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EIGENVALUES AND SIMPLICITY OF INTERVAL EXCHANGE
TRANSFORMATIONS

SEBASTIEN FERENCZI AND LUCA Q. ZAMBONI

ABSTRACT. For a class ofl-interval exchange transformations, which we call the sytmim class,
we define a new self-dual induction process in which the sysesuccessively induced on a union of
sub-intervals. This algorithm gives rise to an underlyirapin structure which reflects the dynamical
behavior of the system, through the Rokhlin towers of thaugedi maps. We apply it to build a
wide assortment of explicit examples on four intervals hgwifferent dynamical properties: these
include the first nontrivial examples with eigenvaluesi@raél or irrational), the first ever example
of an exchange on more than three intervals satisfying Veaaimplicity (though this weakening
of the notion of minimal self-joinings was designed in 1982be satisfied by interval exchange
transformations), and an unexpected example which is nmualy ergodic, weakly mixing for one
invariant ergodic measure but has rational eigenvaluethéother invariant ergodic measure.

1. PRELIMINARIES

Interval exchange transformatiomsve been introduced by Oseledec [32], following an idea
of Arnold [1]; an exchange of intervals is defined by a probability vector dflengths and a
permutation ond letters; the unit interval is then partitioned accordinghe vector of lengths,
andT exchanges the intervals according to the permutation, sego8s 1.1 and 1.2 below for
all definitions. Katok and Stepin [24] used these transfdiona to exhibit a class of systems
with simple continuous spectrum. Then Keane [25] definedraliton called i.d.o.c. ensuring
minimality, and was the first to use the idea of induction, ehhivas later formalized by Rauzy
[34], as a generalization of the continued fraction aldont These tools formed the basis for
future studies of various ergodic and spectral properbeshfese dynamical systems. For general
properties of interval exchange transformations, theegeadn consult the courses of Viana [41]
and Yoccoz [42] [43].

In this paper we study-interval exchange transformatiof's defined by a vectofo, . . . o) Of
lengths and theymmetrigpermutationti = d+ 1 —1i, 1 < i < d; we callZ the set of( A\, ..., A\g)
in R*4 for which T, defined by the vecto(rkljhd, e Alﬁ.xd)’ satisfies the i.d.o.c. condition;
henceforth we shall consider only transformations satigfyhis condition: let/, resp. M’, M,
N, S be the subset df for which T" is uniquely ergodic, resp. topologically weakly mixingspe
weakly mixing for at least one invariant measure, resp. re@kly mixing for at least one invariant
measure, resp. simple for at least one invariant measureed gart of the history of this area is
made by the difficult results about these sets. After Keaaeguin (R4 \Z) = 0 for the Lebesgue
measuren on R? and the surprising result that (far= 4) &< (for X € {U, M', M, N, S} we
call X¢its complement ir¥) is not empty [26], he conjectured that(/¢) = 0. This conjecture
was proved by Masur [29] and Veech [39], see also Boshemii@gfor a combinatorial proof
closer to the spirit of the present paper. Then Veech [40yguchatm (M) = 0 for some
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2 S. FERENCZI AND L.Q. ZAMBONI

permutations, not including the symmetric one do« 4; it took quite a long time to have, for all
permutations outside the rotation class, firgtM’“) = 0 (Nogueira-Rudolph [30]), then at last
m(M¢) = m(N) = 0 (Avila-Forni [4]); whetherm(S¢) = 0 is still an open question asked by
Veech [38]; note that the result on weak mixing in [4] is vabioth for one invariant measure and
all invariant measures becaus€/“) = 0.

While all these extremely powerful articles establish geneesults for general interval ex-
change transformations, here we aim to provide a detailatysis of the dynamical behaviour of
specific families of interval exchanges; more preciselyweat to address problems concerning
relations between the sets defined above, nothing of whichkwawn until recently for > 3,
except obvious relations ast’ ¢ M, U NN "M =dandU NN)U UNM) =U. It was
not known whethe\/ is nonempty or even tha, which is likely to have full measure (indeed,
the whole notion of simplicity has been devised for that, ®edch’s question has been much in-
vestigated), is nonempty; we can also ask about the nonkeesgtof some intersections such as
U N M or (more difficult as these are two small s€#)1 . Another problem is to find explicit
examples (in the sense that maybe the vector of lengths @ivert, but it can be computed by an
explicit algorithm), and not only existence theorems; iery of them were known: foi = 4, ex-
plicit elements ot/¢ are given by Keane [26] while explicit elementd6tan be deduced from the
same paper, or built from substitutions, or pseudo-Anosapsnby a classical construction; but
none were known in other sets, even in the bigger ones, datilg the preparation of the present
paper, Sinai and Ulcigrai [35] found explicit elements/ef, while Yoccoz [42] built explicit ele-
ments of/¢ for everyk; other related results [22][8] were derived after preliarinversions of the
present paper were circulated, see the discussion in ecbelow.

Similar questions have been addressed for the (by unanioomsent much easier) cage- 3,
by Veech [36], del Junco [12], and the present authors plu®H@L5][16][17][18]; the methods
of these papers have had to be considerably upgraded te thekhext case, = 4. Thus we have
introduced a new notion of induction, beside the classiocaisodue to Rauzy [34], Zorich [44],
and more recently Yoccoz ([28] where a good survey of alléhestions can also be found). This
self-dualinduction, studied in more details in [21], is a variant of fless well-known induction
of da Rocha [27] [11], and fod = 3 its measure-theoretic properties and self-duality ardistu
in [20]. We present it in Section 2 below, and use it in Sedi@nand 4 to build families of
explicitexamples of four-interval exchanges; each exangaescribed by four families of Rokhlin
towers, depending on partial quotients of our inductioroatgm. After a good choice of these
partial quotients, our transformation will have the reqdiproperties through a measure-theoretic
isomorphism with a rank one system. Whether and why this me&ludtion was necessary to
answer the questions we addressed will be discussed atdhaf &ection 6 below.

What we obtain in the end is some groups of exampleg/ fer 4: two ini/ N M’ N M€, one
having rational eigenvalues and the other being measewa¢tically isomorphic to an irrational
rotation, one it/ N M'NMNS, and one i/ N M’ N MNN. We find also elements &f N M
which are measure-theoretically isomorphic to some of theadled Arnoux-Rauzy systems. All
the examples we produce come from expansions having (vebgunded partial quotients in our
induction algorithm. That makes our elementsi\dfa priori different from Sinai-Ulcigrai’s ones,
these being obtained from periodic examples relative tdfardnt induction algorithm; in partic-
ular, our examples are all rigid, and completely new; theistence was not unexpected, but the
existence of an example with irrational eigenvalues fordingpler casel = 3 was the object of
a question of Veech (1984) which was solved only in [17] (20@ur examples prove also that
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Avila-Forni’s result is strictly stronger than Nogueiratlph’s. The first example of an exchange
on more than three intervals which is simple is not surpgisbut this resisted the efforts of spe-
cialists during 25 years, and constitutes a first step tosveegch’s open question. As for our last
example, which is weakly mixing for one of the two invariang@dic measure but has rational
eigenvalues for the other, it came as a surprise even fouthees.

For generalizations (to other permutations and value8,afee Section 6 below.

Acknowledgments the authors wish to thank J. Cassaigne, C. Mauduit, andvat Rir their
help in arithmetics, T. Monteil for drawing some of the pies. The second author was partially
supported by grant no. 090038011 from the Icelandic Rebdarnd.

