
HAL Id: hal-01265791
https://hal.science/hal-01265791

Preprint submitted on 1 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extinction and spreading of a species under the joint
influence of climate change and a weak Allee effect: a

two-patch model
Juliette Bouhours, Thomas Giletti

To cite this version:
Juliette Bouhours, Thomas Giletti. Extinction and spreading of a species under the joint influence of
climate change and a weak Allee effect: a two-patch model. 2016. �hal-01265791�

https://hal.science/hal-01265791
https://hal.archives-ouvertes.fr


Extinction and spreading of a species under the joint influence of

climate change and a weak Allee effect: a two-patch model

Juliette Bouhours1 and Thomas Giletti2

1Departments of Mathematical and Statistical Sciences and of Biological Sciences,
University of Alberta, Edmonton, AB T6G 2G1, Canada

2Institut Elie Cartan de Lorraine, Université de Lorraine, Vandoeuvre-lès-Nancy, France

Abstract

Many species see their range shifted poleward in response to global warming and need to keep pace
in order to survive. To understand the effect of climate change on species ranges and its consequences on
population dynamics, we consider a space-time heterogeneous reaction-diffusion equation in dimension 1,
whose unknown u(t, x) stands for a population density. More precisely, the environment consists of two
patches moving with a constant climate shift speed c ≥ 0: in the invading patch {t > 0, x ∈ R | x < ct}
the growth rate is negative and, in the receding patch {t > 0, x ∈ R | x ≥ ct} it is of the classical
monostable type. Our framework includes species subject to a weak Allee effect, meaning that there may
be a positive correlation between population size and its per capita growth rate. We study the large-time
behaviour of solutions in the moving frame and show that whether the population spreads or goes extinct
depends not only on the speed c but also, in some intermediate speed range, on the initial datum. This
is in sharp contrast with the so-called ‘hair-trigger effect’ in the homogeneous monostable equation, and
suggests that the size of the population becomes a decisive factor under the joint influence of climate
change and a weak Allee effect. Furthermore, our analysis exhibit sharp thresholds between spreading
and extinction: in particular, we prove the existence of a threshold shifting speed which depends on the
initial population, such that spreading occurs at lower speeds and extinction occurs at faster speeds.

2010 Mathematics Subject Classification: 35B40, 35C07, 35K15, 35K57, 92D25
Keywords: Climate change, reaction-diffusion equations, travelling waves, long time behaviour, sharp
threshold phenomena.

1 Introduction

In this paper we are interested in the following problem{
∂tu− ∂xxu = f(x− ct, u), t ∈ (0,+∞), x ∈ R,
u(0, x) = u0(x), x ∈ R,

(1.1)

where c ≥ 0 and u0 will be assumed to be a bounded, nonnegative and compactly supported function, and

f(z, s) =

{
−s, if z < 0,

g(s), if z ≥ 0.
(1.2)

Here g ∈ C1,r
loc (R,R) is monostable in the sense that

g(0) = g(1) = 0, g(s) > 0 ∀s ∈ (0, 1), g(s) < 0 ∀s 6∈ [0, 1], g′(1) < 0 < g′(0). (1.3)
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This problem is motivated by the study of the effect of climate change on population persistence. In [16,
26], the different authors point out that global warming induces a shift of the climate envelope of some species
toward higher altitude or latitude. Therefore, these species need to keep pace with their moving favourable
habitat in order to survive. Here we model the evolution of the density u of a population using a reaction-
diffusion equation where the reaction term, which accounts for the growth of the species, is heterogeneous
with respect to both space and time. That is, we assume that the dispersion of the population is a diffusion
process, and in (1.1) the growth term f depends on the shifting variable x − ct where the nonnegative
parameter c (which we assume to be constant) stands for the speed of the shift of the climate envelope.
More precisely, while the growth term is monostable in the favourable environment {x − ct ≥ 0}, it is
negative in the unfavourable zone {x − ct < 0}. We highlight here that by monostable, we only mean as
stated in (1.3) that the growth rate of the population is positive when u ∈ (0, 1) (after renormalization, 1
stands for the carrying capacity in the climate envelope). However, we do not assume that the per capita
growth rate is maximal at u = 0, that is the population may be subjected to a weak Allee effect, which
is a common feature of ecological species arising for instance from cooperative behaviours such as defense
against predation [1]. Let us also briefly note that our analysis easily carry out if the growth term f in (1.2)
is chosen to be any linear function −ρu with ρ > 0 in the unfavourable patch {x− ct < 0}: indeed our main
results would still hold as they stand below, and we choose ρ = 1 here just for the sake of simplicity.

Such shifting range models were introduced in several papers to study similar ecological problems. In [22]
and [4], the effect of climate change and shifting habitat on invasiveness properties is studied for a system of
reaction-diffusion equations. In [5, 6, 7, 15, 25], the authors deal with persistence properties under a shifting
climate for a scalar reaction-diffusion equation in dimension 1 and higher, and exhibit a critical threshold
for the shifting speed below which the species survives and above which it goes extinct. This problem has
also been studied in the framework of integrodifference equations, where time is assumed to be discrete and
dispersion is nonlocal [13, 27, 28]. However, all the aforementioned papers hold under KPP type assumptions
whose ecological meaning is that there is no Allee effect and which mathematically imply that the behaviour
of solutions is dictated by a linearized problem around the invaded unstable state. In the context of (1.1),
the KPP assumption typically writes as f(z, s) ≤ ∂sf(z, 0)s for all z ∈ R and s ≥ 0.

On the other hand a few papers investigate the case when no KPP assumption is made. In [24], the
authors analyse numerically the effect of climate change and the geometry of the habitat in dimension 2,
again in the framework of reaction-diffusion equations, with or without Allee effect. In [8], Bouhours and
Nadin consider (1.1) when the size of the favourable zone is bounded under rather general assumptions on
the reaction f in the favourable zone (including the classical monostable and bistable cases). More precisely,
they have shown the existence of two speeds c < c such that the population persists for large enough initial
data when c < c and goes extinct when c > c. However, for a fixed initial datum, it is not known in
general whether there exists a threshold speed delimiting persistence and extinction. We will prove here
that, when f satisfies the hypotheses (1.2) and (1.3), the answer is positive but also that, unlike in the KPP
case [5, 6, 7, 15, 25], the threshold speed depends non trivially on the initial datum.

Before stating our main results, let us start by giving some basic properties of problem (1.1). Using sub
and super solution method and comparison principle we know that, for bounded and nonnegative initial
conditions, problem (1.1) has a unique global and bounded solution. Because of the discontinuity of f at
x = ct, by solution we will always mean a function u(t, x) which is C1 with respect to x ∈ R for all t > 0,
and which satisfies the equation in a classical sense on both {t > 0 and x < ct} and {t > 0 and x > ct}. The
initial condition is understood as follows:

lim
t→0

u(t, x) = u0(x), for almost every x ∈ R.

In this paper we are interested in the asymptotic behaviour of the solution u(t, x) of (1.1) as time goes to
infinity, and in particular whether the solution goes extinct or spreads, in the sense of Definition 1.1 below.
To do so we will study the previous problem in the moving frame, i.e. letting z := x − ct. If we define
uc(t, z) := u(t, z + ct) to be the solution in the moving frame, then uc is solution of the parabolic equation

∂tu− ∂zzu− c∂zu = f(z, u), t ∈ (0,+∞), z ∈ R, (1.4)
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such that uc(0, z) = u0(z), for all z ∈ R.

Notation

In the following we will denote by z the space variable in the moving frame and x the variable in the non
moving frame. With some slight abuse of notations, we will write u(t, x) when we consider the solution in
the non moving frame and u(t, z) (instead of uc(t, z)) for the solution in the moving frame.

Let us also introduce the classical homogeneous monostable equation

∂tv − ∂xxv = g(v), t ∈ (0,+∞), x ∈ R, (1.5)

and denote by c∗ the minimal speed for existence of travelling wave solutions of (1.5), namely particular
solutions of the type v(t, x) = V (x − ct) where V (−∞) = 1 > V (·) > V (+∞) = 0. It is well-known that
c∗ ≥ 2

√
g′(0) and that, under the KPP hypothesis g(s) ≤ g′(0)s for all s ≥ 0, then c∗ = 2

√
g′(0). We refer

to the seminal paper of Aronson and Weinberger [3] for details.

1.1 Main results

As we are interested in the long time behaviour of the solution of problem (1.4), a first step is to classify
the stationary solutions of (1.4). As we will see more precisely in Theorem 2.1 in Section 2, there are three
types of nonnegative stationary solutions of (1.4):

• the trivial solution 0;

• ‘ground states’, namely positive stationary solutions p of (1.4) such that p(±∞) = 0, among which
there is a ‘critical ground state’ which is characterized by the fact that it has the largest value at z = 0
as well as the fastest decay as z → +∞;

• a unique ‘invasion state’, namely a positive stationary solution pc+ of (1.4) such that pc+(−∞) = 0 and
pc+(+∞) = 1.

Let us highlight here that these are stationary solutions in the moving frame with the same speed c as the
shifting favourable zone, which may thus be seen as travelling waves in the original non moving frame. In
particular, while we refer to pc+ as the ‘invasion state’, the invasion is of course restricted to the favourable
zone. In a similar fashion, by ‘ground state’ we mean that the population migrates but does not spread away
from the point x = ct.

While the invasion state always exists, there may exist either none or an infinity of ground states de-
pending on the value of c. In the latter case, ground states all lie below the invasion state, and each of them
will be characterized by its value at z = 0. We will denote by pα the ground state such that pα(0) = α.
The supremum of the admissible α such that pα exists will be denoted by α∗c and, as mentioned above, we
call pα∗c the critical ground state. Proposition 2.3 describes the asymptotics of the ground states pα(z) as
z → +∞ depending on α, which will justify our statement that the critical ground state has the fastest
decay at infinity. The discussion above will be made more rigorous in Section 2.

From this, we can be more precise about what we mean by extinction or spreading of the solution u(t, z)
of (1.4):

Definition 1.1. Let u0 be a nonnegative, bounded and compactly supported initial datum, and u(t, z) be the
solution of (1.4) with initial condition u0. We say that

• extinction occurs if u(t, z) converges uniformly with respect to z to 0 as time t goes to infinity;

• grounding occurs if u(t, z) converges uniformly with respect to z to the critical ground state as time t
goes to infinity;

• spreading occurs if u(t, z) converges locally uniformly to the invasion state as time goes to infinity.
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Note that the fact that the convergence is or is not uniform is a consequence of the choice of compactly
supported initial data (clearly the solution may never converge uniformly to the invasion state). Further-
more, we narrow grounding to the large-time convergence to the critical ground state (we again refer to
Theorem 2.1 for a more precise definition). The reason is that our arguments will largely rely on the fact,
which is contained in our main statements below and which will be proved in Section 4, that the solution
may never converge to a non critical ground state when the initial condition u0 is compactly supported.

Our first theorem investigates the large-time behaviour of the solution of (1.4) in various speed ranges:

Theorem 1.2. Let u be the solution of (1.4) with a nonnegative, non trivial, bounded and compactly sup-
ported initial datum u0.

(i) If 0 ≤ c < 2
√
g′(0), then spreading occurs.

(ii) If 2
√
g′(0) ≤ c < c∗ (provided such c exists), then both spreading and extintion may occur depending

on the choice of u0. To be more precise, there exist initial data u0,1 > u0,2 such that spreading occurs
for u0,1, and extinction occurs for u0,2.

(iii) If c ≥ c∗, then extinction occurs.

Recall from [3] that the minimal wave speed of (1.5) is also the spreading speed of solutions of the Cauchy
problem with compactly supported initial data. Therefore, the third statement of Theorem 1.2 simply means
that, when the climate shifts faster than the species spreads in a favourable environment, then the species
cannot keep pace with its climate envelope and goes extinct as time goes to infinity. On the other hand,
when c is less than 2

√
g′(0) (statement (i) of Theorem 1.2) which is the speed associated with the linearized

problem around u = 0, then any small population is able to follow its habitat and thrive. In particular,
when c∗ = 2

√
g′(0), we retrieve a threshold speed between persistence and extinction, which as in the KPP

framework of [5, 6, 7, 15, 25] does not depend on the initial datum (let us note here that, while the KPP
assumption implies that c∗ = 2

√
g′(0), the converse does not hold [12]).

Nonetheless, a striking feature of Theorem 1.2 is the fact that when c ∈ [2
√
g′(0), c∗), whether the solution

persists or not depends on the initial datum, see statement (ii) above. This is in sharp contrast with the
so-called ‘hair-trigger effect’ for the classical homogeneous monostable equation (1.5), whose solution spreads
as soon as the initial datum is non trivial and nonnegative. This result also highlights qualitative differences
with the KPP framework of [5, 6, 7, 15, 25], where the persistence of the population depends only on the
value of c. The biological implication is that under the combination of a weak Allee effect and a shifting
climate, the size of the initial population becomes crucial for the survival of the species.

