
HAL Id: hal-01265793
https://hal.science/hal-01265793v1

Submitted on 1 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dependent Types and Multi-Monadic Effects in F*
Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine

Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet,
Pierre-Yves Strub, Markulf Kohlweiss, et al.

To cite this version:
Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, et al.. De-
pendent Types and Multi-Monadic Effects in F*. 43rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), 2016, St. Petersburg, Florida, United States. pp.256-
270, �10.1145/2837614.2837655�. �hal-01265793�

https://hal.science/hal-01265793v1
https://hal.archives-ouvertes.fr

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
CDependent Types and Multi-monadic Effects in F⋆

Nikhil Swamy1 Cătălin Hriţcu2 Chantal Keller1,3 Aseem Rastogi4

Antoine Delignat-Lavaud2,5 Simon Forest2,5 Karthikeyan Bhargavan2 Cédric Fournet1,3

Pierre-Yves Strub6 Markulf Kohlweiss1 Jean-Karim Zinzindohoue2,5 Santiago Zanella-Béguelin1

1Microsoft Research 2Inria 3MSR-Inria 4UMD 5ENS Paris 6IMDEA Software Institute

Abstract

We present a new, completely redesigned, version of F⋆, a language
that works both as a proof assistant as well as a general-purpose,
verification-oriented, effectful programming language.

In support of these complementary roles, F⋆ is a dependently
typed, higher-order, call-by-value language with primitive effects
including state, exceptions, divergence and IO. Although primitive,
programmers choose the granularity at which to specify effects
by equipping each effect with a monadic, predicate transformer
semantics. F⋆ uses this to efficiently compute weakest preconditions
and discharges the resulting proof obligations using a combination
of SMT solving and manual proofs. Isolated from the effects, the
core of F⋆ is a language of pure functions used to write specifications
and proof terms—its consistency is maintained by a semantic
termination check based on a well-founded order.

We evaluate our design on more than 55,000 lines of F⋆ we
have authored in the last year, focusing on three main case studies.
Showcasing its use as a general-purpose programming language,
F⋆ is programmed (but not verified) in F⋆, and bootstraps in both
OCaml and F#. Our experience confirms F⋆’s pay-as-you-go cost
model: writing idiomatic ML-like code with no finer specifications
imposes no user burden. As a verification-oriented language, our
most significant evaluation of F⋆ is in verifying several key modules
in an implementation of the TLS-1.2 protocol standard. For the
modules we considered, we are able to prove more properties, with
fewer annotations using F⋆ than in a prior verified implementation
of TLS-1.2. Finally, as a proof assistant, we discuss our use of F⋆ in
mechanizing the metatheory of a range of lambda calculi, starting
from the simply typed lambda calculus to System Fω and even µF⋆,
a sizeable fragment of F⋆ itself—these proofs make essential use
of F⋆’s flexible combination of SMT automation and constructive
proofs, enabling a tactic-free style of programming and proving at a
relatively large scale.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics; F.3.1 [Logics
and Meanings of Programs]: Specifying and Verifying and Reason-
ing about Programs—Mechanical verification

Keywords verification; proof assistants; effectful programming

1. Introduction

Proving and programming are inextricably linked, especially in de-
pendent type theory, where constructive proofs are just programs.
However, not all programs are proofs. Effective programmers rou-
tinely go beyond a language of pure, total functions and use features
like non-termination, state, exceptions, and IO—features that one
does not usually expect in proofs. Thus, while Coq (The Coq devel-
opment team) and Agda (Norell 2007) are functional programming
languages, one does not typically use them for general-purpose
programming—that they are implemented in OCaml and Haskell is
a case in point. Outside dependent type theory, verification-oriented
languages like Dafny (Leino 2010) and WhyML (Filliâtre and Paske-
vich 2013) provide good support for effects and semi-automated
proving via SMT solvers, but have logics that are much less pow-
erful than Coq or Agda, and only limited support (if at all) for
higher-order programming.

We aim for a language that spans the capabilities of interac-
tive proof assistants like Coq and Agda, general-purpose program-
ming languages like OCaml and Haskell, and SMT-backed semi-
automated program verification tools like Dafny and WhyML. This
language would provide the nearly arbitrary expressive power of a
logic like Coq’s, but with a richer, effectful dynamic semantics. It
would provide the flexibility to mix SMT-based automation with
interactive proofs when the SMT solver times out (not uncommonly
when working with rich theories and quantifiers). And it would
support idiomatic higher-order, effectful programming with the pre-
dictable, call-by-value cost model of OCaml, but with the encapsu-
lation of effects provided by Haskell.

Although such a language may seem beyond reach, several
research groups have made significant progress, targeting various
pieces of this agenda. For example, with Hoare Type Theory,
Nanevski et al. (2008) extend Coq with support for interactive proofs
of imperative programs. With Trellys and Zombie, Casinghino et al.
(2014) design new dependently typed languages for interactive
proving and programming while accounting for non-termination
as an effect. With prior versions of F⋆, Swamy et al. (2013a)
provide SMT-based automated proving for an ML-like programming
language, but lack the ability to do interactive proofs. Still, as far as
we are aware, currently no tool enables the mixture of proving and
general-purpose programming with the degree of automation that
we desire.

Building on this prior work, we present a fresh design and
implementation of F⋆, a new candidate in pursuit of this goal, that
straddles the threefold roles of programming language, program-

verification tool, and proof assistant.1 We use F⋆ to write effectful
programs; to specify them (to whatever extent necessary) within

1 Henceforth, we refer to the new language presented in this paper as “F⋆”
while referring to the old, defunct version as “old-F⋆”.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

POPL’16, January 20–22, 2016, St. Petersburg, FL, USA
ACM. 978-1-4503-3549-2/16/01...$15.00
http://dx.doi.org/10.1145/2837614.2837655

256

its functional core using dependent and refinement types; and to
verify them using an SMT solver that automatically discharges
proofs. Where proof obligations exceed the capabilities of SMT
solving, interactive proofs can be provided within the language.
Full verification is not mandatory in F⋆—the language encourages
a style in which programs are verified incrementally. Programs
with ML types are easily type-checked syntactically, while more
precise specifications demand deeper proofs. After type-checking,
F⋆ programs can be extracted to OCaml or F# for execution.

Validating F⋆’s capabilities for programming, we have boot-
strapped it using about 20,500 lines of F⋆ (in addition to a few
platform-specific libraries in OCaml and F#). We have also used F⋆

to verify key parts of other complex, effectful programs, such as the
cryptographic protocols underlying the TLS-1.2 standard (Dierks
and Rescorla 2008). Evaluating F⋆ as a proof assistant, we have for-
malized several lambda calculi, and have even used it to mechanize
part of the metatheory of µF⋆, a sizable fragment of F⋆. While it is
premature to claim that F⋆ is simultaneously a replacement for, say,
Coq, OCaml and Dafny, our initial experience is encouraging—we
know of no other language that supports semi-automated proving
and general-purpose programming to the same extent as F⋆. Next,
we summarize a few key features of the language.

Primitive effects in a lattice of monads Enabling F⋆ to play its
varied roles is a design that structures the language around an
extensible lattice of monadic effects. F⋆’s runtime system provides
primitive support for all the effects provided by its extraction
targets. Although available primitively, programmers can specify
the semantics of each effect using several monads of weakest-
precondition predicate transformers.

The granularity at which to model effects is the programmer’s
choice, as long as (1) a distinguished PURE monad isolates pure
computations from all other effects; (2) a monad GHOST encapsu-
lates purely specificational computations (for erasure); and, (3) a
monad ALL provides a semantics to all the primitive effects together.
Within these bounds, the programmer has the freedom to refine the
effects of the language as she sees fit, arranging them in a join semi-
lattice. By default, the lattice F⋆ provides is shown below (with an
implicit top element, ⊤).

PURE //

,,

DIV //

,,

STATE // ALL

GHOST EXN

33

PURE computations are at the very bottom. Using the PURE monad,
programmers write pure, recursive functions. This monad forms
F⋆’s logical core. It soundness depends crucially on a semantic
termination check based on a well-founded order. The DIV effect is
for possibly divergent code; STATE for stateful computations; and
EXN for programs that may raise exceptions. Each edge in the lattice
corresponds to a monad morphism. Using these morphisms, the F⋆

type-checker implicitly lifts specifications in one monad to another.
Other arrangements of the effects are possible (e.g., splitting readers
and writers from STATE) depending on the needs of an application,
as long as the semantics of each user-defined effect is compatible
with the semantics of ALL the effects.

Expressive specifications with dependent, refinement types Spec-
ifications in F⋆ are expressed using dependent types—types indexed
by arbitrary total expressions, with type-level computation defining
an equivalence relation on types. In addition to predicate trans-
formers, programmers use indexed inductive types and refinement
types (types of the form x:t{φ}, the sub-type of t restricted to those
expressions e:t that validate the logical formula φ [e/x]). Refinement
types provide a natural notion of proof irrelevance and promote
code re-use via subtyping.

Type-and-effect inference, with semi-automated proving Given
a program and a user-provided specification, F⋆ infers a type and

effect for it, together with a predicate transformer that fully captures
the semantics of that computation. It then generates proof obligations
to show that the specification is compatible with the inferred
predicate transformer. These proof obligations can be discharged
semi-automatically using a combination of SMT solving and user-
provided proof terms.

Summary of contributions Overall, our contribution is a com-
prehensive, new language design, evaluated both theoretically and
empirically. The specific technical advances of our work include the
following:

(1) We present the design of a new programming language, F⋆, with
a dependent type-and-effect system, based on a new, extensible,
multi-monadic predicate-transformer semantics (introduced in
§2, and covered throughout).

(2) To ensure that F⋆’s core language of pure functions is normal-
izing, we employ a novel semi-automatic semantic termination
checker based on a well-founded relation (§3.3).

(3) We illustrate the expressiveness and flexibility of F⋆’s multi-
monadic design using a series of programming examples, includ-
ing an encoding of hyper-heaps, a new, region-inspired (Tofte
and Talpin 1997) model of the heap that provides lightweight
support for separation and framing for stateful verification (§5).
This illustrates that F⋆ is flexible enough to allow programmers
to use memory abstractions of their own.

(4) We have formalized a core calculus µF⋆: a substantial fragment
of F⋆, distilling the main ideas of the language. We prove
syntactic type soundness, which implies partial correctness of
the program logic (§6.1). Additionally, we use logical relations
to prove consistency and weak normalization of pF⋆, a fragment
of µF⋆ with only pure computations (§6.2).

(5) We have developed a full-fledged open source implementation
of F⋆, and report on our experience using it. As a programming
language, we report on using F⋆ as its own implementation
language (§7.1). As a proof assistant, we use F⋆ to formalize
several lambda calculi, including µF⋆ (§3, §6.1, and §7.2). As
a verification system, we report on using F⋆ in the re-design
and verification of key portions of an existing implementation of
TLS-1.2 by Bhargavan et al. (2013) (§5.3 and §7.3). In all cases,
the expressiveness of F⋆’s type system, the flexibility afforded
by its user-configurable effects, the semantic termination check,
and the proof automation helped make verification feasible at
scale.

Online material The F⋆ toolchain is open source, and binary
packages are available for all major platforms. We provide an
interactive editor mode in addition to the batch-mode compiler.
An extensive interactive, online tutorial presents many examples
and discusses details of the language beyond the limits of this
paper. Additional materials are available online, including the
full definitions and proofs for µF⋆ and pF⋆. By necessity, the
examples in this paper are greatly simplified versions of larger F⋆

developments available online. All of these additional materials are
available at https://www.fstar-lang.org/papers/mumon/.

2. Dijkstra monads, generalized in F⋆

One point of departure for the new design of F⋆ is the work of
Swamy et al. (2013b), who propose the Dijkstra monad as a way
of structuring and inferring specifications for higher-order stateful
programs. In this section, we briefly review their proposal, note
several shortcomings, and discuss how these are alleviated by F⋆’s
generalized notion of a lattice of Dijkstra monads.

We intend for this section to serve as a high-level introduction
to the new design of F⋆. While the details are also important, we

257

https://www.fstar-lang.org/papers/mumon/

suggest that a reader not already familiar with monads and dependent
types pay attention mainly to the high-level points in the prose.

2.1 Background: A single Dijkstra monad

Dijkstra (1975) defines the semantics of a program in terms of its
weakest pre-condition, a function that transforms a predicate on the
outcome of a computation to a predicate on that computation’s
input. In the context of a dependently-typed language, Swamy
et al. (2013b) observe that these weakest pre-condition predicate
transformers form a monad at the level of types (rather than at the
level of computations).

