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Abstract 

In this work, we consider two prognostic approaches for the prediction of the remaining useful life (RUL) of 

degrading equipment. The first approach is based on Gaussian Process Regression (GPR) and provides the 

probability distribution of the equipment RUL; the second approach adopts a Similarity-Based Regression 

(SBR) method for the RUL prediction and belief function theory for modeling the uncertainty on the 

prediction. The performance of the two approaches is comparable and we propose a method for combining 

their outcomes in an ensemble. The least commitment principle is adopted to transform the RUL probability 

density function supplied by the GPR method into a belief density function. Then, the Dempster’s rule is 

used to aggregate the belief assignments provided by the GPR and the SBR approaches. The ensemble 

method is applied to the problem of predicting the RUL of filters used to clean the sea water entering the 

condenser of the boiling water reactor (BWR) in a Swedish nuclear power plant. The results by the ensemble 

method are shown to be more satisfactory than that provided by the individual GPR and SBR approaches 

from the point of view of the representation of the uncertainty in the RUL prediction. 

 

Keywords: Prognostics, uncertainty representation, belief function theory, Gaussian process regression, 

filter clogging 

 

1 Introduction 

For industry, unforeseen equipment failures are extremely costly in terms of repair costs and lost revenues. 

To anticipate failures, predictive maintenance approaches are being developed, based on the assessment of 

the actual equipment degradation condition and on the prediction of its evolution for setting the optimal time 

for maintenance [22, 23, 44, 48, 49]. The underlying concept is that of failure prognostics, i.e., predicting the 

Remaining Useful Life (RUL) of the equipment, defined as the amount of time it will continue to perform its 

function according to the design specifications. 
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In this work we tackle the problem of predicting the RUL of filters placed upstream the condenser of the 

boiling water reactor (BWR) of a Swedish nuclear power plant. The filters main function is to clean the sea 

water entering the secondary side of the cooling system. During operations, particles, seaweed, and mussels 

from the cooling water can cumulate in the filter medium, causing a clogging process. Thus, to assure correct 

and efficient operations, which require stopping these wastes before entering the condenser, prompt and 

effective cleaning of the filter is desirable. In this respect, predictive maintenance can allow to increase the 

component reliability, keeping maintenance costs reasonably low. 

We consider a case in which few sequences of observations taken during the clogging process experienced 

by filters of the same plant in the past are available (training trajectories). Each observation contains the 

values of three parameters (pressure drop, flow across the filter and sea water temperature), which provide 

indirect indications about the degradation (clogging) state of the filters. Since the clogging process under 

investigation is affected by large uncertainties, mainly due to the variable conditions of the sea water, the 

challenge is to associate a confidence interval to the RUL prediction. This uncertainty assessment, which 

describes the expected mismatch between the real and predicted equipment failure times, can be used by the 

maintenance planner to confidently plan maintenance actions, according to the desired risk tolerance [3,19, 

36,38,39]. Thus, a proper characterization and representation of the uncertainties affecting the RUL 

prediction is of paramount importance in prognostics. 

Given the unavailability of an explicit model of the degradation process, we resort to data-driven methods for 

RUL predictions. Among data-driven methods one can distinguish between (i) degradation-based 

approaches, modeling the future equipment degradation evolution and (ii) direct RUL prediction approaches, 

directly predicting the RUL [45].  

Degradation-based approaches (i) are based on statistical models that learn the equipment degradation 

evolution from time series of the observed degradation states [16, 44, 47]; the predicted degradation state is, 

then, compared with failure criteria, such as the value of degradation beyond which the equipment fails 

performing its function (failure threshold). Examples of modeling techniques used in degradation-based 

approaches are Auto-Regressive models [10, 16], multivariate adaptive regression splines [18], Artificial 

Neural Networks [23, 24], Relevance Vector Machines [26] and Gaussian Processes [4,31].  

Direct RUL predictions approaches (ii), instead, typically resort to artificial intelligence techniques that 

directly map the relation between the observable parameters and the equipment RUL, without the need of 

predicting the equipment degradation state evolution and fixing a failure threshold [27,34,50]. Examples of 

techniques used in direct RUL prediction approaches are the Bayesian approach [25] and similarity measures 

[3, 50]. 

Degradation–based prognostics provides more informative and transparent outcomes than direct RUL 

prediction prognostics, since it supplies a prediction not only of the current equipment RUL, but also of the 

entire degradation trajectory that the equipment will follow. This can be very useful, since it allows checking 

the prediction consistency considering expert intuition or information on-line acquired during the equipment 

degradation. However, degradation-based prognostics, differently from direct RUL prediction prognostics, 

requires identifying a degradation indicator and fixing a failure threshold, which could not be easy in practice 

and may introduce further uncertainty and sources of errors. 
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Since in practice, it is often hard to choose between degradation-based and direct RUL prediction 

prognostics, in this work we consider the possibility of aggregating the predictions of a degradation-based 

and a direct RUL prediction method. This choice is also motivated from the observation that the aggregation 

of the outcomes of multiple models built using different pieces of information and different modeling 

approaches has been proven to make the prediction more accurate and robust [29]. 

In this context, the main contribution of the present work is to propose a technique for aggregating the 

outcomes provided by different prognostic approaches taking into account the prediction uncertainty. 

With respect to the degradation-based approaches (type (i)), we have adopted Gaussian Process Regression 

(GPR) [4, 31] to fit the degradation probability distribution function (pdf) to the degradation trajectories of 

training. The uncertainty in the future evolution of the degradation states is explicitly modeled by GPR and 

the predictions about the future degradation state distribution is provided in the form of a Gaussian pdf [4, 

24]. Finally, by comparing the predicted distribution of the future degradation states with a failure threshold, 

we estimate the probability distribution of the equipment RUL and the desired prediction intervals. The 

choice of GPR is motivated by the fact that other regression methods such as ANNs, which in recent research 

works have been shown to provide accurate predictions of the degradation state [43,15], typically do not 

provide an explicit and direct quantification of the uncertainty of the predicted degradation states, as do 

methods like Relevance Vector Machine (RVM) [40] or Gaussian Process Regression (GPR) [20, 31]. Since 

the RVM method is actually a special case of a Gaussian Process (GP) [31], GPR has been used in this work.  

