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ABSTRACT: The use of expert systems can be helpful to improve the transparency and 

repeatability of assessments in areas of risk analysis with limited data available. In this field, 

Human Reliability Analysis (HRA) is no exception, and, in particular, dependence analysis is an 

HRA task strongly based on analyst judgement. The analysis of dependence among Human Failure 

Events refers to the assessment of the effect of an earlier human failure on the probability of the 

subsequent ones. This paper analyses and compares two expert systems, based on Bayesian Belief 

Networks and Fuzzy Logic (a Fuzzy Expert System, FES), respectively. The comparison shows that 

a BBN approach should be preferred in all the cases characterized by quantifiable uncertainty in the 

input (i.e. when probability distributions can be assigned to describe the input parameters 

uncertainty ), since it provides a satisfactory representation of the uncertainty and its output is 

directly interpretable for use within PSA. On the other hand, in cases characterized by very limited 

knowledge, an analyst may feel constrained by the probabilistic framework, which requires 

assigning probability distributions for describing uncertainty. In these cases, the FES seems to lead 

to a more transparent representation of the input and output uncertainty. 
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1 Introduction 

 

Handling of different sorts of uncertainties is intrinsic to risk analysis and, correspondingly, many 

publications have addressed the issue since decades [1-4]. The probabilistic and Bayesian 

frameworks are since long the established practice to represent and quantify uncertainty in risk 

analysis and, in particular, in Probabilistic Safety Assessment (PSA) [5-7]. Recently, alternative, 

non-probabilistic frameworks (e.g. Fuzzy Logic, possibility theory, imprecise probability) have also 

been increasingly proposed and investigated to represent uncertainty in situations characterized by 

limited available information, mainly coming from expert judgements [8-13]. However, these 

frameworks have not yet found visible application outside the scientific community. Some reasons 

for this are: i)  the probabilistic framework is strongly embedded in the whole risk assessment 

process (e.g. in the risk practitioner mindset, which is “probabilistic”, in the interpretation and use 

of results for risk-informed decision-making and, generally, regulatory decisions); ii) the perceived 

lack of empirical foundation of some concepts behind non-probabilistic frameworks [14,15]; iii) the 

difficulty for practitioners to understand (or the failure of the scientific community to communicate) 

the differences in the mathematical frameworks and their implications in the analysis results [16]. 

An exhaustive treatment of these issues is beyond the scope of the present paper: refer to [8] and 

[17] for a comprehensive treatment. 

 

In this context, the present paper takes a practitioner standpoint and compares two frameworks for 

supporting assessments relevant for risk applications, Bayesian Belief Networks (BBNs) and Fuzzy 

Expert Systems (FESs), on a specific, very important, issue for Human Reliability Assessment 

(HRA), namely dependence analysis. Comparison of probabilistic and non-probabilistic 

frameworks is not a new endeavour and has been addressed in several works, e.g. [8,9,11,17,18]. 

However, in most cases, the comparison is made at the theoretical level of the mathematical 

frameworks, which makes its understanding difficult outside, for example Bayesian or Fuzzy Logic 

experts. The emphasis of the present paper on the application problem is helpful to disseminating, 

with practical perspective, the understanding of the differences within the risk analysis community. 

  

The application of interest for this paper relates to HRA, the part of PSA analyzing Human Failure 

Events (HFEs), in terms of the factors contributing to the failure, and quantifying their probabilities, 

referred to as the Human Error Probabilities (HEPs). Ideally, the models used to derive these 

probabilities should be built and validated on empirical data – e.g. from operational experience or 

studies in simulated environments. Examples of this use of data can be found in [19]. However, the 

challenges in data collection efforts (mostly related to the collection of data related to decision or 
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diagnosis tasks) are such that in the newest HRA methods (ATHEANA [20], MERMOS [21], 

CESA [22, 23], MDTA [24]), the source of quantification is mostly expert judgment.  

 

Within HRA, a task that is particularly founded on expert judgment (and highly subjective) is the 

assessment of the dependence among HFEs. Dependence analysis aims at evaluating the influence 

of an operator failure in performing one task on the performance of the subsequent task. Intuitively, 

if two tasks are “closely related” in some fashion and the operators have failed the first task, the 

failure of the second task may be assessed as more likely than following the success of the first task. 

From a quantitative point of view, the dependence assessment results in the Conditional Human 

Error Probability (CHEP), on the basis of the identification of the conditioning influencing factors 

and the quantification of their impact on the HEP. The dependence assessment may have a 

significant impact on the risk profile of the system, because the dependent/conditional failure 

probability may be orders of magnitude larger than the unconditional one. 

 

In current HRA practice, the evaluation of dependence is typically performed through the elicitation 

of a qualitative dependence level: the Technique for Human Error Rate Prediction (THERP) [25] 

provides some guidelines for the assessment and also includes formulas for modifying the CHEP 

according to the dependence level. The direct use of expert judgment to assess the qualitative 

dependence level has a number of weaknesses, including the traceability and repeatability of the 

results. In some cases, simplified approaches such as decision trees are used; however the rules 

represented by these trees do not have a transparent basis [26-27]. 

 

A structured alternative is that the evaluation is performed by an analyst, who assesses the 

conditions of the situation under study through the use of expert systems, i.e., mathematical models 

which mimic the experts’ evaluation. This way of proceeding should make the evaluation more 

systematic and repeatable and increase the traceability of the results. Two such expert systems 

based on Fuzzy Logic (FL) and Bayesian Belief Network (BBN) theory have been previously 

investigated by the authors, in [28] and [29] respectively. For the purpose of demonstration, the 

dependence model underlying the two expert systems has been kept simple and it is by no means 

exhaustive in the inclusion of the factors that may influence the dependence among operator actions 

in practice. 

  

The goal of this work is to present an in-depth comparison of the two expert system approaches to 

dependence assessment, based on their application to exemplary case studies. In particular, the 

focus is on the uncertainty treatment and representation in all the evaluation steps to investigate: 



 

4 

 how the analyst may translate his/her assessment of the situational conditions into suitable 

input to the expert system for the dependence assessment; 

 how uncertainties propagate to the outcome of the dependence assessment; 

 how the uncertainty in the dependence outcome is represented. 

 

The scope of the comparison is on the mathematical treatment and representation of uncertainty. 

Some aspects of a full scope comparison have been left out, most notably, those related to the 

construction of the two models. In particular, to focus on the mathematical differences, the two 

models are maintained relatively similar, maintaining a correspondence between the FL linguistic 

labels and the BBN states and between the fuzzy rules and the Conditional Probability Tables 

(CPTs) of BBN. A full scope comparison would entail addressing the definition of the linguistic 

labels and of the BBN states as well as the determination of the Fuzzy rules and BBN CPTs from 

data, expert elicitation or a combination of the two.      

 

Section 2 briefly outlines the two expert system models previously developed for the dependence 

assessment; Section 3 describes in details how the uncertainty in the input assessment is handled by 

the two models and highlights the practical differences. Section 4 focuses on the outcomes of the 

dependence assessment. Then, in Section 5 the two models are applied to a number of case studies 

to see how the uncertainties in the input assessment propagate to the output. Conclusions are finally 

drawn in Section 6. 