This new behaviour can be understood from the appearance, in the range of speeds c ∈ [2
√
g′(0), c∗), of

intermediate stationary solutions between 0 and pc+. It turns out that, although the equation (1.4) is of the
monostable type in the half line {z > 0}, it shares some features with the usual bistable case as the trivial
state 0 becomes stable with respect to some small enough compactly supported pertubations. This leads
to the following dichotomy, or sharp threshold between extinction and spreading, in the same spirit as the
results of [10, 20, 21, 29] in the spatially homogeneous framework:

Theorem 1.3. Assume that 2
√
g′(0) < c∗ and choose some c ∈ [2

√
g′(0), c∗). Then for any strictly ordered

and continuous (in the L1(R)-topology) family (u0,σ)σ>0 of initial data satisfying the same assumptions than
in Theorem 1.2, there exists some σ∗ ∈ [0,+∞] such that spreading occurs for σ > σ∗, extinction for σ < σ∗,
and grounding for σ = σ∗ whenever σ∗ ∈ (0,+∞).

Theorem 1.3 further highlights that spreading and extinction are the two reasonable outcomes. Indeed,
the only other possibility is grounding, and as can be seen when looking at an ordered family of initial
data (uσ)σ, this may only occur for a critical choice of the parameter σ∗ ∈ (0,+∞).

Note that this threshold phenomenon strongly relies on our choice of compactly supported initial data.
Indeed, one may for instance check that for any initial datum which does not decay to 0 as z → +∞,
spreading necessarily occurs. A similar threshold phenomenon was also exhibited in [20] in the homogeneous
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but degenerate monostable framework, namely equation (1.5) where g satisfies (1.3) except that g′(0) = 0.

The above two theorems describe what happens in the different range speeds depending on the initial
data. Let us now adopt a different approach where the initial datum is fixed and the speed c varies. Our
last theorem writes as follows:

Theorem 1.4. For all nonnegative, non trivial, bounded and compactly supported function u0, there exists
c(u0) ∈ [2

√
g′(0), c∗] such that the following three statements hold true.

(i) For all c < c(u0), spreading occurs.

(ii) For all c > c(u0), extinction occurs.

(iii) If c = c(u0):

(a) if c(u0) > 2
√
g′(0), grounding occurs and 2

√
g′(0) < c(u0) < c∗;

(b) if c(u0) = 2
√
g′(0) < c∗, there may be either grounding or extinction;

(c) if c = c(u0) = 2
√
g′(0) = c∗, extinction occurs.

Theorem 1.4 shows that there still exists, in the general monostable framework, a threshold forced speed
below which spreading occurs and above which the solution goes extinct. As mentioned above, the existence
of such a threshold for persistence was already known in the KPP framework. However, Theorem 1.4
together with Theorem 1.2 clearly imply that c(u0) depends in a non trivial way on the initial datum as
soon as c∗ > 2

√
g′(0). From an ecological point of view, this means that the persistence of the population

is determined by the value of the climate shift speed with respect to this threshold. When the per capita
growth rate of the population is optimal at zero density (no Allee effect), this threshold speed is independent
of the initial datum, whereas in the presence of a weak Allee effect, this threshold depends on the size of
the initial datum. More precisely, it follows from Theorem 1.3 that c(u0) is nondecreasing with respect to
the initial condition u0, so that a large population will be less sensitive to climate change in the sense that
it can keep pace with a faster shifting habitat than a smaller population.

Remark 1.5. The C1,r
loc regularity of g plays an important role in our main results whenever c = 2

√
g′(0).

Indeed assume for instance that g(u) ≥ g′(0)u

(
1− 1

lnu

)
in a neighbourhood of 0. From the phase plane

analysis of the ODE
p′′ + 2

√
g′(0)p′ + f(z, p) = 0,

and proceeding as in Section 2, one may check that there does not exist any nonnegative and bounded
stationary solution other than 0 and the invasion state pc+. While we do not study such a case here, this

leads us to formally expect that spreading then occurs for all initial data when c = 2
√
g′(0).

Organisation of the paper

In Section 2 we study the stationary problem in the moving frame, i.e. the stationary solutions of (1.4).
In Theorem 2.1 we classify all the different stationary solutions, and then in Section 2.2 we describe the
decay of ground states to 0 at infinity. In Section 3 we examine the different speed ranges and prove
Theorem 1.2. In particular we show that the hair-trigger effect does not hold in the intermediate speed
range c ∈ [2

√
g′(0), c∗), see Theorem 3.4. In Section 4, we prove the convergence of the solution of (1.4)

to a stationary solution as time goes to infinity. Furthermore, combining the uniform in time exponential
estimates of Section 4.1 and the decay properties of ground states from Section 2.2, we show that the limiting
stationary solution may only be 0, the invasion state or the critical ground state. In the last Section 5, we
deal with the sharp threshold phenomena and prove both Theorems 1.3 and 1.4. Lastly, we include in an
Appendix A some results on the so-called ‘zero number argument’ from [2, 10], which we use in Section 4
and in particular for the large-time convergence to a stationary solution.
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2 Stationary solutions in the moving frame

In this section, we are interested in the stationary solutions of the equation (1.4), which may also be seen
as travelling wave solutions of the original problem in the sense that they are also entire solutions of (1.1)
moving with constant speed and profile. We will prove the following theorem which classifies all the stationary
solutions of (1.4), making more rigorous the discussion in the beginning of Section 1.1.

Theorem 2.1. All the positive and bounded stationary solutions of (1.4) can be classified as follows.

(i) For any c ≥ 0, there exists a maximal positive solution pc+, which we call invasion state and satisfies

0 = lim
z→−∞

pc+ < lim
z→+∞

pc+ = 1 , ∂zp
c
+(z) > 0.

(ii) If c ≥ 2
√
g′(0), there exists α∗c ∈ (0, pc+(0)] and a family of positive stationary solutions (pα)0<α<α∗c ,

that will be called ground states, which satisfy:

lim
z→±∞

pα = 0 , pα < pc+ , pα(0) = α, (2.1)

and c 7→ α∗c is nondecreasing. Moreover:

(a) if c < c∗, then α∗c < pc+(0) and there exists a positive stationary solution pα∗c satisfying the same
properties (2.1), which we call the critical ground state;

(b) on the other hand, if c ≥ c∗, then α∗c = pc+(0) and pα → pc+ locally uniformly as α→ pc+(0).

There exists no other positive and bounded stationary solution of (1.4) than the ones defined above.

This theorem already highlights three different situations, depending on the forcing/shifting speed c ≥ 0.
First, if 0 ≤ c < 2

√
g′(0), then there exists a unique positive and bounded stationary solution, which

intuitively means that the equation retains its monostable feature. However, as soon as c ≥ 2
√
g′(0),

some intermediate stationary solutions emerge in a neighbourhood of the trivial steady state 0, which thus
becomes stable with respect to small enough perturbations. This leads to the loss of the hair-trigger effect,
and the more complex dynamics stated in our Theorems 1.2, 1.3 and 1.4. Furthermore, when c ≥ c∗,
these intermediate stationary solutions even form some sort of foliation from 0 to the maximal stationary
solution pc+, which completely prevents the propagation, at least for compactly supported initial data. One
can look at Figure 1 for an illustration of the different stationary solutions in the phase plane (p, p′) depending
on the value of c.

2.1 Proof of Theorem 2.1

Note that any stationary solution p(z) of (1.4) satisfies the second-order ODE

p′′ + cp′ + f(z, p) = 0. (2.2)

This equation is homogeneous on each half interval {z < 0} and {z > 0} of the domain, thus we will construct
stationary solutions by ‘glueing’ phase portraits as in Berestycki et al [5].

Proof of Theorem 2.1. For z ≤ 0, a stationary solution of (1.4) satisfies

p′′ + cp′ − p = 0.

As we are only interested in positive and bounded stationary solutions, it immediately follows that

∀z ≤ 0 : p(z) = p(0)× eµcz, (2.3)
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Figure 1: Phase portrait of the discontinuous ODE (2.2) for different values of c. All the trajectories start
on the line p′ = µcp before entering the phase plane of the homogeneous equation (2.4). The trajectories
in dashed lines are the ones that cross the p′-axis, the one in bold dashed-dotted line is the critical ground
state pα∗c and the one in bold dashed line is the maximal solution pc+. These simulations were conducted
using Matlab and the function g(s) = 4s(1− s)(sin(s) + 0.1).

where µc is defined as

µc :=
−c+

√
c2 + 4

2
> 0.

Let us now ‘glue’ this with a solution of the homogeneous monostable equation

p′′ + cp′ + g(p) = 0, (2.4)

on [0,+∞). The identity (2.3) means that we are now looking at trajectories of (2.4) starting from some
point on the half line {p′ = µcp | p > 0}, as illustrated in Figure 1. We argue in the phase plane of (2.4)
and construct in the three steps below all the stationary solutions of (1.4). We refer to Aronson and Wein-
berger [3] for more complete and detailed arguments on the phase plane analysis of (2.4).

Step 1: existence of a maximal solution pc+. We start by proving the first point in Theorem 2.1, and take
any c ≥ 0. It is easy to check that the steady state (p = 1, p′ = 0) is a saddle point. In particular, it admits
a one dimensional stable manifold and we can consider the unique trajectory which converges to (1, 0) from
the upper phase plane {p′ > 0}. This trajectory clearly crosses the half line {p′ = µcp | p > 0} and, up to
some shift, we can assume without loss of generality that the associated solution p satisfies p′(0) = µcp(0)
and converges monotonically to 1 as z → +∞. Glueing it with the exponential (2.3), we obtain a positive
and bounded stationary solution pc+ as in Theorem 2.1.

Step 2: non existence of positive bounded solutions p with p(0) > pc+(0). Now let p be any stationary
solution that satisfy (2.3) with p(0) = α > pc+(0) > 0, and consider the trajectory in the phase plane of (2.4)
starting from (α, µcα). Clearly it lies above the trajectory of pc+ and, therefore, it crosses the vertical line
{p = 1} above (1, 0). Then, as g(s) < 0 for all s > 1, it is straightforward that the trajectory goes to infinity.
In other words, any stationary solution of (2.2) satisfying p(0) > pc+(0) is unbounded. So there does not
exist any bounded and nonnegative solution of the stationary problem (2.2) that lies above pc+.

Step 3: existence of non trivial intermediate solutions (ground states) if and only if c ≥ 2
√
g′(0). Next let

p be any stationary solution satisfying (2.3) with p(0) = α ∈ (0, pc+(0)). Let us first note that the trajectory
of p in the phase plane of (2.4), which starts from (α, µcα), crosses the horizontal axis {p′ = 0} and enters
the {p′ < 0 and 0 < p < 1} part of the phase plane. As g(s) > 0 for all 0 < s < 1, clearly it cannot cross
back the horizontal axis. Thus the trajectory may only leave the set {p′ < 0 and 0 < p < 1} by crossing the
vertical axis {p = 0} below the origin and, if it does not, then it converges to the equilibrium (0, 0).

We now divide the proof into three parts depending on the value of c. If c < 2
√
g′(0), it is rather

straightforward that the linearized operator around the steady state (p = 0, p′ = 0) only admits two complex
eigenvalues. Thus, any stationary solution p which is nonnegative for z ≤ 0 and satisfies 0 < p(0) < pc+(0)
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changes sign in R+. Putting this together with the step 2 above, we are now able to conclude that there
exists no positive and bounded stationary solution other than pc+.

Next, we assume that c ≥ c∗. Let us recall that c∗ > 0 is the smallest c ∈ R such that there exists a
trajectory in the phase plane, connecting the two steady states (p = 1, p′ = 0) and (p = 0, p′ = 0), whose
associated solution of (2.4) is exactly the travelling wave Vc with speed c [3]. In particular, if c ≥ c∗, then
clearly the trajectory starting from (α, µcα) with α ∈ (0, pc+(0)) must lie above that of Vc, hence does not
cross the vertical axis and converges to 0 as z → +∞. For each 0 < p(0) < pc+(0) we obtain a (unique)
positive and bounded stationary solution, as announced in Theorem 2.1(b).

It now only remains to consider the case 2
√
g′(0) ≤ c < c∗. In this case, the steady state (0, 0) is a

node, namely trajectories locally converge to (0, 0) along the lines of slope − c±
√
c2−4g′(0)
2 . Note that, in the

critical case c = 2
√
g′(0), this crucially relies on the C1,r regularity of g. Furthermore, it can be shown

that there exists a trajectory converging to (0, 0) from the {p′ < 0 < p} part of the phase plane, which is
extremal in the sense that any trajectory lying below it must cross the vertical axis {p = 0} before con-
verging to (0, 0). We temporarily denote by p∗ the solution of (2.4) associated with this extremal trajectory
(p∗ is defined up to any shift). Following backward this extremal trajectory, it is clear that it must leave
the {p′ < 0 and 0 < p < 1} part of the phase plane, either through the horizontal axis between (0, 0) and
(1, 0), or through the vertical line {p = 1}. The latter contradicts the fact that, since c < c∗, the trajectory
originating from the unstable manifold of (1, 0) may not converge to (0, 0) without crossing the vertical axis.
Moving further back on the trajectory, it becomes clear that it also intersects the half line {p′ = µcp | p > 0}
below the point (pc+(0), pc+

′(0)). Denoting by α∗c ∈ (0, pc+(0)) the horizontal coordinate of this intersection,
it is now straightforward that, for any α ≤ α∗c , the stationary solution pα of (2.2) satisfying p(0) = α remains
positive and converges to 0 as z → +∞, while for α∗c < α < pc+(0) it changes sign. Glueing all the trajecto-
ries which do not cross the vertical axis with the exponentials (2.3), we obtain all the stationary solutions
described in Theorem 2.1(a), and by construction there exists no other positive and bounded stationary
solution of (1.4).