1.1. The main definitions.

Definition 1.1. A symmetricd-interval exchange transformatiea d-interval exchange transfor-
mation7" with probability vector(«ay, ..., a4), and permutationri = d + 1 — i, 1 < i < d defined

by
Te=x+ Z aj—Zaj.
- lj<n—14 7<t
whenz is in the interval
Ai = ZO{j,ZO&j [
j<i i<i
We denote by;, 1 < i < d — 1, thei-th discontinuity of !, namelys3; = Z?ZHH a;, while;

is thei-th discontinuity ofl’, namelyy; = 22-:1 aj =1—LF4;. ThenA; = [0, 71, A; = [Vi1, %l
2<i<d-1 andAd = [”}/d,h 1[

Definition 1.2. T satisfies theénfinite distinct orbit conditior{or i.d.o.c. for short) of Kean25] if
thed — 1 negative trajectorie$7 " (v;) }n>0, 1 < i < d — 1 of the discontinuities df’ are infinite
disjoint sets.

The i.d.o.c. condition foff" is (strictly) weaker than théotal irrationality condition on the
lengths, where the only rational relation betweenl < ¢ < d, is Zle a; = 1. As herer is
primitive, the i.d.o.c. condition implies thdt is minimal(every orbit is dense) [25].

1.2. A few notions from ergodic theory. A general reference for this section is [10].

Definition 1.3. A system( X, T') is uniquely ergodidf it admits only one invariant probability
measure.

Definition 1.4. Let (X, T, 1) be a finite measure-preserving dynamical system.

A real number) < v < 1 is aneigenvalueof T' (denoted additively) if there exists a non-
constantf in £2(X,R/Z) suchthatf o T = f +~in £L*(X,R/Z); f is then areigenfunctiorfor
the eigenvalue. As, following[10], we consider only non-constant eigenfunctions; 0 is not
an eigenvalue if" is ergodic.T" is weakly mixingif it has no eigenvalue.

Definition 1.5. (X, T") istopologically weakly mixingf it has no continuous (non-constant) eigen-
function.



4 S. FERENCZI AND L.Q. ZAMBONI

In the particular case of interval-exchange transfornmatidhe topology we use here is the
standard one (induced by the Lebesgue measure) on theahiteri/] (thoughT itself is not con-
tinuous), but the proofs in the present paper work in the saayeif we viewT" as the shift on the
symbolic trajectories, equipped with the product topology{1, ..., d}"V; the two topologies are
not equivalent, and it does not seem to be known whether @acmnis eigenfunction for one has
to be continuous for the other.

Definition 1.6. (X, T, n) is rigid if there exists a sequensg — oo such that for any measurable
setA u(T°~AAA) — 0.

Definition 1.7. In (X, T"), a (Rokhlin)tower of baseF" is a collection of disjoint measurable sets
calledlevelsF, TF, ..., T"'F. If X is equipped with a partitio such that each levdl” I is
contained in one ator®, ), thenameof the tower is the wora)(0) ... w(h — 1).

We shall use also the notion @ink one for various definitions see [9] [14] [31]. Here we need
only the definition of a particular class of rank one systetingy come equipped with a partition
and an invariant measure; we use the same notation for a towldts name, ansl (for “spacers”)
is the name of one atom of the partition, corresponding telteadded after the initial stage:

Definition 1.8. Letz, andy; be two sequences positive integers, and let the concatenattitwo
strings of letters) andw be denoted multiplicatively byw, whilev* is a concatenation of times
the stringv.

Therank one system defined by the waiig and the towersd,.,., = s¥s+1 H, **'s*+1, where, if
ho is the length offy andhy,.; = 1 hy+yes1+241 the length oy, ;, we havey % <
+o0, is the systemiX, 7', 1) built by cutting and stackingh the following way: we start from a set
E of measure, which is cut intoH, equal parts to make the first tower. To get the 1-tower, we
cut thej-tower intox;;; columns, stack these columns by puttingithg -th above ther;,, — 1-
th ... above the first, and adg,, spacerevels (that is, pieces df“ with equal measure ) one
above the other above the top, and, spacer levels one above the other under the bottbns.
the transformation that sends each point in a tower, exdemdé in the top level, to the point just
above.

The numberf and the common measuye of the spacer levels in thg-tower are defined
uniquely so thaj: is a probability preserved by, and X is partitioned so that{, is the name of
the(-tower, whileE€ is the atom namesl.

A standard argument proves that
Proposition 1.1. The rank one systems defined above are rigid.

The following necessary condition for adyto be an eigenvalue of a rank one transformation
was originally deduced (in [17]) from a condition of ChokeeNadkarni [9]; we give it here with
a new direct proof adapted from [7]:

Proposition 1.2. If 6 is an eigenvalue for the rank one system defined above by titeAlyoand
the towersHy,; = s¥+1 H,; "' s*+1, thenzy 1 ||hi0|| — 0 whenk — +o0, where|| || denotes
the distance to the nearest integer.

Proof
Let f be an eigenfunction for the eigenvalighes-algebra generated by the levels of theower
converges to the fulk-algebra whert tends to infinity, thus for each > 0 there existsV(e) such
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that for allk > N(e) there existsf;, which satisfies| ||f — fx||dn < € and is constant on each
level of thek-tower.

Let j be any integer wit) < j < [2£H]. Let 7, be the union of the levels of thetower
between they, + 1-th andy;, + [ ]h,—:1-th levels; by construction, for any poiatin 7, Tilk=14y
is in the same level of the— 1-tower asv. Thus foru-almost every in 7, fi.(T/"#-1w) = fi(w)
while f(T9"-1w) = 0jh,_1 + f(w); we have

/ [ fx o T2 — j0hy_y — fi||dp = / |[70hk—1||dp = ||jOP—1|[1e(Tk)
Tk Tk
and

[ feo T = ot — filld < [ oo T = po o dut [ i Fllds < 2=
Tk Tk Tk

As (7)) > % for k large enough, the above estimates imjyh,_1|| < 6e, for any integer
0 < j < [22]. Thus||j6hy_1|| < 12¢ for any integed < j < .

Lete < 55, and supposHx;0hy,_1|| # i||0hi-_1]|: leti be the smallest < j < z;, such that
[1j6hi1| # j1[0hi-1]l, theni > 2 and|| (i — 1)0hy1|| = (i — 1)||6hy ], thusi|Ohy_|| = (i -
D|0hy—1||+[10hk—1]| = 1|(i = 1)0hp—1 ]|+ ||0hs— || < 18¢ < 5 thus][iOhy_ || = [|(i|0hs—1|])]| =
i||0hi—1||, contradiction. Thus we get.||0hx_1|| < 12¢. O

Definition 1.9. A self-joining (of order two) of a systeralX, 7', ;1) is any measure on X x X,
invariant under?” x T, for which both marginals arg.

An ergodic system\X, T, 1) is simple(of order two) if any ergodic self-joining of order two
is either the product measurex p or a measure defined by A x B) = u(AnN U~ B) for some
measurable transformatioli commuting with/".

2. THE SELFDUAL INDUCTION

In the remainder of this paper (except for one example ini@eet2), we caltransformatiori’
a symmetricl-interval exchange transformation satisfying the i.d.@@ndition and the condition
of alternate discontinuities:

Br<m <B2<v<..Ba1<Va1

The condition of alternate discontinuities avoids introidig a lot of particular cases in the first
steps of our induction; the way it can be dispensed with isudised in Section 6 below.

2.1. Castles and induction: definitions. Our transformatiori” is now fixed, on the intervd0, 1|.
We consider itsnduced mapsan induced map df’ on a setV” is the mapy — 7"®y where, for
y € Y, r(y) is the smallest > 1 such thatl"y is in Y (when such am exists, which will be true
in all cases considered in this paper).

In classical inductionsy” is generally an interval; here we consider disjoint uniohg e- 1
intervals; and as for any induction, there is a canonical wdyuild towers; following [11], we say
that a union of towers is eastle(the Ornstein school used the wostacksandgadgetsnstead of
towers and castles).

Definition 2.1. Givend — 1 disjoint intervalsE;, 1 < i < d — 1, let S be the induced map of
T onE, U...E;;. Theinduction castleof the E; is the unique partition ofX into levelsT"I; ;,
1<i<d—-1,1<t<k;,0<r<h;; —1,where

e each intervalE; is partitioned intok; subintervals; ;, 1 <t < k;,
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e S1;,is a subinterval of;

Ji,t?