 

2 Expert systems for human error dependence assessment 

 

Two HFEs are said to be dependent if the probability of failure of one task changes depending on 

the success or failure of the other. Since sufficient data are typically not available, the relevant 

conditional probabilities are qualitatively inferred from the nature of the tasks involved and from 

human factors considerations. For example, the THERP method [25] proposes guiding principles 

asserting an increasing level, or degree, of dependence between two tasks if: 

 the two tasks are close in time; 

 the two tasks share systems and functions; 

 the performers of the tasks have similar characteristics. 

 

A discussion of the limitations of current approaches for human error dependence treatment is 

beyond the scope of the present paper (see [27] for more details). The idea behind the work in [28] 

and [29] is to build a computable model that represents the relationships among the relevant factors 
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(for the present application, relevant to the dependence between two events) and between these 

factors and the HEP. The potential benefits from the use of expert models in HRA (connected with 

possible increased transparency and repeatability of HRA analysis) have been discussed by the 

authors of the present paper in [27]. 

 

The use of expert systems for HRA dependence assessment here is demonstrated on a working 

model proposed in [27] and [28] that builds on the qualitative rules suggested in THERP. The 

model does not include all factors that may impact the dependence level, but is deemed of enough 

complexity for the purposes of this demonstration. 

 

The inputs to the model are: “Closeness in Time”, “Task Relatedness” and “Similarty of 

Performers”. “Task Relatedness” is then specified in terms of the “Similarity of Cues” and 

“Similarity of Goals” (Figure 1). In the subsequent text, the labels of the input and output variables 

are shortened and referred as “Time”, “Task” and “Performers”. “Task” is then specified in terms of 

the “Cues” and “Goals” respectively. 

 

Figure 1: Functional relationships among the input factors of the working model of dependence 

[27] 

 

2.1 The FES for human error dependence assessment 

 

The first expert system considered for the dependence assessment relies on the FL framework [30]. 

While conventional Boolean logic deals with the concepts which are either true or false, FL models 

the concepts of partial truth by introducing membership functions (MF). FL has been applied in 

many decision-making problems and proved to be a promising tool to handle uncertainty, 

ambiguity, imprecision and vagueness which are inevitable characteristics for many real-life 

problems [31-33].  

 

The developed FES at the basis of the dependence assessment model is described in detail in [28]. 

The FES is based on a representation of the expert knowledge in terms of IF-THEN rules, linking 

the linguistic concepts qualitatively describing the input variables (called antecedents of the rules) 

to those describing the output variables (consequents of the rules). The rules have to be constructed 

through a formal expert knowledge elicitation procedure; they serve as a transparent representation 

of the expert knowledge and support its consistency. To elicit the information needed to build the 

FES, experts are asked to: 
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 identify the input antecedents and output consequents; 

 partition the ranges of variability of these inputs and outputs into distinct Fuzzy Sets (FSs); 

 provide the relationships relating the involved linguistic variables, i.e., the Fuzzy Rule Base 

(FRB). 

 

The dependence model of Figure 1 explicitly identifies the variables of interest in terms of input and 

output factors. In the context of the present work, each of the four input factors 4,...,1, kxk
 is 

qualified in terms of linguistic labels (Table 1). 

 

 

Table 1: Input factors and associated linguistic labels 

 

Each of the factors takes values on a Universe of Discourse (UOD), here arbitrarily chosen to be 

[0,1]. Correspondingly, to each of the above qualifying linguistic labels is associated a Fuzzy Set 

(FS), i.e. a support interval on the UOD and a MF that quantifies the degree to which the input 

factor belongs to a certain label. In this study the shapes and widths of the MFs of a given input 

factor are chosen so that the resulting partition covers completely the respective UOD. Examples of 

the partitioning of the UODs of the four input factors by means of trapezoidal MFs are given in 

Figure 2. 

 

Figure 2: FSs of the inut factors “Time” (left) and “Cues”, “Goals” and “Performers” (right) 

 

The UODs of the intermediate “Task” and of the output linguistic variable “dependence level” 

(“Dependence”) are formed by the labels yi={ZERO, LOW, MEDIUM, HIGH, COMPLETE}. The 

output labels correspond to the five levels of dependence introduced in THERP [25]. The labels are 

associated FSs in a similar way as shown for the input factors. Note that in the dependence model in 

[27], the analyst does not need to interface with the FES, to ease the use of the model. The 

judgments are instead given on an anchored scale, without the need for the user to be familiar with 

the Fuzzy formalism (see for example input assessments in Figure 10).  

 

The Fuzzy rules are built via a systematic expert elicitation process [28]. First of all, a sub-model is 

constructed to relate the “Task” to the two input factors “Cues” and “Goals”. The expert knowledge 

concerning the relationships between the two input factors “Cues” and “Goals” and the “Task” 

output is elicited on pre-specified prototype situations (typically related to extreme values of the 

factors). The (four) rules elicited from the expert are implemented into fuzzy rules of the form: 

 

1. If Cues is NONE and Goals is NONE then Task is NONE, 
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2. If Cues is NONE and Goals is COMPLETE then Task is MEDIUM, 

3. If Cues is COMPLETE and Goals is NONE then Task is HIGH, 

4. If Cues is COMPLETE and Goals is COMPLETE then Task is COMPLETE. 

 

These rules fill the four extreme relations of the FRB underpinning the sub-model of “Task” (Table 

2, highlighted cells). To fill in the missing relations, an automatic “interpolation” procedure can be 

performed for smoothly spreading the consequent labels over the fuzzy rules [28]. 

 

Table 2: Complete Table for “Task”, given inputs Cues and Goals 

 

Also for the assessment of the “Dependence”, for each label of the “Task” variable, only the rules 

associated to the extreme anchor points are elicited and the same interpolation procedure previously 

adopted is used to fill in the missing rules (Table 3). In total, the process requires direct elicitation 

of 24 rules - the rest being filled with the interpolation approach. 

 

Table 3: Rules for “Dependence”, given inputs Performers, Time, and “Task = C, H, M, L, N” 

 

 

Once the FES has been built, it can be used by the analysts to assess the dependence level. The 

model requires in input the fuzzy sets
kX  , 1,...,4k  , representing his/her assessment of the input 

factors. In this work, a fuzzy inference engine based on the Mamdani inference procedure has been 

used to mathematically combine the FES rules with the input FS
kX  , 1,...,4k  . The mathematical 

details of the procedure can be found in [30, 34, 48]. 

 

2.2 The Bayesian Network for dependence assessment 

 

A BBN is a probabilistic graphical model whose structure consists of nodes linked by directed arcs 

[35, 36]. Nodes represent random variables and arcs between nodes (linking parent nodes to child 

nodes) indicate causal or influential relationships between variables. For discrete random variables 

each node has an associated CPT, containing the Conditional Probabilities Distributions (CPDs) of 

each possible outcome of the child node conditional to each combination of values of the parent 

nodes. In recent publications, BBN proved a natural and intuitive model to reproduce the complex 

factor relationships typical of HRA [37, 38]. 

 

With reference to the dependence model of Figure 1, an expert system has been developed in [29], 

based on a BBN with “ranked nodes” (which represent qualitative variables that are abstractions of 
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some underling continuous quantities, typically ranging between 0 and 1 [39]). This type of nodes is 

used to represent qualitative variables described by a finite set of states or labels. Each of the 4m   

input factors of the dependence model (named 4,...,1, kxk
) and the output y  are expressed in 

terms of a BBN discrete node characterized by a set of states , 1,2,...,k

k k kX n
   , for the input 

factors, and , 1,2,..., yY n   , for the output factor. The intermediate factor “Task” is modelled 

likewise. 