To illustrate this point, consider the semantics of stateful compu-
tations that may raise exceptions. The outcome of such a computa-
tion is a possibly exceptional result and a final state, whereas its input
is an initial state. Weakest pre-conditions for such computations, as
usual, transform predicates on the outcome (aka post-conditions) to
predicates on the input (aka pre-conditions).

Using the notation of F⋆ (which we explain more later), we can
express these weakest pre-conditions as follows, where state is the
type of the program state; either a string represents either a normal
result Inl (v:a) or an error Inr (msg:string); and Type is the universe
of types. We define WP a, the signature of a weakest pre-condition
predicate transformer for stateful, exceptional computations that
may return a-typed results, i.e., wp:WP a is a function that trans-
forms a post-condition predicate q:Post a into a pre-condition p:Pre.
It may be useful to some readers to think of WP a as a continuation
monad.

Post (a:Type) = either a string →state →Type
Pre = state →Type
WP (a:Type) = Post a →Pre

Viewing WP a as a monad, Swamy et al. define two combinators
return and bind. The weakest pre-condition of a pure computation
returning x:t is return t x—to prove any post, it suffices to prove
post (Inl x) s, for the normal result x and the (unchanged) initial state
of the computation.

return (a:Type) (x:a) : WP a = fun (post:Post a) (s:state) →post (Inl x) s

The weakest pre-condition of the sequential composition of two
computations is bind t1 t2 wp1 wp2: when run in s0, if the first com-
putation produces state s1 and either (1) raises an exception Inr msg,
in which case one must prove the post-condition immediately; or
(2) returns normally with Inl v, in which case one runs the second
computation with v and s1, proving the post-condition of its result.

bind (a:Type) (b:Type) (wp1:WP a) (wp2 : (a →WP b)) : WP b =
fun (post:Post b) (s0:state) →wp1 (fun x s1 →

match x with
| Inr msg →post (Inr msg) s1
| Inl v →wp2 v post s1) s0

Swamy et al. relate a computation to its semantics by introducing
computation types M t wp, where M is itself a monad parameterized
by its result type t (as usual) and additionally indexed by wp: WP t,
its monadic weakest-precondition predicate transformer, i.e., M is
a monad-indexed monad. Informally, in a total correctness setting,
given a computation e : M t wp, and a post-condition q, if e is run
in a state s satisfying wp q s, then e produces a result v and state s’

satisfying q v s’. This technique is reminiscent of the parameterized
monad of Atkey (2009) and the Hoare monad of Nanevski et al.
(2008), who use computation types H p t q to describe computations
with pre-condition p, t-typed result, and post-condition q.

2.2 Some limitations of a single Dijkstra monad

The Dijkstra monad has several benefits, e.g., type inference is built
into the weakest pre-condition calculus. However, we observe that
using just a single monad for all computations also has significant

downsides. Using a single monad to describe all computations is
akin to using a single type to describe all values. A uni-effect system,
arguably adequate from a semantic perspective, is too coarse for
practical purposes, particularly in a verification-oriented language.

Non-modular specifications. With just a single monad, even in
effect-free code, or in code that only uses some effects, one must
write specifications that mention all the effectful constructs. For
example, with only a single monad at one’s disposal, even a pure
computation 1 + 2 is specified as M int (fun post h →post (Inl 3) h),
i.e., one explicitly states that 1 + 2 returns 3 without raising an ex-
ception and does not modify the state. Similarly, the computation !x,
when x:ref t would be typed as M t (fun post h →post (Inl (h[x])) h)

meaning that it returns the value of x dereferenced in the current
heap; that it does not raise an exception; and that it leaves the state
unmodified. This is cumbersome from a notational perspective and
non-modular. While the notational overhead may be minimized by
adopting various abbreviations, the non-modularity is pervasive: es-
tablishing that !x does not modify the state and raises no exceptions
requires a logical proof about its predicate transformer. Worse, while
one can prove (via its predicate transformer) that 1 + 2 does not mu-
tate the state and does not raise exceptions, that it does not read the
state is not evident from its specification. Indeed, to prove that it
does not read the state would require moving to a richer logic, using,
for example, separation logic, or a logic of program equivalence.
Likewise, proving that !x does not internally modify the state before
restoring it is also difficult.

Combinatorial explosion of VCs. Consider sequentially compos-
ing n computations e1, . . . ,en. When all these computations are
typed in a single monad M of state and exceptions, the verification
condition (VC) built by repeated applications of bind contains n
control paths, rather than just one. In the worst case where each sub-
computation may indeed raise an exception, one cannot do much
better. Unfortunately, even in the common case where, say, many of
the ei are exception-free, using a single monad produces VCs with
a number of paths equal to the worst case. When combined with
conditionals and exception handlers, this results in an exponential
explosion of VCs, even for simple, pure code. Proving that many
of these paths are infeasible requires building and then performing
logical proofs over needlessly enormous VCs.

2.3 Multiple Dijkstra monads in F⋆

We would prefer instead to type a computation e in a monad suited
specifically to the effects exhibited by e, and no others. For example,
pure expressions like 1 + 2 should be typed using the PURE monad,
whose predicate transformers make no mention of exceptions or
state; !x in, say, a Reader monad which makes no mention of ex-
ceptions or the output state. With multiple monads, specifications
are compact and modular; infeasible paths in verification conditions
are pruned at the outset without needless logical proof; and many
properties (e.g., state independence) can be established with simple
syntactic arguments. Of course, multiple monads are a strict gener-
alization: when syntactic arguments are insufficient, one can always
fall back on detailed logical proofs. F⋆’s lattice of Dijkstra monads
enables all of this, as described next.

Rather than committing to a single Dijkstra monad at the outset,
F⋆ provides a lattice of such monads, each describing the semantics
of some subset of all the effects provided by the language. For the
moment, as in the previous section, we focus on state and exceptions
as the only effects (returning to non-termination later). We define
three Dijkstra monads, PURE.WP, STATE.WP, EXN.WP, and show
how they can be combined piecewise to produce ALL.WP, a single
monad (identical to the monad WP defined in §2.1) that captures the
semantics of all the effects together.

258

PURE.WP To define the semantics of pure computations, we intro-
duce (below) a Dijkstra monad PURE.WP. A weakest pre-condition
for pure computations with an a-typed result transforms pure post-
conditions (predicates on a) to pre-conditions (propositions). The
semantics of returning a value requires simply proving the post-
condition of the value; and sequential composition of pure computa-
tions is just function composition of their WPs. The main point of
distinction is that PURE.WP makes no mention of any of the effects.

PURE.Post a = a →Type
PURE.Pre = Type
PURE.WP a = PURE.Post a →PURE.Pre
PURE.return a (x:a) (post:PURE.Post a) = post x
PURE.bind a b (wp1:PURE.WP a) (wp2: a →PURE.WP b) : WP b =
fun (post:PURE.Post b) →wp1 (fun x →wp2 x post)

STATE.WP The predicate transformer semantics of stateful func-
tions is captured by STATE.WP below, which, as always, transforms
post-conditions to pre-conditions. Stateful post-conditions relate the
result of a computation to the final state; while pre-conditions are
predicates on the input state. Notice there is nothing about excep-
tions. The combinator return t x shows how to return a value as a
stateful computation—the state is unchanged. Meanwhile, bind de-
fines the semantics of sequential composition by threading the state
through. In addition to the combinators below, we also give seman-
tics for the primitives for reading, writing and allocating state—we
leave that for §5.2.

STATE.Post a = a →state →Type
STATE.Pre = state →Type
STATE.WP a = STATE.Post a →STATE.Pre
STATE.return a (x:a) (post:STATE.Post a) = fun s →post x s
STATE.bind a b (wp1:STATE.WP a) (wp2: a →STATE.WP b) : WP b =
fun (post:STATE.Post b) s0 →wp1 (fun x s1 →wp2 x post s1) s0

EXN.WP For exceptions, post-conditions are predicates on ex-
ceptional results, while pre-conditions are just propositions. The
semantics of exceptional computations is just as in §2.1, except with
no mention of state. To complete the semantics of exceptions, one
would also provide a semantics for raise and exception handlers.

EXN.Post a = either a string →Type
EXN.Pre = Type
EXN.WP a = EXN.Post a →EXN.Pre
EXN.return a (x:a) (post:EXN.Post a) = post (Inl x)
EXN.bind a b (wp1:EXN.WP a) (wp2: a →EXN.WP b) : WP b =
fun (post:EXN.Post b) →wp1 (fun x →match x with

| Inr msg →post (Inr msg)
| Inl v →wp2 v post)

Combining effects, piecewise To describe how effects compose,
we specify morphisms among the monads. The morphisms define a
partial order on the effects; for coherence, we require this order to
form a join semi-lattice. For instance, to combine pure and stateful
computations, we define:

PURE.lift state a (wp:PURE.WP a) : STATE.WP a =
fun (post:STATE.Post a) s →wp (fun x →post x s)

To combine pure functions with exceptions, we define:

PURE.lift exn a (wp:PURE.WP a) : EXN.WP a =
fun (post:EXN.Post a) s →wp (fun x →post (Inl x))

When combining state and exceptions, one usually has two
choices, depending on whether the state is propagated or reset
when an exception is raised. However, since exceptions and state
are primitive in F⋆, we do not have the freedom to choose. In the
primitive semantics of F⋆, as is typical, when an exception is raised,
the state is preserved and propagated, rather than being reset—
the monad ALL.WP (exactly the monad from §2.1) captures this

primitive semantics. To combine state and exceptions, we define the
two morphisms below:

STATE.lift all a (wp:STATE.WP a) : ALL.WP a =
fun (post:ALL.Post a) s →wp (fun x s’ →post (Inl x) s’) s

EXN.lift all a (wp:EXN.WP a) : ALL.WP a =
fun (post:ALL.Post a) s →wp (fun x →post x s)

The metatheory of F⋆ (§6.1) requires these lift functions to be
monad morphisms, and it is easy to check that they satisfy the
morphism laws, i.e., that the returns, binds and lifts commute in the
expected way.

2.4 A lattice of monad-indexed monads for computations

The type system of F⋆ includes higher-rank polymorphism, type
operators of arbitrary order, inductive type families, dependent
function types, and refinement types.

F⋆ is a call-by-value language. Following Moggi (1989), we
observe that such a language has an inherently monadic semantics.
Every expression has a computation type M t wp, for some effect M,
while functions have arrow types with effectful co-domains, e.g.,
fun x →e has a dependent type of the form x:t →M t’ wp, where the
formal parameter x is in scope to the right of the arrow. Traditionally,
the effect M is left implicit in type systems for ML; but, in F⋆,
the computation type M t wp ties a computation to its semantic
interpretation as a predicate transformer, i.e., its wp. We introduce
a computation type constructor M for each Dijkstra monad, e.g.,
PURE for PURE.WP, EXN for EXN.WP etc.

The main typing judgment for F⋆ has the following form:

Γ ⊢ e : M t wp

meaning that in a context Γ, for any property post dependent on
the result of an expression e and its effect, if wp post is valid in the
initial configuration, then (1) e’s effects are delimited by M; and (2)
e returns a t-typed result and a final configuration satisfying post, or
diverges, if permitted by M.

The lattice on the Dijkstra monads induces a lattice on the
computation-type constructors—we have M ⊑ M′ whenever we
have a morphism M.lift M’ between M.WP and M’.WP. Every two
elements M and M’ are guaranteed to have a least upper-bound, but
if the upper bound happens to be the implicit ⊤ element, we reject
the program—this means that effects M and M’ cannot be composed.
We write M ⊔ M’ for the partial function computing the non-⊤ least
upper-bound of two computation-type constructors.

The type system of F⋆ is designed to infer the least effect for
a computation, if one exists. The lattice and monadic structure of
the effects are relevant throughout the type system, but nowhere as
clearly as in (T-Let), the (derived) rule for sequential composition,
which we illustrate below.

Γ ⊢ e1 : M1 t1 wp1 Γ,x:t1 ⊢ e2 : M2 t2 wp2 M=M1 ⊔M2

wp′1 =M1.lift M wp1 wp′2 =M2.lift M wp2 x 6∈ FV (t2)

Γ ⊢ let x = e1 in e2 : M t2 (M.bind wp′1(fun x →wp′2))

The sequential composition of computations is captured semanti-
cally by the sequential composition of predicate transformers, i.e.,
by M.bind. (We will see the role of M.return in §3.2.) To compose
computations with different effects, M1 and M2, we lift them to M,
the least non-⊤ effect that includes them both. Since M is unique,
the effect computed for the program is unambiguous—this would
not be the case if we used only, say, a partial order instead of a join
semi-lattice on the effects. Since the lifts are morphisms, we get the
expected properties of associativity of sequential composition and
lifting—the specific placement of lifts is semantically irrelevant.