With respect to the direct RUL prediction approaches (type (ii)), we have adopted an approach based on the 

combined use of Similarity-Based Regression (SBR) [50] and Belief Function Theory (BFT) (also called 

Dempster-Shafer or evidence theory [14, 35]). Similarity-based regression methods are able to provide 

reliable RUL predictions even in a case, such as the one here addressed, in which very few training 

degradation trajectories are available [3]. Notice that other direct RUL prediction approaches, such as the 

Bayesian approach proposed in [25], typically require the availability of a larger number of training 

trajectories in order to provide reliable RUL predictions. Our estimate of the prediction uncertainty is, then, 

based on the use of Belief Function Theory (BFT). This choice is motivated by the large amount of 

uncertainty to which the model predictions are expected to be subject, given the randomness of the 

degradation process and the large imprecision of the employed empirical models trained using only the few 

available degradation trajectories. Indeed, according to the considerations in [5, 17, 41], it has been argued 

that the representation of the RUL uncertainty using probability distributions could be critical and 

uncertainty representation is best accounted for by Belief Function Theory. The result of the application of 

the method is a Basic Belief Assignment (BBA) that quantifies one’s belief about the value of the test 

trajectory RUL, given the evidence provided by the reference trajectories. The identification of prediction 

intervals relies on the definition of the total belief assigned by the predicted BBA to an interval, which is 

interpreted as a lower bound for the probability that the test equipment RUL belongs to such interval.With 

respect to the aggregation of the predictions of the two approaches, the problem is complicated by the 

necessity of taking into account the prediction uncertainty representations provided by the two methods. 

Thus, techniques for the aggregation of point predictions, ranging from statistical methods, such as the mean 

and the median [7,30], to weighed average based on global or local performance measures of the individual 

models [1, 11], are not considered in this work since they do not take into account uncertainty. Similarly, 
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techniques for the combination of individual probability distributions into a single aggregated probability 

distribution [12] cannot be used given that the two prognostic approaches provide different representations of 

the RUL uncertainty, i.e. the GPR method provides the RUL pdf, whereas the SBR provides the RUL BPA. 

A possibility to aggregate these two different uncertainty representations could be to transform the BPA into 

a probability distribution by applying a proper transformation technique such as the pignistic transformation 

proposed by Smeth [37]. Since a probability distribution is much more informative than a BBA, a limitation 

of this approach is that it would inject information that is actually not present available into the uncertainty 

representation. Thus, in order to perform the aggregation, we resort to the extension of the BFT to the 

continuous real axis   [35], which allows transforming the belief functions into belief densities. Then, using 

the least commitment principle, the RUL pdf predicted by the GPR method is transformed into a belief 

density function and, finally, the Dempster’s rule of combination is applied to aggregate the BBAs provided 

by the similarity-based approach and the GPR method [2, 32, 46]. 

The remaining part of the paper is organized as follows: in Section 2, we briefly state the prognostic problem 

of interest; Section 3 describes the method for performing RUL predictions based on GPR; in Section 4, the 

methodology for providing prediction intervals for the RUL value based on the SBR method in the 

framework of BFT is described; in Section 5 a BFT-based technique for aggregating the outcomes of the 

GPR and SBR approaches is proposed; Section 6 presents the results of the numerical application of these 

methods to the prediction of the RUL for clogging filters; finally, in Section 7 we state our conclusions and 

suggest some potential future works. 

 

2 Problem statement 

We assume that a set of trajectories containing measurements collected during the process of degradation of 

R pieces of equipment similar to the one of interest (test equipment) is available for training. Each training 

trajectory r=1:R is made of a sequence 
r

nr:1
z  of observations )](),...,(),...,([ 1

r

j

r

P

r

j

r

p

r

j

rr

j zzz z  representing 

the evolution of P relevant parameters pz  measured at time instants 
r

j , j=1:nr during the degradation 

evolution of the r-th equipment, up to the last measurement time 
r

nr  before its failure occurring at time r
F . 

It is also assumed that from the values of the parameters in the observation 
r

jz  we can derive an indication 
r

jz ,  about the degradation state r
j  of the r-th equipment at time 

r

j . An equipment is assumed to fail when 

its indication of degradation exceeds the maximum acceptable degradation state 
th , called failure threshold. 

A sequence of observations 
test

J:1z  from 
test

1  to the present time 
test

J , and consequently a sequence of 

degradation indications, 
test

Jz :1,  derived from the observations 
test

J:1z , are available also for the test equipment. 

The goal of the prognostics model is to predict the RUL of the test equipment at the present time
 J . Due to 

the variability of several factors influencing the degradation process such as the microstructural and 

manufacturing equipment characteristics and the loading and external conditions, the degradation evolution 

is typically represented by a stochastic process [24]. As a consequence, the degradation state of the 

equipment at any time   and its RUL at the present time 
test

J  are random variables    and 
test

JRUL . 

Then, prognostics must provide not only a prediction Jlur ˆ  of the expected value of the variable 
test

JRUL  but 

also a measure of its uncertainty [9]. In this work, we represent the uncertainty on the RUL prediction in the 
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form of a left bounded prediction interval ),[)( inf  JrulPI   containing the true value of the test 

equipment RUL, hereafter referred to as true
Jrul , , with probability at least equal to  . The left bound 

of the RUL,  inf

jrul , can be used by the maintenance planner to decide the time at which the next 

maintenance intervention should be performed, ensuring that the maximum acceptable probability of failure 

is not exceeded. 

3 Degradation-based prognostics: Gaussian Process Regression  

Within a degradation-based prognostic approach, we aim to model the evolution of the equipment 

degradation as a stochastic process based on the available observations 
r

nrz
:1,

 of the degradation evolution of 

similar pieces of equipment. The obtained distribution of the future degradation states is then compared with 

the failure threshold 
th , whose value is assumed to be known, to predict the distribution of the equipment 

RUL. 

GPR is a powerful and flexible approach for performing probabilistic inference over functions [31] and can 

be effectively used for modeling degradation as a stochastic process [4]. To do that, it is necessary to assume 

that the distribution of the degradation states is Gaussian with different mean )(  and variance )(2    at 

each time instant  ; then, the GPR method is used to evaluate the conditional probability density function 

(pdf) )|( /)(


 zτ
test

τ testp D  of the future degradation states )( test , 
test

J

test    of the test trajectory, given 

the observation dataset 


zτ /
D  containing the dataset });{( :1;:1,/ Rrnj

r
j

r
j

train
zτ rz  D  drawn from the training 

trajectories and the dataset });{( :1,/ Jj
test

j
test
j

test
zτ

z  D  drawn from the test trajectory. For mapping the 

function )(  given the input  , GPR defines the prior in the form of a distribution over functions specified 

by a Gaussian Process (GP) [20, 31]. A GP is a collection of random variables any finite number of which 

has a joint Gaussian distribution. A real GP )(  is completely specified by its mean function )(m  and 

covariance function )',( k : 

 

 
))]'()'())(()([()',(

)]([)(

}),();(GP{~)(















mmEk

Em

Km ττττ

 
(1)

 

 

where τ  represents a vector of input values and ),( ττK  indicates the co-variance matrix containing the 

values of )',( k  evaluated for all possible pairs of inputs in τ . 