 

To model the relationships among the input and output factors of the dependence model, CPTs have 

to be defined for the “Task” intermediate node and “Dependence” final node. Generally, the CPTs 

can be derived using historical data and/or expert knowledge [39]. In the present paper, the 

approach presented in [39] is adopted: the approach allows deriving the CPTs from the elicitation of 

a limited number of relationships, expressed by the experts in the same form as the 24 rules elicited 

in Ch. 2.1. These 24 relationships form the basis expert knowledge, common for both the FES and 

the BBN, on which the two expert models are built. In the approach in [39], the CPTs of the child 

node are derived associating a doubly truncated normal distribution (“TNormal”) to the continuous 

variable underling the factor labels and discretizing it on the range associated to each label (in the 

present application the 0 – 1 range is equally split among the labels, i.e. of size 0.2 for a five-label 

factor, centred in 0.1, 0.3, …, 0.9). Then, the probability density for the child node is obtained from 

the function TNormal(μ, σ), where μ is a weighted function of the input values (on the underlying 

continuous scale) and σ the standard deviation, representing the degree of uncertainty on the child 

node value. The child node’s probabilities are derived from a weighted function of the parent node 

values. Four functions are introduced: Mean Average, Minimum, Maximum, Mix of Minimum and 

Maximum. The approach is implemented in the Softwere AgenaRisk (http://www.agenarisk.com/), 

which has been used in the present paper for building the CPTs.  

 

The choice of the appropriate function depends on the effect of the value of the parent nodes on the 

child node, inferred from the elicited relationships and possibly other qualitative considerations 

[39]. Note that this choice (along with that of the function parameters, μ, σ) requires a number of 

subjective assumptions be made, i.e. no hard rules connecting elicited information and these 

functions exist. The function Mean Average is used for the “Task” node. This function is 

appropriate when the child node value can be modelled as a weighted function of the parent node 

values. The four rules relating factors similarity of cues (“Cues”) and similarity of goals (“Goals”) 

support this assumption. Furthermore, from the four rules, it can be inferred that the influence of 

“Cues” on the “Task”  is larger than that of “Goals” (“Cues” being COMPLETE leads to “Task”  

http://www.agenarisk.com/
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being HIGH, while “Goals” being COMPLETE leads to “Task” being MEDIUM – the other factor 

being NONE). Regarding the weights, in the present application the weights for “Cues” and 

“Goals” have been assigned the values of 3 and 2, respectively (these values allow the mode of the 

CPD in correspondence of the combinations of inputs for the four rules to match the rule output (see 

Table 4). The weights can be interpreted as degree of correlation between parents and child; in this 

sense, factor “Cues” has larger correlation with “Task” than “Goals” (this is reasonable from the 

four elicited relationships). The standard deviation σ of the TNormal distribution represents the 

degree of uncertainty on the value of the child node (on the underlying continuous scale and 

therefore, ultimately, on the label discretized scale), given the values of the parent nodes. In the 

present application, a rather low value is chosen (σ2=5e-4, the lowest value usable in AgenaRisk 

[http://www.agenarisk.com/), finally resulting in the CPDs presented in Table 4. The implications 

of the choice of a larger value will be discussed later in the paper, see Section 5.3. 

  

The CPTs corresponding to the child node “Dependence” were again derived based on the available 

elicited relationships (Table 2 and Table 3). The function “minimum” was chosen with weights 5, 1, 

1 for nodes “Task”, “Performers” and “Time”, respectively, and again σ2=5e-4. The choice of the 

function “minimum” is intended to represent the effect of the main factor “Task” on “Dependence”, 

especially in its lowest states (LOW and NONE for which the factor “Task” in practice decouples 

the actions, i.e. their dependence tends to ZERO, Table 3).   

 

Table 4 gives the CPT derived by applying the algorithm in [39] for the node “Task”, while that for 

node “Dependence” is reported in Appendix B. Cells shadowed in darker grey indicate the anchor 

points in Table 2 and Table 3 (i.e. the rules elicited from the expert as presented in Section 2.1); 

cells shadowed in light gray indicate the consequent of the fuzzy rule corresponding to the same 

input. Bold font indicates the mode of the CPDs. The general match shown by Table 4 between the 

CPTs and the Fuzzy rules (i.e. the CPTs are generally peaked on the output of the fuzzy rule) 

suggests that the two approaches may produce quantitatively comparable results. On the other hand, 

with regards to the “Dependence” node, Appendix B shows similar results for the higher states of 

“Task”, while for lower states of “Task” the dependency levels produced by the BBN are 

consistently higher with respect to those by the FES rules. As shown in Section 5.1, these 

differences confuse the comparison between BBN and FSS results, shifting the attention away from 

the focus of the present paper on the mathematical modeling of uncertainty (these differences are 

not directly due to the uncertainty modeling but by the use of different interpolation approaches to 

fill in the relationships missing from the expert elicitation). To overcome this difficulty, the 

comparison cases in Section 5 will be made on a BBN which directly represents the fuzzy rules. For 

http://www.agenarisk.com/
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each combination of the parent node states, (which correspond the antecedents of the fuzzy rules), a 

conditional probability of 1 is assigned to the corresponding state described in the fuzzy rule 

consequence. The CPT for note “Task” is reported in Table 5 (the CPT for the output node 

“Dependence” is built likewise). 

 

Table 4: CPT for node “Task” (TNormal function approach [39]) 

 

Table 5: CPT for node “Task” (based on fuzzy rules) 

 

The inputs of the BBN model are probability distributions; more precisely, the analyst must provide 

a discrete probability distribution ( )kD

k kP X X


  for each k -th input factor, 4,...,1k , where D

kX  

is the random variable representing the state of the k -th input factor ( D  indicates that D

kX  is a 

discrete variable), , 1,2,...,k

k k kX n
    its possible state and 

kn  the number of possible different 

states of the k -th input factor. 

 

Providing directly the input factor probability distributions may prove very challenging: the factor 

state descriptions (in terms of labels such as NONE, LOW,…) are abstract concepts, so that, in lack 

of a specific scaling guidance, it is difficult to associate a specific situation to one of them. The 

anchor-based dependence model interface has been developed in [27] to overcome this difficulty 

(see Figure 3 and Figure 10). A procedure to convert input judgements on an anchored scale into a 

format suitable for a BBN has been presented in [29] and is briefly reported here because of its 

relevance to understand the differences in the FES and BBN results. 

 

As said, each input factor 
kx  is considered as a continuous variable 

kX  in an interval arbitrarily 

chosen as  0,1 . On this scale, the anchor points are positioned from 0 (no similarity) to 1 (complete 

similarity). Figure 3 is an example of this representation for the input factor “Cues”. 

 

 

Figure 3: Continuous random variable “Cues” with 5 anchor points 

 

Let us, first, consider the case in which the analyst is able to provide an exact value 
kx  for the input 

assessment 
kx  in the interval  1,0 . In this case, it is uncertain which state D

kX  represents the 

assessment
kk xx  . This uncertainty is modelled by considering the discrete random variable D

kX  

whose possible values are the states k

kX
 . The probabilities  |kD

k k k kP X X X x


   of being in the 
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state k

kX
  given an assessment 

kx  are defined by the parameters  
k

k
kX

p x
, with the normalization 

condition  
1

1
k

k
kk

n

kX
p x

 

 . 

