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Abstract 

In this work, we propose a modification of the traditional Auto Associative Kernel Regression 

(AAKR) method which enhances the signal reconstruction robustness, i.e., the capability of 

reconstructing abnormal signals to the values expected in normal conditions. The modification is 

based on the definition of a new procedure for the computation of the similarity between the 

present measurements and the historical patterns used to perform the signal reconstructions. The 

underlying conjecture for this is that malfunctions causing variations of a small number of signals 

are more frequent than those causing variations of a large number of signals. The proposed 

method has been applied to real normal condition data collected in an industrial plant for energy 

production. Its performance has been verified considering synthetic and real malfunctioning. The 

obtained results show an improvement in the early detection of abnormal conditions and the 

correct identification of the signals responsible of triggering the detection. 
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1. INTRODUCTION 

Condition monitoring is used to assess the health state of industrial components and identify 

possible incipient faults (Venkatasubramanian et al., 2003a), ( Nandi et al., 2005), (Jardine et al., 

2006), (Wei, et al., 2013). For this, a model is usually built to reconstruct the values of the 

monitored signals expected in normal conditions of the components (Hameed, et al., 2009). 

During operation, observed signal measurements are compared with the reconstructions provided 

by the model: abnormal components conditions are detected when the reconstructions are 

remarkably different from the measurements. Data-driven (empirical) models are employed in 

those cases in which analytical models of the component behavior are not available and cannot be 

easily developed, whereas historical data collected during operation are available and limited 

number of hypotheses are required for building a data-driven model (Venkatasubramanian et al., 

2003b), (Venkatasubramanian et al., 2003c), (Hines, et al., 2007). 

Reconstruction methods are used in very different sectors, ranging from missing data 

reconstruction with various applications such as seismic data (Duijndam et al., 1999), (Liu et al., 

2004), genetics (Kim et al., 2005), (Brock et al., 2008), climatology (Guiot et. al., 2005), to 

financial applications, image analysis (Candès et al., 2006a), (Candès et al., 2006b) and condition 

monitoring of industrial components (Guglielmi et al., 1995), (Dunia et al., 1996), (Nabeshima et 

al., 1998), (Jack et al., 2002), (Harkat et al., 2007), (Chevalier et al., 2009), (King et al., 2009), 

(Baraldi et al., 2011a), (Baraldi et al., 2011b), (Baraldi et al., 2013b). 

With respect to condition monitoring of industrial components, several methods have been shown 

to provide accurate reconstructions of the measured signals under normal operations. However, it 

has been noticed that these methods tend to suffer of high computational costs (Hunsop, 2011) 

and to be not robust (Baraldi et al., 2012). By robustness, here we intend the property that in case 

of abnormal conditions the reconstructions of the signals are properly estimating the values of the 
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signals expected in normal conditions of the components (Baraldi et al., 2011a). In particular, it 

has been shown that, especially when the measured signals are highly correlated, the 

reconstruction provided by AutoAssociative Kernel Regression (AAKR) method (Baraldi et al., 

2011a) of an anomalous transient characterized by a drift of one signal can be not satisfactory for 

two reasons: 1) the reconstruction of the signal affected by the drift tends to assume values in the 

middle between the drifted and the expected values of the signal in normal conditions; 2) the 

reconstructions of other signals not affected by the drift tend, erroneously, to be different from 

the signal measurements, (this latter effect is usually referred to with the term ‘spill-over’). The 

consequence of 1) is a delay in the detection of abnormal conditions, whereas the consequence of 

2) is that the condition monitoring system, although it correctly triggers an abnormal condition 

alarm, it is not able to correctly identify the signal that triggers the alarm. 

These limitations of reconstruction models have been already studied in (Chevalier et al., 2009), 

(Baraldi et al., 2011a). Solutions to these problems have been proposed, which amount to try to 

exclude the signals with abnormal behaviors from the set of input signals used to perform the 

reconstruction. In (Baraldi et al., 2011b), (Baraldi et al., 2012), (Di Maio et al., 2013), the authors 

have propounded ensembles of reconstruction models handling different sets of input signals. In 

case of an anomaly impacting the behavior of a generic signal, only the few models fed by that 

signal provide non robust reconstructions, whereas all the other models provide correct 

reconstructions. Conversely, in (Baraldi et al., 2013a), an ensemble of different reconstruction 

models handling the same set of input signals is proposed. Another solution has been embraced in 

(Feller, 2013), whereby a ponderation matrix iteratively modifies its elements to reduce the 

contribution of abnormal signals to the reconstruction but the convergence of the method to 

correct signal reconstructions has not been yet demonstrated and all these solutions come at high 

computational costs. 
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The objective of the present work is to propose a robust signal reconstruction method with low 

computational cost and i) capable of early detection of abnormal conditions, ii) accurate in the 

reconstructions of the values of the signals impacted by the abnormal conditions and iii) resistant 

to the spill-over effect. 

The proposed method is based on the modification of the measure of similarity used by the 

AAKR method: instead of measures of similarity based on Euclidean or Mahalanobis distances, 

the proposed method introduces a penalty vector which reduces the contribution provided by 

those signals which are expected to be impacted by the abnormal conditions. The rationale behind 

this proposition of the modification is the attempt to privilege those abnormal conditions caused 

by the most frequently expected malfunctions and failures. The performance of the proposed 

method has been verified considering i) synthetic malfunctioning simulated on real healthy data 

and ii) real abnormal conditions collected from an industrial plant for energy production (Baraldi 

et al., 2013b). The remainder of the paper is organized as follows. In Section 2, the fault detection 

problem is introduced. In Section 3, the AAKR method is briefly recalled. Section 4 shows the 

limitation of the traditional AAKR approach to condition monitoring and states the objectives of 

the present work. In Section 5, the proposed modification of the traditional AAKR is described 

and discussed. In Section 6, the application of the proposed method to a real case study 

concerning the monitoring of 6 signals in an industrial plant for energy production is presented. 