We are now in a position to conclude the proof of Theorem 2.1. We first show that c 7→ α∗c is nondecreas-
ing, and consider two different speeds 2

√
g′(0) ≤ c1 < c2. Choose then any α ∈ (0, α∗c1). From a phase plane

analysis and using the fact that c 7→ µc is decreasing, one can prove that the trajectory of (2.4) with c = c1
and starting at (α∗c1 , µc1α

∗
c1) lies above (respectively below) the trajectory of (2.4) with c = c2 and starting

at (α, µc2α) in the {p > 0, p′ > 0} part of the phase plane (respectively the {p′ < 0 < p} part of the phase
plane). It is then straighforward that the trajectory of (2.4) with c = c2 starting at (α, µcα) converges to
(0, 0) without crossing the vertical axis. It follows that α∗c2 ≥ α and, as α could be chosen arbitrarily close
to α∗c1 , we conclude that α∗c2 ≥ α

∗
c1 .

It only remains to check that the intermediate stationary solutions pα constructed in the step 3 above
satisfy the inequality pα < pc+ on the whole line. For z ≤ 0, it immediately follows from the fact that all
stationary solutions are exponential, see (2.3). Moreover, it is straightforward from our construction in the
phase plane (see also Figure 1) that there does not exist a z > 0 such that pα(z) = pc+(z) and p′α(z) ≥ pc+ ′(z),
which immediately implies that pα < pc+ for z ≥ 0. In particular, if c ≥ c∗ and α→ pc+(0), then pα converges
locally uniformly to a stationary solution p∞ ≤ pc+ such that p∞(0) = pc+(0), hence p∞ ≡ pc+ by the strong
maximum principle. Note, however, that this convergence could also be deducted directly from the phase
plane. This ends the proof of Theorem 2.1.

Remark 2.2. We mention here that, in [3], the minimal wave speed c∗ is obtained as the smallest c such
that the extremal trajectory defined above crosses the vertical line {p = 1} below (1, 0). In particular, even
though we treated above the cases 2

√
g′(0) ≤ c < c∗ and c ≥ c∗ separately, one may see that both arguments

actually follow from the same idea.
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Figure 2: Phase portrait of the steady states of problem (1.4) in the moving frame when 2
√
g′(0) < c < c∗.

The figure on the right is a zoom of the left figure. One can notice, as stated in Proposition 2.3, that for
all α < α∗, the stationary solutions pα (defined in Theorem 2.1) converge to 0 asymptotically to the line
p′ = −λ−p, whereas pα∗ converges to 0 asymptotically to the line p′ = −λ+p.

2.2 Exponential decay of ground states

Theorem 2.1 states that, when c ≥ 2
√
g′(0), there exist infinitely many ground states between 0 and pc+.

In order to understand the dynamics of the time evolution problem, one may want further insight on these
intermediate steady states and, for instance, may wonder whether ground states are ordered or not. It follows
from Theorem 2.1 and Proposition 2.3 below that they cannot since the critical ground state (when it exists)
satisfies both pα∗c (0) > pα(0) and pα∗c (z) < pα(z) for all z large enough, for any α ∈ (0, α∗c).

Furthermore, it turns out that the way ground states decay as z → +∞ plays an essential role in
determining whether they may appear in the large-time behaviour of solutions under our choice of compactly
supported initial data.

Proposition 2.3. Assume that c ≥ 2
√
g′(0) and define

λ±(c) :=
c±

√
c2 − 4g′(0)

2
.

(i) If c > 2
√
g′(0), then for any 0 < α < α∗c , the ground state pα satisfies

pα(z) = Ae−λ−(c)z(1 +O(e−δz)) as z → +∞,

while (provided that c < c∗), the ground state pα∗c satisfies

pα∗c (z) = Ae−λ+(c)z(1 +O(e−δz)) as z → +∞,

where in both cases A and δ are positive constants.

(ii) For c = 2
√
g′(0) and any 0 < α ≤ α∗c , there exists δ > 0, A ≥ 0 and B ∈ R such that

pα(z) = (Az +B)e−
√
g′(0)
2 z +O(e−(

√
g′(0)
2 +δ)z);

more precisely, A > 0 if α < α∗c , while B > A = 0 if α = α∗c .
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Figure 3: Phase portrait of the steady states of problem (1.4) in the moving frame when c > c∗. The figure
on the right is a zoom of the left figure. Here the stationary solutions pα all converge to 0 asymptotically to
the line p′ = −λ−p.

Proof of Proposition 2.3. We briefly sketch the proof, which follows from the construction of ground states
above, and from standard phase plane analysis of the homogeneous monostable equation (2.4). We also refer
to the Figures 2 and 3 for an illustration of the argument.

When c > 2
√
g′(0), the linearized problem around the steady state (0, 0) admits two eigenvectors

(1,−λ±(c)). Noting that |λ−(c)| < |λ+(c)|, it is well-known (see for instance [9]), that all trajectories
converging to (0, 0) do so along the line {p′ = −λ−(c)p}, except for a single trajectory which goes through
(0, 0) along the line {p′ = −λ+(c)p}. In particular, this latter trajectory lies below all the others which
converge to (0, 0) from the {p′ < 0 < p} part of the phase plane without crossing the vertical axis. It is
also what we refered to earlier as the extremal trajectory which, by construction (see the proof of Theo-
rem 2.1), coincides with the trajectory of the critical ground state pα∗c (z) when c < c∗. Note that, if c ≥ c∗,
the extremal trajectory lies below the trajectory of the travelling wave with speed c (with which it actualy
coincides if c = c∗ > 2

√
g′(0)). Therefore, it does not cross the horizontal axis between (0, 0) and (1, 0) and

thus does not coincide with any positive and bounded stationary solution of (2.2).
It follows from the discussion above that, if c > 2

√
g′(0), then pα∗c converges to 0 as z → +∞ with

the exponential rate −λ+, while any other ground state pα converges to 0 with the exponential rate −λ−.
The more accurate asymptotics stated in Proposition 2.3 are a classical consequence of the C1,r

loc -regularity
of g [9].

The critical case c = 2
√
g′(0) follows from a similar argument. While the linearized problem around (0, 0)

admits a unique eigenvector and, therefore, all trajectories converge to (0, 0) along the same line {p′ =

−
√
g′(0)

2 p}, it is still known that trajectories behave in a similar fashion as in the linear problem thanks

to the C1,r
loc -regularity of g. More precisely, there exists an extremal trajectory which decays to 0 with

the asymptotics Be−
√
g′(0)
2 with B > 0, while all the other trajectories decay to 0 with the slightly slower

asymptotics (Az + B)e−
√
g′(0)
2 where A > 0 and B ∈ R. The end of the proof of Proposition 2.3 is again a

simple consequence of the construction of pα∗c as the unique stationary solution of (1.4) associated with the
extremal trajectory.

3 Large-time behaviour: spreading and extinction

In this section we prove most of Theorem 1.2 about the asymptotic behaviour of the solution u(t, z) of
problem (1.4), and in particular we show how the hair-trigger effect disappears for intermediate speeds. The
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results presented in this section mostly rely on direct comparison methods. However, we will leave partly
open the critical case c = c∗, which will be dealt with later on (see Theorem 3.3 and Proposition 4.7).

Before starting the proof, we state some lemma which will be used extensively in the following sections:

Lemma 3.1. Let u0 be any nonnegative, bounded and compactly supported initial datum, and u(t, z) be the
associated solution of (1.4). Then

lim
t→+∞

sup
z∈R

(
u(t, z)− pc+(z)

)
= 0.

Proof. Note that any constant M > 1 is a supersolution of (1.4). Thus, the solution uM of (1.4) with initial
datum M is decreasing in time and, by standard parabolic estimates, it converges locally uniformly to a
stationary solution. As pc+ ≤ M is the largest positive and bounded stationary solution, it easily follows
that the solution actually converges to pc+. Choosing M large enough so that u0(z) ≤ M for all z ∈ R and
by the parabolic comparison principle, we can already conclude that

∀Z > 0, lim sup
t→+∞

sup
|z|≤Z

(u(t, z)− pc+(z)) ≤ 0. (3.1)

Let us now improve the above estimate. Recall that

µc =
−c+

√
c2 + 4

2
> 0

is such that the exponential Aeµcz satisfies (1.4) for all z ≤ 0 and any A > 0. One can then choose A > 0
such that u0(z) ≤ Aeµcz for all z ≤ 0, and such that u(t, z = 0) ≤ A for all t ≥ 0 thanks to the fact that
u(t, z = 0) ≤ uM (t, z = 0) ≤M for all t > 0. By the parabolic maximum principle, we can infer that

u(t, z) ≤ Aeµcz (3.2)

for all t ≥ 0 and z ≤ 0.
On the other hand, let us now denote by vM the solution of the ordinary differential equation v′M (t) =

g(vM ) with vM (0) = M. Clearly it converges to 1 as t → +∞ and, since it is a supersolution of (1.4), we
get that

lim sup
t→+∞

sup
z∈R

u(t, z) ≤ 1. (3.3)

We are now in a position to conlude the proof. Choose any ε > 0. Then let Z > 0 be large enough such that{
Ae−µcZ ≤ ε,
pc+(z) ≥ 1− ε for all z ≥ Z.

This implies, together with (3.2) and (3.3), that

lim sup
t→+∞

sup
|z|≥Z

(u(t, z)− pc+(z)) ≤ ε.

Putting this together with (3.1), we conclude that

lim sup
t→+∞

sup
z∈R

(u(t, z)− pc+(z)) ≤ ε.

Recalling that ε can be chosen arbitrary small, and noting that lim infz→−∞ u(t, z)− pc+(z) ≥ 0 for all t > 0,
the lemma is proved.

11



3.1 In the case 0 ≤ c < 2
√

g′(0)

We want to prove that the solution u converges in the moving frame to the maximal positive stationary
solution pc+ of (1.4), namely statement (i) of Theorem 1.2. In particular, this means that the population
manages to survive, and even to expand through the favorable zone. In other words, when the shifting speed
of the favorable area is slow enough, the hair-trigger effect is still valid. Statement (i) of Theorem 1.2 follows
from the next theorem.

Theorem 3.2. Assume that 0 ≤ c < 2
√
g′(0) and u0 is a non trivial, nonnegative and bounded initial

datum.
Then the solution u(t, z) of (1.4) with initial datum u0 converges locally uniformly to pc+ as t goes to

infinity.

Proof. Thanks to Lemma 3.1, we only need to prove that

lim inf
t→+∞

u(t, ·) ≥ pc+,

where the limit is understood to be locally uniform with respect to z.
To do so, we exhibit a non trivial but arbitrarily small subsolution of (1.4). We argue in the phase plane

of (2.4):
φ′′ + cφ′ + g(φ) = 0.

Since c < 2
√
g′(0), the eigenvalues of the linearized problem around (0, 0) are in C \ R. Therefore, for any

κ ∈ (0, 1), the trajectory in the phase plane going through the point (κ, 0) crosses the vertical axis twice.
Cutting this trajectory and extending it by 0, it is then straightforward to construct a nonnegative compactly
supported subsolution φκ of (1.4), which tends to 0 as κ→ 0 and, up to some shift, whose support is included
in [0,+∞). Note also that the size of the compact support stays bounded as κ → 0, as it is given by the
non trivial imaginary part of the complex eigenvalues of (0, 0).

Letting u be the solution of (1.4) with the initial datum u0 = φκ we know that ∂tu > 0 for all t > 0.
Moreover, using again Lemma 3.1 or the fact that any constant M > 1 is a supersolution of (1.4), the function
u is bounded uniformly in time. Thus, by standard parabolic estimates, it converges locally uniformly to a
nonnegative, non trivial and bounded stationary solution. By uniqueness (see Theorem 2.1), it is clear that
the limit of u must be pc+.

Now consider u0 a non trivial, nonnegative and bounded initial datum. Then, by the strong maximum
principle, the associated solution u(t, z) is positive for any positive time. In particular u(1, ·) > 0 and one
can choose κ small enough so that, for all z ∈ R,

φκ(z) ≤ u(1, z).

Here we used the fact that the size of the support of φκ remains bounded as κ → 0. Using the parabolic
comparison principle together with Lemma 3.1, we conclude that

pc+(z) ≤ lim inf
t→+∞

u(t, z) ≤ lim sup
t→+∞

u(t, z) ≤ pc+(z),

where the limits are understood to be (at least) locally uniform with respect to z.

3.2 In the case c ≥ c∗

In this section we prove statement (iii) of Theorem 1.2 . Note that in the particular case c = c∗, here we
only prove that spreading does not occur.

Theorem 3.3. Let u0 be a non trivial, nonnegative, bounded and compactly supported initial datum.

• If c > c∗, then the solution u(t, z) of (1.4), with initial datum u0, converges uniformly to 0 as t→ +∞.
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• If c = c∗ ≥ 2
√
g′(0), then the solution u(t, z) does not spread. Furthermore, there exists no time

sequence tn →∞ such that u(tn, z)→ pc+(z) locally uniformly with respect to z.