In the case here considered, the values  
k

k
kX

p x
 for each value  0,1kx   are obtained by 

introducing normal distributions  ,
k k k

k k k
X X X

p N    , only considering the values within 0,1 , as 

shown by Figure 4 (left) for a 5-state input factor. Then, the values of  
k

k
kX

p x
 are obtained by 

normalizing the corresponding  
k

k
kX

p x
 values (Figure 4, right). The parameters of the normal 

distributions are set such to replicate the shapes of the memberships functions (cfr. Figure 4 and 

Figure 2).  

 

Figure 4: Left: Normal distributions  
k

k
kX

p x
 for a 5-state variable (only considering values 

within [0,1]); Right: function  
k

k
kX

p x
  

 

In the case of a precise single point input assessment 
kx  the marginal probability of being in the 

state k

kX
 , i.e., the input of the BBN is calculated as    k

k

D

k k kX
P X X p x

   .  

Otherwise, if the input assessment provides in addition an uncertainty interval  ,k ka b  , these data are 

converted into the pdf  
kX kf x  representing the probability density that the input variable 

kX  has 

value
kx . The joint pdf  

,
,k

D
kk

k kX X
g X x

  of being in the state k

kX
  and of having an input assessment 

kx  is calculated as: 

     
,

, |k k
D kkk

D

k k k k k k X kX X
g X x P X X X x f x

 
    . (1) 

Then, the marginal probability of being in the state kX   is calculated as: 

   
1

,
0

,k k
D

kk

D

k k k k kX X
P X X g X x dx

 
   . (2) 

The input probabilities propagate to the output discrete probability distribution of the dependence 

level as: 

     1

1
1

1 1
1,...,

| ,..., m k

m
m

m
D D D D D

m m k k
kX X

P Y Y P Y Y X X X X P X X


  



             
. (3) 

The software package AgenaRisk (http://www.agenarisk.com/) has been used to perform all the 

calculation regarding BBNs.  

 

3 Input assessment 

 

http://www.agenarisk.com/
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In this Section, the representation by the two expert systems of the analyst uncertainty in the input 

assessment is investigated. 

 

3.1 FES assessment 

 

As previously mentioned, the analyst task in the dependence assessment is to provide to the expert 

system the evaluation of the conditions of the input factors for the system under analysis. For each 

factor, the input evaluation is a FS representing the actual condition of the considered variable. In 

practice, it is advantageous not to require the analyst to be familiar with fuzzy theory and aware of 

the partitioned UOD underlying the FES. In describing the input factor conditions, the analyst can 

focus solely on the anchored scale (Figure 3 and Figure 10) to build the input factor FS.  

 

The following guidelines are proposed to convert the analyst information into a FS format suitable 

for manipulation by the FES, in various instances of assessment of the situation under analysis. If 

an anchor point applies exactly, the analyst might show his/her confidence in the assessment by 

providing a precise evaluation of the input factor, without uncertainty; this assessment 
kx  is 

converted into a singleton FS. Figure 5 (top, continuous line) shows an assessment of “Time” 

exactly halfway between the two anchors “20min” and “5min”. In case of singleton FSs, the BBN 

input probability distribution is obtained taking the values of  
k

k
kX

p x
 . 

 

Figure 5: Conversion of analyst’s assessment for FES and BBN inputs. Top, FES: singleton (solid 

line), triangular(dotted line) and rectangular(dashed line) FSs; Bottom, BBN: doubly truncated 

normal pdf(dotted line) and uniform pdf(dashed line) 

 

In other cases, the analyst might be more comfortable in providing not just a point value 
kx  to 

describe the input conditions but also an interval  ,k ka b   reflecting the uncertainty, the variability, 

or the ambiguity of the situation. Uncertainty relates to the analyst being unsure as to which 

assessment of the time factor corresponds to the situation under analysis. In other words, the 

situation is characterized by a specific time separation between two actions, but the analyst is 

uncertain about the value. Variability relates to the situation being characterized by variable 

conditions such that the time separation varies within some range (and the analyst is aware of this). 

Ambiguity relates to the difficulty by an analyst to categorize the situation. For example this may be 

the case of assessing factor “Cues” (see Figure 3) for temperature parameters measured in two 

different plant locations. The analysis may be unsure whether these should be considered as two 

different parameters or a single one. Indeed, generally, uncertainty, variability and ambiguity are 

not exclusive concepts and are integrated into a single input statement [8]. 
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This situation can be represented by a triangular FS as in Figure 5 (top, dotted line), and a doubly 

truncated normal pdf  
kX kf x  could be built (Figure 5, bottom, dotted line). 

A similar case is when the uncertainty present in the assessment leads the analyst to provide an 

interval  ,k ka b   only, without specifying any value of maximum confidence. This evaluation can be 

translated into a rectangular FS or a uniform pdf, as shown in Figure 5 (dashed line). 

 

 

3.2 Input modelling comparison 

 

Consider an analyst assessment of the conditions of one of the input factors in the form of the point 

value 2.0kx  with the associated interval of uncertainty    3.0,1.0, 
kk ba . Let us see how the 

availability of information can change the modelling of the input of both models, considering the 

three input format presented in Section 3.1.  

With reference to the FES framework, Table 6 shows an example of how the three different input 

fact characterizations would affect the calculation of the degrees of membership to the factor 

characteristic labels. As expected, by decreasing the quality of input information from a precise 

single point assessment to an uncertain interval assessment the degrees of membership remarkably 

differ. 

 

Table 6: Example of input manipulation in the FES and BBN frameworks 

 

Within the BBN uncertainty representation framework, the differences between the modelling 

through the doubly truncated normal distribution and the uniform distribution can be light. Table 6 

shows an example of the input probabilities of being in the state NONE, LOW and MEDIUM for an 

input assessment 2.0kx . As expected a point value assessment gives a more peaked probability 

distribution while the uncertainty included in a range assessment leads to a distribution spread over 

more states. 

 

Table 6 shows that the BBN input is less sensitive to less precise information than the FES one, i.e., 

the differences between the precise single point assessment and the uncertain range assessment are 

much larger in the FES framework. This is due to the different representation provided by the two 

models of the input information (input FS or input pdf). The FES computes the degree of activation 

kjr  of the FS kjX  of the k-th input variable by the input fact 
kx , whereas the BBN computes the 

marginal probability of being in the state k

kX
  by performing an integral operation on the joint pdf 

 
,

,k
D

kk
k kX X

g X x
  (eq.3). 
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A further analysis has been performed in order to highlight that these differences do not depend on 

the different shapes between the fuzzy MFs (trapezoidal) and the elicitation curves (Gaussian) and 

from the different representation of the input assessment in the case of an interval with a value of 

maximum confidence (triangular MF and doubly truncated normal pdf), but rather depend from the 

different mathematical bases of the two input frameworks. To this purpose, consider a BBN model 

in which the elicitation parameters  
k

k
kX

p x
 (Figure 4, right for a 5-states input case) are replaced 

with trapezoidal ones (Figure 6, left) and the doubly truncated normal pdf of Figure 5 (dotted line) 

representing a centered range assessment is replaced with a triangular pdf (Figure 6, right).  

 

Figure 6: Trapezoidal elicitation parameters  
k

k
kX

p x
(left) and triangular pdf  

kX kf x (right) 

 

The same example of input assessment .kx 0 2   can be used to test the BBN model with modified 

input; the results are shown in Table 7. 

