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Abstract

We apply a combinatorial approach to study the influence of Mg concentration on the precipitation kinetics
in an Al-Cu-Li alloy using a diffusion couple made by linear friction welding. The precipitation kinetics is
monitored in the composition gradient material using simultaneous space and time-resolved in-situ small-
angle X-ray scattering measurements during ageing, and the strengthening of the precipitates is evaluated
by micro-hardness profiles. This data provides an evaluation of the amount of Mg necessary to promote
precipitation of the T;-Al,Culi phase.

Al-Cu-Li alloys are currently experiencing a strong interest due to their combination of low weight, high
strength and high toughness suitable for aerospace applications. In the latest generation of alloys (such as
commercialized as AIRWARE®), the main strengthening phase sought is the T, phase of bulk composition
Al,Culi. The bulk structure of this equilibrium phase was resolved by Van Smaalen et al. [1]. In aluminium, it
appears as extremely thin platelets on {111}, planes with aspect ratio up to 50-100. The structure of this
phase embedded in the Al matrix has been resolved in detail by Donnadieu et al. [2] and Dwyer et al. [3].
Since earlier studies, it is known that obtaining an efficient precipitation strengthening in this system
requires the addition of dislocations [4,5] and of minor solute elements, out of which the most prominent
ones are Mg and Ag [5-7]. These elements have been shown to be included in the composition of the
nanoscale T; phase [8,9]. Recently, atom probe tomography has demonstrated that they segregate to the
T,/Al interface, and that the Mg atoms are involved in a co-clustering or co-precipitation with Cu, linked
with dislocations, very early during the ageing process [10]. Now that the qualitative role of the minor solute
elements on the precipitation of T, has been evidenced, there is a need to understand what solute content is
necessary to obtain the desired effect. In particular, the effect of minor solute element concentration on the
precipitation of Cu and Li may be strongly non-linear, and even non monotonous as there may be a
competition for solute (especially Cu) from the added Mg atoms that may hinder the formation of T, instead
of promoting it. A traditional alloy series fabrication with a discrete distribution of minor solute
concentrations would be extremely cumbersome and may not evidence some of these non-linear events.
Instead, we propose to use a combinatorial approach using compositional gradient materials [11], where the
main alloying content is kept constant and one minor solute content is varied. This approach has already
been used to study composition effects on precipitation hardening in Al-Cu-Mg alloys [12]. However in this
study the composition gradient was created simply by inter-diffusion between two alloys, which restricted
the dimension of the concentration gradient zone to a few 100 um, and left at the interface a brittle oxide
layer that prevented any mechanical loading of the gradient material. These characteristics are not suitable
to the needs of our study for two reasons. First, because the study of T, precipitation requires the



introduction of plastic deformation after the solution treatment, which would be impossible with the
presence of an oxide layer within the inter-diffusion zone. Second, because we aim at characterizing the
precipitation kinetics by small-angle X-ray scattering within the diffusion couple, using simultaneous time
and space-resolved measurements, so that a full map of precipitation kinetics in the composition space is
obtained in a single experiment. Such measurements require a relatively large extension of the composition
gradient compared to the spatial resolution of the experiment, which cannot be obtained by interdiffusion
alone. Therefore, we have chosen to join the alloys of different composition by linear friction welding, which
has been shown to be an efficient method for materials of dissimilar composition [13], ensuring a planar
interface between the two welded materials, free of any oxide layer (which has been expulsed by plastic
flow during the welding process).
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Figure 1: Optical micrographs of the linear friction weld (interface plane is vertical in the centre of the

micrograph) in the as-welded state (top) and after the interdiffusion heat treatment (bottom).