Finally, in Section 7 some conclusions are drawn. 

 

2 FAULT DETECTION 

We consider condition monitoring scheme for fault detection as shown in Fig. 1. The (empirical) 

model reproducing the plant behavior in normal conditions receives in input the vector, 𝑥⃗𝑜𝑏𝑠(𝑡), 

containing the actual observations of the 𝐽 signals monitored at the present time, t, and produces 



 5 

in output the reconstructions, 𝑥̂⃗𝑛𝑐(𝑡), i.e. the values that the signals are expected to have in 

normal conditions (Baraldi et al., 2012). If the actual conditions at the time t are instead, the 

residuals ∆𝑥⃗ =  𝑥⃗𝑜𝑏𝑠(𝑡) −  𝑥̂⃗𝑛𝑐(𝑡) , i.e. the variations between the observations and the 

reconstructions, are larger and can be detected by exceedance of a prefixed thresholds by at least 

one signal. 

 

Fig. 1 Scheme of condition monitoring for fault detection 

 

3. AUTOASSOCIATIVE KERNEL REGRESSION (AAKR) 

Different empirical modeling techniques have been applied to the problem of signal 

reconstruction, such as AutoAssociative Kernel Regression (AAKR) (Hines et al., 2006), (Baraldi 

et al., 2011b), Principal Component Analysis (PCA) (Dunia et al., 1996), (Harkat et al., 2007), 

Robust Principal Component Analysis (Hubert et al., 2005), Fault-relevant PCA (FPCA) (Zhao et 

al., 2014), Partial Least Squares (PLS) (Muradore et al., 2012), Evolving Clustering Method 

(ECM) (Zio et al.,2011), Parzen Estimation (King et al.,2009), (Chen et al.,2013), fuzzy-logic-

based systems (Marseguerra et al.,2003), AutoAssociative (AA) and Recurrent (R) Neural 

Networks (NN) (Bishop, 1995), (Guglielmi et al., 1995), (Nabeshima et al., 1998), (Samanta, 

2004), (Worden et al., 2011). In this work, we consider AAKR which has been shown to provide 

more satisfactory performance than ECM and PCA (Chevalier et al., 2009) and is less 

computationally demanding than AANN, RNN (Baraldi et al., 2013a) and Parzen Estimation 
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(Hunsop 2011). Furthermore, notice that in many industrial applications of condition monitoring 

such as those in energy production plant it is common to periodically retrain or update the 

reconstruction models in order to follow the gradual modifications of the signal behavior due to 

slow degradation processes, maintenance interventions and minor plant reconfigurations. Thus, it 

is important to develop reconstruction models, such as AAKR, that are easy to train and 

characterized by few parameters which can be set by plant personnel. 

The basic idea behind AAKR is to reconstruct at time t the values of the signals expected in 

normal conditions, 𝑥̂⃗𝑛𝑐(𝑡), on the basis of a comparison of the currently observed signals 

measurements (also referred to as test pattern), 𝑥⃗𝑜𝑏𝑠(𝑡) =  [𝑥𝑜𝑏𝑠(𝑡, 1), … , 𝑥𝑜𝑏𝑠(𝑡, 𝐽) ], and of a set 

of historical signals measurements collected during normal condition of operation. In practice, 

AAKR performs a mapping from the space of the measurements of the signals 𝑥⃗𝑜𝑏𝑠(𝑡) to the 

space of the values of the signals expected in normal conditions, 𝑥̂⃗𝑛𝑐(𝑡): 

𝑥̂⃗𝑛𝑐(𝑡) = 𝜑(𝑥⃗𝑜𝑏𝑠(𝑡)|𝑋̿𝑜𝑏𝑠−𝑛𝑐) ∶  ℝ𝐽 → ℝ𝐽 
(1) 

where 𝑋̿𝑜𝑏𝑠−𝑛𝑐 indicates a 𝑁 × 𝐽 matrix containing N historical observations of the 𝐽 signals 

performed in normal-conditions. Since the mapping is independent from the present time, t, at 

which the signals observations are performed, the present time t will be omitted from the 

notations. Thus, 𝑥𝑜𝑏𝑠(𝑗), 𝑗 = 1, … , 𝐽, indicates the value of signal 𝑗 at the present time. The 

reconstruction of the expected values of the signals in normal conditions, 𝑥̂⃗𝑛𝑐 =

 [𝑥̂𝑛𝑐(1), … , 𝑥̂𝑛𝑐(𝐽) ], is performed as a weighted sum of the available historical observations; for 

the generic 𝑗-th element of 𝑥̂⃗𝑛𝑐, we write: 

𝑥̂𝑛𝑐(𝑗) =
∑ 𝑤(𝑘)  ∙𝑁

𝑘=1 𝑥𝑜𝑏𝑠−𝑛𝑐(𝑘, 𝑗)

∑ 𝑤(𝑘)𝑁
𝑘=1

 
(2) 
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The weights, 𝑤(𝑘), measure the similarity between the test pattern, 𝑥⃗𝑜𝑏𝑠, and the 𝑘-th historical 

observation vector, 𝑥⃗𝑜𝑏𝑠−𝑛𝑐(𝑘). They are evaluated through a kernel, 𝐾𝑒𝑟, i. e., a scalar function 

which can be written as a dot product (Burges, 1998), (Müller et al., 2001), (Widodo et al., 2007). 