A castle is indeed a union of Rokhlin towers, each tower bensgle with the levelg™ [, ,,
0 <r < h;; — 1. Note that thek; are finite by compactness, but that in general each of the
intervals could be partitioned in many subintervals; owlyifiterval exchange transformations and
the type of induction chosen shall we be able to bound theswdats.

andonl;; S = Thi+,

We define now a new induction operation, as a way to assaciaté new intervalst! tod — 1
intervalsF;, 1 < ¢ < d — 1. It was primarily motivated by considerations from word dona-
torics, thed — 1 families of subintervals corresponding to thispecial factors of the associated
language which implies that their endpoints are the points whereotifsit of any discontinuity of
T comes close to any discontinuity @f!; this in turn implies an interesting geometric property
of the natural extension of our induction, studied in [2Q]do= 3, which prompted us to call our
inductionself-dual

The process is discussed and described in full generali®lij we give here a self-contained
and slightly different description, adapted to our pregerdinly ergodic) aims: indeed, the result
we use in the present paper is the explicit description ofrttlaction castles, which appears only
as a by-product in [21]. Our intervals will be built so tha¢ induction castles have always a nice
structure: namely, the intervals at the initial stage aeeXh 1 < ¢ < d — 1, and, as we shall see
in Lemma 2.2 below, their induction castlelamary:.

Definition 2.2. A castle isbinaryif for eachl <i < d — 1 k; = 2 and there are exactly twg ,,
1<1<d-1,t=1,2which are equal ta.

When a castle is binary, we denote by,, and £; , the left and right subintervals among the
two [, ;, by E; _ and E; | the left and right subintervals among the twW@, , which are inE;. Also,
we denote by(i), resp.m(i), thej such that; containsSE, ,, resp.SE; ,,. Finally, we denote
byl;, resp.r;, the length off; _, resp.E;  for1 <i<d—1.

It seems likely that for all binary castles we ha¥v&; ,, = E,,;) + andSE;, = E,) , but we
have not been able to find a direct proof using the i.d.o.cditimm. Indeed, we do not know any
example of a binary castle other than those built by our itidacor small variants of it (see also
Section 2.2 below), and for them the above properties aegayiconstruction, implying thatand
m are bijections.

One of our aims is to keep all induction castles binary thhmug the process; to achieve that,
we use an auxiliary property, which at the initial stage tsséad with s being the identity:

Definition 2.3. A binary castle issymmetricif it is endowed with a bijectios on {1, ...,d — 1}
such that
st =psp=msm=s
and that for allz, we have theelations
° ls(z) +Ts(i) = ll + 1
° ;= lps(i)a
® 7 = Tms(i)-

The relations above are studied in depth in [21] where (irtreshwith the present paper) they
are used as the basic tool to define the induction.
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Definition 2.4. A relation is calledtrivial if it is ;) + 754 = l; + r; With s(2) = 4, or l; = [,
With ps(i) = 4, OF 7; = 7,5 With ms(i) = ¢, non-trivial otherwise.

We may haves = Id, the identity; in that case all the relatiohg) + 7, = [; + r; are trivial,
and the only non-trivial relations ate= l,,;) for p(i) # i andr; = r,,(;) for m(i) # i, this is what
happens (forl = 4 intervals) in the first stage of the example in Section 2.2 lpedow, where it
turns out that there are only two different non-trivial tedas. It can also happen thahas a cycle
of length two, as in the second stage of the example in Se2t@rthen whers(i) # i, the non-
trivial relationl,;) + 744 = l; + r; expresses that the intervals and I,;) have the same length,
but there are also non-trivial relations= [, or r; = 7,.). Indeed in [21] it is proved that
in all binary symmetric castles used in the induction, themeeexactlyl — 2 different non-trivial
relations, and we shall check this fér= 4 in Lemma 3.1 below. Note that in a symmetric binary
castlep andm are bijections.

Binary symmetric castles are conveniently described bydahawing object:

Definition 2.5. Thecastle graplof a binary symmetric castle is the oriented graglwhose ver-
tices are the two-letters words(i), 1 < i < d — 1, and for eachi there is apositiveedge from
is(i) to p(i)sp(i) and anegativeedge fromis(i) to m(z)sm(i).

The induction associates tb— 1 intervalsF; containings;, 1 < ¢ < d — 1, a new family of
intervalsE;. For agivenl < i < d — 1, eitherE] = E;, or £/ = E,,,, or E! = E,,,, with the
notations of Definition 2.2. Whe#; is cut, it is cut by the point separatinfg ,, and £; ,,, which
is indeed the first poinf™*v,, s > 0,1 < j < d — 1, to fall in the interior ofE;, see [21] for
details; the choice oF; ,,, or E; , is then made to ensure thatis in £;. The choices of cutting or
not cutting £; are made so that the induction castle of ffeemains binary symmetric, this will
be the difficult part and this last property is the crucial forethe sequel.

Definition 2.6. We callself-dual inductiorthe following process: suppode = [3; — l;, 5; + il
1 <i<d-—1ared — 1 disjoint subintervals such that their induction castle isdyy symmetric
and has a castle grap&' with bijectionsp, m, s, and that for every [; — r,;) = [y — 1 # 0, we
define thenstruction: by the sign{ or —) of this last quantity,

vi = 15(1) = sgn(l; — 14)) = sgn(ls@) — 7i);
let C' be the maximal union of same-sign circuits’dtising only the edges starting frois(i) and
of signui, 1 <i < d — 1; then we defing — 1 new disjoint intervals by
e ifis(i) € Candui = +, E] = E;,,
e ifis(i) e Candui = —, E! = E;

2.2. Castles and induction: examples.lt is time now to look at castles and castle graphs in
concrete situations. We look first at what happensdice 4 intervals, at the first stage of the
induction, see Lemma 2.2 below. To draw the pictures, werasstogether with the condition
of alternate discontinuities, that, resp. 3., 33, is to the left of T~1vs, resp. T 1v,, T 1y,.
Figure 1 shows the induction castle of the intervBls= A; = [0,71[, B2 = As = [71, 7],
Es = Az = [v,,73[; it is made of three towers, which we draw separately becassehoose to
forget thatF,, E; andE5 are adjacent, as it happens at this stage only; to save spacdgnote by
~7) the pointT" ;.

The picture shows that the castle is binary, wih_ = [0,6, E1+ = [01, 1], Eim =
[O,T_l’}/g[, ELp = [T_l’}/:;,”}/l[, [’}/3, 1[: TEl,p’ E27, = [’}/1,52[, and SO on. The |abe|S give the
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FIGURE 1. First stage of towers, 2 & 3.

names of the towers: on the first tower they indicate thais a subinterval o\, andT'E , is a
subinterval ofA,, thus when we read them from bottom to top, we getitheand P, of Lemma
2.4 below. We see also thét= 72 on E,,, S =T everywhere else.

Some more information we have not yet written is thét, ,, C E5 thusm(1) = 3; indeed we
haveSELm - E37+, and SimilarIySELp - EL,, SEQ,m - E27+, SEva - Egvf, SE?),m - E17+,
SE;, = Ey_, thusp(1) = 1, m(2) = 2, p(2) = 3, m(3) = 1, p(3) = 2. Moreover we check
that the castle is indeed symmetric fore= Id: this means checking? = m? = Id and the nine
relations on lengths in Definition 2.3: five of them are triia+r; = [;+r; fori =1,2,3,1; = [,
r9 = T3), the non-trivial ones are, = r3 andl, = [3, each of them appearing for two values of

Thus the information which was not in the picture of the @slconveniently summarized by

the castle graph on the left of Figure 2, which is vertex the graph of graphE,, see Lemma 3.1
below.

+

CRE

- +
(@ @ @ 2

I =
IV

FIGURE 2. The castle graphs at first and second stage.