This prior is taken to represent our prior beliefs over the kind of functions we expect to observe. Typically 

the prior mean and co-variance functions depend from some free parameters usually called hyper-

parameters. Although the choice of the covariance function must be specified by the user, various methods 

have been proposed for determining the corresponding hyper-parameters from training data [31]. Here, the 

hyper-parameters are optimized by maximizing the marginal likelihood of the dataset set 
train

zτ /D  drawn from 

the training trajectories using the conjugate gradient method.  

Given the prior information about the GP, the set of hyper-parameters and the observation dataset 
zτ /

D , the 

posterior distribution is derived by imposing a restriction on the prior distribution to contain only those 

true
Jrul
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functions that agree with the observed data [31]. In other words, we condition the output in correspondence 

of the test input vector test  to the available observations 
zτ /

D  drawn from the same GP, and thus we have:  

 

 

}
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;
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)(

)(









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
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











testtesttraintest

testtraintraintrain
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train

test

train

KK

KK

m

m





 τ

τττττ

 (2) 

 

where 
train
τ  is the vector of all the inputs in 

zτ /
D .. 

The posterior distribution of the output )|( /
 zτ

test D  in correspondence of the input 
test  is Gaussian with 

mean )( test  and variance )(2 test   which can be derived from eq. (2) [31]: 

 

 ))(),((~)|( 2
/

testtest
z

test N   
  D  (3) 

 

where  

 
),()],()[,(),()(

))(()],()[,()()(

12

1

testtraintraintraintraintesttesttesttest

traintraintraintraintesttraintesttest

KKKk

mKKm





ττττ

τzτττ
















 (4) 

 

where 
train

z  is the vector of all the outputs in 
zτ /

D . 

Since the data 
zτ /

D , which are used for conditioning the prior GP, are originated from both the training and 

test equipments, the GPR can learn the structure underlying the degradation processes and the specific 

variation around this structure that specifically characterizes the test trajectory. This result is obtained by 

using a covariance function of the following form [4, 21]: 

 

 
)',()',()',(),(),(),( 2'

2
'

1
'

''' jjrrrrkkk z
rrrrrr
jjjjjj  

 (5) 

 

where 
2

z  is the variance of the white Gaussian noise affecting the observations 
r

jz ,  and the reference index 

assigned to the test trajectory is 1 Rr . The first term of the kernel corresponds to the covariance 

associated with the common structure underlying all degradation trajectories; the second represents the 

covariance owing to the variation of each trajectory around the common structure of all degradation 

trajectories. This term assumes a finite value only when r
j  and '

'
r
j  are taken from the same trajectory, since 

we assume the variation specific to each trajectory to be uncorrelated across trajectories. Finally, the third 

term accounts for the observation noise associated with the observation 
r

jz ,  of the degradation state r
j .  

Given the known value of the failure threshold and the conditional distribution of the degradation state

)|( /)(


 zττ testp D , the RUL cumulative distribution function (cdf) )( /


zτJRUL rulP test
J

D is computed as the 

probability that the degradation )( test  at the future time J
test
J

test rul  will exceed the failure 

threshold thd  [3]: 
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where   is the standard normal cdf.  

From the RUL cdf one can derive the prediction GPR
Jlur ˆ  of the equipment RUL as the expected value of the 

RUL distribution and the left bounded prediction interval ]),([)( inf,   GPR
J

GPR
J rulCI  as the interval 

containing with probability   the true value of the test equipment RUL, hereafter referred to as true
Jrul . 

4 Direct RUL prediction: Similarity-based RUL prediction 

Within a direct RUL prediction prognostic approach, the mapping between observations 
r

jz  (or sequences of 

observations) and the corresponding RUL value is derived directly from the training trajectories without 

modeling the degradation process. In this work, this is done by using the similarity-based regression model 

presented in [3]. The idea underpinning this approach is to evaluate the similarity between the test trajectory 

and R available reference trajectories, and to use the RULs of these latter to estimate the RUL of the former, 

considering how similar they are [28, 45, 50]. 

The approach requires to define a measure of similarity between trajectories. This is done considering the 

pointwise difference between n-long sequences of observations. At the present time, J , the distance 
r

jd  

between the sequence of the n latest observations test
JnJ :1z  of the test trajectory, and all n-long segment 

r
jnj :1z , j=1:nr of all reference trajectories r=1:R is computed as: 

 

 




 
n

i

r
inj

test
inJ

r
jd

1

2
zz

 (7) 

 

where 
2

yx   is the square Euclidean distance between vectors x  and y . 

The similarity r
js  of the training trajectory segment r

jnj :1z  to the test trajectory is defined as a function of 

the distance measure r
jd . In [50], the following bell-shaped function has turned out to give robust results in 

similarity-based regression due to its gradual smoothness: 
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


2

exp

r
jr

j

d
s  (8) 
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The arbitrary parameter   can be set by the analyst to shape the desired interpretation of similarity: the 

smaller is the value of  , the stronger the definition of similarity. A strong definition of similarity implies 

that the two segments under comparison have to be very close in order to receive a similarity value r
js  

significantly larger than zero. 