The next three sections present F⋆ in detail via examples of
pure, divergent, ghost and stateful computations—we leave detailed
examples of exceptions to the online material.

259

3. Purity and divergence

F⋆ treats divergence differently than it does all other effects. Whereas
the semantics of effects like state are given using predicate trans-
formers, the semantics of divergence is built in to the language.
In essence, given a predicate transformer like STATE.WP, one can
read its semantics in either a total- or partial-correctness setting—a
programmer-provided attribute specifies which. By default, only
the PURE and GHOST monads are interpreted in a total-correctness
semantics; the other effects implicitly include divergence and are
interpreted in a partial-correctness setting.

To control the use of divergence, the language provides two
constructs for building recursive computations. The first, is for
fixpoints in PURE and GHOST; the second for general-recursive
computations in any of the partial correctness monads. In this
section, we focus on the PURE monad, its fixpoint construct, and
other core features of F⋆ including refinement and indexed types.
We illustrate how these features are used for both programming
and proving in the PURE monad, F⋆’s logical core; we also give an
example of divergence in the DIV monad.

For our examples, we present fragments of the metatheory of a
tiny lambda calculus. Although tiny, this is representative of many
calculi for which we have mechanized soundness proofs in F⋆. For
example, our online materials illustrate how the proof techniques
sketched here scale to our formalization of µF⋆. We start, however,
with a brief overview of F⋆’s concrete syntax and summarize the
main typing features it provides.

3.1 Basic F⋆

Expressions in F⋆ are essentially the same as F# or Caml-light, with
some minor differences that we point out as necessary. The main
innovation of F⋆ is at the level of types—we point out the main
typing features and provide a brief summary of their semantics,
next.

Lambdas, binders and applications The syntax fun (b1) ... (bn) →
t introduces a lambda abstraction, where the bi range over binding
occurrences for variables. Binding occurrences are of the form
x:t for binding a variable at type t. A binding occurrence may be
preceded by an optional #-mark, indicating the binding of an implicit
parameter. In lambda abstractions, we generally omit annotations
on bound variables (and the enclosing parentheses) when they can
be inferred. Applications are written using juxtaposition, as usual.

Logical specifications The language of logical specifications φ
and predicate transformers wp is included within the language of
types. We use standard syntactic sugar for the logical connectives
∀, ∃, ∧ , ∨ , =⇒ , and ⇐⇒ , which can be encoded in types. We also
overload these connectives for use with boolean expressions—F⋆

automatically coerces booleans to Type as needed.

Computation types Computation types m t have the form M t τ1 . . .τn,
where M is an effect constructor, t is the result type, and each τi is a
term (e.g., a type or an expression). For primitive effects, computa-
tion types have the shape M t wp, where the index wp is a predicate
transformer. We also use a number of derived forms. For example,
the primitive computation-type PURE (t:Type) (wp:PURE.WP t) has
two commonly used derived forms, shown below. For terms that are
unconditionally pure, we introduce Tot:

effect Tot (t:Type) = PURE t (fun post →∀x. post x)

When writing specifications, it is often convenient to use traditional
pre- and post-conditions instead of predicate transformers—the
abbreviation Pure defined below enables this.

effect Pure (t:Type) (p:PURE.Pre) (q:PURE.Post t)
= PURE t (fun post →p ∧ ∀x. q x =⇒ post x)

For better readability, we write Pure t (requires p) (ensures q) ,
Pure t p q; “requires” and “ensures” are semantically insignificant.

Arrows Function types and kinds are written b →m t—note the
lack of enclosing parentheses on b; as we will see, this convention
leads to a more compact notation when used with refinement types.
The variable bound by b is in scope to the right of the arrow. When
the co-domain does not mention the formal parameter, we may omit
the name of the parameter. For example, we may write int →m int.
We use the Tot effect by default in our notation for curried function
types: on all but the last arrow, so long as the result type is not Type,
the implicit effect is Tot.

b1 → ... →bn →M t wp , b1 →Tot (... →Tot (bn →M t wp))

So, the polymorphic identity function has type #a:Type →a →Tot a.
When the result type of the final computation is Type, then the
default effect is Tot. For example, the type of the list type constructor
is written Type →Type. These defaults reflect the common cases
in our code base and our intention to interoperate smoothly with
existing ML dialects.

Inductive types Aside from arrows and primitive types like int, the
basic building blocks of types in F⋆ are recursively defined indexed
datatypes. For example, we give below the abstract syntax of the
simply typed lambda calculus in the style of de Bruijn (we only
show a few cases).

type typ = | TUnit : typ | TArr: arg:typ → res:typ →typ
type var = nat
type exp = | EVar : x:var →exp | ELam : t:typ →body:exp →exp ...

The type of each constructor is of the form b1 → ... →bn →T τ1 ... τm,
where T is type being constructed. This is syntactic sugar for b1 →
... →bn →Tot (T τ1 ... τm), i.e., constructors are total functions.

Given a datatype definition, F⋆ automatically generates a few
auxiliary functions: for each constructor C, it provides a discrimi-
nator is C; and for each argument a of each constructor, it provides
a projector C.a. We also use syntactic sugar for records, tuples and
lists, all of which are encoded as datatypes. Unlike Coq, F⋆ does not
generate induction principles for datatypes. Instead, as we will see in
§3.3, the programmer directly writes fixpoints and general recursive
functions, and a semantic termination checker ensures consistency.

Types can be indexed by both pure terms and other types. For
example, we show below an inductive type that defines the typing
judgment of the simply-typed lambda calculus. The TyVar case
shows discriminators and projectors in action, and also illustrates
refinement types in F⋆, which we discuss next.

type env = var →Tot (option typ)
val extend: env →typ →Tot env
let extend g t y = if y=0 then Some t else g (y − 1)
type typing : env →exp →typ →Type =
| TyLam : #g:env →#t:typ →#e1:exp →#t’:typ →

typing (extend g t) e1 t’ →typing g (ELam t e1) (TArr t t’)
| TyApp : #g:env →#e1:exp →#e2:exp →#t11:typ →#t12:typ →

typing g e1 (TArr t11 t12) →typing g e2 t11 →
typing g (EApp e1 e2) t12

| TyVar : #g:env →x:var{is Some (g x)}
→typing g (EVar x) (Some.v (g x))

Refinement types A refinement of a type t is a type x:t{φ} inhab-
ited by expressions e : Tot t that additionally validate the formula
φ [e/x]. For example, F⋆ defines the type nat = x:int{x ≥ 0}. Using
this, we can write the following code:

let abs : int →Tot nat = fun n → if n < 0 then −n else n

Unlike strong sums Σx:t.φ (Sozeau 2007) in other dependently
typed languages, F⋆’s refinement types x:t{φ} are subtypes of t (as

260

https://www.fstar-lang.org/papers/mumon/artifacts/#metatheory

such, they more closely resemble predicate subtyping (Rushby et al.
1998)); for example, nat <: int. Furthermore, n:int can be implicitly
refined to nat whenever n ≥ 0. Specifically, the representations of
nat and int values are identical—the proof of x ≥ 0 in x:int{x ≥ 0} is
never materialized. As in other languages with refinement types, this
is convenient in practice, as it enables data and code reuse, proof
irrelevance, as well as automated reasoning.

A new subtyping rule allows refinements to better interact with
function types and effectful specifications, further improving code
reuse. For example, the type of abs declared above is equivalent by
subtyping to the following refinement-free type:

x:int →Pure int (requires true) (ensures (fun y →y ≥ 0))

We also introduce syntactic sugar for mixing refinements and
dependent arrows, writing x:t{φ} →m t for x:(x:t{φ}) →m t.

Refinement types are more than just a notational convenience:
nested refinements within types can be used to specify properties
of unbounded data structures, and other invariants. For example,
the type list nat describes a list whose elements are all non-negative
integers, and the type ref nat describes a heap reference that always
contains a non-negative integer.

Refinements and indexed types work well together. Notably,
pattern matching on datatypes comes with a powerful exhaustiveness
checker: one only needs to write the reachable cases, and F⋆ relies
on all the information available in the context, not just the types of
the terms being analyzed. For example, we give below an inversion
lemma proving that the canonical form of a well-typed closed value
with an arrow type is a λ -abstraction with a well-typed body. The
indexing of d with emp, combined with the refinements on e and t,
allows F⋆ to prove that the only reachable case for d is TyLam.
Furthermore, the equations introduced by pattern matching allow F⋆

to prove that the returned premise has the requested type.

let emp x = None
let value = function ELam | EVar | EUnit →true | → false
val inv lam: e:exp{value e} →t:typ{is TArr t} →d:typing emp e t →
Tot (typing (extend emp (TArr.arg t)) (ELam.body e) (TArr.res t))

let inv lam e t (TyLam premise) = premise

3.2 Intrinsic vs. extrinsic proofs

F⋆’s refinement types are more powerful than prior systems of re-
finement types, including old-F⋆ (Swamy et al. 2013a), the line of
work on liquid types (Rondon et al. 2008), and the style of refine-
ment types used by Freeman and Pfenning (1991), that only support
type-based reasoning about programs, i.e., the only properties one
can derive about a term are those that are deducible from its type.

For example, in those systems, given id: int → int, even though
we may know that id=fun x →x, proving that id 0 = 0 is usually not
possible (unless we give id some other, more precise type). This
limitation stems from the lack of a fragment of the language in
which functions behave well logically; int → int functions may have
arbitrary effects, thereby excluding direct reasoning. Specifically,
given id:int → int, we cannot prove that 0 has type x:int{x=id 0}.
In the aforementioned systems, this type may not even be well-
formed, since id 0 is not necessarily effect-free. In those systems, one
can ask the question whether id 0 : x:int{x=0}—the type x:int{x=0}

is well-formed, since it does not contain any potentially effectful
expressions. Still, given id:int → int, prior refinement type systems
fail to prove id 0 : x:int{x=0}. One would have to enrich the type of
id to x:int →y:int{x=y} to conclude the proof—we call the style in
which one enriches the type of a function as part of its definition
“intrinsic” proving.

With its semantic treatment of effects, F⋆ supports direct rea-
soning on pure terms, simply by reduction. For example, F⋆ proves
List.map (fun x →x + 1) [1;2;3] = [2;3;4], given the standard definition
of List.map with no further annotations—as expected by users of

type theory. This style of “extrinsic” proof allows proving lemmas
about pure functions separately from the definitions of those func-
tions. F⋆ also provides a mechanism to enrich the type of a function
extrinsically, i.e., after proving a lemma about a function, we can
use F⋆’s subtyping relation to give the function a more precise type.

The typing rule below enables this feature by using monadic
returns. In effect, having proven that a term e is pure, we can lift
it wholesale into the logic and reason about it there, using both its
type t and its definition e.

(T-Ret)
Γ ⊢ e : Tot t

Γ ⊢ e : PURE t (PURE.return t e)

We discuss in detail the tradeoffs between intrinsic and extrinsic
proofs, and transitioning between them, in our online tutorial.

3.3 Semantic proofs of termination

As in any type theory, the soundness of our logic relies on
the normalization of pure terms. We provide a new fully se-
mantic termination criterion based on a well-founded partial or-
der (≺) : #a:Type →#b:Type →a →b →Type, over all terms (pro-
nounced “precedes”). Our rule for typing fixpoints makes use of the
≺ order to ensure that the fixpoint always exists, as shown below:

(T-Fix)

t f = y:t →PURE t’ wp Γ ⊢ δ : Tot (y:t →Tot t’’)

Γ,x:t, f:(y:t{δy ≺ δx} →PURE t’ wp) ⊢ e : PURE t’ wp

Γ ⊢ let rec fδ : t f = fun x →e : Tot t f

When introducing a recursive definition of the form let rec fδ : (y:t →
PURE t’ wp) = fun x →e, we type the expression e in a context that
includes x:t and f at the type y:t{δy ≺ δx} →PURE t’ wp, where the
decreasing metric δ is any pure function. Intuitively, this rule ensures
that, when defining the i-th iterate of f x, one may only use previous
iterates of f defined on a strictly smaller domain. We think of δ as
a decreasing metric on the parameter, which F⋆ picks by default
(as shown below) but which can also be provided explicitly by the
programmer.

We illustrate rule (T-Fix) for typing factorial:

let rec factorial (n:nat) : nat = if n=0 then 1 else n ∗ factorial (n 1)

The body of factorial is typed in a context that includes n:nat and
factorial: m:nat{m ≺ n} →Tot nat, i.e., in this case, F⋆ picks δ=id.
At the recursive call factorial (n-1), it generates the proof obligation
n-1 ≺ n. Given the definition of the ≺ relation below (which includes
the usual ordering on nat), F⋆ easily dispatches this obligation.