From the mathematical point of view, a Kernel is a function: 

𝐾𝑒𝑟: ℝ𝐽 × ℝ𝐽 →  ℝ 𝑠. 𝑡. ∃𝝓 ∶  ℝ𝐽 → ℋ, 𝐾𝑒𝑟(𝑥⃗, 𝑦⃗) =  〈𝝓(𝑥⃗), 𝝓(𝑦⃗)〉 (3) 

where 𝝓 is a map from the observation space ℝ𝐽 in a (possibly countable infinite dimensional) 

Euclidean space ℋ and 〈. , . 〉 denotes the dot product. Traditional AAKR adopts as 𝐾𝑒𝑟 function 

the Gaussian Radial Basis Function (RBF) with bandwidth parameter ℎ, i.e.: 

𝑤(𝑘) = 𝐾𝑒𝑟(𝑥⃗𝑜𝑏𝑠, 𝑥⃗𝑜𝑏𝑠−𝑛𝑐(𝑘)) =
1

√2𝜋ℎ2
𝑒

−
‖𝑥⃗𝑜𝑏𝑠 − 𝑥⃗𝑜𝑏𝑠−𝑛𝑐(𝑘)‖

2

2ℎ2  (4) 

Notice that, according to Mercer’s theorem (Burges, 1998), eq. (4) can be seen as a dot product in 

a countable infinite dimensional Euclidean space: 

𝑒
−

1
2

‖𝑥⃗𝑜𝑏𝑠 −𝑥⃗𝑜𝑏𝑠−𝑛𝑐(𝑘)‖
2

2

= ∑
(𝑥⃗𝑜𝑏𝑠𝑇

𝑥⃗𝑜𝑏𝑠−𝑛𝑐(𝑘))
𝑖

𝑖!

∞

𝑖=0

𝑒−
1
2

‖𝑥⃗𝑜𝑏𝑠 ‖
2

2

 𝑒
−

1
2

‖𝑥⃗𝑜𝑏𝑠−𝑛𝑐(𝑘)‖
2

2

 (5) 

In fault detection applications, Euclidean and Mahalanobis distances are typically used to 

compute the distance in the Gaussian RBF. In this work, in order to account for differences in the 

scale and variability of the different signals, a Mahalanobis distance is used, defined by the 

covariance matrix, S, such that:  

‖𝑥⃗𝑜𝑏𝑠  −  𝑥⃗𝑜𝑏𝑠−𝑛𝑐(𝑘)‖𝑚𝑎ℎ𝑎𝑙
2 =  (𝑥⃗𝑜𝑏𝑠  −  𝑥⃗𝑜𝑏𝑠−𝑛𝑐(𝑘))

𝑇

𝑆−1(𝑥⃗𝑜𝑏𝑠  −  𝑥⃗𝑜𝑏𝑠−𝑛𝑐(𝑘)) 
(6) 

Assuming independence between the signals, 𝑆 is given by: 

𝑆 =  [
𝜎1

2 … 0
⋮ ⋱ ⋮
0 … 𝜎𝐽

2
] 

(7) 
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where 𝜎𝑗
2 indicates the estimated variance of signal 𝑗 in the historical observations. Alternatively, 

instead of using (6) and (7), one can obtain the same results by mapping the data into a 

normalized space: 

𝑦(𝑗) =
𝑥(𝑗) − 𝜇𝑗

𝜎𝑗
 

(8) 

where 𝜇𝑗 is the mean value of signal 𝑗 in the historical dataset, and by applying a Gaussian kernel 

with Euclidean distance in the normalized space. 

 

4. LIMITATIONS IN THE USE OF AAKR FOR SIGNAL RECONSTRUCTION 

In the context of safety-relevant industries like oil & gas, nuclear and avionics, the need of high 

reliability targets and the availability of relatively affordable monitoring technology has pushed 

the installation of a great number of sensors to facilitate the monitoring of physical quantities (i.e. 

temperature, pressure, flows, vibrations, etc. ) and of the operational condition of their 

components (Lee, 1997), (Roverso et al., 2007). Among all these sensors, due to the redundancy 

of sensors mounted on each component, it is not rare that the collected signals are characterized 

by high Pearson correlation coefficients. In this context of correlated signals, AAKR 

reconstructions performed in abnormal conditions have been shown to be not satisfactory from 

the point of view of the robustness: the obtained reconstructions are not accurately estimating the 

values of the signals expected in normal conditions (Baraldi et al., 2012). This effect is well 

illustrated by the following case study concerning the monitoring of a component of a plant for 

the production of energy (Baraldi et al., 2013b). A dataset containing the real evolution of 6 

highly correlated signals (Table 1) monitoring the temperatures in Celsius degree in different 

location of the component for a period of 1 year with sampling frequency of 5200 

measurements/year has been used to develop an AAKR reconstruction model. Then, in order to 
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artificially simulate an abnormal condition, a linearly increasing drift has been added to the real 

values of one of the six signals for a period of 600 time steps: these drifted data have not been 

used to develop the AAKR model. Fig. 2 (top) shows the drifted signal, whereas Fig. 2 (bottom) 

shows the residuals of the reconstruction of the drifted signal (left) and of another signal not 

impacted by the abnormal conditions, i.e. not drifted (right). Notice that the obtained 

reconstructions are not robust: 1) the residuals of the drifted signal are not following the applied 

drift and 2) the residuals of the other signal are erroneously deviating from 0. 

  S1 S2 S3 S4 S5 S6 

S1 1 0.97 0.98 0.98 0.99 0.98 

S2 0.97 1 0.95 0.99 0.98 0.96 

S3 0.98 0.95 1 0.96 0.99 0.99 

S4 0.98 0.99 0.96 1 0.98 0.97 

S5 0.99 0.98 0.99 0.98 1 0.99 

S6 0.98 0.96 0.99 0.97 0.99 1 
Table 1 Pearson correlation coefficients between 6 measured signals in an industrial plants for energy 

production. 
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Fig. 2 Top (left): the continuous line represents signal 1 values in normal conditions, the dotted line the signal 

values in the simulated abnormal conditions; top (right): evolution of signal 3 (not affected by the abnormal 

conditions). Bottom: the continuous line represents the residuals obtained by applying the traditional AAKR 

reconstruction, the dotted line the residual which would be obtained by a model able to perfectly reconstruct 

the signal behavior in normal conditions. 