For the prediction of the test equipment RUL, a RUL value r
jlur *

ˆ  is assigned to each training trajectory 

r=1:R by considering the difference between the trajectory failure time r
F  and the last time instant r

j*  of 

the trajectory segment r
jnj *:1* z  which has the maximum similarity r

js *
 with the test trajectory:  

 

 r
j

r
F

r
j

lur
**

ˆ    (9) 

 

Then, the prediction SB
Jlur ˆ  of the test equipment RUL at time test

J  is given by the similarity-weighed sum 

of the values r
jlur *

ˆ :  

 

 








R

r

r
j

R

r

r
j

r
j

SB
J

s

lurs

lur

1
*

1
**

ˆ

ˆ   (10) 

Given the intrinsic randomness of the degradation process and the prediction errors performed by the 

empirical model, it is important to associate the point predictions provided by eq. (10) with a quantification 

of its  uncertainty. In particular, since in this work we consider situations characterized by degradation 

processes affected by large uncertainties and we use empirical models developed using few degradation 

trajectories, we expect RUL predictions characterized by very large uncertainty. In this context, a non-

probabilistic uncertainty representation method, the Belief Function Theory (BFT) [14,35], has been adopted 

for uncertainty representation given its capability of representing very limited knowledge [5,17,41]. If we 

consider, for example, an extreme case, in which the only information available on the equipment RUL is 

that it will fail in the time interval ],0[ max
F , the classical probabilistic representation of the uncertainty is 

provided by a uniform distribution with range ],0[ max

F , according to the principle of indifference. However, 

as it has been shown in [46], this assignment causes the paradox that it assigns a precise probability value to 

an event such as “RUL in the interval ]2/,0[ max

F ”, whereas, according to the available knowledge, the 

probability of this event can have any value between 0 and 1. For these reasons, in cases characterized by the 

large uncertainty, we prefer the use of an approach based on the Belief Function (or Dempster-Shafer) theory 

(BFT). Few notions of BFT will be recalled in the paper, when necessary for the comprehension of the 

method. For a general introduction to the BFT and for further details about the mathematical developments 

and interpretations of the theory, the interested reader is referred to [14, 35, 36]. 

The belief about the value of an uncertain variable X   is represented by a basic belief assignment (BBA), 

which assigns to subsets, iY , of the domain of X  (called frame of discernment, X , in the BFT 

terminology) a mass )( i
X Ym  based on the available information. All the subsets iY  of X  with associated 

a mass 0)( i
X Ym  are referred to as focal sets. The BBA should verify the condition that the sum of the 

masses of all its focal elements is 1. In our prognostic problem, the uncertain variable is the equipment RUL 
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at the present time, test

JRUL , whose frame of discernment test
JRUL  is defined as the interval  

],0[ max test
JF   , where max

F  is the maximum possible life duration of the equipment. 

We assume that each reference trajectory, r
nr:1

z , Rr ,...,1 , corresponds to a different “expert” (“agent”, 

BTF terminology) and that each expert provides a BBA assignment defined by only one focal set }ˆ{ *
r
j

lur  

with associated mass 1})ˆ({ * r

j

r

RUL
lurm test

J

, r=1:R. 

Following the approach used in [28], the similarity measure r
js  defined in eq. (8) is interpreted as a measure 

of the relevance of the source of information inducing the BBA 1})ˆ({ * r
j

r
RUL

lurm test
J

 and the discounting 

operation is used to reduce the belief assigned to the r-th expert r
RULtest

J

m to }ˆ{ *
r
j

lur  by a factor )1(
*

r
j

s  , 

with ]1,0[ , representing the dissimilarity between the test and the r-th training trajectory. The discounted 

BBAs })ˆ({~
*

r
j

r
RUL

lurm test
J

, r=1:R, are thus obtained [28]: 

 

 
r
jRUL

r
RUL

r
j

r
j

r
RUL

sm

slurm

test
Jtest

J

test
J

*

**

1)(~

})ˆ({~








 (11) 

 

The arbitrary parameter ]1,0[  defines the degree of trust given to the reference trajectories. The mass 

assigned to the frame of discernment test
JRUL  represents the ignorance about the value of 

test

JRUL , because 

it indicates the absence of evidence that the value of test
JRUL  belongs to any subset of test

JRUL . It is 

important to notice that 1  implies that a part of belief is assigned to the ignorance represented by RUL , 

even in the unrealistic case of a reference trajectory exactly identical to the test one. For a detailed discussion 

about the choice of the values of the parameters   and  , the interested reader is referred to [3]. 
 

The information provided by each trajectory, modeled by the BBA in eq. (11), needs to be aggregated to 

provide the RUL prediction. The pioneering approach to the aggregation of multiple pieces of evidence was 

suggested by Dempster [14] and has become the standard way of combining multiple BBAs. In the 

following, we first describe the Dempter’s rule of combination for the case of two belief structures. 

According to this rule, two distinct sources of information inducing two BBAs, e.g., 
1~

test
JRUL

m  and 
2~

test
JRUL

m , 

with corresponding focal elements 1

1

j
Y  and 2

2

j
Y , can be combined to obtain the aggregated BBA 

21
test
JRUL

m  

with focal sets jY  given by all non-empty intersections of pairs of focal elements 1

1
j

Y  and 2

2
j

Y . Each focal 

set jY  receives a mass of belief equal to [28]: 

 

 


 
jjj

test
J

test
J

test
J

YYY

j

RUL

j

RUL

j

RUL
YmYm

K
Ym

2
2

1
1

21 )(~)(~1
)( 2

2

1

121  (12) 

 

where K  is a normalization factor introduced to ensure that, while restricting the focal elements of 

)(21 j

RUL
Ym test

J


 to be non-empty sets, we still obtain that the sum of the masses equals one. Notice that the mass 

that would be assigned to the empty set by applying eq. (12) without the normalization term K represents the 

conflicting information. The choice of removing this mass and re-normalizing the resulting BBA has raised 

some concern and criticism. This has inspired alternative methods of normalization; see, for example, 

Yamada [42] for a comprehensive discussion of these issues. The necessary exploration of alternative 
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approaches for handling the belief associated to the conflicting information in the aggregation of multiple 

BBAs is left to future work.  

In the case of multiple belief structures, i

RULtest
J

m~  for i = 1,…,R, each one having focal set j
iY , the Dempter’s 

rule of combination can be easily extended. In particular, each focal set Y  of the aggregated BBA test
JRULm  is 

obtained as the non-null intersection of one focal set ij
iY  from each of the contributing BBAs, and its 

associated mass of belief is 

 )(~1
)(

1

i
test
J

test
J

j
i

R

i

i

RUL

j
RUL Ym

K
Ym 



 . (13) 

Then, by applying eq. (13) to the R discounted BBAs 
r

RULtest
J

m~  in eq. (11), one obtains the aggregated BBA 

[28] which has as focal sets the degenerate intervals }ˆ{
*

r
j

lur  and the frame of discernment test
JRUL . The 

focal sets }ˆ{
*

r
j

lur , Rr :1 , are obtained as the intersection of the focal set }ˆ{
*

r
j

lur  for the BBA 

corresponding to the r-th trajectory and the focal sets represented by the frame of discernment test
JRUL  for 

the other trajectories. Thus, the mass assigned to the focal set }ˆ{
*

r
j

lur  of the aggregation structure is: 

 

 






rr

r
j

r
jr

jRUL s
K

s
lurm test

J
'