To conclude that extinction occurs in the critical case is slightly more intricate. This will be performed
in the next section by a combination of Theorem 3.3 and some exponential bounds: we refer more precisely
to Proposition 4.7 and the subsequent discussion.

Proof. In both cases, the proof relies on the fact that solutions of the homogeneous monostable reaction-
diffusion equation

∂tv − ∂xxv = g(v), t ∈ (0,+∞), x ∈ R, (3.4)

are supersolutions of (1.1).
Classical results from Aronson-Weinberger [3] imply that the solution v of (3.4) with a (compactly

supported) initial datum u0 spreads with speed c∗, in the sense that{
∀ 0 < ν < c∗, limt→+∞ sup0≤x≤νt |v(t, x)− 1| = 0,

∀ ν > c∗, limt→+∞ supx≥νt v(t, x) = 0.

In particular, it would follow by the comparison principle that

∀ ν > c∗, lim
t→+∞

sup
x≥νt

u(t, x) = 0, (3.5)

where in this equation u(t, x) is the solution of (1.1) in the non moving frame. In fact, the result of Aronson
and Weinberger was restricted to the special case 0 ≤ u0 ≤ 1. Here we will prove (3.5) by a similar argument,
which has also been known to extend Aronson and Weinberger’s result to the general case 0 ≤ u0 under our
assumption that g(s) < 0 for all s > 1.

First recall from Lemma 3.1 that

δ(t) := sup
z∈R

(
u(t, z)− pc+(z)

)
→ 0, (3.6)

as t→ +∞. Moreover, letting

A := sup
0≤u≤M

g(u)

u
,

it is straightforward that, for any t ≥ 0 and z ∈ R, the function

u2(t, z) :=
eAt√
4πt

∫
R
u0(y)e−

|z+ct−y|2
4t dy

is a supersolution of (1.4) which also satisfies u2(0, ·) = u0(·). We can now conclude from the above and the
comparison principle that, for all t ≥ 0 and z ∈ R,

u(t, z) ≤ min{pc+(z) + δ(t), u2(t, z)}.

Next, we define η > 0 small enough so that

∀s ∈ (1− η, 1 + η), g′(s) ≤ g′(1)

2
< 0,

and

η ≤ −g
′(1)

4
,

and choose ϕ(s) a nonincreasing smooth function which is identically equal to 1 when s ≤ −1 and identically
equal to 0 when s ≥ 0.
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Then, we introduce V∗ the travelling wave solution with minimal speed c∗ of the homogeneous prob-
lem (3.4), shifted so that V∗(0) = 1 − η

2 . We recall from [3] that V∗ is a decreasing function and that
V ′∗(s) < 0 for all s ∈ R. In particular,

∀s ≤ 0, V∗(s) ≥ 1− η

2
,

and
min
−1≤s≤0

−V ′∗(s) > 0.

Now we define

u(t, x) = V∗(x− c∗t−M(1− e−ηt)) + ηe−ηtϕ(x− c∗t−M(1− e−ηt)), (3.7)

where M is a large enough constant so that

M min
−1≤s≤0

−V ′∗(s) ≥ ‖ϕ′′‖L∞ . (3.8)

Clearly u(t, x) is a supersolution of (3.4) for all t ≥ 0 and x ≥ c∗t + M(1 − e−ηt). On the other hand, for
any t ≥ 0 and x ≤ c∗t+M(1− e−ηt):

∂tu− ∂xxu− g(u)

≥ −ηMe−ηtV ′∗ + ηe−ηt
(
−c∗ϕ′ −Mηe−ηtϕ′ − ϕ′′ − ηϕ− g′(1)

2
ϕ

)
≥ ηe−ηt

(
−MV ′∗ − ϕ′′ −

g′(1)

4
ϕ

)
.

If moreover x ≤ c∗t+M(1− e−ηt)− 1, it immediately follows from the fact that g′(1) < 0 and V ′∗(z) < 0 for
all z ∈ R that

∂tu− ∂xxu− g(u) ≥ 0,

while if c∗t+M(1− e−ηt)− 1 ≤ x ≤ c∗t+M(1− e−ηt), the same inequality follows from (3.8). We conclude
that u(t, x) is a supersolution of (3.4), as well as u(t, x−X) for all X > 0. Thus the function u(t, z+ ct−X)
is a supersolution of (1.4) for any X > 0.

Finally, choose T large enough so that δ(T ) defined in (3.6) is such that δ(T ) ≤ η
4 , and hence

pc+(z) + δ(T ) ≤ 1 +
η

4
≤ u(0, z −X)

for all z ≤ X − 1. Notice that the choice of T does not depend on X > 0. Since it is known by phase plane
analysis (see either [3] or the similar proof of Proposition 2.3 above) that V∗(s) decays at most with the

exponential rate
c∗+
√
c∗ 2−4g′(0)

2 as s→ +∞, one can then find X large enough such that for all z ∈ R,

min{pc+(z) + δ(T ), u2(T, z)} ≤ u(0, z −X).

Applying again the comparison principle, we get that for all t ≥ T and z ∈ R,

u(t, z) ≤ u(t− T, z + c(t− T )−X). (3.9)

From the construction of u above in (3.7), it follows that spreading does not occur when c ≥ c∗, even along
any time sequence. The second part of Theorem 3.3 is proved.

Now consider the case c > c∗. Choose any ε > 0 and Z > 0 such that pc+(z) ≤ ε for all z ≤ −Z. Putting
the inequality (3.9) together with Lemma 3.1, it is straightforward that

lim sup
t→+∞,z∈R

u(t, z) ≤ ε.

Letting ε→ 0, this concludes the proof of Theorem 3.3.

14



3.3 In the case c ∈ [2
√

g′(0), c∗)

In this speed range we want to prove that the asymptotic behaviour of u depends on the initial condition
(statement (iii) of Theorem 1.2), in the sense that both spreading and extinction may occur. More precisely,
we will prove the following theorem:

Theorem 3.4. Assume that c ∈ [2
√
g′(0), c∗).

(i) There exists some (large enough) nonnegative, bounded and compactly supported initial datum u0,1 such
that the associated solution satisfies

lim
t→+∞

u1(t, z) = pc+,

where the convergence is locally uniform in z. Moreover, u0,1 can also be chosen so that

min
z∈R

pc+(z)− u0,1(z) > 0.

(ii) There also exists some (small enough) non trivial and compactly supported initial datum 0 ≤ u0,2 < 1
such that the associated solution satisfies

lim
t→+∞

u2(t, z) = 0,

where the convergence is uniform in z.

3.3.1 For large initial conditions

Assume that c ∈ [2
√
g′(0), c∗) and let us find some initial datum u0,1 such that the associated solution

converges to pc+. Recalling our argument in Section 2, and more precisely the third step in the proof of
Theorem 2.1, the extremal trajectory in the phase plane of the homogeneous ODE (2.4) (which converges
to (0, 0) from the bottom right and lies below any other trajectory converging to (0, 0) without crossing the
vertical axis) crosses the horizontal axis at some point (θc, 0) with 0 < θc < 1.

We now choose θ1 ∈ (θc, 1) and denote by φ(z) the unique solution of (2.4) (which we consider here on
the whole real line), such that φ(0) = θ1 and φ′(0) = 0. By our choice of θ1, there must exist some z1 > 0
such that φ(z1) = 0 and φ(z) > 0 > φ′(z) for all z ∈ [0, z1). Moreover, it is also straightforward by standard
phase plane analysis that there exists some z2 < 0 such that φ(z2) = 0, φ(z) > 0 and φ′(z) > 0 for all
z ∈ (z2, 0]. Let us now restrict φ to the interval [z2, z1], then extend it to 0 outside this interval. With some
slight abuse of notations, we still denote by φ the resulting function, and note that the function

φ̃(z) = φ(z + z2 − 1)

is a compactly supported subsolution of (1.4).
Then define u the increasing in time solution of (1.4) with initial datum φ̃. Applying Lemma 3.1 and

standard estimates, we conclude that u converges as t → +∞ to a stationary solution p of (1.4) satisfying
φ̃ ≤ p ≤ pc+. We claim that p may only be pc+. If not, then p ≡ pα for some α ∈ (0, α∗c ] where (pα)α denotes
the family of ground states constructed in Section 2. It again follows from the third step in the proof of
Theorem 2.1 that, for any α ∈ (0, α∗c ], the trajectory in the phase plane of (2.4) associated with pα lies
‘above’ the extremal trajectory and, in particular, it crosses the horizontal axis at some point (θα, 0) with
0 < θα ≤ θc. Therefore, we get that for some α ∈ (0, α∗c ],

max
z∈R

p = θα ≤ θc.

However, this clearly contradicts our choice of θ1 above and the fact that, for all t > 0,

max
z∈R

p(z) ≥ max
z∈R

u(t, z) ≥ max
z∈R

φ̃(z) = θ1.

We conclude that u(t, z) converges as t → +∞ to pc+ locally uniformly with respect to z, and since u is

increasing in time and u(0, ·) ≡ φ̃(·) has compact support, it becomes straightforward that minR p
c
+− φ̃ > 0.

Finally, it follows by the comparison principle that spreading occurs for any bounded initial datum u0,1 ≥ φ̃.
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3.3.2 For small initial conditions

We again assume that c ∈ [2
√
g′(0), c∗) and we prove that for some small initial data, the solution of (1.4)

converges to 0 uniformly with respect to z as time goes to infinity. We introduce

φ̂ = min{pα, pα∗c},

where α ∈ (0, α∗c). Then φ̂ is a (generalized) supersolution of (1.4).
Looking back at our construction of ground states, it is clear from the proof of Theorem 2.1 (recall (2.3))

that
∀z < 0, φ̂(z) = pα(z),

and that, by Proposition 2.3, there exists z0 > 0 such that

∀z > z0, φ̂(z) = pα∗c (z).

Therefore, the solution u of (1.4) with initial datum φ̂ is decreasing in time, and hence it converges locally
uniformly to a bounded and nonnegative stationary solution p such that

p ≤ min{pα, pα∗c}.

Clearly p is either a ground state or the trivial solution 0. However, for any α ∈ (0, α∗c) and proceeding as
above, we have that pα∗c (z)−pα(z) is strictly positive for negative z, and strictly negative for large positive z.
Thus, p ≡ 0.

Let us now briefly check that the convergence is in fact uniform with respect to z ∈ R. Choose any small
ε > 0, and let Z such that

sup
|z|≥Z

φ̂(z) ≤ ε.

Then, by monotonicity with respect to time, it follows that u(t, z) ≤ ε for all t > 0 and |z| ≥ Z. Together
with the locally uniform convergence to p ≡ 0 proved above, it is straightforward to conclude that

lim
t→+∞

sup
z∈R

u(t, z) = 0.

It of course follows that, for any initial datum 0 ≤ u0,2 ≤ φ̂, the associated solution converges uniformly
to 0. This ends the proof of Theorem 3.4.

4 Exponential bound and convergence in the moving frame

In this section we will prove Proposition 4.7 which states that the solution u(t, z) of (1.4) converges as time
goes to infinity, for all c ≥ 0, to a stationary solution that is either 0, the critical ground state pα∗c (when

it exists) or the invasion state pc+. We already know from the previous section that for c < 2
√
g′(0), u(t, z)

converges locally uniformly to pc+ as time goes to infinity, whereas when c > c∗, u(t, z) converges uniformly
to 0 as time goes to infinity.

Therefore, we only consider throughout this section the remaining case c ∈ [2
√
g′(0), c∗] (note that we

allow this interval to be reduced to a singleton as in the KPP case). While the convergence to a stationary
solution follows a zero number argument inspired from Du and Matano [10], the fact that grounding may only
occur to the critical ground state (that is, the solution may never converge to a ground state other than pα∗c )
relies on uniform in time exponential bounds on the solution u(t, z) as z → +∞, see Proposition 4.1 below.
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4.1 Exponential bound of the solution

We have already shown in Section 2.2 that the critical ground state pα∗c (z) distinguishes itself from the other
ground states by its faster decay as z → +∞. Therefore, we now take interest in the behaviour of u(t, z) the
solution of (1.4) as z → +∞. It turns out that, for compactly supported initial data and unless spreading
occurs, the solution u(t, z) satisfies uniform in time exponential bounds which will immediately rule out non
critical ground states in the large-time asymptotics. More precisely, we now prove the following:

Proposition 4.1. Let c ∈ [2
√
g′(0), c∗]. Let also u0 be a bounded, nonnegative, non trivial and compactly

supported function, and u be the associated solution of (1.4). Assume that u does not spread (in the sense
of Definition 1.1).

• If c ∈ (2
√
g′(0), c∗], then there exist ε > 0 and Zε > 0 such that for any t ∈ (0,+∞) and z ≥ Zε,

u(t, z) ≤ εe−λγ(c)(z−Zε),

where

λγ(c) :=
c+

√
c2 − 4(g′(0) + γ)

2
,

for some γ > 0 such that c > 2
√
g′(0) + γ.

• If c = 2
√
g′(0), then there exists Zr > 0 such that for all t ∈ (0,+∞) and z ≥ Zr,

u(t, z) ≤ (1 +
√
z − Zr)e−

c
2 (z−Zr).