 

From the practical point of view of the fault detection, two problems arise in relation to the low 

robustness of the reconstruction: 

1) delay in the detection of the abnormal condition (an alarm is usually triggered when the 

residuals exceed prefixed thresholds). 

2) detection of abnormal conditions on signals different from those which are actually 

impacted by the abnormal behavior (spill-over). 
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 With regards to the latter, the identification of the signals impacted by the abnormal conditions is 

critical since it can allow to identify the cause of abnormality and, thus, to properly plan the 

maintenance intervention. 

 

5. MODIFIED AAKR 

In order to enhance the AAKR robustness, we propose to modify the computation of the weights 

as the traditional AAKR (eq. (2)). The basic ideas underling the proposed modification are (a) to 

identify the signals affected by abnormal behaviors and (b) to reduce their importance in the 

computation of the similarity between the test pattern and the historical observations. 

With respect to (a), we assume that the probability of occurrence of a fault causing variations on 

a large number of signals is lower than that of a fault causing variations on a small number of 

signals: 

𝑃(𝑆𝑓𝑎𝑢𝑙𝑡 1) ≤ 𝑃(𝑆𝑓𝑎𝑢𝑙𝑡 2)  if |𝑆𝑓𝑎𝑢𝑙𝑡 2| ≤ |𝑆𝑓𝑎𝑢𝑙𝑡 1| 
(9) 

where 𝑆𝑓𝑎𝑢𝑙𝑡 1 and 𝑆𝑓𝑎𝑢𝑙𝑡 2 indicate the sets of signals affected by variations due to the abnormal 

(faulty) conditions, and |𝑆𝑓𝑎𝑢𝑙𝑡 1| and |𝑆𝑓𝑎𝑢𝑙𝑡 2| their cardinality. If we consider, for example, the 

problem of sensor failures, it is reasonable to assume that the probability of having N1  faulty 

sensors at the same time is lower than that of having a lower number of faulty sensors, 𝑁2 ≤ 𝑁1, 

at the same time. Notice that this assumption is realistic for several abnormal conditions such as 

those affecting sensors or small failures which can occur in single components of a complex 

industrial systems or in systems characterized by redundancies in the design. On the other hand, 

notice that the assumption does not possess universality, since it does not apply to other cases 

such as common cause failures or to some failures in network systems such as electrical grids. 

The proposed procedure computes the similarity measure between the observation, 𝑥⃗𝑜𝑏𝑠, and the 
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generic 𝑘-th historical observation, 𝑥⃗𝑜𝑏𝑠−𝑛𝑐(𝑘), according to two steps: (a) a pre-processing step 

consisting in the projection of  𝑥⃗𝑜𝑏𝑠 and 𝑥⃗𝑜𝑏𝑠−𝑛𝑐(𝑘) in a new space defined by a penalty vector, 

𝑝⃗ = [𝑝(1), … , 𝑝(𝐽)], with increasing entries, i.e., 𝑝(1) ≤ ⋯ ≤ 𝑝(𝐽) and (b) the application of the 

Gaussian RBF kernel in the new space. 

Step (a) is based on: 

 computing the vector of the absolute values of the normalized differences between 

𝑥⃗𝑜𝑏𝑠 and 𝑥⃗𝑜𝑏𝑠−𝑛𝑐(𝑘): 

|𝑥⃗𝑜𝑏𝑠 − 𝑥⃗𝑜𝑏𝑠−𝑛𝑐(𝑘)|𝜎 = (|
𝑥⃗𝑜𝑏𝑠(1) − 𝑥⃗𝑜𝑏𝑠−𝑛𝑐(𝑘, 1)

𝜎1
| , … , |

𝑥⃗𝑜𝑏𝑠(𝐽) − 𝑥⃗𝑜𝑏𝑠−𝑛𝑐(𝑘, 𝐽)

𝜎𝐽
|) 

(10) 

 defining a permutation matrix, 𝑃𝑝𝑒𝑟𝑚, i.e. a matrix which, when multiplied to a 

vector, only modifies the order of the vector components; in our procedure, we 

define a matrix, 𝑃𝑝𝑒𝑟𝑚, such that when it is applied to the vector |𝑥⃗𝑜𝑏𝑠 −

𝑥⃗𝑜𝑏𝑠−𝑛𝑐(𝑘)|𝜎, the components of the obtained vector are the same of that of 

|𝑥⃗𝑜𝑏𝑠 − 𝑥⃗𝑜𝑏𝑠−𝑛𝑐(𝑘)|𝜎, but they appear in a decreasing order, i.e. the first 

component is the one with the largest difference in |𝑥⃗𝑜𝑏𝑠 − 𝑥⃗𝑜𝑏𝑠−𝑛𝑐(𝑘)|𝜎; 

 defining a diagonal matrix having increasing entries on its diagonal: 

𝐷𝑝⃗ = [
√𝑝(1) 0 0

0 ⋱ 0

0 0 √𝑝(𝐽)

] 
(11) 

where the vector 𝑝 = [𝑝(1), … , 𝑝(𝐽)] = 𝑡𝑟(𝐷𝑝⃗) will be referred to as penalty 

vector; 

 projecting 𝑥⃗𝑜𝑏𝑠 and 𝑥⃗𝑜𝑏𝑠−𝑛𝑐(𝑘) in a new space defined by the transformation:  

𝝍 ∶  ℝ𝐽 →  ℝ𝐽 

𝝍(𝑥⃗𝑜𝑏𝑠) = 𝐷𝑝⃗ 𝑃𝑝𝑒𝑟𝑚 𝑥⃗𝑜𝑏𝑠 
(12) 
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𝝍(𝑥⃗𝑜𝑏𝑠−𝑛𝑐) = 𝐷𝑝⃗ 𝑃𝑝𝑒𝑟𝑚 𝑥⃗𝑜𝑏𝑠−𝑛𝑐 