Our style of termination proofs is in contrast with the type
theories underlying systems like Coq, which rely instead on a
syntactic “guarded by destructors” criterion. As has often been
observed (e.g., by Barthe et al. 2004, among several others),
this syntactic criterion is brittle with respect to simple semantics-
preserving transformations, and hinders proofs of termination for
many common programming patterns.

3.3.1 The built-in well-founded ordering

The F⋆ type-checker relies on the following ≺ ordering:

(1) Given i, j : nat, we have i ≺ j ⇐⇒ i < j. The negative integers are
not related by the ≺ relation.

(2) Elements of the type lex t are ordered lexicographically, as
detailed below.

(3) The sub-terms of an inductively defined term precede the term
itself, that is, for any pure term e with inductive type T 6=lex t, if
e=D e1 . . . en we have ei ≺ e. for all i.

(4) For any function f : x:t →Tot t’ and v:t, f v ≺ f.

For lexicographic orderings, F⋆ includes in its standard prelude
the following inductive type (with its syntactic sugar):

261

https://fstar-lang.org/tutorial/tutorial.html#sec-to-type-intrinsically-or-to-prove-lemmas

1 type presub = {
2 sub:var →Tot exp; (∗ the substitution itself ∗)

3 renaming:bool; (∗ an additional field for the proof; made ghost in Sec. 4 ∗)

4 } (∗ sub invariant: if the flag is set, then the map is just a renaming ∗)

5 type sub = s:presub{s.renaming =⇒ (∀ x. is EVar (s.sub x))}
6 let sub inc : sub = {renaming=true; sub=(fun y →EVar (y+1))}
7 let ord b = function true →0 | false →1 (∗ an ordering on bool ∗)

8 val subst : e:exp →s:sub →Pure exp (requires true)
9 (ensures (fun e’ →s.renaming ∧ is EVar e =⇒ is EVar e’))

10 (decreases %[ord b (is EVar e); ord b (s.renaming); e])
11 let rec subst e s = match e with
12 | EUnit →EUnit
13 | EVar x →s.sub x
14 | EApp e1 e2 →EApp (subst e1 s) (subst e2 s)
15 | ELam t body →
16 let shift sub : var →Tot (e:exp{s.renaming =⇒ is EVar e}) =
17 fun y → if y=0 then EVar y else subst (s.sub (y-1)) sub inc in
18 ELam t (subst body ({s with sub=shift sub}))

Figure 1. Parallel substitutions on λ -terms

type lex t = LexTop : lex t | LexCons: #a:Type →a → lex t → lex t

where %[v1;...;vn] , LexCons v1 ... (LexCons vn LexTop)

For well-typed pure terms v, v1, v2, v1’, v2’, the ordering on lex t is
the usual one:

• LexCons v1 v2 ≺ LexCons v1’ v2’, if and only if, either v1 ≺ v1’;
or v1=v1’ and v2 ≺ v2’.

• If v:lex t and v 6= LexTop, then v ≺ LexTop.

For functions of several arguments, one aims to prove that a
metric on some subset of the arguments decreases at each recursive
call. By default, F⋆ chooses the metric to be the lexicographic list
of all the non-function-typed arguments in order. When the default
does not suffice, the programmer can override it with an optional
decreases annotation, as we will see below.

As an illustration of the flexibility of F⋆’s termination check, our
online materials show how to encode accessibility predicates (Bove
2001), a technique that encompasses a wide range of termination ar-
guments. Programmers can use this to define their own well-founded
orders for custom termination arguments. While this illustrates the
power of F⋆’s termination check, we found that the detour via ac-
cessibility predicates is very rarely needed (as opposed to Coq, for
instance).

3.3.2 Parallel substitutions: A non-trivial termination proof

Consider the simply typed lambda calculus from §3.1. It is con-
venient to equip it with a parallel substitution that simultaneously
replaces a set of variables in a term. Proving that parallel substitu-
tions terminate is tricky—e.g., Adams (2006); Benton et al. (2012);
Schäfer et al. (2015) all give examples of ad hoc workarounds to
Coq’s termination checker. Figure 1 shows a succinct, complete
development in F⋆.

Before looking at the details, consider the general structure of
the function subst at the end of the listing. The first three cases are
easy. In the ELam case, we need to substitute in the body of the
abstraction but, since we cross a binder, we need to increment the
indexes of the free variables in all the expressions in the range of
the substitution—of course, incrementing the free variables is itself
a substitution, so we just reuse the function being defined for that
purpose: we call subst recursively on body, after shifting the range
of the substitution itself, using shift subst.

Why does this function terminate? The usual argument of being
structurally recursive on e does not work, since the recursive call
at line 17 uses s.sub (y-1) as its first argument, which is not a sub-
term of e. Intuitively, it terminates because in this case the second

argument is just a renaming (meaning that its range contains only
variables), so deeper recursive calls will only use the EVar case,
which terminates immediately. This idea was originally proposed
by Altenkirch and Reus (1999).

To formalize this intuition in F⋆, we instrument substitutions
sub with a boolean flag renaming, with the invariant that if the
flag is true, then the substitution is just a renaming (lines 1–5).
This field is computationally irrelevant; in §4, we’ll see how to use
F⋆’s ghost monad to ensure that it can be erased. Notice that given
a nat →Tot exp, it is impossible to decide whether or not it is a
renaming; however, by augmenting the function with an invariant,
we can prove that substitutions are renamings as they are defined.
Using this, we provide a decreases metric (line 10) as the lexical
ordering %[ord b (is EVar e); ord b (s.renaming); e]).

Now consider the termination of the recursive call at line 17. If s
is a renaming, we are done; since e is not an EVar, and s.sub (y -1) is,
the first component of the lexicographic ordering strictly decreases.
If s is not a renaming, then since e is not an EVar, the first component
of the lexicographic order may remain the same or decrease; but
sub inc is certainly a renaming, so the second component decreases
and we are done again.

Turning to the call at line 18, if body is an EVar, we are done since
e is not an EVar and thus the first component decreases. Otherwise,
body is a non-EVar proper sub-term of e; so the first component
remains the same while the third component strictly decreases. To
conclude, we have to show that the second component remains the
same, that is, subst shift is a renaming if s is a renaming. The type
of subst shift captures this property. In order to complete the proof
we finally need to strengthen our induction hypothesis to show that
substituting a variable with a renaming produces a variable—this is
exactly the purpose of the ensures-clause at line 9.

Such lexicographic orderings are used at scale not just in our
definitions but also in our proofs. For instance, in the type soundness
proof for µF⋆ (§6) substitution composition, the substitution lemma,
and preservation all use lexicographic orderings.

3.4 Divergence in the DIV effect

The predicate transformer DIV.WP is identical to PURE.WP, ex-
cept its semantics is read in a partial-correctness setting. Accord-
ingly, a computation with effect DIV may not terminate. The non-
termination is safely encapsulated within the monad, ensuring that
the logical core remains consistent. We use the abbreviations Dv,
which is to DIV as Tot is to PURE.

effect Dv (a:Type) = DIV a (fun post →∀x. post x)

We may use DIV when a termination proof of a pure function
requires more effort than the programmer is willing to expend, and,
of course, when a function may diverge intentionally.

For example, we give below a strongly typed, but potentially
divergent evaluator for simply typed lambda calculus programs—the
type guarantees that the type of the term being reduced is preserved.
The evaluator is defined using typecheck and typed step, a type-
checker and single-step reducer—we only show their signatures.

val typecheck: env →exp →Tot (option typ)
val typed step : e:exp{is Some (typecheck emp e) ∧ not(value e)}

→Tot (e’:exp{typecheck emp e’ = typecheck emp e})
val eval : e:exp{is Some (typecheck emp e)}

→Dv (v:exp{value v ∧ typecheck emp v = typecheck emp e})
let rec eval e = if value e then e else eval (typed step e)

When defining computations in one of the partial-correctness
effects, F⋆ allows the use of a general-recursive variant of the
let rec form and does not check that recursive calls respect the
well-founded ordering. Of course, with more effort, one can also
prove that an evaluator for the simply typed lambda calculus is

262

https://www.fstar-lang.org/papers/mumon/artifacts/#accessibility

normalizing. We provide several such proofs online, e.g., using
hereditary substitutions.

4. Translucent abstractions with GHOST

Leveraging its lattice of effects, F⋆ uses a monad GHOST to
encapsulate computationally irrelevant code. Using this feature, we
revisit the example of Figure 1 and show how to mark specification-
only parts of the program for erasure. In particular, we redefine the
type presub as shown below:

type presub = { sub: var →Tot exp; renaming: erased bool }

The field renaming is now typed as an erased bool, meaning that its
value is irrelevant to all non-GHOST code, and hence safe to erase.

We define GHOST (a:Type) (wp:GHOST.WP a) to be an abstract
alias of the PURE (a:Type) (wp:PURE.WP a), i.e., the predicate trans-
former semantics of GHOST computations is identical to that for
PURE computations (interpreted in the total correctness sense),
except the GHOST monad is a distinct point in F⋆’s effect lat-
tice. We provide a morphism, PURE.lift GHOST, an identity from
PURE.WP a to GHOST.WP a, but none in the other direction. Type-
level expressions are allowed to be GHOST computations—pure
computations are implicitly lifted to GHOST when used at the type
level. Computations with GHOST effect cannot be composed di-
rectly with any non-ghost computations. In essence, specification-
only computations are isolated from computationally relevant code.
For convenience, we define the abbreviation G, which is to GHOST

as Tot is to PURE.

effect G (a:Type) = GHOST (a:Type) (fun p →∀x. p x)

When combined with the other abstraction features provided
F⋆, the encapsulation of specifications provided by the GHOST

monad can be used for targeted erasure within computations. For
example, F⋆’s standard library includes the module Ghost below,
which provides an abstract type erased a—the private qualifier hides
the definition of erased a from clients of the module, while within the
module, erased a simply unfolds to a. The only function we provide
to destruct the erased type is reveal, which is marked with the G

effect—meaning it can only be used in specifications. As such, the
erased a type is opaque to clients and any total expression returning
an erased t can safely be erased to ().

module Ghost
private type erased (a:Type) = a
val reveal: #a:Type →erased a →G a
let reveal x = x
val erase: #a:Type →x:a →Tot (e:erased a{reveal e = x})
let erase x = x

Importantly, the abstraction of erased a is not completely opaque.
Within specifications, the abstraction is “translucent”—using reveal,
one can extract the underlying a-typed value, as in the revised type
sub below. To construct erased values, we use the erase function, as
in the initializer of the renaming field below.

type sub = s:presub{reveal s.renaming =⇒ (∀ x. is EVar (s.sub x))}
let sub inc : sub = {renaming=erase true; sub=(fun y →EVar (y+1))}

The rest of the code in Figure 1 is unchanged, except that every
use of s.renaming in the specifications is wrapped with a call to
reveal. We plan to implement a procedure to automatically insert
calls to reveal within specifications, along the lines of the bool-to-
Type coercion that we already insert automatically.

5. Specifying and verifying stateful programs

We now turn to some examples of verified stateful programming.
A primary concern that arises in this context is the manner in

which the heap is modeled—specific choices in the model have
a profound impact on the manner in which programs are specified
and verified, particularly with respect to (anti-)aliasing properties
of heap references. We show how to instantiate F⋆’s STATE monad,
picking different representations for the state and discussing various
tradeoffs. A new contribution is a region-inspired, structured model
of memory that we call hyper-heaps. Illustrating the use of hyper-
heaps, we present an example adapted from our ongoing work on
verifying an implementation of TLS-1.2.

5.1 A simple model of the heap

F⋆’s dynamic semantics provides state primitively, where the state
is a map from heap references, locations ℓ : ref t, to values of type t.
To model this, F⋆’s standard library provides a type heap, with the
following purely specificational (i.e., ghost) functions. The functions
sel and upd obey the standard McCarthy (1962) axioms, as well as
has (upd h r v) s = (r=s || has h s). Using the function has, we define
dom, the set of references in the domain of the heap. We trust that
this model is a faithful, logical representation of F⋆’s primitive heap.

val sel: #t:Type →heap → ref t →G t
val upd: #t:Type →heap → ref t →t →G heap
val has: #t:Type →heap → ref t →G bool

When defining the STATE monad in §2.3, we left the represen-
tation of the type state unspecified. One obvious instantiation for
state is heap, using which one can provide signatures for the stateful
primitives to dereference, mutate, and allocate references. Although
feasible—we have written a fair amount of code using heap as our
model of memory—we find the style wanting, for the following
reason. A common verification task is to prove that mutations to
a data structure a do not interfere with the invariants of another
structure b whose references are disjoint from the references of a.
Stating and proving this property using just the heap type is heavy:
we need to state a quadratic number of inequalities between the
references of a and b, and we must reason about all of them using
a quadratic number of proof steps. Our online tutorial provides a
detailed example illustrating the problem, which is not unique to
our system but also affects tools like Dafny (Leino 2010) that adopt
a similar, flat memory model.