The two studied alloys have the same base composition of 3.5 % Cu and 0.9 % Li (in wt). One of the two
alloys has in addition 0.35 wt% Mg. The two alloys were joined as plates of thickness 25 mm by linear friction
welding performed by Thompson Friction Welding. Figure 1 shows an optical micrograph of the interface
between the two materials after welding and after the subsequent inter-diffusion treatment (see below). It
is adequately planar and defect-free, so that the initial composition step between the two materials is well
defined. Diffusion of Mg was activated by subjecting the joined couple to a homogenisation heat treatment
at 515 °C for 14 days. Subsequent hot rolling was then used to further enlarge the width of the diffusion
gradient. The pre-heating temperature was 500 °C and the thickness reduction from 6.5 to 1.8 mm was
performed by a single rolling step. The evolution of the composition gradient, measured by electron probe
micro analysis (EPMA) (20 keV, 300 nA) during these different steps is shown in Figure 2. In all cases the Cu
content remains constant in the couple, whereas the Mg gradient, initially a sharp step, ends with a 10 mm
length. One can emphasize at this stage that such a large characteristic length of the diffusion gradient
ensures that, at the scale of the precipitation process (100 nm at most) the local composition of the alloy can
be considered as constant so that no coupling between the macroscopic solute diffusion and the microscopic
precipitation mechanisms needs to be considered.

Following the hot rolling step, a solution treatment was performed at 505°C for 30 min, using a slow heating
ramp in order to avoid recrystallization. Following a quench in cold water, a pre-deformation of 4 % plastic
strain was introduced. The tensile straining was performed normal to the original weld plane interface
(materials loaded in series). It has been checked previously that the addition of 0.35% Mg to this alloy did



not change significantly the flow stress of the Al-Cu-Li alloy in the as-quenched state so that the plastic strain
(measured by an extensometer across the diffusion zone) was homogeneously distributed for all
compositions. The material was kept for 3 days of natural aging before artificial aging was performed. The
precipitation aging treatment included a ramp heating of 20 °C/h to 155 °C and further isothermal aging at
155 °C for several days.
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Figure 2: Diffusion gradient measured by EPMA after linear friction welding (green), after 14 days
homogenisation treatment (blue) and after rolling (purple).

Precipitation kinetics was measured by small-angle X-ray scattering (SAXS). This method has been shown to
be able to quantify in-situ the kinetics of T, phase precipitation in several recent studies [14—16]. It has also
been shown to be capable of mapping heterogeneous microstructures in friction stir welds [17]. In the
present case, we have combined spatial and time resolutions to perform a simultaneous evaluation of
precipitation kinetics in the whole diffusion couple. SAXS measurements were performed on a laboratory
rotating anode at the Cu Ka wavelength of 0.154 nm (8.048 keV), with a beam size diameter at the sample of
1mm. The SAXS set-up allowed measurements in a range of scattering vectors of 0.06 — 0.4 A™. The aging
treatment was conducted for more than 100h of ageing in a specially designed furnace, which was placed
inside the sample vacuum chamber. By displacing the sample in between each measuring point, the
complete composition gradient was scanned. A 2D DECTRIS PILATUS® photon counter camera was used for
data acquisition and the counting time was 100 s. 18 measurements points, separated by 1 mm steps , were
acquired across the sample, allowing a time resolution for a given position in the couple (corresponding to a
given Mg concentration) of 30 min. The acquired 2D scattering data was converted to intensity vs. scattering
vector by radial averaging [18]. In parallel, micro-hardness measurements were performed across a diffusion
couple aged for different times in an oil bath. Measurements were made with a distance of 1 mm between
each measurement with a Buehler Tukon™1102 automatic hardness machine using an applied load of 500 g
with an indentation time of 10 seconds.