 

Table 7: Example of input manipulation in the BBN with modified input 

 

Note that the results and the sensitivity to the amount of information are similar to those found for 

the original BBN model even if trapezoidal elicitation parameters and triangular pdf are used. In the 

case study presented in Section 5.1, this modified BBN model is used to clarify the sources of 

difference between the two modelling frameworks under analysis. 

 

4 Output comparison 

 

The FES and BBN expert systems differ also in the interpretation of the output. The output of the 

FES is a label membership that represents “how well” the “Dependence” fits the fuzzy description 

of a particular label; e.g., in the case shown in Figure 7 (left), the output “Dependence” belongs to 

the label LOW with a degree of membership of 0.89, to ZERO with degree of membership 0.38 and 

to MEDIUM and HIGH with degrees of membership of 0.25 (the output corresponds to the case 

study in [28]). 

The BBN output is a probability distribution representing “how likely” it is that the variable is in a 

certain state; e.g., in the case shown in Figure 7 (right), the “Dependence” has a 0.77 probability of 

being in state LOW, 0.20 of being in state ZERO and 0.03 of being in state MEDIUM. 

 

Figure 7: FES(left) and BBN (right) “Dependence” output 

 

Figure 8: CHEP Probability density functions for each THERP dependence level (unconditional 

HEP of 0.001, 5th%:  3.3e-4, 95th%: 3e-3; lognormal probability assumed [25]( left); Probability 

density functions for CHEP weighted on the BBN assessment in Figure 7 (right) 
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From the FES or BBN outputs on the dependence level, the dependence level (and corresponding 

HEP) for use in the PSA needs to be determined.  

The BBN output probability distribution is easier to interpret and use in the PSA, and allows a clear 

quantification of the uncertainty included. The THERP handbook [25] suggests values of CHEPs 

and corresponding confidence bounds (assuming lognormal distributions) for each level of 

dependence, in correspondence of different values of the unconditional HEP. Figure 8 (left) shows 

the lognormal probability density functions corresponding to the unconditional probability value of 

0.001 (5th percentile:  3.3e-4; 95th percentile 3e-3). The resulting uncertainty distribution for the 

CHEP can then be obtained by weighting each probability density function based on the results 

from the BBN. For example, in Figure 8 (right) the functions are weighted according to the BBN 

results in Figure 7 (right): 0.2 for the unconditional function, 0.77 for the function corresponding to 

the LOW dependence function, 0.03 for that corresponding to HIGH dependence. This approach 

directly produces the figures that need to be included in the PSA: CHEP, 5th %: 6e-4, median: 4e-2, 

95th %: 2e-1 (for the BBN assessment in Figure 7 (right)). 

In order to evaluate the CHEP within the fuzzy framework, the range of CHEP values is partitioned 

into the five FSs reported in Figure 9 and corresponding to the five “Dependence” labels. The FSs 

are centered on the CHEP values suggested by the THERP handbook with support given by their 

respective lower and upper confidence boundaries (CBs) and have triangular shape in log10 base 

[28]. The use of the logarithmic scale aids the representation of the different orders of magnitude of 

CHEP values characterizing the different dependence levels. 

 

Figure 9: FSs for CHEP corresponding to each THERP dependence level (left); FS for CHEP 

resulting from the FES assessment in Figure 7 (right). 

 

The FS for the CHEP resulting from the FES assessment can then be obtained by associating to 

each FS of Figure 9 (left), a degree of activation equal to the degree of activation of the 

correspondent “Dependence” labels (Figure 7 (left)). Thus, the FS reported in Figure 9 (right) is 

obtained. One can observe that the FES output is less intuitive to interpret than the probability 

density function obtained by the BBN approach and the degree of membership is not easily 

convertible into a probability for use in the PSA. However, in the fuzzy framework several 

techniques have been proposed for the conversion of the final FS into a single value that synthesizes 

the information encoded in the output FS [40-42]. In particular, a popular defuzzification technique 

is the middle of maxima (MOM) method which returns the middle value of the core of the FS, 

being the core the set of values of the output taking the largest degree of membership. In the case of  
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Figure 9 (right), the most representative CHEP is 5e-2 which is similar to the median value 4e-2 

obtained in the BBN framework. In order to describe the uncertainty in the CHEP estimation, it is 

possible to consider the alpha-cut which represent the set of value of CHEP with an associated 

degree of membership greater or equal to alpha, being alpha a real number between 0 and 1. In this 

case, the 0.10 alpha cut of the FS representing the CHEP is the interval [3.7e-4, 9.3e-1] which is 

very different from the [5th %, 95th%] = [6e-4, 2e-1] interval which represent the CHEP uncertainty 

in the BBN approach (this is due to the large membership to the HIGH “Dependence” in the fuzzy 

assessment of Figure 7, left). 

Finally, notice that although the FS defuzzified value and the alpha-cut synthesize the information 

contained in the output FS, they cannot be directly used in the PSA of the situation under study 

since their interpretation does not correspond to that of the median and the percentile of the 

probability density function. 

Another option is to consider the possibilistic interpretation of a Fuzzy Set [43-45], which entails 

defining lower and upper cumulative density functions from which one can obtain a range of values 

for the probability that the output is in a given interval I of CHEP values. 

 

5 Comparison of FES and BBN models on literature case studies 

 

In this Section, the modelling frameworks for the quantification of human error dependence based 

on FES and BBN are applied on literature case studies. The examples of Section 5.1 and Section 5.2 

are taken from [28]; the example of Section 5.3 is an artefact of extreme situation from the point of 

view of the uncertainty on the input assessment, for which the two frameworks lead to the largest 

differences. 

 

5.1 Case study 1: single point estimates input 

 

This case study refers to a set of operator actions required to avoid excessive boron dilution in the 

reactor cooling system of a nuclear Boiling Water Reactor (BWR) in case of an Anticipated 

Transient Without Scram (ATWS) scenario [27]. In the considered scenario, the operators have 

successfully initiated the Standby Liquid Control System (SLCS) to shut the reactor down. To 

facilitate the reactor shut down, the operators are directed by the procedures to increase the voiding 

by reducing the level in the reactor to the Top of Active Fuel (TAF). Additionally, they are required 

to inhibit the actuation of the Automatic Depressurization System (ADS), which is activated by the 

signal of low water level in the reactor, generated while lowering the reactor water level to TAF. In 

case of failure to inhibit the ADS, the reactor pressure would be automatically decreased and the 

low pressure injection systems (Core Spray System, CSS), would be activated. The injected water 
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could lead to diluting the boron injected by the SLCS and the consequential failure to control 

reactivity. In case of failure to inhibit ADS actuation, the operators are called to control the level in 

the reactor using low pressure injection, tripping one of the CSS pumps and controlling the other 

pump. The signal to activate the ADS is generated about 7 minutes after the event of failure to 

scram. At that point, the operators have about 15 minutes to take actions to limit the low pressure 

injection flow. 

The pair of operator tasks involved in the dependence assessment are 1) inhibit the ADS and 2) 

control the reactor vessel level in order to prevent diluting boron concentration after failure to 

inhibit the ADS. Both actions are directed by the same emergency procedure. 

The input judgments (Figure 10) are given as point values on the anchored scales: 

 “Time”: as said in the scenario description, the separation in time of the two actions is 

expected to be around 15 minutes.  