We look now at what happens at the next stage, assuming tltioonof alternate discontinu-
ities, and the respective positions/dfand7~'~; from the first stage.
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Applying Definition 2.6, we see that at the first stage theruwton is;; = 1o = 135 = —. In
the castle graph there is-acircuit with the verticed 1 and33, and a— loop around the verte,
thusC' = {11, 22,33}, and fori = 1, 2, 3 the E; at second stage is thg ,, of first stage.

Thus we can draw the induction castle of the new E5, E3; to position the points, we make
the extra assumption that, resp.f,, 3s, is to the left of 2y, resp. T 2v,, T~ 27s.

4
1
V3 1
(1) V3 (1) Y2 (1) M1
711 Va2 .73
] =2 =1 I | =2 =1 I | =2 =1
R N B Al 4

FIGURE 3. Second stage of towers2 & 3.

The reader can now decipher this picture as in the previagest The extra information is
that nowm(1) = 3, p(1) = 2, m(2) = 2, p(2) = 3, m(3) = 1, p(3) = 1, and the new castle is
symmetric with the involution(1) = 3, s(2) = 2, s(3) = 1; this involves checkingsp = msm =
s and the non-trivial relations, + I; = r3 + [3 (the intervalsF; and E;3 have the same length),
lo = l3. Thus the new castle graph is shown on the right of Figurei2 viertex/ V' of the graph of
graphsl’,, see Lemma 3.1 below.

A non-symmetribinary castle can be found in Section 5.1 of [21], fot-anterval exchange
with permutationrl = 4, 72 = 3, 73 = 1, 74 = 2. In the initial stage, the castle df,, E»,
Es is binary withp(1) = 3, m(1) = 2, p(2) = 1, m(2) = 3 p(3) = 2, m(2) = 1, and the
relations between the parameters &re+ r;,, = lp(i)n + "me)n, ¢ = 1,2,3 (these hold also for
the symmetric castles considered in the present papemhsgedof of Proposition 2.1 below) but
they do not yield the relations of Definition 2.3, and indeedl21] we choose the parameters so
that no relatiori; = ;, v, = r; orl; +r; = l; + r; holds fori # j. Thus for no choice of can the
relations in Definition 2.3 be satisfied.

With the symmetric permutationl = 4, 72 = 3, 73 = 2, 74 = 1, we get non-symmetric
castles when we induce against the rules of Definition 216efample if at the first stage above
we choose the new) to be the full oldE; instead of the old, ,,, but such castles are not binary
either.

As one of the referees pointed out, for a binary castle wheaadp are bijections, the reciprocal
map is also a binary castle, whose combinatorics is givembyandp—?, and, for a symmetric
binary castle, the reciprocal castle has the same combicgigp to a permutation of names by
an involution. This last condition, however, is in generaaker than the symmetry we define,
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as it is satisfied by the non-symmetric castle defined abava fon-symmetric permutation,
with the involutions(1) = 1, s(2) = 3, s(3) = 2; what are missing there are the non-trivial
relations between the lengths, for example- . = I3 + r3. Still, it is quite possible that when
the permutationr is the symmetric one every binary castle is symmetric, see¢mark after
Definition 2.2. We do not know whether a castle can have theesammbinatorics as its reciprocal
castle up to a permutation of names which is not an involution

2.3. Castles and induction: results. The following proposition describes how the induction
works, and gives conditions ensuring that it can be itetated

Proposition 2.1.If £;,1 < < d — 1, is a set of disjoint intervals such that

(1) B =168 —16,6i+r,l; >0, >0,

(2) all their endpoints are of the form®y, fora < 1 andb =1, 2, 3,

(3) their induction castle is binary symmetric, with bijectsgn m, s,

(4) SE;, = p(z [5p(2 p(z ﬁp [

(5) SEZ m E [ﬁm(z Bm (2) + Tm(i) [

Then we can apply the self-dual induction to #ig and the newr! satisfy (1) to (5), with new

parameters;, ;, and bijectiong’, m’, s’ given by the following rules

o ifis(i) € Candui = +, 1 = l; — ) = Ly — 14, 7y = 14, 8'(2) = sp(i), (1) = p(i),
m!/ (i) = mp(i),

o ifis(i) € C andui = —, I = l;, rj = 1 — L) = sy — Li, $'(1) = sm(i), p' (i) = pm(i),
m/ (i) = m(i),

o ifis(i) g C, U, =1;,r. =r;, s'(i) = s(i), p' (i) = p(i), m' (i) = m(3).

Proof
We know thatt; ~ = [5; — l;, ;] and E; . = [B;, B; + r;i[; the symmetry of the castle implies
the relations of Definition 2.3. We know also thaf,, is the right subinterval of; with the same
length asF,(;) _, namely
Eip = [Bi — lpe) + 13, B + 7.
Similarly
= [8i = i, Bi = li + Ty [
This implies therain-track equalltles(see [33] for exampl@) +r; = [,y +7m), Which is another
way of stating the above relations (the equivalence of thefsie train- track equalities and the
set of relations in Definition 2.3 is shown in [21], it is hoteakin the present paper).
This implies also that; — r,;) = I, — r; # 0, as otherwised; would be the left endpoint of
E; ,, hence its image by would be the left endpoint of,;), which is impossible because of (2)
and the i.d.o.c. condition.

Thus we can apply the self-dual induction, withas in the definition. Let’ be the induced
map of 7’ on E4 U ...E],_,.

If is(i) € C, with i = +: we say thatF; has beercut on the left because of the relation
Loy = ls), we have,; —r; > 0, and thusﬁZ € E,, =L Ifis(i) € C with 1i = —, whereE; is
cuton the rightwe use the relation,,; ;) to prove thatBZ € Ei,m=FE.Ifis(i ) ¢ C,E;is
not cutands; € E; = E!. Thusin each case We can defihandr;, they are given by the claimed
expression. Moreover the endpoints of fiehave the required form.
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FIGURE 4. Evolution of Rokhlin towers.

We look at the action of’ on E!. Supposes(i) € C, with i = +. Then the situation is com-
pletely described in Figure 4, wheye= p(i) andk = m(j), while the P, and M; are the names of
the towers, to be discussed in Section 2.5 below.

As p(i)sp(1) is also inC, E; — intersects botlt,;) , and E,(;) ,. The newkEy . is E) , =
[Boi) — Lopi) +Tp(i)» Bps) +7py |- The image of; by S is the intervalF, ;) —, which is not included
in the neWEz’)(i): itis made ofX; = E,;) ., the left subinterval ofZ,;) which is not inEz’)(i), and
Yi = Epgi),— N Epli).p-

This creates a partition df’: the right subinterval of! with the same length ag;, which we
denote byF! ,issentbyS onY; C E}’)(i), and on this intervab’ = S. The left subinterval o2

1,p?
with the same length a&j;, which we denote by7}, , is sent byS on X; C E,;) — E;(Z.); then
Xi = EpymissentbyS onE,,q) + C Enpe). Asp(i)sp(i) is on the same positive circuit iii as
is(1), it cannot be on a negative circuit @\, hence neither camp(i)smp(i); hencemp(i)smp(i)

is either on a positive circuit in’, or not inC', hence eithers,,,,;; has been cut on the left or not
cut; thusE,) + C E,,,;)- Hence ok, we haveS” = S?,andS’ sendsF; | onto a subinterval
of Emp(i)-

Thus, in the new castld;! is indeed partitioned into two subintervals, and we can defifi) =
p(i) andm/(i) = mp(i). S'E;, is the intervalY;, which is the left subinterval of/, ;, of length
Ly, hence we can call i), ;) ~ = [By ) — L), By i) [- And, whetherE,,,;) has been cut on the
left or not cut,S" 7, is the intervalt ) = [Bav(iys B (i) + Ty -
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A similar reasoning takes care of the cas@) € C with .i = —, where we can defing/(7),
m/(i), £,y _andE] ., | by the claimed formulas.

