t E  146. | @ 5| @ 5| @ 5| |A t C t D t E    

57. | | @ 0| |A C t E  147. | @ 5| @ 5| @ 5| @ 5|A t C t D t E t     

58. | | @ 0| @ 5|A C t E t   148. | @ 5| | @ 0| @ 2|A t B D t E t    

59. | | @ 0| @ 0|A C t D t   149. | @ 5| | @ 2| @ 2|A t B D t E t    

60. | | @ 0| @ 2|A C t D t   150. | @ 5| | @ 2| @ 5|A t B D t E t    

61. | | @ 0| @ 5|A C t D t   151. | @ 5| | @ 5| |A t B D t E   

62. | | @ 2| |A C t E  152. | @ 5| | @ 5| @ 5|A t B D t E t    



63. | | @ 2| @ 0|A C t D t   153. | @ 5| | @ 0| @ 2|A t B C t E t    

64. | | @ 2| @ 2|A C t D t   154. | @ 5| | @ 2| @ 2|A t B C t E t    

65. | | @ 2| @ 5| @ 2|A C t D t E t  

 

155. | @ 5| | @ 2| @ 5|A t B C t E t    

66. | | @ 5| @ 0|A C t D t   156. | @ 5| | @ 2| @ 5|A t B C t D t    

67. | | @ 5| @ 2| @ 2|A C t D t E t  

 

157. | @ 5| | @ 5| |A t B C t E   

68. | | @ 5| @ 5| |A C t D t E   158. | @ 5| | @ 5| @ 5|A t B C t E t    

69. | | @ 5| @ 5| @ 5|A C t D t E t    159. | @ 5| | @ 5| @ 2|A t B C t D t    

70. | | | @ 0| @ 2|A B D t E t   160. | @ 5| | @ 5| @ 5|A t B C t D t    

71. | | | @ 2| @ 2|A B D t E t   161. | @ 5| @ 2| @ 2| @ 5|A t B t D t E t     

72. | | | @ 2| @ 5|A B D t E t   162. | @ 5| @ 2| @ 5| |A t B t D t E    

73. | | | @ 5| |A B D t E  163. | @ 5| @ 2| @ 2| @ 5|A t B t C t E t     

74. | | | @ 5| @ 5|A B D t E t   164. | @ 5| @ 2| @ 2| @ 5|A t B t C t D t     

75. | | | @ 0| @ 2|A B C t E t   165. | @ 5| @ 2| @ 5| |A t B t C t E    

76. | | | @ 2| @ 2|A B C t E t   166. | @ 5| @ 2| @ 5| @ 2|A t B t C t D t     

77. | | | @ 2| @ 5|A B C t E t   167. | @ 5| @ 2| @ 5| @ 5| @ 2|A t B t C t D t E t      

78. | | | @ 2| @ 5|A B C t D t   168. | @ 5| @ 5| @ 0| @ 2|A t B t D t E t     

79. | | | @ 5| |A B C t E  169. | @ 5| @ 5| @ 2| @ 2|A t B t D t E t     

80. | | | @ 5| @ 5|A B C t E t   170. | @ 5| @ 5| @ 2| @ 5|A t B t D t E t     

81. | | | @ 5| @ 2|A B C t D t   171. | @ 5| @ 5| @ 5| |A t B t D t E    

82. | | | @ 5| @ 5|A B C t D t   172. | @ 5| @ 5| @ 5| @ 5|A t B t D t E t     

83. | | @ 2| @ 2| @ 5|A B t D t E t    173. | @ 5| @ 5| @ 0| @ 2|A t B t C t E t     

84. | | @ 2| @ 5| |A B t D t E   174. | @ 5| @ 5| @ 2| @ 2|A t B t C t E t     

85. | | @ 2| @ 2| @ 5|A B t C t E t    175. | @ 5| @ 5| @ 2| @ 5|A t B t C t E t     

86. | | @ 2| @ 2| @ 5|A B t C t D t    176. | @ 5| @ 5| @ 2| @ 5|A t B t C t D t     

87. | | @ 2| @ 5| |A B t C t E   177. | @ 5| @ 5| @ 5| @ 5|A t B t C t D t     

88. | | @ 2| @ 5| @ 2|A B t C t D t    178. | @ 5| @ 5| @ 2| @ 5|A t B t C t E t     

89. | @ 5| @ 5| @ 5| |A t B t C t E    179. | | @ 2| @ 5| @ 5| @ 2|A B t C t D t E t     

90. | | @ 5| @ 0| @ 2|A B t D t E t    180. | @ 5| @ 5| @ 5| @ 2|A t B t C t D t     

 