This “framing” problem for stateful verification has been ex-
plored in depth, not least by the vast literature on separation logic.
Rather than moving to separation logic (which could, we speculate,
be encoded within F⋆’s higher-order logic, at the expense of giving
up on SMT automation), we address the framing problem by adopt-
ing a richer, structured model of memory, called hyper-heaps and
described next.

5.2 Hyper-heaps

Hyper-heaps provide an abstraction layer on top of the con-
crete, flat heap provided by the F⋆ runtime. Like separation
logic, hyper-heaps provide a memory model that caters well
to the common case of reasoning about mutations to objects
that reside in disjoint regions of memory. The basic structure
provided by hyper-heaps is illustrated in the figure alongside.

n

n.0 …

…

…

region region

region region

… …

0

0.i 0.0 n.j

abstract
concrete

heap:

hyper-heap:

… … … … … …

region

region region

region

At the bottom, we
have the concrete
heap with a flat ar-
rangement of heap
cells (correspond-
ing to references).
The abstraction
layer above parti-
tions these heap
cells into several
disjoint regions—
the disjointness of

263

https://www.fstar-lang.org/papers/mumon/artifacts/#hereditary
https://fstar-lang.org/tutorial/tutorial.html#sec-lightweight-framing-with-hyper-heaps

heap cells between regions is a key invariant of the abstraction. By
allocating references from disjoint objects in separate regions, the
invariant guarantees that all their references are pairwise distinct.
Beyond the disjointness invariant, hyper-heaps provide a tree-shaped
hierarchy of regions, by associating with each region a region identi-
fier, a path from a distinguished root to a specific region associated
with a particular fragment of the heap. The hierarchical structure
supports allocating an object v in some region 0, and its disjoint
sub-objects in regions 0.0 and 0.1; by allocating another object v’ in
a set of regions rooted at region 1, our disjointness invariant ensures
that all the references in v and v’ are pairwise distinct.

Formalizing this in F⋆, we define below the type of hyper-heaps,
hh, which maps region identifiers rid to disjoint heap fragments—the
type map t s is a map from t to s with functions msel, mupd, mhas,

and mdom with a semantics analogous to the corresponding func-
tions on the heap type. Note that rid is an erased type; it has no
computational content. We define the type of hyper-heap references:
rref r a is a reference to an a-value residing in region r—the index r

is ghost. We also define some utilities to easily read and write rrefs.

type rid = erased (list nat)
type hh = m:map rid heap{∀ {r1,r2} ⊆mdom m. r1 6=r2

=⇒ dom (msel m r1) ∩ dom(msel m r2)= /0}
private type rref (r:rid) (a:Type) = ref a
let hsel #a #r hh (l:rref r a) = Heap.sel (msel hh r) l
let hupd #a #r hh (l:rref r a) v = mupd hh r (Heap.upd (msel hh r) l v)

Next, we provide signatures for stateful operations to create a
new region, to allocate a reference in a region, and to dereference
and mutate a reference.

val new region: r0:rid →STATE rid (fun post hh →
∀r h0. not (mhas hh r) ∧ extends r r0 =⇒ post r0 (mupd hh r h0))

val alloc: #t:Type → r:rid →v:t →STATE (rref r t) (fun post hh →
∀l. fresh hh l =⇒ post l (hupd hh l v))

val (!): #t:Type →#r:rid → l:rref r t →STATE t (fun post hh →
post (hsel hh l) hh)

val (:=): #t:Type →#r:rid → l:rref r t →v:t →STATE unit (fun post hh →
post () (hupd hh l v))

Hyper-heaps are a strict generalization of heaps. One can always
allocate all objects in the same region, in which case the hyper-heap
structure provides no additional invariants. However, making use of
the hyper-heap invariants where possible makes specifications much
more concise. As it turns out, they also make verifying programs
much more efficient. On some benchmarks, we have noticed a
speedup in verification time of more than a factor of 20 when using
hyper-heaps, relative to heap—we explain below why.

First, without hyper-heaps, consider a computation f () run in a
heap h0 and producing a heap h1 related by modifies {x1,...,xn} h0 h1,
meaning that h1 differs from h0 at most in x1 ... xn (and in some
new references). Next, consider Q = fun h →P (sel h y1) ... (sel h ym),
such that Q h0 is true. In general, to prove Q h1 one must prove a
quadratic number of inequalities, e.g., to prove sel h1 y1 = sel h0 y1

requires proving y1 6∈ {x1,...,xn}.
However, if one can group references that are generally read

and updated together into regions with a common root, one can
do much better. For example, moving to hyper-heaps, suppose we
place all the x1, ..., xn in region rx. Suppose y1,...,ym are all allo-
cated in some region ry. Now, given two hyper-heaps hh0 and hh1

related by modifies {rx} hh0 hh1, consider proving the implication
P (hsel hh0 y1) ... (hsel hh0 yn) =⇒ P (hsel hh1 y1) ... (hsel hh1 ym). Ex-
panding the definition of hsel, it is easy to see that to prove this,
we only need to prove that msel hh0 ry = msel hh1 ry, which involves
proving that rx and ry do not overlap. Having proven this fact once,
we can simply rewrite all occurrences of the sub-term msel hh0 ry to
msel hh1 ry everywhere in our formula and conclude immediately—
in an SMT solver, such rewrites are immediate via unification. Thus,
in such (arguably common) cases, what initially required proving

a number of inequalities quadratic in the number of references is
now quadratic in the number of regions—in this case, just one. Of
course, in the degenerate case where one has just one reference
per region, this devolves back to the performance one would get
without regions at all. However, typically the number of regions is
much smaller than the number of references they contain. The use
of region hierarchies serves to further reduce the number of region
identifiers that one refers to, making the constants smaller still.

Whereas regions have generally been used for memory man-
agement, hyper-heaps are just an abstraction for reasoning about
anti-aliasing. As such, we run programs using the flat heap provided
by the runtime system of our target language. Rather than moving
to a region-based type system, F⋆ is expressive enough to encode
a region-like discipline—hyper-heaps are just implemented as a
library in F⋆. Other heap models can be used instead, so long as they
can be realized on a flat heap. The metatheory of F⋆ discussed in §6
identifies sufficient conditions for a user-defined memory model to
be realized on the flat heap provided primitively—we have shown
that hyper-heaps meet those conditions.

5.3 Hyper-heaps in action: Stateful authenticated encryption

The example of this section distills some essential elements from our
verification of two modules in the core stateful, transport encryption
scheme of TLS-1.2—the focus is on modeling and verifying their
ideal functionality. The full development, with further subtleties, is
available online. The TLS verification is further discussed in §7.3.

At a high level, one of the guarantees provided by the TLS
protocol is that the messages are received in the same order in which
they were sent. To achieve this, TLS builds a stateful, authenticated
encryption scheme from a (stateless) “authenticated encryption with
additional data” (AEAD) scheme (Rogaway 2002). Two counters are
maintained, one each for the sender and receiver. When a message
is to be sent, the counter value is authenticated using the AEAD
scheme along with the rest of the message payload and the counter is
incremented. The receiver, in turn, checks that the sender’s counter
in the message matches hers each time a message is received and
increments her counter.

Cryptographically, the ideal functionality behind this scheme
involves associating a stateful log with each instance of a encryp-
tor/decryptor key pair. At the level of the stateless functionality, the
guarantee is that every message sent is in the log and the receiver
only accepts messages that are in the log—no guarantee is provided
regarding injectivity or the order in which messages are received.
At the stateful level, we again associate a log with each key pair and
here we can guarantee that the sends and receives are in injective,
order-preserving correspondence. Proving this requires relating the
contents of the logs at various levels, and, importantly, proving that
the logs associated with different instances of keys do not interfere.
We sketch the proof in F⋆.

We start with a few types provided by the AEAD functionality.

module AEAD
type encryptor = Enc : #r:rid → log:rref r (seq entry) →key →encryptor
and decryptor = Dec : #r:rid → log:rref r (seq entry) →key →decryptor
and entry = Entry : ad:nat →c:cipher →p:plain →basicEntry

An encryptor encapsulates a key (an abstract type whose hidden
representation is the raw bytes of a key) with a log of entries stored in
the heap for modeling the ideal functionality. Each entry associates
a plain text p, with its cipher c and some additional data ad:nat.
The log is stored in a region r, which we maintain as an additional
(erasable) field of Enc. The decryptor is similar. It is worth pointing
out that although AEAD is a stateless functionality, its cryptographic
modeling involves the introduction of a stateful log. Based on a
cryptographic assumption, one can view this log as ghost.

On top of AEAD, we add a Stateful layer, providing stateful
encryptors and decryptors. StEnc encapsulates an encryption key

264

https://www.fstar-lang.org/papers/mumon/artifacts/#mitls

provided by AEAD together with the sender’s counter, ctr, and its
own log of stateful entries, associates plain-texts with ciphers. The
log and the counter are stored in a region r associated with the
stateful encryptor. StDec is analogous.

module Stateful
type st enc = StEnc : #r:rid → log: rref r (seq st entry) →ctr: rref r nat

→key:encryptor{extends (Enc.r key) r} →st enc
and st dec = StDec : #r:rid → log: rref r (seq st entry) →ctr: rref r nat

→key:decryptor{extends (Dec.r key) r} →st dec
and st entry = StEntry : c:cipher →p:plain →st entry

Exploiting the hierarchical structure of hyper-heaps, we store the
AEAD.encryptor in a distinct sub-region of r—this is the meaning
of the extends relation. By doing this, we ensure that the state
associated with the AEAD encryptor is distinct from both log and
ctr. By allocating distinct instances k1 and k2 in disjoint regions,
we can prove that using k1 (say decrypt k1 c) does not alter the
state associated with k2. In this simplified setting with just three
references, the separation provided is minimal; when manipulating
objects with sub-objects that contain many more references (as
in our full development), partitioning them into separate regions
provides disequalities between their references for free.

Encryption To encrypt a plain text p, we call Stateful.encrypt,
shown below. It calls AEAD GCM.encrypt with its current counter
as the additional data to associate with this message, and obtains a
cipher text c. Then, we increment the counter, and return c. In the
ideal cryptographic functionality, we formally model this by also
associating c with p and recording it by snoc’ing it to the log.

let encrypt (StEnc log ctr key) p =
let c = AEAD GCM.encrypt key !ctr p in
log := snoc !log (StEntry c p); ctr := !ctr + 1; c

Main invariant The main invariant of these modules is captured
by the predicate st inv (e:st enc) (d:st dec) (hh:hh). It states that the
log at the AEAD level is in point-wise correspondence with the
Stateful log, where the additional data at each entry in the AEAD

log is the index of the corresponding entry in the Stateful log.
Additionally, the encryptor’s counter is always the length of the log,
and the decryptor’s counter never exceeds the encryptor’s counter.
In addition, we have several technical heap invariants: the stateful
encryptor and decryptor are in the same region; they share the same
log at both levels, but their counters are distinct.

Decryption To try to decrypt a cipher c with a stateful key d, we
need to first prove that d satisfies the invariant. Then, decrypt d c

calls AEAD GCM with the current value of the counter. If it succeeds,
we increment the counter.

val decrypt: d:st dec →c:cipher →ST (option plain)
(requires (fun h →∃e. st inv e d h))
(ensures (fun h0 res h1 →modifies {StDec.r d} h0 h1
∧ let log0, log1 = hsel h0 (StDec.log d), hsel h1 (StDec.log d) in

let r0, r1 = hsel h0 (StDec.ctr d), hsel h1 (StDec.ctr d) in
log0 = log1 ∧ (∃ e. st inv e d h1) ∧
(match res with
| Some p → r1 = r0 + 1 ∧ p = Entry.p (index log r0)
| → length log=r0 ∨ c 6= Entry.c (index log r0))))

let decrypt (StDec log ctr key) c =
let res = AEAD GCM.decrypt key !ctr c in
if is Some res then ctr := !ctr + 1; res

Via the invariant, we can prove several properties about a well-
typed call to decrypt d c. First, we prove that it modifies only regions
that are rooted at the region of d. In this the hierarchical structure of
hyper-heaps is helpful— modifies rs h0 h1 is a predicate defined to
mean that h1 may differ from h0 only in regions that are rooted at
one of the regions in the set rs (and, possibly, in any new allocated

regions that are not present in h0). Next, we prove that the stateful
logs are unmodified, and that the invariant is maintained. Finally, we
prove that we return the current entry in the reader’s current position
in the log and then advance the position, except if there are no more
entries or if the cipher is incorrect.