In step (b), we apply to 𝝍(𝑥⃗𝑜𝑏𝑠) and 𝝍(𝑥⃗𝑜𝑏𝑠−𝑛𝑐) the Gaussian kernel with Euclidean distance: 

𝑤(𝑘) = 𝐾𝑒𝑟(𝝍(𝑥⃗𝑜𝑏𝑠), 𝝍(𝑥⃗𝑜𝑏𝑠−𝑛𝑐)) =
1

√2𝜋ℎ2
𝑒

−
‖𝝍(𝑥⃗𝑜𝑏𝑠) − 𝝍(𝑥⃗𝑜𝑏𝑠−𝑛𝑐)‖

2

2ℎ2  (13) 

Notice that, given a couple of observations 𝑥⃗𝑜𝑏𝑠 and 𝑥⃗𝑜𝑏𝑠−𝑛𝑐, the effect of step (a) is to equally 

magnify the same signals in both the observations. In this work, we do not investigate neither if 

the sequential application of steps (a) and (b) defines a kernel function according to eq. (3) nor 

the mathematical properties of the non-homogeneous transformation 𝝍. Conversely, we limit our 

scope in showing the effects of the new procedure for similarity weights calculation: we consider 

two different historical patterns, 𝑥⃗𝑜𝑏𝑠−𝑛𝑐(𝑘1) and 𝑥⃗𝑜𝑏𝑠−𝑛𝑐(𝑘2), characterized by similar 

Euclidean distances from a test pattern, but with 𝑥⃗𝑜𝑏𝑠−𝑛𝑐(𝑘1) characterized by a lower number of 

signals remarkably different from that of the test pattern. In this case, the effect of the penalty 

vector is to assign to 𝑥⃗𝑜𝑏𝑠−𝑛𝑐(𝑘1) an higher similarity measure value than that assigned to 

𝑥⃗𝑜𝑏𝑠−𝑛𝑐(𝑘2). 

Fig. 3 shows the locus of points characterized by the same similarity to the origin (0,0) in a 2-

dimensional space using a penalization vector 𝑝⃗ = [1, 30]. The obtained surface is very different 

from the circle which would be obtained by using an Euclidean distance. As expected, such 

modification introduces a preference during the reconstruction of 𝑥⃗𝑜𝑏𝑠 for vector of 𝑋̿𝑜𝑏𝑠−𝑛𝑐 that 

deviate from it in a lower number of components. 
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Fig. 3 2D locus of points having similarity from the origin greater 

than a set value according to a penalty vector 𝒑⃗⃗⃗ =  [𝟏 𝟑𝟎]. 

 

The application of the proposed method is also exemplified with reference to a numerical 

conceptual case study. Let us assume to have available an infinite dataset of historical data 

containing all the possible normal conditions of 3 signals with degree of correlation equal to 1, 

i.e. (𝑥⃗𝑜𝑏𝑠−𝑛𝑐(𝑘) = [𝑘, 𝑘, 𝑘] ∈ ℝ3, 𝑘 ∈ (−2,2)) and to have a test pattern 𝑥⃗𝑜𝑏𝑠 = [1,0,0] 

containing the three signal measurements at the present time. According to the traditional AAKR 

procedure, the Euclidean distance between the test pattern and the training pattern [𝑘, 𝑘, 𝑘] is: 

𝑑2(𝑘) = (𝑘 − 1)2 + 𝑘2 + 𝑘2 

whose minimum value is obtained for 𝑘𝑚𝑖𝑛 = arg min {𝑑2(𝑘) } =  1/3. Thus, the pattern 

𝑥⃗𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑒𝑢𝑐𝑙 = [
1

3
,

1

3
,

1

3
] is the nearest pattern to the test pattern (Fig. 4 and Fig. 5). Hence, 

𝑥⃗𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑒𝑢𝑐𝑙   will be characterized by the highest associated weight, and the signal reconstruction 

will be close to it. This reconstruction suggests that there is an abnormal condition impacting all 

three signals at the same time. Let us now consider the reconstruction performed by using the 
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proposed method with a penalization vector 𝑝⃗ = [1, 10,100]. In this case, the most similar 

pattern obtained by applying the same procedure is 𝑥⃗𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑝𝑒𝑛 = [
1

111
,

1

111
,

1

111
] and the signal 

reconstruction will be close to it. Hence, according to this approach, the only significant residual 

is detected on the first signal (Fig. 4 and Fig. 5). 

 

Fig. 4 Reconstruction of an abnormal condition (circle) 

performed with the Euclidean AAKR (star) and the 

penalty AAKR (squared). 

 

Fig. 5 Projection of the reconstruction on the plain 

described by two signals. 

 

Notice that the basic difference between the reconstructions provided by the traditional and the 

modified AAKR algorithm is the hypothesis of the latter that an abnormal condition involving 

few signals is more probable than an abnormal condition involving a lot of signals. Coherently 

with that hypothesis, the modified AAKR identifies an abnormal behavior only on one signal. 

 

6. APPLICATION OF THE METHOD TO A SYNTHETIC AND A REAL CASE 

STUDY 

 6.1 Real normal and synthetic abnormal conditions 
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The data previously introduced in Section 4 are here used to test the performance of the modified 

AAKR method. The dataset containing the measurements of 6 highly correlated signals in 5200 

consecutive time steps has been divided into 3 subsets: 

 Training set 𝑋̿𝑡𝑟𝑎𝑖𝑛
𝑜𝑏𝑠−𝑛𝑐  ∈ ℝ2500 ×6, used as historical dataset to perform the reconstruction; 

 Validation set 𝑋̿𝑣𝑎𝑙
𝑜𝑏𝑠−𝑛𝑐  ∈ ℝ1700 ×6, used for the setting of the optimal parameter values; 

 Test set, 𝑋̿𝑡𝑒𝑠𝑡
𝑜𝑏𝑠−𝑛𝑐  ∈ ℝ1000 ×6, used for testing the performance of the method. 