'
*

*
)1(})ˆ({ * 


 (14) 

 

The focal set test
JRUL  is obtained as the intersection for all the trajectories of the frame of discernment 

test
JRUL  and, thus, its mass is: 

 



R

r

r
jRULRUL s

K
m test

J
test
J

1'

'
* )1(

1
)(  . (15) 

The normalization constant K is obtained from the condition:  

 

 1)1()1(
1

1 '

'
*

*

1'

'
*




  
 

R

r rr

r
j

r
j

R

r

r
j

s
K

s
s

K



 . (16) 

 

The information conveyed by a BBA can be represented by a belief )(Bel i
f Y  or by a plausibility function 

)(Pl i
f Y  defined, respectively, as [41] 

 

 



ii

J

YY

i

RUL

i

f YmY
'

)()(Bel '
 (17) 

 

and 

 

 



ii

J

YY

i
RUL

i
f YmY

'

)()(Pl '  (18) 
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The belief associated to an interval ],[
supinf
JJ RULRUL  represents the amount of belief that directly supports 

the hypothesis ],[
supinf
JJ

test
J rulrulRUL  , whereas the plausibility represents the maximum belief that could 

be committed to this hypothesis if further information became available [6, 35, 34]. Then, belief and 

plausibility can be seen as lower and upper bounds of the probability that the hypothesis 

],[
supinf
JJ

test
J rulrulRUL   is true. Let us consider a left bounded interval ],[ inf Jrul : the belief assigned to 

such interval is the lower bound of the probability that the RUL of the test equipment is larger than the left 

bound . Thus, if the maintenance planner defines the maximum acceptable failure probability,  , the 

method can provide a value )(inf jrul  which guarantees that the test equipment will fail after )(inf jrul  

with a probability of, at least  . The interval ]),([)( inf,   SB
J

SB
J rulCI  will be referred to as left 

bounded prediction interval with belief . 

5 RUL uncertainty aggregation 

In order to properly aggregate the prediction of the approaches described in Sections 3 and 4, two issues have 

to be addressed: the aggregation of i) the point predictions and ii) the corresponding uncertainty 

representations. 

With respect to i), we consider the average of the point predictors GPR
Jlur ˆ  and SB

Jlur ˆ : 

 

 
2

ˆˆ
ˆ

SB

J

GPR

JComb

J

lurlur
lur


  (19) 

Other, more advanced techniques for ensemble aggregation of point predictions have been proposed in the 

literature, ranging from statistics methods like the mean and the median [7, 30], to weighed averages of the 

model outcomes based on the global or local performances of the individual models [1, 11]). Since our main 

objective in this work is the estimation of the prediction uncertainty, these techniques will be object of future 

research work. 

With respect to ii), the most popular solutions for the combination of probability distributions are based on 

weighted averages (the interested reader is referred to [12] for an extensive review of aggregation strategies). 

However, these techniques aggregate model predictions that are all in the form of probability distributions, 

whereas, in our case, the similarity-based prognostic approach provides a prediction in the form of a BBA. 

Thus, the main difficulty faced in the aggregation of the RUL predictions provided by the similarity-based 

and the GPR approaches concerns the combination of two different representations of the prediction 

uncertainty. A possibility to aggregate these two different uncertainty representations is to transform the 

BBA into a probability distribution by applying a proper transformation technique such as the pignistic 

transformation proposed by Smeth [37]. Since a probability distribution is much more informative than a 

BBA, a limitation of this approach is that it injects arbitrary information into the uncertainty representation. 

On the other side, the application of the GPR model is based on the assumption that the degradation state has 

a Gaussian distribution which is not completely justified by our prior knowledge. Furthermore, the 

application of a GPR model requires setting the prior mean and covariance functions without precise 

information on them. Therefore, the pdf predicted by the GPR cannot be considered as an exact 

inf
Jrul


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representation of the equipment RUL distribution, but it should be considered affected by errors and 

approximations. Thus, instead of transforming the BBA predicted by the similarity-based approach into a 

pdf, we choose to represent the GPR prediction in the BFT framework and use the conjunctive rule for the 

combination of multiple BBAs.  

To represent a pdf, which is defined on a continuous space, in the BFT framework we resort to the 

generalization of the BFT on the continuous real axis   proposed by [37] which allows transforming belief 

masses into densities. This theory assumes that masses are only allocated to closed intervals ],[ xx , which 

can be represented by points in the half-plane xxxx  :),( 2  (Figure 1). A belief density function (BDF) 

),( xxf  is defined on this half-plane, which assigns to each point ),( xx  the mass ]),([ xxmx  representing 

the evidence that the uncertain quantity ],[ xxx . 

 

 

Figure 1: graphical representation of intervals ],[ xx , modified from [37]. 

By extending eqs. (17) and (18) to a continuous domain, one can compute the belief and plausibility 

functions of any interval ],[ 11 xx . In particular, the total belief ]),([ 11 xxBel f  assigned by the BDF ),( xxf  

to an interval, e.g., ],[ 11 xx  represented by a point in Figure 1, is the integral of f  over the triangle 

11
2 ,:),( xxxxxx   highlighted in grey in Figure 2 (left), whereas its plausibility ]),([Pl 11 xxf  is the 

integral of f  over the half-plane 11
2 ,:),( xxxxxx   highlighted in grey in Figure 2 (right). The 

interested reader may refer to [32, 37] for more details on the extension of the BFT to the continuous axis. 

 

x  1x  

]),([),( 1111 xxmxxf   

1x  

x  
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Figure 2: graphical representation of the belief (left) and plausibility (right) associated to the interval ],[ 11
xx , modified from [37]. 

The BBA generated by the similarity-based approach is characterized by the presence of a number R of focal 

sets formed by a single point }ˆ{ *
r
j

lur  and by some mass assigned to the entire frame of discernment test
JRUL  

(eqs. (14) and (15)). Within the framework of continuous BFT, this BBA is transformed into a BDF by 

assigning finite masses only to the degenerated intervals of null dimension ]ˆ,ˆ[
**

r
j

r
j

lurlur , j=1:R, lying on the 

boundary RULRUL   of the half-plane of all possible RUL intervals, and to the RUL domain test
JRUL , 

i.e., the interval ],0[ max
JRUL , with JFJRUL   maxmax  (Figure 3). This BDF, indicated by SB

RUL j
f , can be 

represented by: 

 

 

),()(

),(})ˆ({),(

),0(

)ˆ,ˆ(
1

max

**
*

RULRULm

RULRULlurmRULRULf

J
test
J

test
J

r
j

r
j

test
Jj

RULRULRUL

lurlur

R

r

r

jRUL
SB

RUL








  (20) 

 

where ),( ba  is a Dirac delta functions which is always zero except when, respectively, the conditions 

RULa   and RULb   are verified. Notice that, since the equipment RUL assumes only positive values, the 

half-plane of interest for the RUL prediction (highlighted in grey in Figure 3) is defined by the two 

constraints RULRUL0 . 