Remark 4.2. In the second part of Proposition 4.1, we use the notation Zr. The reason is that when
c = 2

√
g′(0), we need the C1,r-regularity of g to get the exponential bound, which is not the case when

c > 2
√
g′(0).

Notice that the above Proposition 4.1 is closely related to the energy approach introduced in [14] and
used in several papers to prove convergence to travelling wave solutions [11, 18, 19, 20, 23]. We also refer
to [8] where the energy approach was used in the context of climate change models. Indeed, consider the
functional

Ec[w] :=

∫
R
ecz
{

(w′)2

2
− F (z, w)

}
,

with F (z, w) =
∫ s
0
f(z, s)ds, and which is well-defined for any function w in the weighted Sobolev space

H1(R, eczdz). The functional Ec is the natural energy associated with (1.4) in the sense that (1.4) is a
gradient flow generated by Ec.

Then, when c > 2
√
g′(0), Proposition 4.1 implies that the energy Ec[u(t, ·)] of the solution remains

bounded uniformly in time. Using the energy functional as a Lyapunov function, one can then prove the
large-time convergence to some stationary state. Such an approach has been used especially in [20] where
sharp dichotomy results were also obtained by observing that the energy remains bounded as time goes to
infinity if and only if spreading does not occur.

Note however that in the critical case c = 2
√
g′(0), Proposition 4.1 does not guarantee the boundedness

of the energy in infinite time, which is why we chose a different approach similar to [10].

Proof of Proposition 4.1. Throughout this proof, we assume that c ∈ [2
√
g′(0), c∗] and that spreading does

not occur, i.e. the initial datum u0 is chosen so that u(t, z) does not converge (locally uniformly with respect
to z) to pc+(z) as t→ +∞.

Let us first claim that there also does not exist any sequence (tn)n∈N such that u(tn, z) converges locally
uniformly to pc+(z) as n→ +∞. If c = c∗, this was already proved in Theorem 3.3. When c < c∗, we proceed
by contradiction and assume that such a time sequence exists. In particular, there exists n large enough so
that, for all z ∈ R,

u(tn, z) ≥ u0,1(z).
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Here u0,1 < pc+ is a compactly supported function given by Theorem 3.4 and is such that the associated
solution u1 of (1.4) converges to pc+ locally uniformly in z as time goes to infinity. Then, by the comparison
principle

u(tn + t, z) ≥ u1(t, z),

for all t > 0 and z ∈ R, which passing to the limit as t→ +∞ contradicts our assumption that spreading in
the sense of Definition 1.1 does not occur. We conclude as announced that u does not converge to pc+ even
along any time sequence.

We will now show that u admits an exponential bound as in Proposition 4.1. The proof is a succession
of several lemmas which follow.

Lemma 4.3. Under the same assumptions as in Proposition 4.1, let u be the solution of (1.4) with initial
datum u0.

Then there exist δ > 0 and Aδ > 0 such that

sup
t≥0 z≥Aδ

u(t, z) ≤ 1− δ. (4.1)

Proof. We begin by showing that (4.1) holds true if there exists Tδ > 0 such that

sup
t≥Tδ, z∈R

u(t, z) ≤ 1− δ. (4.2)

Indeed, assume that (4.2) holds for some δ > 0 and Tδ > 0. As we have already mentioned in Section 3.2,
we have for all t ≥ 0 and z ∈ R that

u(t, z) ≤ eAt√
4πt

∫
R
u0(y)e−

|z+ct−y|2
4t dy,

where A = sup0≤u≤M
g(u)
u and M > max{‖u0‖L∞(R), 1}. Since u0 has a compact support, one can find

Aδ > 0 such that, for all z ≥ Aδ and 0 ≤ t ≤ Tδ,

u(t, z) ≤ eAt√
4πt

∫
R
u0(y)e−

|z+ct−y|2
4t dy ≤ 1− δ.

Together with (4.2), this implies that (4.1) holds true.
Let us now prove (4.2). We already know by Lemma 3.1 that

lim
t→+∞

sup
z∈R

u(t, z)− pc+(z) = 0,

hence
lim sup
t→+∞

sup
z∈R

u(t, z) ≤ 1.

Therefore, we can argue by contradiction by assuming that there exist some sequences tn → +∞ and zn ∈ RN

such that u(tn, zn) → 1 as n → +∞. If (zn)n is bounded in R then up to a subsequence, zn → z∞ ∈ R
and the sequence un(t, z) := u(tn + t, z) converges locally uniformly to u∞ a solution of (1.4) such that
u∞(0, z∞) = 1 and u∞(t, z) ≤ 1 for all t ∈ R and z ∈ R. As 1 is a strict supersolution of (1.4) and applying
the strong maximum principle, we reach a contradiction. If (zn)n is unbounded from below, then a similar
argument leads to the same contradiction.

Lastly, we assume that zn → +∞. Notice first that when c = c∗ the inequality (3.9) in the proof of
Theorem 3.3 implies that there exists some X > 0, T > 0 such that for all t > T , z ∈ R,

u(t, z) ≤ V∗(z −X −M(1− e−η(t−T ))) + ηe−η(t−T )ϕ(z −X −M(1− e−η(t−T ))),
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and V∗, ϕ are two functions that converge to 0 at +∞. Thus the case zn → +∞ cannot happen when c = c∗,
so that c < c∗. Define un(t, z) := u(tn+ t, zn+ z), which up to the extraction of some subsequence converges
to u∞ satisfying the equation

∂tu∞ − ∂zzu∞ − c∂zu∞ = g(u∞).

Furthermore, u∞(0, 0) = 1 and u∞(t, z) ≤ 1 for all t ∈ R and z ∈ R. Applying again the strong maximum,
we infer that u∞ ≡ 1. Then there exists n large enough such that, for all z ∈ R,

u(tn, z) ≥ u0,1(z − zn),

where u0,1 is given by Theorem 3.4. Note also that, from the proof of Theorem 3.4 and without loss of
generality, we may assume that u0,1(z) is a subsolution of (1.4), and so is u0,1(z−zn) thanks to the fact that
zn > 0, for n large enough. Thus, the solution ũ1(t, z) of (1.4) with initial datum u0,1(z−zn) is bounded and
increasing in time. In particular, it converges by standard parabolic estimates to a stationary solution pn.

On the other hand, we also know from Theorem 3.4 that u1(t, z) the solution of (1.4) associated with
u0,1(z) converges locally uniformly to pc+(z) as t→ +∞. By the comparison principle and since u1(t, z− zn)
is also a subsolution of (1.4), we get that

u(tn + t, z) ≥ ũ1(t, z) ≥ u1(t, z − zn),

for all t ≥ 0 and z ∈ R. Thus pn(z) ≥ pc+(z − zn) for all z ∈ R, n large enough, and it immediately follows
from Theorem 2.1 that pn(z) = pc+(z) for all z ∈ R. We conclude that, for all Z > 0,

lim inf
t→+∞

inf
|z|≤Z

(
u(t, z)− pc+(z)

)
≥ 0.

In other words (recall also Lemma 3.1), we have just proved that spreading occurs, which again contradicts
our hypotheses. This proves (4.2), hence (4.1).

Lemma 4.4. Consider 0 < δ < 1 and the family of phase plane solutions of the homogeneous monostable
equation (2.4), namely

φ′′ + cφ′ + g(φ) = 0,

such that φ′(0) = 0 and φ(0) = θ ∈ (0, 1 − δ]. Then there exists zθ < 0 such that φ(zθ) = 0 < φ′(zθ) and
φ(z) > 0 for all z ∈ (zθ, 0]. Furthermore,

sup
θ∈(0,1−δ]

|zθ| ≤ Kδ < +∞.

Proof. The existence of zθ is immediate from looking at the phase plane, so we only need to prove that
the mapping θ 7→ zθ is uniformly bounded in (0, 1 − δ). We will do this by looking at the ODE on the
interval [zθ, 0]. Note that on this interval, the function φ is increasing and thus lies in the range [0, 1 − δ].
Then for z ∈ (zθ, 0]:

0 = φ′′ + cφ′ + g(φ) > φ′′ + γδφ,

where γδ > 0 is such that g(s) > γδs for all 0 ≤ s ≤ 1− δ. It follows that in the phase plane, the trajectory
of φ lies strictly above (at least while it remains in the {p, p′ > 0} part of the phase plane, which is the case
if we consider the restriction of φ to the interval [zθ, 0]) that of ψ the solution of

ψ′′ + γδψ = 0,

such that ψ(0) = φ(0) = θ and ψ′(0) = φ′(0) = 0. In particular, it is straightforward that φ < ψ on [zθ, 0).
Indeed, since φ′′(0) < ψ′′(0), it is clear that φ < ψ on some interval (0− η, 0) where η > 0. Let us proceed
by contradiction and assume that there exists a ∈ [zθ, 0) such that φ(a) = ψ(a), and φ(z) < ψ(z) for all
z ∈ (a, 0). Then, as the trajectory of φ lies above that of ψ, we get that φ′(a) > ψ′(a), which contradicts
our choice of a. We conclude as announced that φ < ψ on [zθ, 0).
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Now, clearly ψ(z) = θ cos(
√
γδz) and there exists Kδ := π

2
√
γδ
> 0 which does not depend on θ ∈ (0, 1−δ)

such that ψ(−Kδ) = 0. Therefore, there exists zθ ≥ −Kδ such that φ(zθ) = 0 and φ(z) > 0 for all z ∈ (zθ, 0].
In particular φ′(zθ) ≥ 0 and, in fact, φ′(zθ) > 0 since φ 6≡ 0, which concludes the proof. Note though that
Kδ → +∞ as δ → 0, which of course is unavoidable since 1 is solution of the homogeneous monostable
equation.

Lemma 4.5. Under the same assumptions as in Proposition 4.1, let u be the solution of (1.4) with initial
datum u0, and denote K > 0 such that support(u0) ⊂ (−K,K).

Then for all t ∈ (0,+∞), z 7→ u(t, z) is nonincreasing in [D0,+∞), where D0 := K + Kδ + Aδ with δ,
Aδ given by Lemma 4.3 and Kδ given by Lemma 4.4.

Proof. We only consider the case when u0 is of class C1 and there exists 0 < a < K such that ∂zu0(a) < 0
and ∂zu0(z) ≤ 0 for z ≥ a. Indeed, by continuity of the solution of (1.4) with respect to the initial datum and
noting that any compactly supported function u0 can be approached by a sequence of functions satisfying
these additional hypotheses, the lemma eventually follows in the general case.

Since a > 0, one can use standard estimates and find some τ > 0 small enough such that ∂zu(t, a) < 0
for all t ∈ (0, τ). As ∂zu satisfies

∂t(∂zu)(t, z) = ∂zz(∂zu)(t, z) + c∂z(∂zu)(t, z) + ∂zu(t, z)g′(u(t, z)),

for all t > 0 and z ≥ a, one can apply the strong maximum principle to get that

∀t ∈ (0, τ), ∀z ≥ a, ∂zu < 0.

Now argue by contradiction and assume that there exist t1 > 0, z1 ≥ D0 such that ∂zu(t1, z1) = 0. Let φ be
the solution of the homogeneous ODE (2.4) with

φ(0) = u(t1, z1), φ′(0) = 0 = ∂zu(t1, z1).

Letting θ := u(t1, z1), which by Lemma 4.3 and our choice of D0 > Aδ satisfies θ ≤ 1 − δ, we know from
Lemma 4.4 that there exists zθ ∈ [−Kδ, 0) such that φ(zθ) = 0, φ′(zθ) > 0 and φ > 0 in (zθ, 0]. Moreover, it
also follows from our choice of D0 that z1 + zθ ≥ K +Aδ > K. On the other hand, φ may either be positive
on [0,+∞) (and thus on (zθ,+∞)), or admits some smallest z2 > 0 such that φ(z2) = 0 and φ′(z2) < 0.

While we treat those two cases separately below, both parts rely on a so-called ‘zero number’ argument
that we detail in Appendix A. The main idea is that, denoting by h 6≡ 0 the solution of a one-dimensional
linear parabolic equation of the type

∂th(t, z) = ∂zzh(t, z) + ch(t, z) + b(t, z)h(t, z), t ∈ (t1, t2), z ∈ I,

where I is an interval, c is a constant and b a bounded function, then the number of sign changes ZI [h(t, ·)]
of h(t, ·) on I is a nonincreasing function of t ∈ (t1, t2) and the zeros do not accumulate in I. We refer to
Proposition A.1 in the appendix and to [2, 10, 17] for more details.

• We first consider the case when φ(z) is positive in (zθ,+∞). Then, by standard phase plane analysis,
it converges exponentially to 0 as z → +∞, and the exponential convergence rate is given by any of
the two positive eigenvalues

λ±(c) =
c±

√
c2 − 4g′(0)

2

of the linearization of (2.4) around 0. As u0 has a compact support included in the interval (−K,K),
and recalling that z1 + zθ ≥ K +Aδ, we know that

ZI [u0(·)− φ(· − z1)] = 1,

where I = [z1 + zθ− η,+∞) with η ∈ (0, Aδ) such that φ(z) < 0 for all z ∈ (zθ− η, zθ). Note that such
a η clearly exists since φ′(zθ) > 0. Putting together the facts that u0 ≡ 0 in (K,+∞), that ∂zu < 0
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for all t ∈ (0, τ) and z ≥ z1 + zθ − η ≥ a, and that one can show as in Section 3.2 that, for all t > 0
and z ∈ R,

u(t, z) ≤ eAt√
4πt

∫
R
u0(y)e−

|z+ct−y|2
4t dy where A > 0, (4.3)

then one can check up to reducing τ > 0 that

ZI [u(τ, ·)− φ(· − z1)] = 1.