Since all the available data refer to components operating in normal conditions, abnormal 

conditions have been simulated in the test set by considering sensors failures. Assuming that 

sensors failures are independent events with constant probability, q, the following procedure has 

been applied: 

 for each signal and each test pattern, a random number, r, has been sampled from an 

uniform distribution in [0,1]. If r < q, the sensor is assumed to be failed and a deviation is 

simulated from a bimodal uniform distribution 𝑈([−10, −4] ∪ [4,10]) and added to the 

sensor measurement. 

Thus, the number of signals affected by a deviation in each test pattern is distributed according to 

a Binomial distribution 𝐵(𝑞, 6). The deviation intensity has been sampled from the uniform 

distribution 𝑈([−10, −4] ∪ [4,10]) in order to avoid to confuse the added deviations with the 

measurement noise which has been estimated to be a Gaussian noise with standard deviation 

equal to 1.5. 

The obtained test set, 𝑋̿𝑒𝑟𝑟, containing both normal and abnormal conditions patterns, 𝑥⃗𝑒𝑟𝑟(𝑘), 

has been used to verify the performance of the traditional AAKR method and the modified 

AAKR with different choices of penalization vector: 

 Linear 𝑝⃗ = [𝑚, 2𝑚, … ,6𝑚], with 𝑚 ∈ {2, 4, 8, 16, 32,64} 
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 Exponential 𝑝⃗ = [𝜅, 𝜅2, … , 𝜅6], with 𝜅 ∈ {2, 5, 10, 15, 20} 

 Cliff Diving Competition ranking 𝑝⃗ = [8 20 50 90 160 350]. 

In all cases, the optimal bandwidth parameter, h, has been identified by minimizing the Mean 

Square Error (MSE) of the reconstructions on the validation set, 𝑋̿𝑣𝑎𝑙
𝑜𝑏𝑠−𝑛𝑐: 

𝑀𝑆𝐸(ℎ) =   
∑ ∑ (𝑥̂⃗𝑣𝑎𝑙(𝑘, 𝑠)  − 𝑥⃗𝑣𝑎𝑙

𝑜𝑏𝑠−𝑛𝑐(𝑘, 𝑠))
2

𝐽
𝑠=1

𝑁𝑣𝑎𝑙
𝑘=1

𝑁𝑣𝑎𝑙
 (14) 

Then, for each test pattern, 𝑥⃗𝑒𝑟𝑟(𝑘), of 𝑋̿𝑒𝑟𝑟, k=1,…,1000, the reconstruction 𝑥̂⃗𝑛𝑐(𝑘) of the 

signals values expected in normal conditions has been performed, and the residuals 𝑟̂(𝑘) 

computed. Typically, an abnormal condition is detected and an alarm is triggered when at least 

one of the signal residuals exceeds a prefixed threshold. According to the level of conservatism 

demanded by the problem at hand, and the fractions of false and missing alarms which can be 

accepted in the considered industrial context, different strategies to fix the thresholds can be 

applied. In this work, we have set the threshold equal to 4°C for all the signals, i.e. if |𝑟̂(𝑘, 𝑗)| >

4, an abnormal condition involving signal j is detected. The value of 4 °C has been arbitrarily 

chosen by looking for a satisfactory trade-off between the fraction of false and missing alarms on 

the validation set. Further investigations on the strategy for abnormal condition detection and 

alarm triggering, which are outside the scope of the present work, can be found in (Hines et al., 

2006) and (Di Maio et al., 2013). 

In order to evaluate the performance in the reconstruction, we have considered 4 different 

possible cases for each test pattern: 

1) presence of both false and missed alarms. There is at least one signal for which an 

abnormal condition is erroneously detected (|𝑟̂(𝑘, 𝑗)| > 4) when no sensor failure has 

been simulated (false alarm) and, at the same time, at least one signal for which an 
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abnormal condition is erroneously not detected (|𝑟̂(𝑘, 𝑗)| ≤ 4), when actually a sensor 

failure has been simulated (missed alarm); 

2) presence of only a false alarm. At least one false alarm, no missed alarms; 

3) presence of only a missing alarm. At least one missed alarm, no false alarms; 

4) correct identification (OK). Neither false nor missed alarms. 

Table 2 reports the performance of the traditional and modified AAKR reconstruction methods in 

terms of fraction of test patterns in which the application of the detection scheme leads to one of 

the four categories (1-4), considering different choices of the penalty vector. For the cases of 

exponential and linear penalty vectors, only the results obtained for k=10 and m=8, which 

correspond to the best performance, are reported. 

 
PENALTY VECTOR OK 

MISSED 
ALARMS 

FALSE 
ALARMS 

MISSED AND 
FALSE ALARMS 

MODIFIED AAKR EXPONENTIAL 𝜿 = 10 0.885 0.089 0.008 0.018 

MODIFIED AAKR 
DIVING COMPETITION 

RANKING 
0.669 0.300 0.001 0.030 

MODIFIED AAKR LINEAR 𝒎 = 8 0.585 0.375 0.001 0.039 

TRADITIONAL AAKR EXPONENTIAL 𝜿 = 1 0.500 0.446 0.003 0.051 
Table 2 Fraction of test patterns correctly identified (OK), missed, false and both missed and false alarms. 

 

The most satisfactory method from the point of view of the highest fraction of correct 

identification and the lowest fraction of missed and false alarms is the modified AAKR with an 

exponential penalty vector, whereas the less satisfactory is the traditional AAKR. Furthermore, 

notice that the lowest total fraction of false alarms, which can be obtained from the sum of the 

false and false and missed alarms (columns 5 and 6 of Table 2), is obtained by the modified 

AAKR with exponential weight vector. 