 

x  x  1x  1x  

1x  

x  

1x  

x  
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Figure 3: graphical representation of ),( RULRULfSB . 

To represent the pdf predicted by the GPR in the BFT framework, we consider it as a representation of some 

potential betting behaviors, that is, a pignistic pdf Betf  induced on   by an underlying BDF f , whose 

value is unknown. Given as focal elements a finite number of intervals, ],[ jj
j xxY  , the pignistic 

transformation induced by a BBA )( j
X Ym  is: 

 

 
 


jj YxY Xjj

j
X

mxx

Ym
xBetf

: ))(1)((

)(
)( . (21) 

 

If we relax the assumption that the number of focal elements is finite, the pignistic probability induced by the 

BDF ),( xxf  becomes:  

 

 xdxd
xx

xxf
xBetf

t RUL

t

J

  
 


0

0

max ),(
)( lim 



. (22) 

 

As shown in [37], many BDFs ),( xxf  can induce the same pignistic probability )(xBetf  according to the 

transformation in eq. (22). The set of BDFs whose related pignistic pdfs equal Betf  is called the set of 

isopignistic BDFs induced by Betf . Given two BDFs 1f  and 2f , we say that 1f  is more committed than 

2f  if for all sets jY  it holds that )()(
21

j
f

j
f YBelYBel  . In this work, we evoke the least commitment 

principle (never give more belief than needed to a subset of test
JRUL ) to select the least committed (LC) 

isopignistic BDF ),( RULRULf GPR
RULJ

 induced by the pignistic pdf )|()(
/


zJRULJGPR rulprulBetf test

J D .  

In Theorem 7.7 of [37] it is proven that the LC BDF ),( RULRULf GPR
RULJ

 of a unimodal pignistic pdf has 

focal sets which satisfy: 

 

 )()( RULBetfRULBetf GPRGPR   (23) 

 

r

jRUL *
 

r

jRUL *
 

max
JRUL  

})({ *

r

jRUL RULm  

)( RULRULm   

RUL  

RUL  

max
JRUL  
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and has a belief density: 

 

 )](,[
d

)(d
][),( RULRUL

GPRGPR
RUL RUL

RULBetf
RULRULRULRULf

J
 . (24) 

 

where )(RUL  is a function of RUL  that uniquely defines (since )(RULBetf  is a bell-shaped density) the 

value of RUL  verifying the condition in eq. (23). Let )](max[arg JGPR rulBetf  be the mode of the 

unimodal pignistic pdf GPRBetf , then, the focal intervals )](,[ RULRUL   of the LC BDF GPR
RULJ

f  form a line 

in the half plane of all possible intervals which starts from point ),(   (see Figure 4, right). 

 

 

Figure 4: Graphical representation of the two possible transformations ),(1 RULRULfGPR  and ),(2 RULRULfGPR  of 

the RUL probability density function supplied by the GPR into a belief density function. 

Once the RUL pdf predicted by the GPR approach is expressed in the form of the BDF function,

),( RULRULf GPRRULJ
, it can be combined with the similarity-based prediction expressed by the BDF 

),( RULRULf SBRULJ . To this aim, we have used a generalization of the Dempster’s rule in the continuous 

frame of the real axis  , i.e., the conjunctive combination rule proposed by Smets in [37]. According to this 

rule, considering two BDFs, 1f  and 2f , a BDF ]),([]),([ 222111 xxfxxf  is assigned to the interval 

],[],[],[ 2211 xxxxxx   (which may also be empty). In our case, the aggregation of ),( RULRULf GPRRULJ
 and 

),( RULRULf SBRULJ  provides non-empty intervals in the following three cases: 

1. intersection of the focal elements ],[ **
r
j

r
j RULRUL  of SB

RULJ
f  with the focal elements of GPR

RULJ
f  

only in the cases in which r
j

RULRUL
*

  and r
jRULRUL * ; 

2. intersection of the focal element test
JRUL  of SB

RULJ
f  with all the focal elements of GPR

RULJ
f  only in 

the cases in which max
JRULRUL ;  

3. intersection of the focal element test
JRUL  of SB

RULJ
f  with all the focal elements of GPR

RULJ
f  only in 

the cases in which max
JRULRUL  and max

JRULRUL . 

Jrul  

Jrul  

)(
/)(


zJτRUL rulP

J D  

)( /)(



zJRUL rulP
J  D  JRUL  

RUL  

RUL  RUL  

RUL  

JRUL  

  

  



16 

 

 

In case 1., we obtain as focal elements of the aggregated BDF the degenerate intervals ],[ **
r
j

r
j RULRUL , 

Rr ,....,1 . The mass of belief assigned to these focal elements is obtained by integrating the product 

),(),( ** RULRULfRULRULf GPR
RUL

r
j

r
j

SB
RUL JJ

 over all possible values r
j

RULRUL
*

  and r
jRULRUL * : 
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**
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*
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j

r
j
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RUL

r

jRUL

RUL RUL

RUL

GPR
RUL

r
j

r
j
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RUL

RULRULlurm

RULRULRULRULfRULRULf

J
test
J

r
j J

r
j

JJ
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 (25) 

 

In case 2., we obtain as focal elements of the aggregated BDF the intervals ],[ RULRUL  with  

)(RULRUL  . The mass of belief assigned to these focal elements is proportional to: 

 

 ))(,()())(,(),0( max RULRULfmRULRULfRULf GPR
RULRULRUL

GPR
RULJ

SB
RUL J

test
J

test
JJJ

  . (26) 

 

In case 3., we obtain as focal elements of the aggregated BDF the intervals ],[ RULRUL  with 

max
JRULRUL  and the mass of belief assigned to these focal elements is the same of that assigned in case 2.  