Hardness measurements

Figure 3a shows the evolution of hardness across the diffusion gradient measured after different ageing
times at 155°C (EoR corresponds to the end of the heating ramp to 155°C). There is a clear effect of Mg
concentration on the hardness distribution in the composition gradient, at all stages of the ageing
treatment. At the end of the ageing treatment (the maximum hardness stays constant for several hours of



artificial aging and resembles a plateau), a difference of 20 HV is observed between the Mg and non-Mg
containing alloys. This difference is enhanced to almost 40 HV at intermediate times (12h at 155°C), showing
that Mg promotes an acceleration of precipitation kinetics in the Al-Cu-Li alloy. The effect of Mg
concentration is better evidenced by plotting the evolution of hardness vs. time for a series of Mg
concentrations present in the diffusion couple (Figure 3b). This figure shows that the hardening kinetics is
indeed more sluggish in the Mg free Al-Cu-Li alloy as compared to the Mg-containing alloys. Looking at the
alloys with highest and lowest Mg-content, namely AICuLi0.35Mg and AlCuli, in Figure 3b, it reveals that the
initial hardening is faster for AICuLiMg than for AICulLi. Furthermore, maximum hardness for AlCuLiMg is
reached after 15 hours, whereas it takes up to 50 hours at 155 °C for AlCulLi to reach maximum hardness.
Moreover, the effect of Mg content on the precipitation kinetics is not linear. Above 0.1%Mg, the hardening
kinetics is less dependent on Mg concentration therefore demonstrating saturation behaviour.
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Figure 3: (a) Micro-hardness profiles across the diffusion gradient for different ageing times at 155°C; (b)
evolution of micro-hardness with ageing time for a series of Mg concentrations characterized by their
position within the diffusion gradient.

SAXS measurements

An evaluation of the volume fraction of precipitates was obtained from the SAXS data in the following way.
First, it was assumed that no precipitates were present at the end of the heating ramp (which corresponds
also to minimum hardness). Second, the volume fraction was assumed to be stabilized after 100h of ageing
based on earlier studies [15,16]. In between, the relative volume fraction was calculated, proportional to the
integrated intensity Q, [18]. One should remain careful about the interpretation of this relative volume
fraction, because changes of composition may promote changes of precipitate types in this complex system;
in particular, the absence of Mg may promote formation of some 6’ phase at the expense of the T, phase,
with a resulting different X-ray contrast. With this in mind, Figure 4a shows the evolution of relative volume
fraction with ageing time for different Mg concentrations in the diffusion gradient. Since the diffusion
gradient covers a length of 10 mm, but 18 mm were measured, several positions in the beginning and at the
end of the gradient have the same composition. Similarly to the micro-hardness results, a strong effect of
Mg concentration is evidenced, with faster precipitation kinetics in the Mg-rich regions. Around a Mg
concentration of 0.1-0.2 %, the transition between slow and fast precipitation kinetics is observed, which is
also consistent with the change observed in the hardening kinetics. Figure 4b shows together the hardness
and volume fraction measurements for the first 50 hours of ageing. The two results do correspond
particularly well. In a recent study, Dorin et al. [16] have actually shown that the relationship between T,



precipitate volume fraction and yield strength is almost linear, although the detail of the relationship is more
complicated.
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Figure 4: (a) Evolution of relative precipitate volume fraction measured from the SAXS data as a function of
ageing time at 155°C for a series of Mg concentrations characterized by their position within the diffusion
gradient; (b) correspondence between this precipitation kinetics during the first 50 hours and micro-
hardness (symbols and dashed lines).

In conclusion, we have demonstrated a methodology for mapping the precipitation kinetics continuously in a
material containing a composition gradient. This methodology involves the fabrication of a diffusion couple
of sufficient dimensions using Linear Friction Welding followed by inter-diffusion heat treatment and hot
rolling. This material is then subjected to an ageing treatment in a SAXS apparatus, where simultaneous
space and time resolved measurements allow the precipitation kinetics characterization for a large number
of compositions across the gradient. This methodology has been applied to evaluate the effect of Mg
concentration on the precipitation kinetics and strengthening of an Al-Cu-Li alloy. We evidence that the
addition of Mg accelerates the kinetics of precipitation and increases the strengthening capability. However
the influence of Mg concentration on the precipitation kinetics is more pronounced for low additions. Our
results help to determine the minimum amount of Mg necessary to observe this effect. More detailed
studies are under way to better understand the effect of Mg on the precipitation mechanisms and will be
published elsewhere.
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