If is(i) ¢ C, Ejis not cut ands sendsE; , = E;, on E; ., which is still in £/, asp(i)sp(i)
cannot be on a positive circuit 6t and hence”,,;) has not been cut on the left; similafysends
Bl onEnq,+ C B ), thus we defing/ (), m'(i), E,,, _ andE] ., . by the claimed formulas.

As p’ andm’ are bijections, the new induction castle is indeed binarg, @urp’ andm’ are its
defining bijections. We define nowby s’ = sponCN{c = +}, ¢ =smonCN{L=—-},¢ =s
on C°. Itis then straightforward to check that the castle is symniziefor example ifis(:) € C
andu = +, s(i)i is also inC' (asts(i) = i), hencems(i)sms(i) cannot be on a negative circuit
in C'and hence, ;) = rims), While r; = r; andm’s' (i) = mpsp(i) = ms(i); hence the relation
ri =71l .. IS satisfied, and similarly for the other cases and relations

Thus we have proved (1) to (5) for thg. O

Lemma 2.2. If we putE; = A;, 1 < i < d— 1, they satisfy (1) to (5), and their castle graphj is
defined by the bijectiondi) =i, 1 <i<d—1,m(i) =d—i,1<i<d—1,p(i) =d+1—1,
2<i<d—1,p(1)=1.

Proof
The proof consists of a simple verification, using the retapositions of thes; and~; which are
assumed in the condition of alternate discontinuities. O

2.4. The graph of graphs. As for the classical inductions, the self-dual inductiongpresented
by paths in a graph; each vertex of this graph is not a periouatas in the case of the Rauzy
induction, but a castle graph:

Definition 2.7. Given a castle graplix with bijectionsp, m, s, aninstructionon GG is a map from
the set of vertices aff to {—, +}¢! such that. o s = «; the castle graph/,G is the castle graph
defined by the bijections, m/, s’ described in Proposition 2.1.

Let Gy be as in Lemma 2.2, |1€}(G,) be the smallest set of castle graphs which contéips
and is stable by the map for all possible instructions. Thegraph of graph$’, is the oriented
graph whose vertices are the elementg (), with an edge labeled byfrom G to J,(G).

If £; are intervals satisfying (1) to (5), and their castle graplaivertex: of the graph of graphs;
if we apply the self-dual induction, the castle graph of titeiivalsE! is the vertex such that from
a to b there is an edge labeled by the instructioof Proposition 2.1.

Definition 2.8. LetI" be an infinite path in the graph of graphs; I&t,, » € N be its vertices; for
eachn, let., be the instruction labeling the edge fra#y to G, 1, let s, p,., m,, be the bijections
defining the castle grap&',,, let C,, be the maximal union of same-sign circuits(gf using only
the edges starting froms,, (i) and of sign.,,i, 1 < i < 3.
I is admissiblaf

e (GyisasinLemma 2.2,

o ifi &y, Lyi1l = Ly,

e for eachi, v,,i = + for infinitely manyn,

e for each, «,,i = — for infinitely manyn.

The following theorem is proved in [21]; the proof uses elab® combinatorial tools; in the
next section we give a simpler proof fér= 4, to make the present paper self-contained.
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Theorem 2.3. Every transformatior?” defines an admissible infinite path in the graph of graphs.
Every admissible infinite path in the graph of graphs is ththd at least one transformatich.

2.5. Names. The self-dual induction gives a way to generate any transition7” by 2d — 2
families of Rokhlin towers; when we know the path’®in the graph of graphs, we know how to
build these towers recursively, or, equivalently, how tddtheir names for the partition df), 1|
intoA;, 1 <i<d.

In the initial castle, and hence in all the castles we comsech levell" E; , is contained in
one intervalA ;. »y, w(r,i,p) € {1,...d — 1}, and the same holds if we replae®y m. Thus we
can define the names of our towers as in Definition 1.7; thex@dr 2 names, we denote by,
andM; the names of the towers of basEs, and £ ,,,.

Lemma 2.4. In theinitial castle,P, = 1d, M; =i,1 <i<d—-1,P,=4,2<i<d-—1.
If we apply the self-dual induction to a castle with nanieand A/;, the new names; and M
are given by
o ifis(i) € C'andui = +, P/ = P;, M| = P;M,;);
o if ZS(Z) e Candu = -, Pi, = Msz(z)7 Mz/ = Mz;
o ifis(i) ¢ C, Pl = P, M = M,.

Proof
The proof can be obtained by following the steps of the prééfroposition 2.1, adding the names
M; and P; of the towers as in Figure 4. O

In classical inductions, we generdieby only d families of Rokhlin towers; this is possible
also for the self-dual induction, by inducirig further on one of ourl — 1 subintervals; but, as
will be seen in Lemma 4.2, this requires the knowledge of @ jin the graph of graphs some
way beyond the stage we are considering, thus we shall ddyitftonsome particular families
of examples; more generally, the reasoning of Lemma 4.2 lamdesult in its corollary can be
repeated for any given infinite path in the graph of graphs.

3. STRUCTURE OF SYMMETRIC4-INTERVAL EXCHANGE TRANSFORMATIONS

Throughout the remainder of this paper, we restrict ouesetod = 4.

Lemma 3.1. The graph of graph§, is the graph whose vertices are
I s =(123), p = (132), m = (321), with nontrivial relationsr, = 3, Iy = I3,

(

Il s = (123) (321), m = (213), with " = T2, ll = lg,

s = (123),p (213), m = (132), withry = r3, [, = [y,
IV s = (321),p = (231), m = (321), with ll +r = lg + 73, lg = lg,
V s = (213),]? = (231), m = (213), with ll +7r = lg + 7o, ll = lg,
VI s = (132),p = (231), m = (132), with lg + 1y = lg + 73, lg = ll,
VIl s = (132>,p = (132), m = (312), with lo +19 = lg + r3, 1 = o,
VIl s = (321>,p (321),m: (312),W|thl1+7’1 :lg—|—7’3,7"1 = T3,

IX s =(213),p = (213), m = (312), with iy + 1y = Iy + 79, 1o = 73,
and whose edges, labeled by instructi¢ris 2, :3), are the following

from/l (—,+,—)and(—,—,—)to IV, (—,+,+) and (+,+,+) to VII, (—,—,+), (+,—, —),
(+7 ) +)’ (+7 _'_7 _> to [’
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from/] (—,—,+)and(—,—,—)toV, (+,—,+) and (+,+,+) to VIII, (—,+,—), (— +,+),
(+,—, =), (+,+, )tO]I
from 11 (+,—,—) and(—,—, =) to VI, (+,+,—) and (+,+,+) to I X, (—,—,+), (—,+, —),
(—+,+), (+,—, +)to 1]
fromIV (+,+,+)toV, (—,+,—)and(—,—,—)to I, (+, — +) to IV,
fromV (+,+,+)toVI, (-, —, +)and(—,—,—)toIl, (+,+,—)t0V,
fromVI (+,+,+)to IV, (+,—,—)and(—,—,—)to I, (— + +)to VI,
fromVII (—,—, —)toIX, (- +, )and(+,+,+)to] (+, —,—) toVII,
fromVIII (—,—, —)toVII, (+,—,+)and(+, 4+, +)to I, (—, +,—) to VIII,
fromIX (—,—,—)toVIII, (+ +,—)and(+,+,+)toIIl,(—,—,+)to I X.
Proof

The proof follows from straightforward computations, appg Definition 2.6. In each case, the
knowledge ofmn, p ands allows us to write the set of non-trivial relations of Defiait 2.4.

A simplified graph of graphs is shown in Figure 5: we have adithe edges going from one

vertex to itself, an edge-.+ denotes two edges;-, —, +) and(+, +, +), and similarly for other
edges labeled with points.