Thus, the combined BDFs ),( RULRULf Comb
RULJ

 is  

 

 ),())(,()(

),(]),Pl([})ˆ({
1

),(

*),(

)ˆ,ˆ(
1

**
*

RULRULRULRULfm

RULRULRULRULlurm
K

RULRULf

RULRULRUL

lurlur

R

r

r

j

Comb
RUL

test
J

r
j

r
jJ











 



 (27) 

 

where K  is a normalization constant that ensures that ),( RULRULf Comb
RULJ

 integrates to 1 and where, for ease 

of notation, we have used test
JRULmm  , GPR

RULJ
ff  , GPR

RULJ
PlPl   and )),(min(* max

JRULRULRUL  . 

Analogously to what done in Section 4 for the similarity-based approach, given the combined BDF 

),( RULRULf Comb
RULJ

, a credible left-bounded prediction interval for the value of the RUL is estimated by 

taking the interval ]),([)( inf,   Comb
J

Comb
J rulCI  to which Comb

RULJ
f   assigns the belief  . 

6 Filter clogging prognostics – a case study 

In this Section, we consider the problem of predicting the RUL of filters used to clean the sea water entering 

the condenser of the BWR reactor of a Swedish nuclear power plant. During operations, filters undergo 

clogging and, once clogged, they can cumulate particles, seaweed, and mussels from the cooling water in the 

heat exchanger. Predictive maintenance can help achieving effective cleaning of the filters keeping 

maintenance costs reasonably low. 
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From data collected in the field, we have available Ntst=8 sequences of observations 
q

nq:1
z  , q=1: Ntst taken 

during the clogging process of Q=8 historical filters. Each observation ],,[
q
j

q
j

q
j

q
j TMP z  contains the 

measurements of the pressure drop 
q
jP , the flow across the filter 

q
jM , and the sea water temperature 

q
jT  

collected at time 
q

j  during the clogging process of the q-th filter. To apply degradation-based prognostics, it 

is necessary to derive from the observations 
q
jz  an indication of the degradation state of the filter, i.e. its 

clogging, at time j . An increasing number of articles can be found in the literature concerning the study of 

filter clogging by solid aerosols [38] and liquid aerosols [13]. These articles describe the results achieved in 

controlled environment where all degradation quantities, indicators of degradation and stressors are 

automatically measured and recorded. Although this is not the situation encountered in this industrial case 

study, it has been well established that the clogging of a filter medium leads to an increase in pressure drop 

over the filter as long as the filtration velocity, and thus the flow, is kept constant. It is also known that the 

pressure drop is proportional to the square of the filtration velocity. Given these results, we consider an 

indicator of filter q degradation at time j the ratio [26]: 

 
2

,
)(

q
j

q
jq

j
M

P
z




  (28) 

Also, due to the absence of physical knowledge about the failure threshold, this has been arbitrarily set to the 

value 175th  by looking at the available data and the corresponding values derived (eq. (28)) for the 

degradation indicator observations. Figure 5 shows the sequences of degradation observations 
q

nqz
:1,

, 

q=1:Ntst collected in the field during the clogging process of the 8 filters. It can be observed that the clogging 

process is affected by large uncertainties, which are due to the very variable conditions of the sea water; in 

this situation, the challenge is to provide sufficiently narrow confidence intervals for the value of the RUL 

predictions. 

 

Figure 5: time evolution of the degradation 
q

nq:1
z

 
in the available q=1:8 trajectories 
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The two prognostic approaches proposed in Sections 3 and 4 and the combined ensemble strategy proposed 

in Section 5 are applied for the prediction of the filter RUL at all time instants of each trajectory. In practice, 

R=7 trajectories are used to train the prognostic models and the remaining trajectory to verify its 

performance. This leave-one-out procedure [7, 29] has been repeated 8 times, using each time a different test 

trajectory. 

With respect to the GPR approach, the priors of  the mean and covariance function of the GP used to model 

the clogging process are set, according to [8], as: 
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where 3:0a , 2:1b , and 4:1c  are the hyper-parameters optimized by maximizing the marginal likelihood of the 

dataset train
zτ /

D  derived from the training trajectories. 

With respect to the similarity-based approach, we used parameters 05.0  and 95.0  according to the 

results obtained in [3]. 

Figures 6 and 7 show the RUL prediction and the left bound of the prediction interval with belief 9.0  

supplied by the GPR and the similarity-based approaches. Due to the large uncertainty of the process, the 

accuracy in the RUL prediction obtained by the two approaches is low and the confidence intervals are large. 

The GPR approach provides in general narrower prediction intervals than the similarity-based approach, 

which tends to provide a lower bound of the RUL prediction interval often equal to zero. As pointed out by 

[3], this does not mean that the evidence of very early failure is high (as demonstrated by the fact that the 

predicted RUL can be far from zero), but only that the evidence drawn from the reference trajectories is not 

sufficient to assert with the desired belief 9.0  that the RUL value is larger than 0. In other words, the 

prediction 0inf, SB
Jrul  is a statement of ignorance about the value of test

JRUL . Such large prediction 

intervals cannot be used by an operator who is asked to make a choice about the best time for undertaking a 

maintenance action. However, the large intervals predicted by the similarity-based approach can provide a 

correct indication that the information conveyed by the training trajectories is not relevant for a specific test 

trajectory, e.g., because they are too dissimilar. This can be seen, in particular, for trajectories q=4 and q=7 

where the GPR approach provides narrower prediction intervals, but such intervals do not include the true 

RUL value. Notice also that, for these two trajectories, the prediction SB
Jlur ˆ  is more accurate than GPR

Jlur ˆ
 

Figure 8 (dots) shows the RUL prediction Comb
Jlur ˆ  obtained by averaging the GPR and the similarity-based 

approaches, and the lower bounds of the prediction intervals for 9.0  obtained by the ensemble 

combination approach presented in Section 5. We notice that, since the information conveyed by the pdf 

)( /


zτJRUL
rulp test

J

D  is relaxed through the LC transformation performed in the ensemble combination, the 

resulting BDF ),( RULRULf Comb
RULJ

 is influenced by the information conveyed by both the GPR and the 
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similarity-based BBAs. This can be observed for trajectories q=4 and q=7, where ),( RULRULf Comb
RULJ

 

provides larger confidence bounds than the GPR approach, thus appearing to be more robust, since its 

prediction intervals include the true RUL values and, at the same time, are narrower than those provided by 

the similarity-based approach. 

 

Figure 6: Predictions GPR
Jlur ˆ  (asterisks) and 90% left bounded prediction interval )9.0(inf,GPR

Jrul  (dots) provided by the GPR 

approach. 