6. Metatheory

Working out the metatheory of the full F⋆ language is a work in
progress. Our eventual goal is a mechanized metatheory for F⋆ in
F⋆, and given that F⋆ is also implemented in F⋆, we aim to use its
verification machinery to verify the implementation as well—we are
still far from this goal.

For the moment, we identify two subsets of F⋆ called µF⋆ (micro-
F⋆) and pF⋆ (pico-F⋆), which contain many interesting features of
the full language, and study their metatheory in various ways. For
µF⋆, we prove partial correctness for the specifications of effectful
computations via a syntactic progress and preservation argument.
For pF⋆, a pure fragment of µF⋆, we prove weak normalization and
logical consistency using logical relations. Both these developments
are manual proofs.

6.1 Partial correctness of µF⋆

µF⋆ is a lambda calculus with dependent types; type operators;
subtyping; semantic termination checking; a lattice of user-defined
monads; predicate transformers; user-defined heap models, and
higher-order state. This covers most of the semantically interesting
features of the language; however, there are some notable exclusions.
Prominently, µF⋆ lacks inductive datatypes (we bake-in a few
constants, like int and bool) and their corresponding match construct,
providing if0, a branch-on-zero construct, instead. µF⋆ also does
not cover erasure via GHOST. We aim to scale µF⋆ to cover the full
language in the future.

Figure 2 lists the expression typing rules of µF⋆ that have
not already been shown earlier (except the trivial rule for typing
constants). We use a more compact notation here rather than the
concrete syntax of F⋆ (e.g. λ instead of fun and math fonts). The
rules for variables and λ -abstractions are unsurprising. In each case,
the expression is in Tot, since it has no immediate side-effects.

Typing an application is subtle—we have two rules, depending
on whether the function’s result type is dependent on its argument.
If it is, then only rule (T-App1) applies, since we need to substitute
the formal parameter x with the argument, we require the actual
argument e2 to be pure; if e2 were impure, the substitution would
cause an effectful term to escape into types, which is meaningless.
In rule (T-App2), since the result is not dependent on the argument,
no substitution is necessary and the argument can be effectful. Note
that, in both cases, the formal parameter x can appear free in the
predicate transformer wp of the function’s (suspended) body.

Rule (T-If0) connects the predicate transformers using an iteM

operator, which we expect to be defined for each effect. For instance,
for PURE it is defined as follows:

itePURE wp wp1 wp2 p =
bindPURE wp λ i. i=0 ⇒ wp1 p ∧ i 6=0 ⇒ wp2 p

Subsumption (T-Sub) connects expression typing to the subtyp-
ing judgment for computations, which has the form Γ ⊢ M′ t ′ wp′ <:
M t wp. The subtyping judgment for computations only has the
(S-Comp) rule, listed in Figure 3; it allows lifting from one effect to
another, strengthening the predicate transformer, and weakening the
type using a mutually inductive judgment Γ ⊢ t <: t ′. To strengthen
the predicate transformer, it uses a separate logical validity judg-
ment Γ |= φ that gives a semantics to the typed logical constants and
equates types and pure expressions up to convertibility—this is the
judgment that our implementation encodes to the SMT solver. The
judgment Γ ⊢ t <: t ′ includes a structural rule (Sub-Fun) and a rule

265

(T-Var)

Γ,x : t,Γ′ ⊢ ok

Γ,x : t,Γ′ ⊢ x : Tot t

(T-Abs)

Γ ⊢ t : Type Γ,x:t ⊢ e : M t wp

Γ ⊢ λx:t.e : Tot (x:t → M t wp)

(T-App1)

x ∈ FV (t ′) Γ ⊢ e1 : M (x:t → M t ′ wp) wp1 Γ ⊢ e2 : Tot t

Γ ⊢ e1 e2 : M (t ′[e2/x]) (bindM wp1 λ .wp[e2/x])

(T-App2)

x 6∈ FV (t ′) Γ ⊢ e1 : M (x:t → M t ′ wp) wp1 Γ ⊢ e2 : M t wp2

Γ ⊢ e1 e2 : M t ′ (bindM wp1 (λ .bindM wp2 λx.wp))

(T-If0)
Γ ⊢ e0 : M int wp0 Γ ⊢ e1 : M t wp1 Γ ⊢ e2 : M t wp2

Γ ⊢ if0 e0 then e1 else e2 : M t (iteM wp0 wp1 wp2)

(T-Sub)
Γ ⊢ e : M′ t ′ wp′ Γ ⊢ M′ t ′ wp′ <: M t wp

Γ ⊢ e : M t wp

Figure 2. Remaining expression typing rules of µF⋆

(Sub-Fun)
Γ ⊢ t ′ <: t Γ,x:t ′ ⊢ M s wp <: M′ s′ wp′

Γ ⊢ (x:t → M s wp)<: (x:t ′ → M′ s′ wp′)

(Sub-Conv)

Γ |= t1 = t2 Γ ⊢ t2 : Type

Γ ⊢ t1 <: t2

(Sub-Trans)

Γ ⊢ t1 <: t2 Γ ⊢ t2 <: t3

Γ ⊢ t1 <: t3

(S-Comp)

M 6M′
Γ ⊢ t <: t ′ Γ ⊢ wp′ : K′

M(t ′)

Γ |= downM′ (wp′ =⇒M′ (liftM′

M wp))

Γ ⊢ M t wp <: M′ t ′ wp′

Figure 3. Subtyping rules of µF⋆

for type conversion via the logical validity judgment (Sub-Conv).
Conversion based on logical reasoning gives F⋆ a flavor of exten-
sional type theories like Nuprl (Constable et al. 1986). We find this
to be of central importance to the usability of the language since it
enables cast-free conversions via SMT-based logical proofs.

We write wp =⇒M wp′ for the predicate transformer built from
the point-wise implication of wp and wp′, e.g., wp =⇒PURE wp′

is λ p.wp p =⇒ wp′ p. This notation extends to other connectives
naturally. We also write downM wp for a universally quantified
application of wp, e.g., downPURE wp = ∀p. wp p. We also expect
predicate transformers to be monotone, e.g., in the PURE monad,
∀p1 p2.(p1 =⇒ p2) =⇒ wp p1 =⇒PURE wp p2.

Dynamic semantics µF⋆ expressions have a standard CBV op-
erational semantics. Reduction has the form (H,e)→ (H ′,e′), for
heaps H and H ′ mapping locations to values. We additionally give a
liberal reduction semantics to µF⋆ types (t t ′) and pure expres-
sion (e → e′) that includes both CBV and CBN. The type system
considers types up to conversion.

Monad lattice In addition to lifts being monad morphisms, our
theorems rely on the following properties: the lifts should be
transitively closed; should preserve validity of the downM operator;
commute over lifted connectives like =⇒M ; and should preserve
monotonicity of predicate transformers. Additionally, the signatures
of the effectful primitives like ! and := in a user-defined monad
must, when lifted to ALL, match the semantics expected for these
operations in the ALL monad.

Heap model abstraction We have formalized the conditions re-
quired of a user-defined heap model to ensure that it can be re-
alized using the primitive flat heap. We define an isomorphism

v ::= n | λx:t.e | let rec(f d :t) x = e n ::= O | S n

e,d ::= x | v | e1 e2 | S e | pred e eO eS

t ::= nat | x:t → c c ::= PURE t wp

wp ::= bind wp1(x:t).wp2 | return e | tot | up φ |

and wp1 wp2 | ite φ wp1 wp2 | forall x:t. wp

φ ::= e1<e2 | e1=e2 | φ1 ⇒ φ2 | φ1 ∧φ2 | ∀x:t.φ | ∀αt . φ | α(e)

Figure 4. Syntax of pF⋆

between a state s in such a heap model and the primitive heap H,
Γ ⊢ s ∼ asHeap(H), and show that it is preserved by reduction.

Meta-theorems We prove a partial correctness theorem for M
computations (where M is any point in the user-defined monad
lattice) w.r.t. the standard CBV operational semantics of µF⋆. The
theorem states that a well-typed M expression is either a value that
satisfies ALL post-conditions consistent with its (lifted) predicate
transformer, or it steps to another well-typed M expression.

Theorem 1 (Partial Correctness of M). If Γ ⊢ (H,e) : M t wp then
for all s, post such that Γ ⊢ s ∼ asHeap(H), Γ ⊢ post : PostALL(t)
and Γ |= liftALLM wp post s, either e is a value and Γ |= post e s, or

(H,e)→ (H ′,e′) such that for some Γ
′ ⊇ Γ, Γ

′ ⊢ (H ′,e′) : M t wp′,

Γ
′ ⊢ s′ ∼ asHeap(H ′), and Γ

′ |= liftALLM wp′ post s′.

For PURE expressions, we prove the analogous property, but in
the total correctness sense and with respect to liberal reduction.

Theorem 2 (Total Correctness of PURE). If · ⊢ e : PURE t wp then
for all p s.t. · ⊢ p : PostPURE(t) and · |= wp p, we have e →∗ v such
that v is a value, and · |= p v.

Both these results assume the consistency of the validity judg-
ment and total correctness additionally relies on the weak normal-
ization of PURE terms.

6.2 Consistency and weak normalization of pF⋆

We have proved both consistency and weak normalization for pF⋆, a
pure fragment of µF⋆ including: dependent function types, a weakest
precondition calculus, logical formulas and the validity judgment,
fixpoints with metrics and our semantic termination check, a well-
founded ordering on naturals, and subtyping.

The syntax of pF⋆ is listed in Figure 4. Values (v) include natural
numbers (n), lambda expressions, and fixpoints with metrics as in F⋆.
Expressions (e) include variables, values, applications, and successor
and predecessor operations on naturals. Types (t) are simplified and
only include naturals and dependent functions (x:t → c), where
computation types c are always of the form PURE t wp. In pF⋆

weakest preconditions (wp) and logical formulas (φ) are represented
not as types, as in F⋆ and µF⋆, but as separate syntactic categories—
the wp connectives (like bind and return) are built in as primitives,
rather than encoded as type-level computation. The logic includes
order and equality comparison on naturals (e1<e2 and e1=e2) as
atomic formulas, and second-order quantification over predicates
(∀αt . φ), which we use for quantification over post-conditions.

The type system is simplified with respect to F⋆ and µF⋆, but still
includes the semantic termination check, a logical validity judgment
(|=), and subtyping. Reduction (→) in pF⋆ is CBV, deterministic,
and otherwise standard.

The termination argument uses logical relations and is similar to
the arguments of System T (Harper 2015) and Trellys/Zombie (Cas-
inghino et al. 2014). The logical relation is defined as 4 mutually
recursive functions: E for computation types, V for regular types, W
for wps, and P for formulas. Each of these functions carries an extra
parameter, σ , a map from predicate variables to sets of values which
we use to interpret post-conditions π . Post-conditions π are sets of

266

EJ c ,σK = {e | ∀π∈WJc,σK. ∃v. e→∗v∧ v∈V Jt,σK∧π v}

where c = PURE t wp

V J nat ,σK = {n}

V J x:t → c ,σK = {λx:t.e | ∀v∈V Jt,σK. e[v/x]∈EJc[v/x],σK}

∪ {let rec(f d :t) x = e | ∀v∈V Jt,σK.

e[v/x][let rec(f d :t) x/ f]∈EJc[v/x],σK}

WJPURE t (return e),σK = {π | ∀v. e →∗ v ⇒ π v}

WJPURE t (bind wp1(x:t ′).wp2),σK =

{π | WJPURE t ′ wp1,σK ∋ (λv. π ∈WJPURE t wp2[v/x],σK}

WJPURE t tot,σK = {π | ∀v ∈V Jt,σK. π v}

WJPURE t (up φ),σK = {π | PJφ ,σK}

WJPURE t (and wp1 wp2),σK =

WJPURE t wp1,σK∩WJPURE t wp2,σK

WJPURE t (ite φ wp1 wp2),σK =
{

π
(PJφ ,σK ⇒ π ∈WJPURE t wp1,σK)∧

(¬PJφ ,σK ⇒ π ∈WJPURE t wp2,σK)

}

WJPURE t (forall x:t ′. wp),σK =

{π | ∀v ∈V Jt ′,σK. π ∈WJPURE t wp[v/x],σK

PJ e1<e2 ,σK = ∃n1∃n2. e1 →
∗ n1 ∧ e2 →

∗ n2 ∧n1 < n2

PJ e1=e2 ,σK = ∃n. e1 →
∗ n∧ e2 →

∗ n

PJ φ1 ⇒ φ2 ,σK = PJφ1,σK ⇒ PJφ2,σK

PJ φ1 ∧ φ2 ,σK = PJφ1,σK ∧ PJφ2,σK

PJ α(e) ,σK = ∀v. e →∗ v ⇒ σ(α)(v)

PJ ∀αt . φ ,σK = ∀π. PJφ ,σ [α 7→ π]K

Figure 5. Logical relation for pF⋆

values that are closed under strong beta reduction and expansion (i.e.
below lambdas). The interpretation of computation types EJc,σK
is sets of expressions e that for all post-conditions π for which the
pre-condition of c holds (π∈WJc,σK) reduce to a value v that is in
the right V interpretation (v∈V Jt,σK) and for which π v holds. Note
that termination of e is conditioned on WJc,σK being non-empty,
i.e. on the existence of at least one post-condition π for which the
pre-condition of c holds. The interpretation V of regular types as
sets of values is standard. The interpretation W is more interesting
and maps each wp to the set of post-conditions π for which the
corresponding pre-condition with respect to wp holds. W is formally
defined on computation types instead of just wps, since in case the
wp is tot we only select post-conditions which hold for all values of
the right type. return e is interpreted as those post-conditions which
hold for all values to which e reduces. bind is interpreted as the bind
of the set monad. P associates a standard Tarski-style semantics to
formulas, using the mapping σ for predicate variables.