 “Cues”: the initial cues for ADS inhibition are related to high reactor power level due to the 

failure to scram. The cues for control of low pressure injection are related to the reactor 

vessel level, which has to be manually maintained. The ADS actuation is commanded by the 

signal of low water level in the reactor; therefore, the level in the reactor is also one of the 

parameters that the operators have to monitor while inhibiting ADS. The context might then 

be considered slightly ambiguous. This may be achieved by assigning still a point value 

assessment but located somewhere in between the anchors “different indicators for different 

parameters” and “different indicators for the same parameters”. 

 “Goals”: the two actions relate to the same function (shut down the reactor by boron 

control), carried out via different systems. This situation matches the anchor “same function 

by different systems”. 

 “Performers”: the action is carried out by the same operator crew. This matches the anchor 

“same team”. 

 

Figure 10: Input assessments 

 

Within the FES framework of analysis, the above assessment is represented by singleton FSs (Table 

8 and Table 9 report the activation degree of the input labels). The output of the dependence model 

in form of the possibility values of the different levels of human error dependence is reported in 

Figure 11 (left). The ambiguity in the input assessment is reflected in the output assignment of a 

possibility of 0.8 to the LOW level of dependence, 0.2 to the MEDIUM and 0.15 to the ZERO. In 

the case depicted in Figure 10, four rules are activated: 

 IF Time is Neither AND Cues is None AND Goals is High AND Performers is High THEN 

Dependence is Zero; 
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 IF Time is Neither AND Cues is Low AND Goals is High AND Performers is High THEN 

Dependence is Low; 

 IF Time is Close AND Cues is None AND Goals is High AND Performers is High THEN 

Dependence is Low; 

 IF Time is Close AND Cues is Low AND Goals is High AND Performers is High THEN 

Dependence is Medium. 

which result in the possibilities of ZERO, LOW and MEDIUM dependence of Figure 11 (left). 

In the BBN framework, the input assessment of Figure 10 is represented by single values, leading to 

the BBN probability distributions of the input factor levels shown in Table 8 and Table 9.  

 

As already mentioned in Section 2.2, two BBNs are considered: one with CPTs derived with the 

algorithm in [39] (Table 4), and the other with CPTs directly mirroring the fuzzy rules (Table 5). As 

expected, the former BBN gives rather different results as compared with the FES: Figure 11 shows 

that the final dependence level assessment by the BBN are shifted by one level compared to the 

FES. Indeed, as shown in Appendix B, in the CPTs for the higher values of Task, the Dependency 

tends to be one linguistic term higher than in fuzzy rules. This difference in the relationships 

underlying the FES and the BBN is determined by the use of two rather different interpolation 

algorithms for the two modelling frameworks (see Section 2), although they are based on the same 

set of 24 relationships. Though important, this issue shifts the focus of the present paper, which 

emphasises the mathematical treatment of uncertainty by the two frameworks (differences in the 

output results, as in Figure 11, would be due to the differences in the CPTs rather than to 

differences in the uncertainty representation and quantification). To avoid this, the rest of the 

comparison cases will be based on the use of a BBN, with CPTs mirroring the fuzzy rules (Table 5).  

 

A qualitative comparison among the outputs obtained by the FES and BBN methods of analysis can 

be directly performed by looking at the results obtained in terms of the degrees of memberships and 

the discrete distributions, respectively (Figure 12). As one can see, the two methods give similar 

results, although the ZERO level has associated a higher probability than the MEDIUM level in the 

BBN framework whereas the membership of the Zero level is lower than that of the MEDIUM level 

in the FES framework. The differences among the two model outputs derive mainly from the 

different shapes between the FES trapezoidal MFs and the BBN elicitation parameters 

  , 1,2,...,
k

k
kX

p x k m   (Figure 5). In this respect, notice that if the modified BBN model defined in 

Section 3.2 based on trapezoidal elicitation parameters is used, the obtained output is very similar, 

except for a normalization factor to the FES output (Figure 12, right, “BBN with modified input”). 

The differences between the BBN and BBN modified outputs are mainly due to the tails of the 
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elicitation functions  
k

k
kX

p x
 that result in different probabilities for some input factor levels. For 

example, the label “neither” for the input “time” has an input probability of 0.111 (Table 8) in the 

BBN model, whereas, using trapezoidal elicitation functions in the modified BBN model the input 

probability of 0.161 is obtained. Thus, it can be concluded that when all the input assessments are 

represented by single point estimates, no remarkable differences are provided by the inference 

engines since they behave in a very similar way. 

 

Table 8: FES and BBN input assessments for Time 

 

Table 9: FES and BBN input assessments for Cues, Goals and Performers 

 

 

Figure 11: Case study 1 output: FES (left); BBN – CPT derived algorithm from [39] (right) 

 

 

Figure 12: Case study 1 output: FES (left); BBN – CPTs mirroring FES (right). 

 

5.2 Case study 2: uncertain input 

 

This case study shows how uncertainty in the evaluation of the situation under analysis can be 

represented in the assessment by the analyst and how this reflects in the resulting output 

dependence. Compared to the case from Section 5.1, uncertainty is considered for the input factor 

“Time”. 

According to the scenario description, the operators have about 15 minutes to take actions to limit 

the low pressure injection flow. In Case 1, a point value of 15 minutes was used as input. In this 

case, the linguistic description of the situation “about 15 minutes” is converted in an interval of 

plausible values between 5 and 20 minutes, with a most plausible value halfway (Figure 13). 

 

Figure 13: Time Input assessment 

 

According to the guidelines given in Section 3.1 for the representation of the analyst uncertainty on 

the input assessment, a triangular FS is used for the Time assessment (Figure 5 (top, dotted line), 

input label activation reported in Table 10 and Table 11). 

The same rules of the previous Case study 1 are activated although with slightly different degrees of 

activation. This leads to an output assignment spread on the ZERO, LOW, and MEDIUM levels of 

dependence with a peak on LOW. In Figure 15 (left), the output of the dependence model in form of 

the possibility values of the different levels of human error dependence is reported. 

In the BBN framework of analysis, the single value input assessments are represented as in the 

previous Section 5.1 while the input assessment of a range with a most plausible value is converted 

into a doubly truncated normal pdf. 
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The calculated joint pdf  
,

,k
D

kk
k kX X

g X x
  is shown in Figure 14. 

Figure 14: BBN joint pdfs 

 

Then, the BBN probability distributions of the input factor levels are directly calculated and shown 

in Table 10 and Table 11. 

 

Table 10: FES and BBN input assessments for Time 

 

Table 11: FES and BBN input assessments for Cues, Goals, Performers 

 

The output distribution of the human error dependence level is shown in Figure 15, right. The 

comparison of the outputs of the two expert system modelling frameworks shows results similar to 

those obtained in Section 5.1; although the less activated states (ZERO and MEDIUM) have more 

weight in the FES than in the BBN. The main cause of this difference lies in the different input 

assessment approach. As described in Section 3, the two expert system models treat differently the 

input function (input FS or input pdf) to obtain the output: the FES uses the MAX-MIN 

composition between the fuzzy relations and the input fact while the BBN performs an integration 

of the joint pdf calculated as the product of the input pdf and the elicitation functions (eqs. 1 and 2). 

 

Figure 15: FES (left) and BBN (right) output of case study 2. 

 

5.3 Case study 3: uncertainties in multiple inputs 

 

Let us now consider a scenario with multiple uncertainties in the input assessment. In particular, 

input factors “Cues”, “Goals” and “Performers” are assessed to lie between 0.7 and 0.9 while the 

“Time” is assumed to be 8 hours (Figure 16). 