+- ——. +
/\ B B /\
1331 - s 2112
- - \/ ‘e 11+ ’ \/ ++
VIII ++ 11 ——- v
\ A
. S+ — = ¥
T _w_ N IR +v
vir () S I T a%
- - ++§\\
- ++- —— +
/\ _ /\
2112 * E 3223
IX ++- 111 - VI

FIGURE 5. The graph of graphs.

We prove now Theorem 2.3 far= 4. Only Proposition 3.4 and Lemma 3.3, restricted to some
of the particular cases studied in the proof of the lemmanacessary for the sequel, but we wish
to give the reader the complete recipe to make his own example

Proposition 3.2. Every transformatiofl” defines an admissible infinite path in the graph of graphs.
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Proof
GivenT, we start fromE; = A, and apply the self-dual induction recursively; we get amitei
path in the graph of graphs (though only admissibility wilbpe that it does not become station-
ary). The first condition of admissibility (Definition 2.8 ae) is satisfied because of Lemma 2.2
and the second one because of Definition 2.6 and Propositlon 2

Let E;,, be the intervalE; at stagen; let us prove first thatvheneverE; ,, is cut for infinitely
manyn, then it is cut on the right for infinitely many and cut on the left for infinitely many
n. Indeed, by construction, the left and right endpointstpf, are respectivelﬁ““(myb(n) and
T ™y, for integersa(n) < 1 anda/(n) < 1, and there is no poirf®yy,) or T vy, inside
E;, fora(n) < z < landd(n) < 2’ < 1. If E;, is cut infinitely often,a(n) — —oo or
a'(n) — —oo, and thus there exissandc(n) — —oo such thatt; ,, does not contain any’*-;
for ¢(n) < x < 1. But this contradicts minimality if; ,, is ultimately not cut to the right (resp.
left).

We prove now that each, ,, is indeed cut for infinitely many; this is done by looking precisely
at the possible paths in the graph of graph. Thereareases to consider, we look at two of the
most significant.

Suppose for somé&/ Gy is vertex!, and let us show thak, ,, will be cut at least once for
n> N.If iyl =+, 1sy(1) = 11isin Cy, because there is-aloop around! 1 in the castle graph
I, and we are done for = N.

We suppose now thaty1 = —. If .y3 = —, we are done a$l is in Cy, because of the-
circuit {11,33}. Foralln > N if E,, is never cutve have., 1 = — and we can go only froni
toVII,[tol,VIItol,orVIItoVII; hence,3 = + foralln > N, as otherwisés,, (1) is in
C,, either because we are Irwith a — circuit {11, 33}, or because we are i/ with a— circuit
{11, 23,32} and.,2 = 1,3 because,, (2) = 3. Then, if there existsV’ such that for allx > N’
Ejs,, is not cut we have,,,2 = — for n > N’, otherwise3s,(3) is in C,,, as both inf andV'I[
there is a+ circuit {2s(2),3s(3)}. Then for alln > N’ G,, is vertex! (if it was vertexV' 1] we
would haver,,2 = ¢,,3), and2s,,(2) = 22 is in C,, because there is-a loop around2, thusks ,, is
cut infinitely often but ultimately only on the right, whicls &e just proved is impossible. 33 ,,
has to be cut infinitely often, hence infinitely often on thghti and, for some > N, (1,3 = —,
contradiction.

Suppose for som& G is vertex!V, and let us show thak, ,, will be cut at least once for
n > N. As there is a loop around22 in the castle grapliV/, this implies that,,2 = + for
all n > N. As there is a+ circuit (13,22,31) in the castle graptiV/, this implies in turn that
tyl = 1,3 = —foralln > N such that we are idV. As E,, is never cut, we can only go from
IV to I, from[I to IV, and from/ to I (but not from/V to IV); this implies that we are i for
infinitely manyn, and that,,3 = — also for alln > N such that we are i, because of the-
circuit (22,33) in 1. Let N’ be ann for which we are in/; if Es,, was never cut fon > N, this
would mean,,1 = + for all n > N’, we would stay always i, and £, ,, would be cut infinitely
often (thanks to the loop arourid in I) but only on the left, and this is impossible. Thes,, is
cut for somen > N’, thus for infinitely manyn, thusEj ,, is cut on the left for infinitely many:,
and this contradicts the assumptionQa.
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The same reasoning applies, mutatis mutandis, forfany whenG'y is any vertex, and we
have proved the last two conditions of admissibility. O

Definition 3.1. We say that takes+, resp—, at stagen, if ¢,,i = +, resp—, andis, (i) € C,.
We say that; takes+, resp—, at stage: if : takes+, resp—, at stagen ands,, (i) = j.

Lemma 3.3. Let Gy, ...G,, ...be a given admissible path in the graph of graphs. For any
i <3,1<j<3andany pair of signs € {—,+}, ¢ € {—,+}, there exist a positive integer
and a finite sequence< j, < 3,0 < s < t, such that

b jO - Z., €o = eijt :j’ (_1)t6 - 6/1

e forall 1 < s <t,js 1js takes(—1)%e at infinitely many stages.

Proof
The result is clearly true for paths where eagliakes+ and— at infinitely many stages; admis-
sibility implies each: takes+ and — at infinitely many stages, but it is not always true for each
17, and we must prove the lemma individually for paths wherdedi¢che18 possibilities does not
occur.

Note that if an admissible path visits all vertices ultinhgteo allow the transitions eacty has
to take+ and— infinitely often, and the lemma is proved. Now we look at adsitie paths who
do not visit all vertices. An admissible path cannot visityame vertex ultimately, as, when we go
from I to 1, 3 cannot take+ nor —, and similarly for the other vertices. An admissible pathroat
visit ultimately only two adjacent vertices: if they afand/V, 2 and3 cannot taker ultimately,
and all the other possibilities are similar.

We look now at a path which ultimately visits only the vertde IV andVII: to allow the
transitions22, 33, 23, 32 take + infinitely often, 11, 33, 13, 31 take — infinitely often and, to
ensure admissibilityl 1 takes+ infinitely often and22 takes— infinitely often, and this is enough
to satisfy the lemma: for example, take= 1, e = —; then by puttingj; = 1, jo» = 3 we get
the result for(j,¢’) = (1,+) and(j,¢') = (3, —); by puttingjs = js = 2, we get the result for
(4,€) = (2,+) and(j,€¢') = (2, —), while by puttingj; = 3 we get the result fo(j, e’) = (3, +);
and a similar computation works for oth@re).

For a path which ultimately visits only the verticég, V andV I then, to allow the transitions,
13,22, 31, 11, 23, 32, 12, 21, 33 take—+ infinitely often, and, to ensure admissibility,, 22 and33
take — infinitely often, and we check this is again enough to satisé/lemma. Let us now take
a path which ultimately visits only the verticés IV, V, 11, VIII, VI, I, and always in that
circular order; then, to allow the transitions}, 31, 22, 11, 33, 23, 32 take+ infinitely often, 11,
33,12, 21, 13, 31, 22 take— infinitely often, and again this is enough to satisfy the leamm

Other cases are similar to one of these or contain more plitsss O

Proposition 3.4. Every admissible infinite path in the graph of graphs is ththpa at least one
transformation?.

Proof
The proof (in contrast with the general proof in [21] whicleasvord combinatorics) follows the
strategy of [26]: we find the coordinatés, 71 o, l2,0, 72,0, l3,0, 73,0 defining our transformation by
showing that some intersection of open cones is nonemutygthhere we have to take its further
intersection with a subspace of dimensidrecause of the nontrivial relations defined in Definition
2.4 and expressed in Lemma 3.1.