The consistency and weak normalization of pF⋆ are corollaries
of the soundness of syntactic validity and typing with respect to this
logical relation model.

Theorem 3 (Consistency of validity for pF⋆). · 6|= false

Theorem 4 (Weak normalization of PURE for pF⋆).
If · ⊢ e :PURE t wp and there exists a post-condition π for which the
pre-condition with respect to wp holds (i.e. π ∈WJPURE t wp, ·K),
then there exists a value v so that e →∗ v.

7. Summary of experiments

In this section we discuss three main applications of F⋆, supporting
our claim that the language is well suited to play three roles.

(1) Describing the use of F⋆ as general purpose programming lan-
guage, we discuss how the F⋆ implementation is bootstrapped;

(2) using F⋆ as a proof assistant, we provide a brief overview of the
formalization of µF⋆;

(3) using F⋆ as a program verification system, we discuss our
ongoing verification of the TLS protocol.

We refer the reader to our online material for a large number of
other examples, particularly emphasizing F⋆’s use as a proof assis-
tant and program verification system. The experimental numbers we
report below were collected on a Dell Precision 5810 workstation
(Core E5 1620v3 CPU with 16 GB of RAM) running the official
0.9.1.1 binary of F⋆ and Z3 4.4.0.

7.1 Bootstrapping F⋆

F⋆ is implemented in about 20,500 lines of F⋆ code. We use excep-
tions pervasively; IO for calling the SMT solver and reading source
files; state for unification, memoization, and in selected places for
fast lookup of symbols in the environment. Via bootstrapping (as
described next), F⋆ supports easy interoperability with both F# and
OCaml. As such, our compiler relies on the standard libraries and
parser generators provided by F# and OCaml.

Using a technique similar to the one in Coq (Letouzey 2008),
F⋆ implements code extraction to OCaml and F#. This extraction
mechanism selectively emits casts (Obj.magic in OCaml; checked
casts in F#) to ensure typability in the weaker type systems of
our target languages, while also erasing dependent types, higher-
rank polymorphism, and ghost computations. To bootstrap F⋆, we
programmed it initially in a subset of F⋆ that overlaps with F#;
compiled it with F#; then extracted F⋆ with itself to OCaml or F#;
and finally compiled the result with the standard toolchain for the
target language in question and distributed the resulting binaries.

Our experience attests to the ability to use F⋆ as any other ML
dialect and its “pay as you go” verification model—if one only
writes ML types, then verification is essentially no more than ML
type inference.

7.2 Formalizing µF⋆ in F⋆

We have also mechanically checked in F⋆ most of the progress and
preservation proof for the PURE effect of µF⋆—there are still a few
technical lemmas that we admit, as discussed below. This proof was
developed over a period of four months by one of the authors and
comprises ≈6,500 lines—checking the proof takes 3 minutes and
12 seconds. In the process of mechanically checking the proof of
µF⋆, as may be expected, we found and fixed several bugs in our
formal definitions.

To build up to the formalization of µF⋆, several of the authors
completed formalizations of several other typed lambda calculi,
starting from the simply typed lambda calculus and progressing
up to Fω , including some variants with sub-typing. The style of
mechanization is rather different than what is typical in tools like
Coq. The proof is developed without tactics, and employs a mixture
of constructive proofs (i.e., we directly write a proof term) and SMT
solving. This is enabled by our heavy reliance on SMT solving and
termination arguments based on lexical orderings—lacking these
features, such a style of proof seems unthinkable in Coq and maybe
even Agda. Still, this style of proving is not yet ideal. The admitted
lemmas in µF⋆ fall in two main classes and point to the need for
higher level control over proofs, as discussed next.

First, several proofs require massaging derivations in F⋆’s deeply
embedded entailment relation to prove logical tautologies. These
proofs are tedious to do by hand, and since they are tautologies
in F⋆’s deeply embedded logic, they are not easily dispatched by
Z3 either. Instead of pushing them through by brute force, we

267

hope to program tactics that can build proofs of these tautologies
automatically.

Second, within proofs, F⋆ relies primarily on Z3 for automati-
cally performing reduction. When this works, it works very well.
However, there are times when one needs to precisely control the
amount of reduction that is done (e.g, reduce by unfolding defi-
nitions n times, following by k β -reductions etc.). Exercising this
level of control requires intimate knowledge of F⋆’s SMT encodings,
which ought to be transparent to the programmer. Once again, we
hope to use a tactic language to provide better control over reduction.

Rather than devising a separate language, our current plan is
to base our design on Mtac (Ziliani et al. 2013) to allow the tactic
language of F⋆ to be F⋆ itself.

7.3 Verifying parts of TLS

As a long-term application of F⋆, we aim to produce a high-
performance, verified implementation of the TLS protocol (includ-
ing its latest 1.3 revision, currently under review by the IETF). Our
starting point is miTLS (Bhargavan et al. 2013), a reference imple-
mentation of TLS (from SSL 3.0 to TLS 1.2) with detailed proofs of
functional correctness, authentication, and confidentiality. miTLS is
verified using a patchwork of SMT-based proofs in F7 (Bhargavan
et al. 2010), Coq proofs where F7 is inadequate, code reviews, and
manual arguments. Because of the variety of tools and techniques
used, the overall proof is hard to follow and maintain. Lacking sup-
port for full dependent types, a weakest pre-condition calculus, and
refinement type inference, F7 programs are both axiom-heavy and
annotation-heavy, and require a careful coding discipline to prevent
inconsistencies. Large parts of miTLS are also purely functional,
since F7 does not support stateful verification, sometimes leading to
unnatural, inefficient code.

In re-designing and verifying a few modules in F⋆, we already
observe substantial improvements over miTLS. For example, we
largely eliminate the use of axioms in the modules we verified. By
relying on inference, we reduced the type annotations for message-
processing code roughly by half. We also make use of multiple
monads, including PURE, GHOST, DIV and STATE, with a mixture
of flat and hyper-heaps. Randomness and IO are encoded using state
at the moment, although we hope to model them more precisely in
the future. Exceptions are avoided because they would give raise
to side channels. We also re-proved handshake log integrity and
properties such as partial inverses between parsing and marshalling
messages directly in F⋆, without relying on Coq. By using stateful
models of cryptography, we avoid the informal code-review argu-
ments about the linear uses of keys of miTLS. Additionally, our
verified model of the ideal functionality of AEAD GCM is the first
of its kind—this proof was omitted in miTLS.

So far, we have re-designed, implemented and verified in F⋆

eight (out of 45) modules from miTLS, containing 2416 lines of
code that take a total of 40 seconds to verify. Our verified modules
cover message formatting and the core stateful record encryption
scheme, and can be found on the artifacts page of the online
materials. In addition, we have ported the proof of injectivity of
handshake message formatting from Coq to F⋆. While the new proof
is considerably shorter (4466 lines of F⋆, compared to 8577 lines of
Coq), it takes over half an hour to verify.

In the future, we plan to further this verification effort, first by
completing the proof of the full TLS 1.2 stack, then by extending
the proof to the upcoming version 1.3 of the protocol. We also
plan to continue to make pervasive use of stateful verification
to make the code more natural and efficient. We believe that the
reduced annotation burden, uniform proof methodology, and runtime
efficiency of F⋆ will ease the task of maintaining a verified TLS
stack as the standard evolves.

8. Related work

Adding dependency to an effectful language Integrating depen-
dent types within a full-fledged, effectful programming language
has been a long-standing goal for many researchers. An early effort
in pursuit of this agenda was Cayenne (Augustsson 1998) which
integrated dependent types within a Haskell-like language. Cayenne
intentionally permitted the use of non-terminating code within types,
making it inconsistent as a logic. Nevertheless, Cayenne was able to
check many useful program properties statically. More recently, old-
F⋆ (Swamy et al. 2013a) adds value-dependent types to an ML-like
language; Rondon et al. (2008) add decidable, refinement types to
OCaml and Vazou et al. (2014) adapt that work to Haskell—we have
compared these prior refinement type systems to F⋆ in §3.2. Mean-
while, monadic old-F⋆ (Swamy et al. 2013b) adds a single monad
to a variant of old-F⋆ without refinement types—§2.1 discusses its
limitations in detail. Liquid Haskell only has non-termination as an
effect and for soundness requires a termination check based on the
integer ordering, which is less expressive than ours. All these lan-
guages provide SMT-based automation, but do not have the ability
to support interactive proofs or to carry out functional correctness
proofs of effectful programs.

Clean-slate designs The Zombie language (Casinghino et al.
2014) investigates the design of a dependently typed language
that includes non-termination via general recursion. Zombie arose
from a prior language, Trellys (Kimmell et al. 2013)—we focus
primarily on Zombie here. Rather than using an effect system, Zom-
bie adds a “consistency qualifier” to isolate potentially divergent
programs from logical terms, with a notion of mobility that allows
moving first-order types implicitly from one fragment to another.
For functions, Zombie requires programmers to explicitly designate
the fragment in which they belong. While our effect system with
predicate transformers has a very different structure, there are also
some similarities. For example, we also require function types to be
explicit about the effects they may exhibit, in particular whether they
include divergence or not. In addition to general recursion, Zombie
provides a rule for fixpoints. Their rule (T-Ind) is similar in spirit
to our (T-Fix). However, (T-Fix) is integrated with F⋆’s refinement
types, WPs and other verification machinery, including the SMT
solver, enabling concise termination proofs in practice. On the other
hand, Zombie supports reasoning extrinsically about potentially
divergent code, whereas in F⋆, proofs about divergent programs are
carried out intrinsically, within its program logic. Zombie does not
address other effects or provide proof automation.

Another recent clean-slate design is Idris (Brady 2013), which
provides non-termination primitively and also an elegant style of al-
gebraic effects. Brady points out that algebraic effects are preferable
since they avoid some of the complications of composing effects
posed by monads. In F⋆, we show some of these complications can
be mitigated through the use of a type- and effect-system based on a
lattice of monads, which automates effect composition in a modular
manner. Additionally, effects in F⋆ are supported primitively in the
language, whereas in Idris, effectful programming is provided via
an embedded DSL which elaborates effectful code to the underlying
pure language. This has the benefit in Idris of making the effects
fully extensible; the monad lattice in F⋆ is also user extensible, but
only within the bounds of what is provided primitively by the lan-
guage. On the plus side, primitive effects in F⋆ are more efficiently
implemented than effects encoded in a pure language. Idris’ metathe-
ory has yet to be studied significantly—as far as we are aware, the
language does not attempt to ensure that non-termination does not
compromise logical consistency. Idris also lacks SMT-based proof
automation.

Another related language is ATS (Chen and Xi 2005), which, like
F⋆, aims to combine effectful programming and theorem proving.

268

https://www.fstar-lang.org/papers/mumon/artifacts/
https://www.fstar-lang.org/papers/mumon/artifacts/

However, the design of ATS is substantially different from F⋆.
Notably, rather that dependent types, ATS partitions the language
into separate fragments, the statics and dynamics; the former is used
for specifications that describe the latter and is pure, by construction.
In that regard, ATS is closer to old-F⋆ than it is to the language
of this paper. As discussed in §3.2, the indirection of a separate
specification language and the inability to use pure functions directly
in specifications was one of the main reasons we abandoned the
design of old-F⋆. Furthermore, ATS only has limited support for
automated theorem proving, unlike F⋆’s SMT integration.