The performance of the modified AAKR method with exponential penalty vector and 𝑘=10 has 

also been verified on different types of synthetic malfunctioning which causes abnormal signal 
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behaviors such as spikes, increasing noises and gradual drifts. In practice, these abnormal 

conditions have been simulated following the same procedure described in Section 4 (Fig. 2), i.e. 

by adding to the normal condition data the simulated failure on one single signal. 

Fig. 6, 7, 8,9,10 and 11 show the obtained residuals for the signal affected by the synthetic 

malfunctioning (left) and another signal not affected by malfunctioning (right). Notice that the 

modified AAKR provides an early detection of the abnormal conditions when dealing with 

synthetic drift (with the obtained residuals almost overlapping the simulated drift) and provides 

very accurate reconstructions of the signal not affected by any of the synthetic malfunctioning 

(with residuals close to 0). Hence, the modified AAKR allows to reduce the time necessary for 

the malfunction detection with respect to the traditional AAKR and is more resistant to the spill-

over effect. 
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Fig. 6 Residuals obtained when the measured signal 

is affected by a spike. Black dotted line: residual 

provided by the traditional AAKR, dashed grey line 

by the modified AAKR. The continuous line 

represents the spike added to the signal value.  

 
Fig. 7 Residuals obtained for a signal not affected by 

any anomalies in the case in which another input 

signal of the reconstruction model is affected by the 

spike considered in Figure 6. 

 
Fig. 8. Residuals obtained when the signal is affected 

by a random Gaussian noise characterized by a 

variance increasing with time. Black dotted line: 

residual provided by the traditional AAKR, dashed 

grey line by the modified AAKR. The continuous 

line represents the added noise. 

 
Fig. Residuals obtained for a signal not affected by 

any anomalies in the case in which another input 

signal of the reconstruction model is affected by the 

noise considered in Figure 8. 

 
Fig. 9. Residuals obtained when the signal is affected 

by a linearly increasing drift. Black dotted line: 

residual provided by the traditional AAKR, dashed 

grey line by the modified AAKR. The continuous line 

 
Fig. 10 Residuals obtained for a signal not affected 

by any anomalies in the case in which another input 

signal of the reconstruction model is affected by the 

drift considered in Figure 10. 
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represents the added noise. 

 

Further analyses have been performed in order to identify the sensitivity of the modified AAKR 

method to the setting of the exponential penalty vector parameter, to the number of simultaneous 

sensor failures and to the intensity of the failure. 

With respect to the setting of the parameter 𝜅 of the exponential penalty vector, Fig. 11 reports 

the fault detection performance obtained by varying its value. Notice that for 𝜅=1 the modified 

AAKR method becomes the traditional AAKR method, and, thus, its performance, as reported in 

Table 2, is less satisfactory. Values of 𝜅 ≥ 20 are associated to an increasing percentage of false 

and missed alarms since the method tends to identify failures on healthy sensors. It is, however, 

interesting to note that the performance is not very sensitive to variation of 𝜅 in the range of 𝜅 =

[10,40], where the percentage of correct detection remains larger than 90% and the percentage of 

false and false and missed alarms are subject to small variations. 

  



 22 

  
Fig. 11 Sensitivity to the parameter 𝜿 defining the exponential penalty vector: top-left) correct detection; top-

right) missed alarms; bottom-left) false alarms; bottom-right) missed and false alarms. 

In order to assess the performance of the method considering different numbers of simultaneous 

sensor failures, we have simulated 2 new test datasets of 1000 patterns each one obtained by 

adding deviations on 2 and 4 signals to the normal condition measurements, respectively. The 

obtained results are reported in Table 3. The modified AAKR method tends to perform 

remarkably better than the traditional AAKR method in the cases of two simultaneous sensor 

failures. However, the performance of the two methods tends to decrease if the number of 

simultaneous sensor failures increases. In particular, in the case of four simultaneous sensor 

failures, the traditional AAKR method performance is slightly more satisfactory than that of the 

modified method. This is due to the consequences of the modified AAKR method hypothesis that 

signal behaviors characterized by several signals affected by abnormal conditions are expected to 

be rare and so the number of missed alarms increases. This can be explained by considering the 

same numerical conceptual case study discussed in Section 4. Let us assume that we have to 

reconstruct the test pattern 𝑥⃗𝑜𝑏𝑠 = [1,1,0] which is characterized by a failure of sensors 1 and 2 

(normal condition measurements would be [0,0,0]). Considering a training set made of patterns 

(𝑥⃗𝑜𝑏𝑠−𝑛𝑐(𝑘) = [𝑘, 𝑘, 𝑘] ∈ ℝ3, 𝑘 ∈ (−2,2)), the traditional AAKR reconstructs the test pattern in 
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the neighborhood of [
2

3
,

2

3
,

2

3
], which is the closest training pattern using an Euclidean distance, 

whereas the modified AAKR with penalty vector 𝑝⃗ = [1, 10, 100] reconstructs it in the 

neighborhood of [
110

111
,

110

111
,

110

111
]. Hence, the traditional AAKR method detects an anomaly on all 

the three sensors, providing a false alarm on sensor 3, whereas the modified AAKR detects a 

failure on sensor 1, providing a false alarm on sensor 1 and missed alarms on sensors 2 and 3. In 

general, it seems that the performance of the modified AAKR is satisfactory when the total 

number of sensor failures is lower than half of the number of sensors |𝑆𝑓𝑎𝑢𝑙𝑡𝑠| ≤
|𝑆𝑡𝑜𝑡|

2
. 

Nevertheless, it is worth noting that when |𝑆𝑓𝑎𝑢𝑙𝑡𝑠| >
|𝑆𝑡𝑜𝑡|

2
; the performance of the traditional 

AAKR are themselves not satisfactory since less than 20% of the observations is correctly 

identified. Thus, if the working hypotheses at the basis of the method, i.e. faults impacting a 

small number of signals are more probable than those impacting a high number of signals, does 

not apply, then both the classical and the modified AAKR methods provide unsatisfactory 

performances. 