Let Gy, ...G,, ...be a given admissible path. LetandC,, be the associated instructions and
unions of same-sign circuits.
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We need to find a sequence of strictly positive vectors

Uy = (ll,na T1n, l2,n7 T2.n, l3,n7 T3,n)

such that for each,

e the coordinates of,, satisfy the two non-trivial relations corresponding¥g as stated in
Lemma 3.1,
® Uny1 = Unvna

where the linear operatéf, from R° to R® is defined by, (11, r1, la, 7o, I3, 73) = (I3, 7}, Uy, 15, 15, 75)

with
o if is,(i) € Cp anduyi = +, 1 = l; — 75, 5), T = 74,
o if is, (i) € Cp ande, = —, l; = 1;, 7, = r; — L5, (i),
o ifis,(i) € Cy, li=1;,71=r;.

A direct consequence of the formulas is thatis invertible and the matrix of - has nonneg-
ative entries. What we shall show now is thatanyk, anyn large enoughiv;,.,, = U, ' ... U *
has a matrix whose all entries are strictly positive

We look at how,, is deduced fromy,,4; if is,,, (i) € C,, and,,i = +, we haver; ,, = 7 11
and

li,m - li,m—i—l + Tsm(i),m = li,m-i—l + Vs (i),m4+1

ass,, ()i is in the same positive circuit i@, asis,,(i). Similarly, if is,,(i) € C,, andi,i = —,
we havel; , = l;pq1 @ndr; = 751 + ls, (i)m+1, and ifis,, (i) & Cy, we havel;,, = l; i1
andr; ., = r; 1. Hencel, ., appears always in the expression/,gf, and hence in every,
for p < m; it appears also in the expressiongf, when:; takes— at stagen, and if there exists
¢ < m such that;j has taken- at stagey, it appears in every, , for p < q.

Let k£ > 0 be fixed. We take and;j and two signs ande’, and chooséy, ..., j; as in Lemma
3.3. Asj,_1js takes(—1)%e at infinitely many stages, we can fikd< k; < ...k, such thatj_1j
takes(—1)°e at stagék, forall 1 < s <t. And if n > k,, this implies that; ,, if ¢ = —, resp.r;,,
if ¢ = 4+, appears in the coordinatg, of v if e = +, resp.r; ; if e = —. By doing the same for
every choiceofl <i <3,1<j<3,ec{—,+} ¢ € {—,+} and takingr larger than all the
corresponding;,, we get our assertion O ,,.

We write now the reasoning of [26], in a little more expliciayw letQ2 = {l; > 0,r; > 0,i =
1,2, 3} be the open positive cone&f, Q@ = {I; > 0,7, > 0,i = 1,2, 3} its closure K,, = W, 1,
K, =W,9Q, K = K, \ {0}; we haveKk,, C K! C K,. The condition on the matrices ensures
that for allk andn > Fk, if v is in Q with at least one strictly positive coordinate, théf ,,v is in
Q, thus

ﬂnlen — ﬂnzlfn\ {0} — ﬂnle;L.

The last part of Keane’s reasoning (which will not be usee loert imitated) says that eadty,
is invariant byv — Av for any scalar\, thus theK’, are decreasing compact sets in a projective
space, thus their infinite intersection is non-empty; this, &, is non-empty.

We introduce now the relations: &, be the subset dR® made of vectorsly, 1, I, ro, I3, 73)
whose coordinates satisfy the two non-trivial relationsregponding ta,, in Lemma 3.1; in
particular=y = {r; = r3,lo = I3} asG is vertex!. It follows from Proposition 2.1, and can also
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be re-checked by direct computation, that
En+1 = UnEn

Now, the above considerations imply tti&g N N> K, = Zp N N,>1 K. We look at the in-
tersections of thd(/ with the space&, = {r; = r3,lo = Il3}: they are nonempty as, because
of the expression of the relations in Lemma 3.1, edehn =, ;) is non-empty, thus also its
image byW, ,,, and we havél, ,QNZy = W1,(QNE,4) = EgNK, C ZNK,. Each
=o N K] is invariant byv — Av for any scalar\, thus the=, N K, are decreasing compact sets
in a projective space, thus their infinite intersection is+eonpty. Thus the infinite intersection
N2 (0 N W,0) = N WL, (2N E,41) is non-empty.

A vectoruy in this latter set is such thaf, has strictly positive coordinates for al] and satisfies
the required relations for all. After normalization by, o+ 710+ lo0+720+ 30+ 730+ 00 =1,
we define a symmetri¢-interval exchange transformation by = 1 o + 710, a2 = lag + 720,
as = l30 + 130, i = 119, and the required inequalities on theand~; are satisfied.

By construction the self-dual induction is iterated infetyt defining the patky,, ...,G,, ...and
by admissibility eachF; is cut infinitely often on the left and on the right; thus theghe of each
tower tends to+oo; as the negative orbits of the discontinuitieslobppear as the endpoints of
levels in the castles, while the negative orbits of the disiomiities of 7~! appear in the interiors
of these levels, the i.d.o.c. condition is satisfied. O

4. UNIQUELY ERGODIC EXAMPLES

In this section, we define a family of examples depending ceetBequences of integers, n.,
i, Which we call thepartial quotients for the self-dual inductiom,, (respny, pi) is the number
of consecutive times whe?p (resp. 33, 11) takes—, the — edge from22 (resp. 33, 11) being a
loop in the castle graph.

Definition 4.1. Givenm = {my, k € N}, n = {ng, k € N*}, p = {pr, k € N*}, letI'(m,n, p)
be the admissible path defined as follows, which starts fipthen makes infinitely many circuits
through verticed V', V, VI: laps are numbered frorh = 0; before lap0, we go from/ to IV by
(—,—,—); forall £ > 0, at the beginning of la we are inIV; we apply instruction+, —, +)
my times ifk > 0, resp.mq— 1 times ifk = 0, staying in/V, then go td/" by (+, +, +), then apply
instruction(+, 4+, —) nx1 times, staying i/, then go toV’I by (+, +, +), then apply instruction
(—,+,+) pry1 times, staying i/ I, then go tol V by (+, +, +).

All transformationsT’ in this section are such that their path in the graph of graphsa
['(m,n,p).

Note that in Definition 4.1, and hence in Lemma 4.1 below, wiverlook at what happens be-
tween vertex'V in lap £ and vertex/V' in lap k& + 1, we have chosen to usey, n,.; andp;. .
This is intentional, because the fundamental Corollaryb4l8w, which depends on what happens
between just after vertekl” in lap £ and just after verteXV in lap & + 1, will thus depend on
nri1, Pee1 @andmg 1, and that corollary will be used extensively in the sequéle Taseé: = 0 is
special, a®2 takes— when we go from the initial state to vertéX” in lap 0, thus22 has to take
— only my — 1 times in the latter situation.

Lemma 4.1. The names of tower8;(k) and M;(k) when we are in vertekV at the beginning of
lap £ are given by the following rules:
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o Pi(k+1) = (Pi(k)Ma(k)™ Py (k) Ms(k))P+ Py (k)

o Py(k +1) = My(k)™ Py(k)

o Ps(k+1) = (Ps(k) M (k)" Py(k),

o My(k+1) = (Pi(k)Ma(k)™ Py(k)Ms(k))P 1 Py (k)M (k)™ Py (k) Py (k) My (k),

(k)
My(k +1) = My (k)™ Py(k)(Ps(k) My (k)" Py(k) Py (k) Ma (k)
o Ms(k+1) = (Ps(k)My (k)" Py(k) Py (k) My (k)™ Pa(k) Ms(F);
with m;, replaced bym, — 1 if £ = 0, and initial valuesP; (0) = 13, P»(0) = 22, P;(0) = 314,
M, (0) = 1, My(0) = 2, M3(0) = 3.
Proof
The proof comes from applying Lemma 2.4 at each stage.

As was announced in Section 2.5, we replace the six towersiby f

Lemma 4.2. Let E (k) be the intervalF; when we are in vertexV” at the beginning of lag; its
induction castle is made of four towers, whose names are
[ ] Ak Ml(]{})P:;(k})
* By = Pl(k)M2( )" Py(k) My (k
o Cy, = Pi(k)Ms (k)™ Py(k)Ps(k),
o Dy = Pi(k)My(k)™* Py (k) Ps(k),
with all m,, replaced bym, — 1if k£ = 0.