 

Figure 16: Input assessments 

 

 

Within the FES framework of analysis, the above assessment is represented by rectangular FSs 

(Figure 17, input label activation reported in Table 12 and Table 13). 

 

Figure 17: FSs of input facts (solid line) 

 

This activates 8 rules: 

 IF Time is Wide AND Cues is High AND Goals is High AND Performers is High THEN 

Dependence is Low; 

 IF Time is Wide AND Cues is High AND Goals is Complete AND Performers is High 

THEN Dependence is Low; 



 

21 

 IF Time is Wide AND Cues is High AND Goals is High AND Performers is Complete 

THEN Dependence is Medium; 

 IF Time is Wide AND Cues is High AND Goals is Complete AND Performers is Complete 

THEN Dependence is Medium; 

 IF Time is Wide AND Cues is Complete AND Goals is High AND Performers is High 

THEN Dependence is Medium; 

 IF Time is Wide AND Cues is Complete AND Goals is Complete AND Performers is High 

THEN Dependence is Medium; 

 IF Time is Wide AND Cues is Complete AND Goals is High AND Performers is Complete 

THEN Dependence is High; 

 IF Time is Wide AND Cues is Complete AND Goals is Complete AND Performers is 

Complete THEN Dependence is High. 

The FES inference engine provides the output degrees of membership of the human error 

dependence levels shown in Figure 20, left. 

In the BBN framework, the input assessment is converted into the uniform pdfs in Figure 18. 

 

Figure 18: BBN input representation 

 

 

The obtained BBN probability distributions of the input factor levels are shown in Table 12 and 

Table 13. 

 

Table 12: FES and BBN input assessments for Time  

 

Table 13: FES and BBN input assessments for Cues, Goals and Performers 

 

The output distribution of the human error dependence level is shown in Figure 20, right. 

The comparison of the outputs of the two models shows that a completely uncertain input 

assessment leads to quite different results: the FES assigns to the three “Dependence” LOW, 

MEDIUM and HIGH the same strength of 1 while the BBN output distribution is less conservative 

showing a predominance of LOW and MEDIUM. This affects the analyst final estimate of the 

dependence level: for example, a conservative evaluation using the FES leads to a confident HIGH 

“Dependence” while using the BBN model an analyst may estimate a conservative “Dependence” 

equal to MEDIUM. 

The first source of difference is in the different treatment of the input. For example, for the input 

variable “Cues” the FS “high” and “complete” are equally activated to 1 by the fact FS. This is due 

to the fact that in the FES it is sufficient to have a single value of the input variable characterized by 

a degree of membership equal to 1 in both the input fuzzy fact 
kX   and in the FS 

kjX  that the degree 
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of activation of the j-th rule is 1. On the contrary the BBN probability of being in state “high” is 

0.734 and in state “complete” is 0.253 (Table 13). 

In the BBN framework, the probability of Cues being complete is computed by (eq. 3) and thus 

depends on the value of the input pdf  cuesX xf
cues

 in the entire range of variability of
cuesx . 

The less spread BBN results shows some limitations of the probabilistic representation of epistemic 

uncertainty under limited knowledge [46]. In this case, for example, the only available information 

is that the value of the model parameter 
kx  is located somewhere between 7.0

min
kx  and

9.0
max

kx . A uniform probability distribution has been used to represent the uncertainty on 
kx ; 

this choice appeals to the Laplace principle of insufficient reason, according to which all that is 

equally plausible is equally probable, and to the maximum entropy approach [46]. On the other 

hand, the uniform distribution implies that the degrees of probability of the different values of 
kx

depend on the equal range  9.0,7.0  and that a relationship like the following holds: 

     9.0,8.08.0,7.0  kk xPxP  

But, if no information is available to characterize the uncertainty under study, then no particular 

relation between   8.0,7.0kxP  and   9.0,8.0kxP should be supported. Indeed, in the most 

typical BBN formulation, lack of knowledge is represented by specific functional choices of 

probability distributions, like the uniform. Yet, it should somehow be expressed in terms of the full 

set of possible probability distributions on  9.0,7.0  so that the probability of a value  9.0,7.0kx  

is allowed to take any value in  1,0 . This can be done by making the BBN input probabilities 

dependent on appropriate parameters that allow covering the desired spectrum of probability 

distributions [36] or by considering the framework of the imprecise probability [47] that allows 

representing uncertainty by using set of probability distributions. 

Annulling the difference in the input treatment of the two expert system models by imposing as 

input to the BBN the normalized degree of activation of the input FS by the fact 
kX   ( 

Figure 19), the output assessment of Figure 20, right, is obtained. The still large difference is due 

solely to the inference engines. 

Finally, it is worth underscoring the implications of the choice of the parameter  of the truncated 

TNormal(µ, ) distribution capturing the parent-child relationship in the BBN with ranked nodes 

[39].  is the standard deviation of the normal distribution from which the TNormal(µ, ) is 

obtained (by truncation within 0, 1 and normalization). The case shown in Figure 11 corresponds to 

the choice of σ2=5e-4, the lowest value usable in AgenaRisk (http://www.agenarisk.com/). The 

choice of σ is related to the confidence of the modelled in the uncertainty of the value of the child 

node as a function of the values of the parent nodes and influences the shape of the BBN CPDs. 

http://www.agenarisk.com/
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Figure 21 shows the BBN output in correspondence of three different levels of uncertainty in the 

BBN conditional distribution. It is evident that, the lager the parameter , the larger the uncertainty, 

until the (in practice) uniform distribution of the output is obtained. 

The same situation of larger uncertainty in the relationship between the parent and child nodes can 

be represented within the FES framework, by considering multiple fuzzy sets in the consequent part 

of the rules. Considering, for example, the “Task” assessment, the analyst can decide to use rules 

such as: 

 

“If Cues is NONE and Goals is NONE then Task is NONE or LOW” 

 

and the complete set of rules reported in Table 14. 

 

Table 14: Complete Table for “Task”, given inputs Cues and Goals in case of large uncertainty on 

the relationships between “Cues”, “Goals” and “Task”. 

 

Figure 19: Forced BBN input probabilities 

 

Figure 20: FES (left) and BBN (right) output of case study 3 

 

Figure 21: BBN output (input assessment case 3) for different values of the parameter  of the 

truncated TNormal(µ, ) [39] 

 

 

6 Conclusions 

 

In this work, we have performed an in-depth comparison of two expert systems for the modeling 

and assessment of the dependence existing in two consecutive HFEs. One expert system is based on  

a FL framework and the other on a BBN framework, and the focus of the comparison has been on 

the representation and treatment of the uncertainty associated to the dependence modeling and 

assessment. To this aim, the following three issues have been analysed: 

1) how the analyst may translate his/her assessment of the situational conditions into 

suitable input to the expert system for the dependence assessment; 

2) how uncertainty propagates to the outcome of the dependence assessment; 

3) how uncertainty in the dependence outcome is represented. 

With respect to 1), we have found that both FL and BBN frameworks can accommodate an 

anchored scale interface which does not require the analyst to be familiar with the mathematical 

details. This is an important feature because providing direct input in the proper form for feeding  

the FES and BBN models can be challenging for the analyst. Furthermore, the comparative analysis 

of  suitably constructed case studies has shown that BBN is less sensitive to less precise information 
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than FES, i.e. the differences in the uncertainty representation in an assessment based on precise 

input  with one based on an uncertain input , is sensibly smaller in the BBN framework than in the 

FL framework. 