Moreover, h(t, z) := u(t, z)− φ(z − z1) satisfies the equation

∂th(t, z) = ∂zzh(t, z) + c∂zh(t, z) + b(t, z)h(t, z), (4.4)

for all t > 0 and z ∈ I, where

b(t, z) :=


g(u(t, z))− g(φ(z − z1))

u(t, z)− φ(z − z1)
if u(t, z) 6= φ(z − z1),

g′(u(t, z)) if u(t, z) = φ(z − z1).

Note also that, since u(t, z) > 0 for all t > 0 and z ∈ R by the strong maximum principle, it is clear
that h(t, z1 + zθ − η) = u(t, z1 + zθ − η)− φ(zθ − η) > 0 for all t ≥ 0. Therefore, from Proposition A.1,
we infer that

t ∈ (0,+∞) 7→ ZI [h(t, ·)]
is a nonincreasing function and furthermore, whenever h(t∗, ·) admits a degenerate zero in the interior
of I for some t∗ > 0, then

ZI [h(s1, ·)] > ZI [h(s2, ·)]
for any s1 ∈ (0, t∗) and s2 > t∗. Here we know that such a degenerate zero occurs at time t1 and
point z1, and it follows that, for all t > t1,

ZI [h(t, ·)] = 0.

Using again the fact that h(t, z1 + zθ − η) > 0 for all t > 0, we get more precisely that,

∀t > t1, ∀z ≥ z1 + zθ − η, u(t, z) ≥ φ(z − z1).

However, from (4.3) and recalling that φ(z) decays exponentially as z → +∞, we have finally reached
a contradiction.

• Now consider the case when φ changes sign in (0,∞). More precisely, there are zθ < 0 < z2 such
that φ(zθ) = φ(z2) = 0, and φ(z) > 0 for all z ∈ (zθ, z2). Moreover, as we already mentioned
above, φ′(zθ) > 0 > φ′(z2), hence there also exists some η ∈ (0, Aδ) such that φ(z) < 0 for all
z ∈ (zθ − η, zθ) ∪ (z2, z2 + η).

Proceeding as before, we let h(t, z) := u(t, z) − φ(z − z1) which again solves (4.4) for all t > 0 and
z ∈ I := [z1 + zθ−η, z1 + z2 +η], where b is defined in a similar fashion. Clearly, since z1 + zθ−η ≥ K,
we have

ZI [h(0, ·)] = 2,

as well as h(t, z1 + zθ − η) > 0 and h(t, z1 + z2 + η) > 0 for all t > 0. Using again the behaviour of u
when t is close to 0, we get as before that, up to reducing τ ,

ZI [h(τ, ·)] = 2.

Therefore, applying again Proposition A.1, we get that the function t 7→ ZI [h(t, ·)] is nonincreasing on
(0,∞). Furthermore, because h(t1, ·) admits a degenerate zero at the point z1, we have that

ZI [h(t, ·)] ≤ 1
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for all t > t1. In fact, since h(t, z1 + zθ − η) and h(t, z1 + z2 + η) are both positive for all t > 0, we
even get that

∀t > t1, ∀z ∈ I, u(t, z) ≥ φ(z − z1).

Unlike in the previous case, this is not enough to reach a contradiction. Applying the comparison
principle, we infer that u(t1 + t, z) ≥ u(t, z), where u denotes the solution of (1.4) with initial datum

φ̃(z) :=

{
φ(z − z1) if z ∈ [z1 + zθ, z1 + z2],

0 otherwise.

Proceeding as in Section 3.3.1, one can check that u(t, z) converges to pc+(z) as t → +∞, locally
uniformly with respect to z ∈ R. This contradicts our assumption that the solution u does not spread.

In both cases we have reached a contradiction. Lemma 4.5 is proved.

Lemma 4.6. Under the same assumptions as in Proposition 4.1, let u be the solution of (1.4) with initial
datum u0. Then, for all ε > 0, there exists Zε ∈ R such that

∀t ≥ 0, ∀z ≥ Zε, u(t, z) ≤ ε.

Proof. When c = c∗, this comes from the proof of Theorem 3.3 in Section 3.2 (see in particular the inequal-
ity (3.9), where the right-hand side decays as z → +∞, uniformly with respect to t > 0). When c < c∗ we
argue by contradiction and assume that there exists ε > 0, such that for any Z ∈ R, there exists tZ > 0 and
Z ′ > Z with

u(tZ , Z
′) ≥ ε.

Choose Z > D0 where D0 is given by Lemma 4.5, and then

inf
D0≤z≤Z′

u(tZ , z) ≥ ε.

We claim that, provided Z ′ is large enough, this implies that spreading occurs.
First, let v(t, z) be the solution of the homogeneous monostable equation

∂tv = ∂xxv + g(v),

with initial datum v0(x) = εχ(−D1,D1)(x), where χ denotes the characteristic function and D1 > 0. As
follows from classical results [3], the function v(t, x) converges as t → +∞ to 1, locally uniformly with
respect to x ∈ R. In particular, there exists T > 0 such that for all x ∈ R,

v(T, x) > u0,1(x),

where u0,1 < pc+ < 1 is a compactly supported function, given by Theorem 3.4 so that u1(t, z) the solution
of (1.4) with initial condition u0,1 spreads in the sense of Definition 1.1.

Now let ṽ be the solution of the homogeneous monostable equation but in a bounded domain with
Dirichlet boundary conditions on the boundary, i.e.

∂tṽ − ∂xxṽ = g(ṽ), t ∈ (0,+∞), x ∈ (−D2, D2),

ṽ(t,±D2) = 0, t ∈ (0,+∞),

ṽ(0, x) = v0(x), x ∈ (−D2, D2),

where D2 > D1. Since ṽ converges locally uniformly in time and space to v as D2 → +∞, there exists D2

large enough such that ṽ(T, x) ≥ u0,1(x).
Up to increasing Z above, we can assume without loss of generality that

Z ′ −D0 ≥ 2D2 + cT. (4.5)
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By construction, for all z ∈ R,
u(tZ , z) ≥ v0(z − Z ′ +D2),

and for all t ∈ [0, T ], we have

u(tZ + t, Z ′ − 2D2 − ct) ≥ 0 = ṽ(t,−D2) and u(tZ + t, Z ′ − ct) ≥ 0 = ṽ(t,D2).

Thanks to (4.5), one can check that (t, z) 7→ ṽ(t, z − Z ′ +D2 + ct) satisfies (1.4) for all

(t, z) ∈ QT := {(t, z) | 0 < t < T and Z ′ − 2D2 − ct < z < Z ′ − ct}.

Therefore, we can apply the comparison principle and conclude that, for all (t, z) ∈ QT ,

u(tZ + t, z) ≥ ṽ(t, z − Z ′ +D2 + ct).

In particular, for all z ∈ R,
u(tZ + T, z) ≥ u0,1(z − Z ′ +D2 + cT ).

Using again the fact that Z ′−D2− cT > 0, it is straightforward that u1(t, z−Z ′+D2 + cT ) is a subsolution
of (1.4) (recalling that u1(t, z) is the solution of (1.4) with initial datum u0,1). Another application of the
comparison principle and of Lemma 3.1 leads to the conclusion that u spreads in the sense of Definition 1.1,
which again contradicts our assumption. We proved the lemma.

Now we can prove Proposition 4.1. Let us first assume that c ∈ (2
√
g′(0), c∗], and choose γ > 0 such

that c > 2
√
g′(0) + γ. Let then ε > 0 be small enough so that g′(u) < g′(0) + γ for all u ∈ [0, ε]. Define

v(z) = εe−λγ(c)(z−Zε),

where Zε > 0 comes from Lemma 4.6. Noting that λγ(c) is the largest root of λ2 − cλ+ g′(0) + γ and from
our choice of ε, we get that for all z ≥ Zε,

vt − vzz − cvz − g(v) = −λγ(c)2v + cλγ(c)v − g(v) ≥ 0.

Moroever, up to increasing Zε and without loss of generality, we have that u0 ≡ 0 ≤ v in (Zε,+∞). Using
Lemma 4.6, we also know that

u(t, Zε) ≤ ε = v(Zε),

for all t ≥ 0. Therefore, we conclude applying the parabolic maximum principle that

∀z ≥ Zε, t ≥ 0, u(t, z) ≤ v(z),

and the wanted inequality immediately follows.
We now consider the case c = 2

√
g′(0) and define, for all z ≥ 0,

v(z) = (1 +
√
z)e−

c
2 z,

Let also Z > 0 be such that, for all z ≥ Z, one has 0 ≤ v(z) ≤ 1 and hence

|g(v)− g′(0)v| ≤
∫ v

0

|g′(s)− g′(0)| ds ≤ Crv1+r,

where Cr > 0 comes from the C1,r-regularity of g. Then one can check that for all z ≥ Z,

vt − vzz − cvz − g(v) = g′(0)v − g(v) +
1

4

e−
c
2 z

z
√
z

≥ −Crv1+r +
1

4

e−
c
2 z

z
√
z
,

≥ e− c2 z
(
−Cr(1 +

√
z)1+re−

cr
2 z +

1

4z
√
z

)
> 0,
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and the last inequality holds up to increasing Z (depending on r).
On the other hand, since

min
z∈[0,Z]

v(z) > 0,

it follows from Lemma 4.6 that there exists Z ′ > 0 such that, for all t ≥ 0 and z ∈ [Z ′ − Z,Z ′],

u(t, z) ≤ v(z − Z ′ + Z).

Up to increasing Z ′ and since u0 has compact support, we can also assume that u0(z) = 0 ≤ v(z − Z ′ + Z)
for all z ∈ [Z ′−Z,+∞). Therefore, we apply the comparison principle again and conclude that for all t ≥ 0
and z ≥ Z ′ − Z,

u(t, z) ≤ v(z − Z ′ + Z) =
(

(1 +
√
z − Z ′ + Z

)
e−

c
2 (z−Z

′+Z).

Letting Zr = Z ′ − Z, we reach the wanted inequality and the proposition is proved.

4.2 Convergence in the moving frame

In this subsection we prove the following proposition, which is crucial in order to obtain the sharp dichotomy
phenomenon as stated in our main results Theorem 1.3 and Theorem 1.4:

Proposition 4.7. Let u0 be any nonnegative, bounded and compactly supported initial datum. Then the
associated solution u(t, z) of (1.4) either spreads, goes extinct, or is grounding in the sense of Definition 1.1.

Let us remind the reader that by grounding we may only mean uniform convergence to the critical
ground state pα∗c . We will still assume in this subsection that c ∈ [2

√
g′(0), c∗], even though we do not

state it explicitly in the above proposition: the reason is that Proposition 4.7 clearly holds true for any
c ∈ [0, 2

√
g′(0)) ∪ (c∗,+∞), as immediately follows from Theorems 3.2 and 3.3.

Note also that the critical ground state pα∗c does not exist when c < 2
√
g′(0) or c ≥ c∗, in which case

the only possible outcomes are spreading and extinction. In particular, when c = c∗, the combination
of Proposition 4.7 and Theorem 3.3 implies that extinction always occurs, which completes the proof of
Theorem 1.2.

Proof. We only consider initial data u0 such that spreading does not occur. Thus Proposition 4.1 applies,
along with the lemmas involved in its proof. In particular, it follows from Lemma 4.6 and the simple fact
that Aeµcz is a supersolution of (1.4) for all z ≤ 0 (where µc > 0 was introduced in Section 2.1 and A > 0
can be chosen arbitrarily large), that for all ε > 0, we have up to increasing Zε:

∀t ≥ 0, ∀|z| ≥ Zε, u(t, z) ≤ ε.

Since pα∗c (z)→ 0 as z → ±∞, it is straightforward that we only need to prove that u(t, z) converges locally
uniformly with respect to z to either 0 or pα∗c as t→ +∞.

Let us first introduce the corresponding ω-limit set:

Ω(u0) = ∩
t>0
{u(τ, ·), τ ≥ t}, (4.6)

with u the solution of (1.4) such that u(0, z) = u0(z) for all z ∈ R. Here the closure in (4.6) is taken in
the locally uniform topology. Since the set {t ≥ 1 | u(t, ·)} is relatively compact with respect to the locally
uniform topology, the ω-limit set is not empty and our goal now rewrites as proving that Ω(u0) is reduced
to a singleton which is either {0} or {pα∗c}.

Before we proceed, let us also mention the well-known fact that the relative compactness of the set
{t ≥ 1 | u(t, ·)} implies that Ω(u0) is connected. This will prove useful below.
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Assume now that c ∈ [2
√
g′(0), c∗]. We will prove that the ω-limit set consists only of stationary solutions

of (1.4), and follow an argument of Du and Matano [10].
Choose some w ∈ Ω(u0), and (tn)n such that tn → +∞ and u(tn, ·)→ w(·) locally uniformly as n→ +∞.