 

 
2 Simultaneous Errors 

 
OK MISSED FALSE MISSED & FALSE 

Traditional AAKR 335 577 9 79 
Exponential 𝜿 = 10 837 158 2 3 

Table 3 Quantitative results for 2 simultaneous error. 

 

 
4 Simultaneous Errors 

 
OK MISSED FALSE MISSED & FALSE 

Traditional AAKR 170 637 16 177 
Exponential 𝜿 = 10 38 302 87 573 

Table 4 Quantitative results for 4 simultaneous error. 
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The sensitivity of the method to the intensity of the deviations has been investigated by adding to 

the signals of the dataset 𝑋̿𝑒𝑟𝑟 deviations of intensity sampled uniformly in the interval [9,10] 

instead of [4,10]. The results reported in Table 5 show that: 

 the number of correct detections performed by the traditional AAKR method increases 

due to the decrease of the number of missing alarms 

 both the numbers of false alarms and missed and false alarms increase due to the spill-

over effect on the remaining signals. 

With respect to the modified AAKR method, in case of higher intensity of the deviations, the 

number of missed alarms decreases, whereas the increase of the number of false alarms is lower 

than that of the traditional AAKR. This confirms that the modified AAKR is more resistant to 

spill-over than the traditional AAKR. 

  
OK MISSED FALSE MISSED & FALSE 

𝜿 = 10 
Ei  ~ U([4, 10]) 887 85 10 18 

Ei  ~ U([9, 10]) 936 2 26 36 

𝜿 = 1 
Ei  ~ U([4, 10]) 489 440 7 64 

Ei  ~ U([9, 10]) 757 64 70 109 
Table 5 Quantitative detection results with increasing deviation intensity for the Euclidean AAKR 𝜿 = 𝟏 and 

for the penalized AAKR 𝜿 = 𝟏𝟎. 

 

 6.2 Application to real normal and abnormal conditions 

The method is here applied to a real abnormal condition occurring in the same industrial 

component previously considered. The available 5200 observations collected in normal 

conditions have been used to train and validate the traditional and modified AAKR reconstruction 

models, whereas we have considered a test set made by 1752 observations which, according to 

plant experts, contains signal values collected during a component malfunctioning. Fig. 12 shows 

the reconstruction of the test set provided by the traditional and the modified AAKR methods. 

Notice that both methods identify around the time step 900 an abnormal condition with 
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consequences on signals 1 and 4 (the residuals exceed the threshold of 4). At the same time step, 

the modified AAKR finds that the abnormal conditions has consequences also on signal 2, 

whereas the traditional AAKR delays this detection until time step 1250, when it triggers the 

alarm also for signals 5 and 6. 
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Fig. 12 Residuals of the temperature signals obtained by the traditional AAKR (dark-dot line) and the 

Modified AAKR (light-dash line). 

 

Since information on the type of malfunctioning occurred in the plant are not available, the 

evaluation of the correctness of the obtained results is based on the following two observations: 

1) Fig. 13 (left) shows the Pearson correlation coefficients between the signals collected in 

normal conditions, whereas Fig 14 (middle and right) shows the correlation between the 

same signals when we consider the reconstruction of the malfunctioning provided by the 

modified and the traditional AAKR methods, respectively. It can be observed that the 

reconstructions provided by the modified AAKR are characterized by correlation values 

similar to those in normal conditions, whereas the correlations between the signal 

reconstruction provided by the traditional AAKR are very different. 

2) Fig. 14 shows that the values collected for signals 1, 2 and 4 during abnormal conditions 

(light dashed line) do not belong to the typical ranges of the respective signals in normal 

conditions (dark dotted line), whereas the values collected for signals 3, 5 and 6 belong to 

the normal condition ranges. This suggests that the modified AAKR correctly identified 1, 

2 and 4 as signals impacted by a malfunctioning, whereas the reconstructions of signals 5 

and 6 provided by the traditional AAKR are affected by the spill-over effects. 
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Fig. 13 Visual representation of the Pearson correlation between the signals considering normal condition 

data (left), and the reconstruction of the abnormal conditions with the modified AAKR method (center) and 

with the traditional AAKR method (right). 

 

   

   
Fig. 14 Normal condition evolution of the signals in the training set (dark-dotted line) and corresponding 

evolution in the test set (light-dashed line). 

 

7  CONCLUSIONS 

In this work, we have considered condition monitoring for fault detection in industrial 

components. In order to obtain robust reconstructions of the values of the monitored signals 

expected in normal conditions, we have proposed to modify the traditional AAKR method. The 

modification is based on a different procedure for the computation of the similarity between the 
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present and the historical measurements. In particular, before the computation of the Kernel 

between the two vectors, which is performed as in the traditional AAKR method according to a 

Gaussian RBF function, the data are projected into a new signal space defined by using a penalty 

vector which reduces the contribution of signals affected by malfunctioning. The procedure is 

based on the hypothesis that the probability of occurrence of a fault causing variations on a large 

number of signals is lower than that of one causing variations on a small number of signals.  

The modified AAKR method has been applied to a real case study concerning the monitoring of 

6 highly correlated signals in an industrial plant for energy production. The possibility of 

detecting synthetic and real malfunctioning has been investigated. The obtained results have 

shown that the reconstructions provided by the modified AAKR are more robust than those 

obtained by using the traditional AAKR. This causes a reduction in the time necessary to detect 

abnormal conditions and in a more accurate identification of the signals actually affected by the 

abnormal conditions. 

Future work will be devoted to the demonstration that the whole procedure proposed for the 

evaluation of the weights, i.e. the pre-processing step and the application of a Gaussian kernel, is 

itself a kernel function.  
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