With respect to issue 2) above, by analysis of different case studies we have found that in the case 

of no uncertainty, i.e., single-value inputs, there is not a significant variability among the outcomes 

of “Dependence” provided by the two expert systems, BBN-based and FL-based. On the contrary, 

when the uncertainty in the input is significant , e.g. when a range of values is provided to 

reprensent an uncertain input, the FES generates results less certain and more spread on the 

different levels of dependence than the BBN does. It has been shown that in cases with uncertainties 

in multiple inputs, these differences may lead to significantly different outputs, with the BBN being 

less conservative than the FES. 

Finally, with respect to issue 3) above, the BBN output probability distributions have been shown to 

be easier to interpret and use in PSA. In practice, the BBN directly produces the figures that need to 

be used in PSA, whereas the FES output, which is in the form of a fuzzy set, is less intuitive to 

interpret and use. 

From the considerations drawn from the analysis of issues 1), 2) and 3), we can pragmatically 

conclude that: 

 a BBN approach should be preferred in all the cases characterized by quantifiable uncertainty in the 

input (i.e. when probability  distributions can be assigned to describe the input parameters 

uncertainty ), since it provides a satisfactory representation of the uncertainty and its output is 

directly interpretable for use within PSA; 

 in cases characterized by very limited knowledge, an analyst may feel constrained by the 

probabilistic framework, which requires assigning probability distributions for describing 

uncertainty. In these cases, the FES seems to lead to a more transparent representation of the input 

and output uncertainty. 

With respect to this latter conclusion, we underline that a main criticality of  BBN emerged in this 

work relates to the use of uniform probability distributions to represent uncertainty when the 

information available only indicates that the value of the variable is located in a range of values. 

 

In this conclusion section, we feel that it is also important to remind that the goal of the work was 

not to arrive at a definite statement of which modelling framework is the best choice for use within 

PSA. Drawing such conclusion is not possible, in lack of empirical data to validate the results. 

Rather, the work has illustrated how the two frameworks differently interpret and process the 

analyst information on the input parameters and how this  is transported onto the output, to be used 

for PSA. For arriving at such use in PSA requires verification of the models (given that validation is 

not possible), in which the underlying modelling assumptions and output results are scrutinized and 
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confirmed by experts. Then, the problem shifts to the HRA domain as opposed to the mathematical 

domain considered here, which is outside the scope of the present work. Indeed, a full scope 

comparison and verification would entail addressing the definition of the linguistic labels and of the 

BBN states as well as the determination of the Fuzzy rules and BBN CPTs from data, expert 

elicitation or a combination of the two. 

The emphasis of this paper on the application problem is helpful to disseminating, with practical 

perspective, the understanding of the differences within the risk analysis community, not limited to 

Bayesian Belief Networks or Fuzzy Logic specialists. The insights on uncertainty modelling are not 

specific to dependence and HRA analysis. 
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Appendix A: CPT elicitation algorithm using ranked nodes 

 

This appendix presents some details of the approach used for derivation of the BBN relationships 

(i.e. the CPTs). For a more comprehensive treatment, see [39]. 
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The approach is applicable for BBNs with “ranked nodes”, which represent qualitative variables 

that are abstractions of some underling continuous quantities, typically ranging between 0 and 1). 

The key concept for the approach is that the child node’s probabilities (each CPD making the CPTs) 

are derived from a weighted function of the parent node values (on the underlying continuous 

scale).  

The CPDs of the child node are derived associating a doubly truncated normal distribution 

(“TNormal”) to the continuous variable underling the factor labels and discretizing it on the range 

associated to each label (in the present application the 0 – 1 range is equally split among the labels, 

i.e. of size 0.2 for a node with five levels, centred in 0.1, 0.3, …, 0.9).  

Then, the probability density for each child is the function TNormal(μ, σ), where  μ is a weighted 

function of the input values (on the underlying continuous scale) and σ the standard deviation, 

representing the degree of uncertainty on the child node value. Four weighted functions are 

introduced: Mean Average (Wmean), Minimum (Wmin), Maximum (Wmax), Mix of Minimum and 

Maximum (Wminmax).  

The decision of which function to use depends on the effect of the parent nodes values on the child 

node value. As presented in [39], this can be inferred from limited information, e.g. specific 

evaluations in correspondence of combinations of input values (typically, the cases where the nodes 

have their extreme states). For example, in the case of one child node Y with two parents X1 and X2, 

if the following statements are elicited from experts [39]: 

 when X1 and X2 parent nodes are both ‘very high’ the distribution of Y child node is heavily 

skewed toward ‘very high’,  

 when X1 and X2 parent nodes are both ‘very low’ the distribution of Y child node is heavily 

skewed toward ‘very low’, 

 when X1 is ‘very low’ and X2 is ‘very high’ the distribution of Y is centered below 

‘medium’, 

 when X1 is ‘very high’ and X2 is ‘very low’ the distribution of Y is centered above ‘medium’,  

then it is appropriate to use the weighted average function (with possibly different importance 

weights for the two parents). A simple weighted sum model is used to measure the contribution of 

each parent node to explaining the child node as a ‘credibility weight’. The higher the credibility 

value, the higher the correlation between the parent node and the child node. The weights are 

derived from judgment. Mathematically, for child node Y, having X = {X1, X2, …, Xn} causal ranked 

nodes as parents and each Xi parent node having wi contribution weight, the TNormal distribution 

with weighted mean average function will have the following form: 
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𝑝(𝑌|𝑋) = 𝑇𝑁𝑜𝑟𝑚𝑎𝑙 [
∑ 𝑤𝑖 ∙ 𝑋𝑖

𝑛
𝑤𝑖=1

∑ 𝑤𝑖
𝑛
𝑤𝑖=1

, 𝜎, 0,1] 

As mentioned before, also other weighted rank node functions can be used to derive the probability 

values in CPT. The following observation, for example, will lead to the use of weighted minimum 

function :  

 When X1 and X2 parent nodes are both ‘very high’ the distribution of Y child node is heavily 

skewed toward ‘very high’.  

 When X1 and X2 parent nodes are both ‘very low’ the distribution of Y child node is heavily 

skewed toward ‘very low’. 

 When X1 is ‘very low’ and X2 is ‘very high’ the distribution of Y is centred toward ‘very 

low.  

 When X1 is ‘very high’ and X2 is ‘very low’ the distribution of Y is centred toward ‘low’.  

The corresponding function will have the following form: 

𝑝(𝑌|𝑋) = 𝑇𝑁𝑜𝑟𝑚𝑎𝑙 [𝑊𝑚𝑖𝑛, 𝜎, 0,1] 

With Wmin: 

𝑊𝑚𝑖𝑛 = min
𝑖=1,…,𝑛

[
𝑤𝑖 ∙ 𝑋𝑖 + ∑ 𝑋𝑗

𝑛
𝑗≠𝑖

𝑤𝑖 + (𝑛 − 1)
] 

 

If all the weights are large, then Wmin is close to the minimum value of the inputs, and if all the 

weights are 1, then Wmin is the average of the parent nodes (Wmean). Mixing the influence of the 

weights gives result between MIN and AVERAGE.  

Function Wmax operates analogously.  

The approach is implemented in the Software AgenaRisk (http://www.agenarisk.com/). 

  

http://www.agenarisk.com/
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Appendix B: CPT for Dependency node  

 

Table 15: CPT for Dependency node with TNormal function approach [39] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