Adding effects to a type-theory based proof assistant Nanevski
et al. (2008) develop Hoare type theory (HTT) as a way of extend-
ing Coq with effects. The strategy there is to provide an axiomatic
extension of Coq with a single catch-all monad in which to encapsu-
late imperative code—the discussion about a single monad in §2.1
applies to HTT as well. Tools based on HTT have been developed,
notably Ynot (Chlipala et al. 2009). This approach is attractive in
that one retains all the tools for specification and interactive proving
from Coq. On the downside, one also inherits Coq’s limitations, e.g.,
the syntactic termination check and lack of SMT-based automation.

Non-syntactic termination checks Most dependent type theories
rely crucially on normalization for consistency, many researchers
have been investigating improving on Coq’s syntactic termination
check via more semantic approaches. Agda offers two termination
checkers. The first one is based on fœtus (Abel 1998), and tries
to discover a suitable lexicographic ordering on the arguments of
mutually-defined functions automatically. Contrary to fœtus, our
termination checker does not aim to find an ordering automatically
(although well-chosen defaults mean that the user often has to
provide no annotation); nonetheless, our check is more flexible,
since it is not restricted to a structural decreasing of arguments,
but the decreasing of a measure applied to the arguments. The
second one is based on sized types (Abel 2007; Barthe et al.
2004), where the size on types approximates the depth of terms.
In contrast, in F⋆, the measures are defined by the user and are
first-class citizens of the language and can be reasoned about using
all its reasoning machinery. Isabelle/HOL also supports semantic
termination checking, however, the approach of Krauss et al. (2011)
seems very different from ours, and only applies to a first-order
fragment.

Semi-automated program verifiers Software verification frame-
works, such as Why3 (Filliâtre and Paskevich 2013) and Dafny (Leino
2010), also use SMT solvers to verify the logical correctness of
(mostly) first-order programs. Unlike F⋆, they do not provide the
expressiveness of dependent types and do not provide the flexibility
of user-defined effects and memory models.

Memory abstractions for aliasing Our hyper-heap model is
closely related to local stores in Euclid (Lampson et al. 1977).
Local stores are also a partitioned heap abstraction realized on a
flat heap. However, local stores lack the hierarchical scheme of
hyper-heaps, which we find convenient for hiding from clients the
details of the partitioning scheme used within an object. Utting
(1996) describes a variation on local heaps that supports a “transfer”
operation, moving references dynamically from one region to an-
other. This may be a useful variation on hyper-heaps as well, at the
cost of losing the stable, state-independent invariants obtained by
pinning a reference to a (dynamically chosen) region.

9. Looking ahead

In the past decade, several research groups have made remarkable
progress in building formally verified software artifacts. One co-
hort of researchers mainly use interactive tools like Coq and Is-

abelle/HOL; another uses SMT-based tools like Dafny and F7. De-
spite their successes, neither approach is without difficulties, e.g.,
interactive provers could benefit from more automation and the abil-
ity to more freely use imperative features; users of automated tools
would benefit from greater expressive power, and a way to provide
interactive proofs when the SMT solver fails. F⋆ seeks to be a bridge
between these communities.

F⋆ is a living language: it is a work in progress currently, and
will continue to be for the foreseeable future. However, given the
significant experience we already have had with it, we are optimistic
that its design provides the flexibility and expressive power needed
to satisfy the growing demand for producing formally verified
software, at a cost that compares favorably with that offered by
existing tools.

Acknowledgments We are grateful to Abhishek Anand, Benjamin
Beurdouche, Leonardo de Moura, Maxime Dénès, Deepak Garg,
Niklas Grimm, Michael Hicks, Benjamin C. Pierce, Gordon Plotkin,
and Jonathan Protzenko for interesting discussions. We also thank
the anonymous reviewers for their helpful feedback.

References

A. Abel. foetus – termination checker for simple functional programs.
Programming Lab Report 474, LMU München, 1998.

A. Abel. Type-based termination: a polymorphic lambda-calculus with sized

higher-order types. PhD thesis, LMU München, 2007.

R. Adams. Formalized metatheory with terms represented by an indexed
family of types. In Types for Proofs and Programs, International

Workshop, TYPES 2004, Jouy-en-Josas, France, December 15-18, 2004,

Revised Selected Papers, 2006.

T. Altenkirch and B. Reus. Monadic presentations of lambda terms
using generalized inductive types. In Computer Science Logic, 13th

International Workshop, CSL ’99, 8th Annual Conference of the EACSL,

Madrid, Spain, September 20-25, 1999, Proceedings, 1999.

R. Atkey. Parameterised notions of computation. Journal of Functional

Programming, 19:335–376, 2009.

L. Augustsson. Cayenne—a language with dependent types. In Proceedings

of the Third ACM SIGPLAN International Conference on Functional

Programming, 1998.

G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu. Type-
based termination of recursive definitions. Mathematical Structures

in Computer Science, 14(1):97–141, 2004.

N. Benton, C. Hur, A. Kennedy, and C. McBride. Strongly typed term
representations in Coq. J. Autom. Reasoning, 49(2):141–159, 2012.

K. Bhargavan, C. Fournet, and A. D. Gordon. Modular verification of security
protocol code by typing. In 37th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (POPL’10), 2010.

K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, and P. Strub. Imple-
menting TLS with verified cryptographic security. In IEEE Symposium

on Security and Privacy, 2013.

A. Bove. Simple general recursion in type theory. Nordic Journal of

Computing, 8(1):22–42, 2001.

E. Brady. Programming and reasoning with algebraic effects and depen-
dent types. In Proceedings of the 18th ACM SIGPLAN International

Conference on Functional Programming, 2013.

C. Casinghino, V. Sjöberg, and S. Weirich. Combining proofs and programs
in a dependently typed language. In The 41st Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL

’14, San Diego, CA, USA, January 20-21, 2014, 2014.

C. Chen and H. Xi. Combining Programming with Theorem Proving. In
Proceedings of the Tenth ACM SIGPLAN International Conference on

Functional Programming, September 2005.

A. Chlipala, G. Malecha, G. Morrisett, A. Shinnar, and R. Wisnesky.
Effective interactive proofs for higher-order imperative programs. In
Proceedings of the 14th ACM SIGPLAN International Conference on

Functional Programming, 2009.

269

http://dx.doi.org/10.1017/S095679680900728X
http://dx.doi.org/10.1017/S0960129503004122
http://dx.doi.org/10.1017/S0960129503004122
http://dx.doi.org/10.1007/s10817-011-9219-0
http://dx.doi.org/10.1007/s10817-011-9219-0

R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer,
R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden,
J. T. Sasaki, and S. F. Smith. Implementing Mathematics with the Nuprl

Proof Development System. Prentice-Hall, 1986.

T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.2. IETF RFC 5246, 2008.

E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation
of programs. Commun. ACM, 18(8):453–457, Aug. 1975.

J.-C. Filliâtre and A. Paskevich. Why3 — where programs meet provers. In
M. Felleisen and P. Gardner, editors, Proceedings of the 22nd European

Symposium on Programming. Mar. 2013.

T. Freeman and F. Pfenning. Refinement types for ML. In Proceedings of the

ACM SIGPLAN’91 Conference on Programming Language Design and

Implementation (PLDI), Toronto, Ontario, Canada, June 26-28, 1991,
1991.

R. Harper. Practical foundations for programming languages. Cambridge
University Press, second edition, 2015.

G. Kimmell, A. Stump, H. D. E. III, P. Fu, T. Sheard, S. Weirich, C. Casingh-
ino, V. Sjöberg, N. Collins, and K. Y. Ahn. Equational reasoning about
programs with general recursion and call-by-value semantics. Progress

in Informatics, 2013.

A. Krauss, C. Sternagel, R. Thiemann, C. Fuhs, and J. Giesl. Termination of
Isabelle functions via termination of rewriting. In Second International

Conference on Interactive Theorem Proving. 2011.

B. W. Lampson, J. J. Horning, R. L. London, J. G. Mitchell, and G. J. Popek.
Report on the programming language Euclid. SIGPLAN Not., 12(2):1–79,
Feb. 1977.

K. R. M. Leino. Dafny: An automatic program verifier for functional
correctness. In Proceedings of the 16th International Conference on

Logic for Programming, Artificial Intelligence, and Reasoning. 2010.

P. Letouzey. Coq extraction, an overview. In LTA ’08. 2008.

J. McCarthy. Towards a mathematical science of computation. In IFIP

Congress, 1962.

E. Moggi. Computational lambda-calculus and monads. In Proceedings of

the Fourth Annual Symposium on Logic in Computer Science (LICS ’89),

Pacific Grove, California, USA, June 5-8, 1989, 1989.

A. Nanevski, J. G. Morrisett, and L. Birkedal. Hoare type theory, polymor-
phism and separation. J. Funct. Program., 18(5-6):865–911, 2008.

U. Norell. Towards a practical programming language based on depen-

dent type theory. PhD thesis, Department of Computer Science and
Engineering, Chalmers University of Technology, 2007.

P. Rogaway. Authenticated-encryption with associated-data. In 9th ACM

Conference on Computer and Communications Security, 2002.

P. M. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In Proceedings of

the ACM SIGPLAN 2008 Conference on Programming Language Design

and Implementation, Tucson, AZ, USA, June 7-13, 2008, 2008.

J. Rushby, S. Owre, and N. Shankar. Subtypes for specifications: Predicate
subtyping in pvs. IEEE Transactions on Software Engineering, 24:709–
720, 1998.

S. Schäfer, T. Tebbi, and G. Smolka. Autosubst: Reasoning with de Bruijn
terms and parallel substitutions. In Interactive Theorem Proving - 6th

International Conference, ITP 2015, Nanjing, China, August 24-27, 2015,

Proceedings. 2015.

M. Sozeau. Subset Coercions in Coq. In T. Altenkirch and C. McBride,
editors, TYPES’06. 2007.

N. Swamy, J. Chen, C. Fournet, P. Strub, K. Bhargavan, and J. Yang. Secure
distributed programming with value-dependent types. J. Funct. Program.,
23(4):402–451, 2013a.

N. Swamy, J. Weinberger, C. Schlesinger, J. Chen, and B. Livshits. Verifying
higher-order programs with the Dijkstra monad. In Proceedings of the

34th annual ACM SIGPLAN conference on Programming Language

Design and Implementation, 2013b.

The Coq development team. The Coq proof assistant.

M. Tofte and J.-P. Talpin. Region-based memory management. Inf. Comput.,
132(2):109–176, Feb. 1997.

M. Utting. Reasoning about aliasing. In The Fourth Australasian Refinement

Workshop, 1996.

N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S. L. P. Jones. Re-
finement types for Haskell. In Proceedings of the 19th ACM SIGPLAN

international conference on Functional programming (ICFP’14), 2014.

B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski, and V. Vafeiadis.
Mtac: a monad for typed tactic programming in Coq. In G. Morrisett
and T. Uustalu, editors, ACM SIGPLAN International Conference on

Functional Programming. 2013.

270

http://dx.doi.org/10.1145/360933.360975
http://dx.doi.org/10.1145/360933.360975
http://www.tyconmismatch.com/papers/pi13.pdf
http://www.tyconmismatch.com/papers/pi13.pdf
http://dx.doi.org/10.1007/978-3-642-22863-6_13
http://dx.doi.org/10.1007/978-3-642-22863-6_13
http://dx.doi.org/10.1145/954666.971189
http://dl.acm.org/citation.cfm?id=1939141.1939161
http://dl.acm.org/citation.cfm?id=1939141.1939161
http://dx.doi.org/10.1007/978-3-319-22102-1_24
http://dx.doi.org/10.1007/978-3-319-22102-1_24
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-540-74464-1_16
http://research.microsoft.com/~nswamy/papers/fstar-jfp.pdf
http://research.microsoft.com/~nswamy/papers/fstar-jfp.pdf
http://research-srv.microsoft.com/pubs/189686/paper-pldi13.pdf
http://research-srv.microsoft.com/pubs/189686/paper-pldi13.pdf
http://coq.inria.fr
http://dx.doi.org/10.1006/inco.1996.2613
http://dx.doi.org/10.1145/2500365.2500579

	Introduction
	Dijkstra monads, generalized in F
	Background: A single Dijkstra monad
	Some limitations of a single Dijkstra monad
	Multiple Dijkstra monads in F
	A lattice of monad-indexed monads for computations

	Purity and divergence
	Basic F
	Intrinsic vs. extrinsic proofs
	Semantic proofs of termination
	The built-in well-founded ordering
	Parallel substitutions: A non-trivial termination proof

	Divergence in the DIV effect

	Translucent abstractions with GHOST
	Specifying and verifying stateful programs
	A simple model of the heap
	Hyper-heaps
	Hyper-heaps in action: Stateful authenticated encryption

	Metatheory
	Partial correctness of F
	Consistency and weak normalization of pF

	Summary of experiments
	Bootstrapping F
	Formalizing F in F
	Verifying parts of TLS

	Related work
	Looking ahead