Here we will assume that w 6≡ 0 and prove that w ≡ pα∗c (which is a contradiction when c = c∗). Thanks
to standard parabolic estimates and up to extraction of a subsequence, the sequence un(t, z) = u(t + tn, z)
converges locally uniformly with respect to both t and z to some nonnegative solution u∞ of (1.4) such that
u∞(0, z) = w(z) for all z ∈ R. In particular, by the strong maximum principle and from our choice of w 6≡ 0,
we have that w(z) > 0 for all z ∈ R.

Consider now p the solution of the ODE

p′′ + cp′ + f(z, p) = 0,

such that p(0) = u∞(0, 0) = w(0) > 0 and p′(0) = ∂zu∞(0, 0) = w′(0). Let us denote

z1 = inf{z < 0 | p(z) > 0} ∈ [−∞, 0),

and
z2 = sup{z > 0 | p(z) > 0} ∈ (0,+∞].

Note that z1 (respectively z2) may be infinite if p does not change sign on R− (respectively R+).
Since clearly u0 6≡ p, one can define the number of sign changes of u(t, ·)−p(·) on I the closure of (z1, z2),

and claim that is finite for all t > 0. As before we denote by ZI [u(t, ·)− p(·)] the number of sign changes of
u(t, ·)− p(·) in I.

Claim 4.8. For all t > 0,
ZI [u(t, ·)− p(·)] < +∞.

Proof of Claim 4.8. Let us first consider the case when I is a bounded interval. As u(t, z1)− p(z1) > 0 and
u(t, z2) − p(z2) > 0 for all t > 0, and since u(t, z) − p(z) satisfies a linear parabolic equation on (z1, z2) in
a similar fashion as in the proof of Lemma 4.5, we know from Proposition A.1 that the number of zeros is
finite which proves the claim.

Next assume that I = R. Since f(z, s) = −s for all z < 0 and s ∈ R, it is straightforward that

∀z ≤ 0, p(z) = Aeµcz +Be−νcz,

where µc is defined in Section 2, νc := c+
√
c2+4
2 > 0, and either B > 0 or B = 0 < A. On the other hand,

from a standard phase plane analysis of (2.4) (see the proof of Theorem 2.1 and Proposition 2.3), we have
either lim inf p(z) ≥ 1 as z → +∞, or p(z)→ 0 as z → +∞ at an exponential rate that is

lim sup

∣∣∣∣p′(z)p(z)

∣∣∣∣ ≤ c+
√
c2 − 4g′(0)

2
as z → +∞.

In any case, using the fact that u0 has compact support, it is straightforward (see again the supersolution u2
in Section 3.2) that for any t > 0, there exists some Z > 0 such that

∀|z| ≥ Z, u(t, z) < p(z).

Using Proposition A.1 and the fact that zeros of u − p do not accumulate, we again reach the wanted
conclusion.

The remaining cases −∞ < z1 < z2 = +∞ and −∞ = z1 < z2 < +∞ easily follow from the same
arguments and we omit the details.

Let us go back to the proof of Proposition 4.7. We now prove that u∞ ≡ p. By Proposition A.1,
ZI [u(t, ·)− p(·)] is also nonincreasing with respect to time, which implies that it is constant for large times
and using again Proposition A.1, u(t, ·) − p(·) has only simple zeros on I for large time t. One may then
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apply Lemma 2.6 from [10] to reach the wanted conclusion. However, we include the argument for the sake
of completeness.

From our choice of p such that p(0) = u∞(0, 0) and assuming by contradiction that u∞ 6≡ p, we can also
apply Proposition A.1 to get that the zeros of u∞(0, ·) − p(·) do not accumulate. In particular, there exist
τ > 0 and ε > 0 such that [−ε, ε] ⊂ I and

u∞(t,±ε) 6= 0, ∀ t ∈ [−τ, τ ].

Moreover, as u∞(0, ·)− p(·) has a degenerate zero at 0,

Z[−ε,ε][u∞(−τ, ·)− p(·)] > Z[−ε,ε][u∞(τ, ·)− p(·)].

Because degenerate zeros may only appear at discrete times, one may also assume up to reducing τ that
the zeros of u∞(±τ, ·)− p(·) are all simple in [−ε, ε]. Besides, by standard parabolic estimates, the sequence
un(t, z) = u(t+tn, z) and its spatial derivative ∂zun(t, z) converge locally uniformly to u∞(t, z) and ∂zu∞(t, z)
respectively. It follows that

Z[−ε,ε][un(−τ, z)− p(z)] > Z[−ε,ε][un(τ, z)− p(z)]

and
un(t,±ε) 6= 0, ∀ t ∈ [−τ, τ ],

for n large enough. This implies that, for any large n, un(t, ·) − p(·) has a degenerate zero in the interval
(−ε, ε) for some time t ∈ (−τ, τ). However, as explained above, Claim 4.8 and Proposition A.1 imply that
u(t, ·)− p(·) has only simple zeros for large times, which is a contradiction. We conclude that u∞ ≡ p, and
it immediately follows that w(·) ≡ u∞(0, ·) is a (bounded and positive) stationary solution.

Now recall that u satisfies the exponential bound from Proposition 4.1 when c = 2
√
g′(0) or c ∈

(2
√
g′(0), c∗], and so does w by passing to the limit as t → +∞. On the other hand, it follows from

Proposition 2.3 that pα∗c (when it exists) is the only bounded and positive stationary solution satisfying the
same inequality, so that w ≡ pα∗c . Therefore, when c = c∗, we have reached another contradiction (in this

case by Theorem 2.1 there is no critical ground state) and conclude that Ω(u0) = {0}. If c ∈ [2
√
g′(0), c∗),

then Ω(u0) ⊂ {0, pα∗c} and, since it is connected, either Ω(u0) = {0} or Ω(u0) = {pα∗c}. Proposition 4.7 is
proved.

5 Sharp transitions phenomena

We have already shown that the solution of (1.4) either spreads, goes extinct, or converges uniformly to the
critical ground state pα∗c , see Proposition 4.7 above. In this section, we will prove Theorems 1.3 and 1.4.
Both theorems highlight the fact that, whether we fix the speed while the initial datum varies, or whether we
fix the initial datum while the speed varies, there is a sharp transition from spreading behaviour to extinction
behaviour.

5.1 Sharp dichotomy

Let us first prove Theorem 1.3. Here we assume that 2
√
g′(0) < c∗ and fix c ∈ [2

√
g′(0), c∗). We also

introduce a family (u0,σ)σ>0 of nonnegative, compactly supported and bounded initial data such that

∀σ′ > σ, u0,σ′ ≥ u0,σ and u0,σ′ 6≡ u0,σ,

and
∀σ > 0, σ′ → σ ⇒ ‖u0,σ′ − u0,σ‖L1(R) → 0.

We also denote, for each σ > 0, by uσ the solution of (1.4) with initial datum u0,σ. Then define the (possibly
empty) sets

Σ0 = {σ > 0 | uσ(t, z)→ 0, as t→ +∞ uniformly in z},
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and
Σ1 = {σ > 0 | uσ(t, z)→ pc+(z), as t→ +∞ locally uniformly in z}.

We also define

σ∗ :=

{
sup Σ0,

0 if Σ0 = ∅,
σ∗ :=

{
inf Σ1,

+∞ if Σ1 = ∅.

By the comparison principle, we have that:

∀t ≥ 0, ∀z ∈ R, σ′ > σ ⇒ uσ′(t, z) ≥ uσ(t, z).

In particular, it is straightforward that σ∗ ≤ σ∗ and

(0, σ∗) ⊂ Σ0 ⊂ (0, σ∗], (σ∗,+∞) ⊂ Σ1 ⊂ [σ∗,+∞).

Claim 5.1. The sets Σ0 and Σ1 are open. In particular, if σ ∈ [σ∗, σ
∗] \ ({0} ∪ {+∞}), then uσ(t, z)

converges as t→ +∞ to pα∗c (z) uniformly with respect to z.

Proof of Claim 5.1. Let us first take σ∗ ∈ Σ1, and prove that for any δ > 0 small enough, then σ∗ − δ ∈ Σ1.
Let also some compactly supported initial datum 0 ≤ u0,1 < pc+ be such that the associated solution spreads,
using Theorem 3.4. Since uσ∗(t, z) converges locally uniformly to pc+(z) as t → +∞, and by continuity of
the solution uσ with respect to σ in the locally uniform topology, it is straightforward that one cand find
T > 0 large enough and δ0 > 0 such that, for all 0 < δ ≤ δ0:

∀z ∈ R, uσ∗−δ(T, z) ≥ u0,1(z).

Applying the comparison principle and recalling Lemma 3.1, we infer that [σ∗ − δ0, σ∗] ⊂ Σ1.
Next, we take σ∗ ∈ Σ0 and prove that for δ > 0 small enough, then σ∗ + δ ∈ Σ0. Here the difficulty lies

in the fact that (unlike in the previous case or in the related work [10]), the trivial state 0 is only stable with
respect to perturbations which decay fast enough at infinity. Thus, we need to use the fact that the initial
data u0,σ have compact support, which we do through the application of Proposition 4.1.

First consider the case when 2
√
g′(0) < c < c∗. Then there exists 0 < ε < α∗c small enough so that, for

all 0 ≤ s ≤ ε,

g′(s) ≤ c2

4
.

It easily follows that the function u1(z) = εe−
c
2 z satisfies, for all z ≥ 0,

u′′1 + cu′1 + g(u1) ≤ 0.

Moreover, for z ≤ 0, we also have that
u′′1 + cu′1 − u1 ≤ 0.

In other words, u1 is a supersolution of (1.4). Recall that the solution of (1.4) is bounded for any bounded
and nonnegative initial datum, and therefore one can fix M > ‖uσ∗+1‖L∞(R+×R). Now let Z be large enough
so that u1(−Z) ≥M , and so that applying Proposition 4.1 where λγ(c) > c

2 :

∀t ≥ 0, ∀|z| ≥ Z, uσ∗(t, z) ≤
u1(z)

2
.

Then, since we assumed that σ∗ ∈ Σ0, there exists some T > 0 such that

∀|z| ≤ Z, uσ∗(T, z) ≤
u1(z)

2
.

We now claim that uσ∗+δ(T, ·) ≤ u1(·) for any small enough δ ∈ (0, 1). When z ≤ −Z, the inequality simply
follows from our choice of Z and M above. Then, by continuity (in the locally uniform topology) of solutions
of (1.4) with respect to the initial datum, for any δ ∈ (0, 1) small enough we have that

∀|z| ≤ Z, uσ∗+δ(T, z) ≤ u1(z),
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but also that
∀0 ≤ t ≤ T, uσ∗+δ(t, Z) ≤ u1(Z). (5.1)

Without loss of generality, one may increase Z so that the support of u0,σ∗+1 is included in (−Z,Z): in
particular, for any δ ∈ (0, 1), the support of u0,σ∗+δ is also included in (−Z,Z) and u0,σ∗+δ(z) ≤ u1(z) for
all z ≥ Z. Together with (5.1) and applying the comparison principle on the domain (0, T )× (Z,+∞), this
implies that for any δ ∈ (0, 1) small enough,

∀z ≥ Z, uσ∗+δ(T, z) ≤ u1(z).

As announced we have obtained that uσ∗+δ(T, z) ≤ u1(z) for all z ∈ R, and applying again the comparison
principle the same inequality holds for all times larger than T . Finally, recalling that pα∗c (0) = α∗c > ε =
u1(0), it follows from Proposition 4.7 that uσ∗+δ(t, ·) converges uniformly to 0 as t→ +∞, i.e. σ∗ + δ ∈ Σ0.

Now assume that c = 2
√
g′(0) < c∗. Fix M > ‖uσ∗+1‖L∞(R+×R) as above. By a similar computation as

in the proof of Proposition 4.1, the function

u2(z) := M(1 + z3/4)e−
c
2 z

satisfies
u′′2 + cu′2 + g(u2) ≤ 0

for all z ≥ Z0 where Z0 > 0 is large enough (depending only on M and g), as well as

u′′2 + cu′2 − u2 ≤ 0

for all z > 0. It follows that u2(z + Z0) is a supersolution of (1.4) on the half line {z > −Z0}. Then,
proceeding similarly as above, using Proposition 4.1, one can find some T > 0 so that, for any small enough
δ > 0,

∀z ≥ −Z0, uσ∗+δ(T, z) ≤ u2(z + Z0).

Then, we apply the comparison principle on (T,+∞)× (−Z0,+∞), thanks to the fact that uσ∗+δ(t,−Z0) ≤
M = u2(0) for all t > 0, and get that

∀t ≥ T, ∀z ≥ −Z0, uσ∗+δ(t, z) ≤ u2(z + Z0).

Since u2(z) → 0 as z → +∞, we may increase Z0 without loss of generality so that u2(Z0) < α∗c = pα∗c (0).
Finally, it follows from the above inequality and Proposition 4.7 that uσ∗+δ goes extinct as time goes to
infinity. Thus σ∗ + δ ∈ Σ0 for any small enough δ.

We have now proved that Σ0 and Σ1 are open, and hence [σ∗, σ
∗] ∩ (Σ0 ∪ Σ1) = ∅. It immediately

follows from Proposition 4.7 that for any real number σ ∈ [σ∗, σ
∗] \ ({0}∪ {+∞}), the solution uσ converges

uniformly to pα∗c as time goes to +∞.