 

Figure 7: Prediction SB
Jlur ˆ  (asterisks) and 90% left bounded prediction interval )9.0(inf,SB

Jrul  (dots) provided by the similarity-

based approach. 
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Figure 8: Prediction Comb
Jlur ˆ  (asterisks) and 90% left bounded prediction interval )9.0(inf,Comb

Jrul  (dots) provided by the 

ensemble combination. 

To further evaluate the different approaches, they are applied to each trajectory q=1,…,8 in correspondence 

of the life fraction 3.01  , 6.02  , 8.03   and 95.04  , i.e., at time step 
q
F

q
J   )( , with 

q

F

indicating the failure time of filter q, and the obtained predictions 
q
Jlur )(

ˆ
  and ),ˆ[)9.0(

inf,
)()( 

q
J

q
J lurCI   

are analyzed. In particular, the following performance indicators are considered: 

 the square root of the Mean Square Error (RMSE), i.e., the average value over all the 8 clogging 

trajectories q=1:8 of the square error 2,
)()( )ˆ(

trueq
J

q
J rullur    made in predicting the true RUL of the 

test equipment. The MSE measures the accuracy of the prediction and is desired to be as small as 

possible.  

 the amplitude (MA0.9) of the interval ],ˆ[ max
)(

inf,
)(  J

q
J RULlur , where 

q

FFJRUL   maxmax

)(  indicates 

the maximum RUL of filters that have been already operating for a time span of 
q

F , averaged over 

all clogging trajectories. The value 
max

)(JRUL  has been considered instead of  , in order to allow a 

quantification of the interval. For having high precision and avoiding unnecessarily early 

maintenance interventions, we wish to have the value of MA0.9 as small as possible. 

A third indicator, the coverage Cov0.9, is evaluated over all the predictions performed at each time instant q
J  

along the clogging trajectories by considering the percentage of times the condition )9.0()(
,

)(
q
J

trueq
J CIrul    is 

verified. This indicator measures the reliability of the left bounded prediction interval (it is required to be 

larger than α=0.9). 

Figure 9 shows the value of these indicators obtained for the GPR and similarity-based approaches, and their 

ensemble combination. An horizontal (dotted) line indicates the target value 9.0  for the coverage 

(upper, left).  
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Figure 9: Comparison of the performance indicators Cov0.9 (upper, left), MA0.9 (upper, right) and RMSE (bottom, left) for the three 

approaches. The horizontal (dotted) line in the Cov0.9 graph (upper, left) indicates the target coverage value 9.0 . 

Figure 9 shows that, as expected, the error and the amplitude of the prediction interval decrease with the 

equipment life. The comparison of the average performances of the two individual approaches shows that the 

SB approach is more satisfactory since it provides more accurate predictions (lower RMSE) and can assure 

the desired coverage level. This is due to the remarkable errors made by the GPR approach in the predictions 

of trajectories 4 and 7 RULs. The drawback of the SB approach is that it is characterized by very large 

prediction intervals. The ensemble combination of the two methods, instead, allows obtaining smaller 

prediction intervals than the similarity-based approach, and, at the same time, it ensures the desired coverage 

level. Thus, if we consider the point of view of an operator who is asked to make a choice about the best time 

for undertaking a maintenance action according to a desired risk tolerance (90% confidence that the failure is 

after the maintenance intervention time), we can conclude that: 

 the 90% left bounded prediction intervals  provided by the GPR approach do not allow to meet the 

desired risk tolerance criterion; 

 the 90% left bounded prediction intervals provided by the SB approach will cause too early 

maintenance interventions; 

 the 90% left bounded prediction intervals provided by the ensemble combination should be 

preferred since they allow to meet the desired risk tolerance criterion, and, at the same time, to avoid 

the unnecessary anticipation of the maintenance intervention typical of the SB approach.  

On the other side, if we consider the RUL point estimate, we notice that the average accuracy of the 

ensemble combination is slightly less satisfactory than that of the similarity-based approach. This depends on 

the strategy used for the aggregation of GPR
Jlur ˆ  and SB

Jlur ˆ  which is based on a simple average and which 

causes very unsatisfactory predictions for trajectories 4 and 7 characterized by high errors of GPR
Jlur ˆ . In this 

respect, we conjecture that other strategies for the aggregation of GPR
Jlur ˆ  and SB

Jlur ˆ , accounting, e.g., for the 
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historical performance of the two methods, have the potential of improving the accuracy of the prediction 

Comb
Jlur ˆ . 

7 Conclusions 

In this work, we have considered the problem of predicting the RUL of degrading equipment and providing a 

measure of its uncertainty, based on sequences of observations collected during the degradation trajectories 

of a set of similar equipments which have failed in the past. Two different prognostic approaches have been 

considered: a degradation-based approach resorting to Gaussian process regression to model the evolution of 

the equipment degradation and predict the probability distribution of the equipment RUL, and a direct RUL 

prediction approach which exploits similarity-based regression and belief function theory for inferring a 

basic belief assignment for the value of the test equipment RUL. 

The application of the two methods to real data concerning the clogging of filters used in a BWR condenser 

has shown that the prediction intervals provided by the SBR approach have good coverage, but are extremely 

large, whereas those provided by the GPR are narrower but do not achieve the desired coverage. 

A third approach has, then, been proposed, which is based on the ensemble aggregation of the outcomes of 

these two complementary methods. The main difficulty in performing such aggregation has been the 

necessity of combining two different representations of uncertainty, based, respectively, on probabilistic and 

evidential reasoning. By resorting to the belief function theory on continuous variables, it has been possible 

to translate both representations of the uncertainty variable RUL within the same framework and, 

subsequently, aggregate them using Dempster’s rule. 

The aggregation of the predictions provided by the GPR and the SBR approaches represents a good 

compromise since it allows to reach the desired coverage, contrarily to the GPR predictions, keeping the 

prediction intervals narrower than those provided by the SBR approach alone. 

Notice that the aggregation method proposed in this paper with reference to the aggregation of two specific 

prognostic methods can be applied to any situation requiring the combination of multiple uncertain 

predictions represented in the different frameworks of probabilistic and evidential reasoning. 

Concerning the accuracy of the combined RUL prediction, future research should consider aggregation 

strategies other than the simple average, e.g., performance-based aggregation strategies, which, by 

accounting for the prediction error made by each approach on historical validation data, have the potential of 

improving the accuracy of the aggregated prediction. 

Furthermore, in a situation where one is very confident about the accuracy and reliability of the available 

RUL pdf, isopignistic transformations other than that based on the least commitment principle, should be 

considered, since they have the potential of reducing the amplitude of the prediction intervals. 
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