The sharpness of the threshold between extinction and spreading, namely the fact that σ∗ = σ∗, and
hence Theorem 1.3, immediately follows from Claim 5.1 and the next lemma:

Lemma 5.2. If there exists σ∗ > 0 such that uσ∗(t, z) → pα∗c (z) as t → +∞ uniformly in z, then for all
σ < σ∗, uσ vanishes.

Proof. This proof is largely inspired by that of Lemmas 4.4 and 4.5 in [10]. We first prove that for any
σ1 < σ2, there exists t0, δ and ε positive constants such that

uσ1
(t, z) < uσ2

(t+ δ, z + a), ∀ t ≥ t0, z ∈ R, 0 < a < ε. (5.2)

Using the same argument as [10] [Proposition 1.8] and the fact that s 7→ f(z, s) is Lipschitz-continuous,
uniformly with respect to z ∈ R, one can show that there exists t0 > 0 and K > 0 such that the supports
of u0,σ1

and u0,σ2
are included in (−K + 1,K − 1), and such that uσ1

and uσ2
are both increasing in t for

all t ∈ (0, 2t0) and |z| ≥ K. We know from the strong maximum principle that uσ1
(t, z) < uσ2

(t, z) for all
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t > 0, z ∈ R, and thus by the C1-regularity of solutions of (1.4) for positive times, one can check that for
any 0 < ε < 1 and δ > 0 small enough,

∀|z| < K, 0 < a < ε, uσ1
(t0, z) < uσ2

(t0 + δ, z + a). (5.3)

Let us now show the same inequality for |z| ≥ K. Using the fact that uσ2 is increasing in t for t ∈ (0, 2t0)
and |z| ≥ K, and assuming that δ < t0 without loss of generality, we get that

∀t ∈ [0, t0], z = ±K, uσ1
(t, z) < uσ2

(t+ δ, z).

Thanks to the continuity of the solutions up to time t = 0 at z = ±K (which lie outside of the initial
support), we get up to reducing ε that

∀t ∈ [0, t0], z = ±K, 0 < a < ε, uσ1
(t, z) < uσ2

(t+ δ, z + a).

Moreover, recalling that the support of u0,σ1
is included in (−K + 1,K − 1), we get that

∀|z| ≥ K, 0 < a < ε, uσ1
(0, z) = 0 < uσ2

(δ, z + a).

Then using the comparison principle on each interval (K,+∞) and (−∞,−K), one has that

∀|z| ≥ K, 0 < a < ε, uσ1
(t0, z) < uσ2

(t0 + δ, z + a).

Putting this together with (5.3), we have that uσ1(t0, z) < uσ2(t0 + δ, z + a) for all z ∈ R. Then, using the
comparison principle and the fact that f(z, u) ≤ f(z + a, u) for all a > 0, we get for all 0 < a < ε, t ≥ t0,
z ∈ R that

uσ1
(t, z) < uσ2

(t+ δ, z + a).

We have now proved (5.2). Now under the assumptions of Lemma 5.2, choose σ2 = σ∗ and σ1 = σ < σ∗,
and infer that there is some a > 0 such that, for all z ∈ R,

lim
t→+∞

uσ(t, z) ≤ pα∗c (z + a).

Together with Proposition 4.7, this easily implies that uσ converges uniformly to 0 as time goes to infinity
and the lemma is proved.

5.2 Sharp speed

In this section we turn to the proof of Theorem 1.4 and show that for a fixed initial condition u0 there exists
a sharp speed c(u0) ∈ [2

√
g′(0), c∗] such that spreading occurs when c < c(u0) and vanishing occurs when

c > c(u0).

Proof of Theorem 1.4. Assume that the initial condition u0 is bounded, nonnegative, non trivial and com-
pactly supported. From Theorem 1.2 we already know that for all c < 2

√
g′(0), the solution in the moving

frame converges to pc+ locally uniformly as time goes to infinity, and that for all c ≥ c∗ the solution converges

to 0 uniformly. From this we can define two thresholds 2
√
g′(0) ≤ c ≤ c ≤ c∗ by

c := max{c ≥ 0 | ∀c′ < c, u(t, z)→ pc+(z) as t→ +∞ locally uniformly, i.e. spreading occurs},
c := min{c ≥ 0 | ∀c′ > c, u(t, z)→ 0 as t→ +∞ uniformly, i.e. extinction occurs}.

In addition, one can notice that the solution u(t, x) in the non moving frame is decreasing with respect
to c ≥ 0. Indeed if uc1 , respectively uc2 , are solutions of the original problem (1.1) with c = c1, respectively
c = c2, such that c1 < c2 and uc1(0, x) = uc2(0, x) = u0(x) for all x ∈ R, one can conclude using the parabolic
maximum principle and the monotonicity of f(z, u) with respect to z that for all t > 0, x ∈ R,

uc1(t, x) > uc2(t, x).
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With the same abuse of notations as before, we denote by uc1(t, z) and uc2(t, z) the solutions of (1.4) with
respectively c = c1 and c = c2 (note however that, since c1 6= c2, both functions are derived from different
change of variables). The inequality above then rewrites as

∀t ≥ 0, ∀z ∈ R, uc2(t, z) < uc1(t, z + (c2 − c1)t).

It immediately follows that, if uc1(t, z) goes extinct in the sense of Definition 1.1 and converges uniformly
to 0 as t → +∞, then uc2(t, z) also goes extinct as t → +∞. Similarly, if uc1(t, z) converges uniformly to
pα∗c1 (z), then the above inequality implies that uc2(t, z) converges locally uniformly to 0, hence uniformly
by Proposition 4.7. Therefore, recalling from Proposition 4.7 that the solution either goes extinct, spreads
or converges uniformly to the critical ground state, one can already conclude that c = c. From now on, we
denote this speed by c(u0). It only remains to investigate how the solution of (1.4) behaves when c = c(u0).

Let us first prove that, when c = c(u0), then either grounding or extinction occurs, in the sense of
Definition 1.1 (note that part (iii)(b) of Theorem 1.4 immediately follows). Proceed by contradiction and
assume that uc(u0)(t, z) the solution of (1.4) with c = c(u0) spreads and converges locally uniformly to

p+c(u0)
(z). In particular, by Theorem 1.2, c(u0) < c∗. Using the fact that p+c(u0)

(z)→ 1 as z → +∞, then for

any D > 0 and ε > 0, one can find some Z > 0 and T > 0 large enough such that

uc(u0)(T, z) ≥ (1− ε)χ(−D,D)(z − Z),

where χ denotes the usual characteristic function. By standard estimates, one can show that the solution
depends continuously, in the locally uniform topology, on the parameter c. In particular, for any c′ close
enough to c(u0), the solution uc′ of (1.4) with c = c′ also satisfies

uc′(T, z) ≥ (1− 2ε)χ(−D,D)(z − Z).

Now, by Theorem 3.4, there exists some compactly supported initial initial datum u0,1 < 1 such that

the associated solution of (1.4) with c = c(u0)+c
∗

2 ∈ (c(u0), c∗) spreads. As the above discussion on the
monotonicity of solutions with respect to c also applies to the solution with initial datum u0,1, we have that

the solution of (1.4) with initial datum u0,1 also spreads for any c ∈ (c(u0), c(u0)+c
∗

2 ). Now choose D > 0
large enough and ε > 0 small enough so that

u0,1(z) < (1− 2ε)χ(−D,D)(z).

Then, for any c′ > c(u0) but close enough, we have

uc′(T, z) ≥ u0,1(z − Z).

Recalling that Z > 0 and thanks to the monotonicity of f with respect to its first variable, the latter
inequality and Proposition 4.7 imply that uc′ spreads, which contradicts the definition of c(u0).

It only remains to show that, when c = c(u0) > 2
√
g′(0), then extinction may not occur. Proceed by

contradiction and assume that uc(u0)(t, ·) converges uniformly to 0 as t→ +∞. Let us show that extinction
also occurs for c′ < c(u0) but close enough, contradicting the definition of c(u0). The argument will be similar
to the proof of the openness of Σ0 in Claim 5.1. Let δ > 0 be small enough so that c(u0)− δ > 2

√
g′(0) and,

as in the proof of Claim 5.1, choose η ∈ (0, α∗c(u0)−δ) small enough so that the function

u(z) := ηe−
c(u0)−δ

2 z

satisfies
u′′ + (c(u0)− δ)u′ + f(z, u) ≤ 0,

for all z ∈ R. As u is a decreasing function, it immediately follows that it is a supersolution of (1.4) for
any c′ ∈ [c(u0)− δ, c(u0)]. Moreover, using again the monotonicity of solutions of (1.1) (in the non moving
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frame) with respect to c, and the uniform boundedness of the solution for any bounded initial datum, there
exists M > 0 such that for all c′ ∈ [c(u0)− δ, c(u0)],

‖uc′‖L∞(R+×R) ≤ ‖uc(u0)−δ‖L∞(R+×R) < M.

Next, let Z > 0 be such that the support of u0 is included in (−Z,Z), that u(z) ≥ M for any z ≤ −Z as
well as, by Proposition 4.1,

∀t ≥ 0, ∀z ≥ Z, uc(u0)(t, z) ≤
u(z)

2
.

Because uc(u0) goes extinct as t→ +∞, there also exists T > 0 such that

∀|z| ≤ Z, uc(u0)(T, z) ≤
u(z)

2
.

Up to reducing δ and by continuity of solutions of (1.4) with respect to c in the locally uniform topology,
we get for any c′ ∈ [c(u0)− δ, c(u0)] that

∀0 ≤ t ≤ T, uc′(t, Z) ≤ u(Z),

and
∀|z| ≤ Z, uc′(T, z) ≤ u(z).

Applying a comparison principle on (0, T )× (Z,+∞), and since u(z) ≥ ‖uc(u0)−δ‖L∞(R+×R) for all z ≤ −Z,
one can check that for all c′ ∈ [c(u0)− δ, c(u0)],

∀z ∈ R, uc′(T, z) ≤ u(z).

Thus uc′(t, z) ≤ u(z) for all z ∈ R and t ≥ T . Proposition 4.7, together with the fact that u(0) = η <
α∗c(u0)−δ ≤ α∗c(u0)

(from Theorem 2.1), implies that uc′(t, z) converges uniformly in z to 0 as t → +∞. We

have reached the wanted contradiction, and we conclude as announced that, when c = c(u0) > 2
√
g′(0),

then grounding occurs. In particular, from Theorem 1.2 necessarily c < c∗, and part (a) of Theorem 1.4 is
proved. Noting that part (c) of Theorem 1.4 simply follows from Theorem 1.2, this completes the proof.

Remark 5.3. Let us briefly check that none of the remaining possibilities may be ruled out: more precisely, for
any c ∈ [2

√
g′(0), c∗), there exists an initial datum such that c = c(u0) and grounding occurs, as well as some

initial datum such that c(u0) = 2
√
g′(0) and extinction occurs at the threshold speed. Indeed, it suffices

to take for any c ∈ [2
√
g′(0), c∗), thanks to Theorems 1.2 and 1.3, an initial datum such that grounding

occurs (or, if c = 2
√
g′(0), such that extinction occurs), and to observe a posteriori from Theorem 1.4 that

necessarily c(u0) = c.

A Appendix

In this appendix we briefly state some properties on the number of sign changes and/or the number of zeros
of the solution of a semilinear scalar parabolic equation, which we use extensively in our proofs. All of these
properties are contained or easy consequences of [2, 10, 17].

Let h be a solution of the following parabolic equation

∂th− ∂zzh− c∂zh− b(t, z)h = 0, ∀t ∈ (0,+∞), z ∈ I (A.1)

where I is any interval, and the coefficient b and the solution h are bounded. We denote, for any time t > 0
and provided that h(t, ·) 6≡ 0, by ZI [h(t, ·)] the number of sign changes of h(t, ·). More precisely, ZI [h(t·)] = 0
if either h(t, ·) > 0 or h(t, ·) < 0, and otherwise it is defined as the supremum over all integers k such that
there exists z1 < z2 < ... < zk in I with

∀i = 1, ..., k − 1, h(t, zi).h(t, zi+1) < 0.
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Note that, when all the zeros of h(t, ·) are simple, this definition clearly coincides with the number of zeros
of h(t, ·).

The main property of the number of sign changes of a solution of a semilinear one-dimensional parabolic
equation is the following Sturmian principle, which extends Lemma 2.3 in [10] which dealt with the particular
case c = 0, and similarly follows from [2, 17]:

Proposition A.1. Let h 6≡ 0 be a solution of (A.1) which never vanishes on ∂I the (possibly empty)
boundary of I. Then for each t ∈ R∗+ the zeros of the function h do not accumulate in I, and

(i) t 7→ ZI [h(t, ·)] is nonincreasing;

(ii) if there exists t0 > 0, z0 ∈ I such that h(t0, z0) = hz(t0, z0) = 0, then

ZI [h(t, ·)] > ZI [h(s, ·)], ∀ 0 < t < t0 < s

whenever ZI [h(s, ·)] <∞.

Note that in Proposition A.1, the fact that the zeros of h do not accumulate insures that ZI [h(t, ·)] is
well-defined for all t > 0.
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