Proof
The induced map df' on E (k) is an induced map of the induced maplobn E; (k) U Ey(k) U
Es(k), whose castle is verteld”. To find the castle we want, we look at concatenations of tewer
starting fromE; (k) and coming back to it, and this corresponds to paths in thieeogimphlV:
starting from13, we can go t®31 by M; and come back t@3 by M5 or P, or else go t@2 by
P, make an unknown number of times the lobfa around22, then go to31 by P, and come
back to13 by M; or Ps; thus the possible names of our concatenations of towerk/afe) Ps(k),
M (k)M3(k), Py(k)My(k)® Py(k)Ms(k), and Py (k) My (k) Py(k) P3(k) for (a priori) any positive
integerss andt¢. But the same formulas hold with replaced byt + 1, while concatenations
of towers starting from&; (k + 1) and coming back to it are also concatenations of the above
concatenations starting frof, (k) and coming back to it. Taking into account the formulas of
Lemma 4.1, we see that, (k) M;(k) does not occur, and that there are only two possible values
for ¢, t = m;, andt = my + 1, and one possible value for s = m,, (with the usual modification
for k = 0). O

Corollary 4.3. The above names are given by the formulas
[ J Ak+1 = B£k+1CkAZk+l+l,
o Bypi = BYV Oy (A7 Dy AP B,
o Chi1 = B Cr(A Dy )mert A
e Dy = sz_HCk(AZk+1Dk)m’“+1+1AZk+l.
with initial valuesA, = 1314, B, = 132™0~1223, C,, = 132™07122314, D, = 132022314,
In all the sequel we denote lay, by, ci, di, the lengths of the names,, B;., Ci, D;; these are

also the heights of the corresponding towers, which we d@elptowerA,, tower B;,, tower C},
tower D, each of these beingiatower.
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By minimality, for eache, if £k is large enough, the lengths of the intervals are all less ¢ha
hence any integrable functiohcan be approximated (id, for example) by functiong; which
are constant on each level of edchower. Thus the above formulas give a complete description
of T as a system afank at most four by interval@he original reference on finite rank is [31], but
finite rank by intervals was not defined in print before [14)om these formulag; is determined
up to measure-theoretic and topological isomorphisms.

Now, the secret for building interesting examples is to mayur partial quotients; we shall first
ensure that our system is of rank one, the togbeing the only one which is not of very small
measure (for any invariant measuyrebut this fact by itself ensures thatis unique). Moreover,
this is a rank one system as in Definition 1.8, and all its prtge come from the values af,.

In Theorem 4.6 we ensure that thg are the denominators of the convergents (for the Euclid
algorithm) of an irrationad, and thusl” hasé as an eigenvalue, and even is measure-theoretically
isomorphic to the irrational rotation of angle In Theorem 4.7, eachy, will be a multiple of an
integerN, and7 has+- as an eigenvalue. In both cases, as the td¥es not negligible from the
topological point of view, a relation betweep andb;, will ensure topological weak mixing.

Proposition 4.4. If for infinitely manyk, there exist positive integet$, b, such that).ay, —b}.b, =
1, and we havey. ., > aj, pr+1 > b); then the transformatiofi’ is topologically weakly mixing.

Proof
Recall that the union of the bases of the towdss By, Ck, Dy is the intervalF;(k), and, by
minimality, for eache, if k is large enough, the lengths of the intervals are all less thd_et
0 be an eigenvalue with a continuous eigenfunctfgrthen, for givene, if k is large enough,
|f(2)— f(y)| < e(inR/Z)if z andy are inE; (k). Because in the formulas of Corollary 443"+
occurs in (for example),., 1, there exists: in the basis of the towet,, such thatl+%z is again
in £ (k) hence
|0agar|| = [f(T**x) = f(z)] < €&
similarly there existg in the basis of the toweB,, such thafl**y is again inE; (k), and we get
6 — Bibi) || < c.

henced = 0, which is not possible &5 is minimal and the existence of a continuous non-constant
eigenfunction foil¥ = 0 would imply the existence of a non-trivial closed invariaobset. O

Proposition 4.5. If

+oo
1)b d
Z(pk+1+ Vor + ¢ + E oo

n a
Pt k-+10k

then7 is uniquely ergodic and.X, 7', ;1) is measure-theoretically isomorphic to the rank one sys-
tem(X’, 7", 1’) defined (as in Definition 1.8) by the word and the towers

! _ okt1—(ngr1+Dak (AL \ngr1+1
Ak+1_5 * * (A

Proof
Note that the above condition usés and notmy_ d; as it is enough since boi;ltlzk+1 and D,
have their lengths multiplied by, ; in the formulas of Corollary 4.3.

Let i be any invariant probability fof": each level in a given tower has the same measure,
hence the above condition ensures that the towgrs”,., D;., have measure at most, the k-th
term in the above series, in each towhr, |, By.1, Cri1, Dri1, hence in the whole space, where

o ex < +oo. The systen{X, T, u1) is then ofrank one by intervalas the sequence of towers
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Ay generate the whole space, see for example [14] for precisatoms. We build a measure-
theoretic isomorphism betweérX, 7', 1) and (X', 7", 1/), by sending the-th level of the tower
A, to the j-th level of the towerA), for 7": it is consistent by construction, as the lengthAjf
is a;, and is defined almost everywhere because of the condition.oifhe unique ergodicity
is a consequence of the rank one by intervals: as is mentionBefinition 1.8, the definition
of 1/ ensures that it is the unique invariant probability measuré X', 7”), and any invariant
measurer # p on (X, T) would define an invariant measuré # ;' on (X', 7") through the
above isomorphism. O

Theorem 4.6.0ne can construct recursively sequenges:, p such that the corresponding trans-
formationT is uniquely ergodic, topologically weakly mixing, and maastheoretically isomor-
phic to an irrational rotation orl;.

Proof
We build the partial quotients for the self-dual inducti@cursively as follows: we choose,
such thati, andb, are coprime, and we have > ay.

At stagek, we assume,, andb, are coprime, and, > a; by Bezout's identity we can find
positive integers;, andb, such thawa;, — b,.b, = 1. We choose firsp;,,, such that

pr1 > b, and

Pra1by +cx = ap_1 mod  ay;
this is possible ag, is invertible modulaz,; then we choose,. . ; large enough for

Ngy10g > Qk((karl + 1)by + ¢, + dy),

Nky1 > ay,
and such that
(nk;—H + 1)ak -+ pk+lbk + ¢y, is COprime with by, — Ak
this is possible ag,, is invertible moduld, — a,; finally we choose

Mpy1 = tpp1ap.1  fOrsome ¢, € N*.

As by Corollary 4.3.1 — ary1 = by — a. + myr1(ngr1ax + di), we haveb, 1 — ag 1 = by — ag
moduloa,; by choice ofm,; as in the previous equation; &s— ay, is invertible modula, 1,
SO isby 1 — axy1, and thusy,.; andby, | are again coprime, antgl,; > ay1.

Our transformatiory” satisfies the hypothesis of Proposition 4.5, thus is unygeejodic and
measure-theoretically isomorphic to the rank one systént” is topologically weakly mixing by
Proposition 4.4.

Because of the second equation in the choice,of abovea,,1 = yi1ar + a1 for positive
integersy,.1. We choose the irration# whose partial quotients (for the Euclid algorithm) are
Y0, Y1, - . - SO that thes,, are the denominators of its convergents. For the rotaticangfed, the
standard Sturmian trajectories (see [19] for example) areatenations of wordd”, andC”,
With C” .y = A7 and A7 = CO7 (A7), As >SS yZi;;k < +o0o because the hypothesis
of Proposition 4.5 is satisfied, this rotation is measussthatically isomorphic to the rank one
system defined by the word’, and the towersl”, ; = s*-1(A”;)¥%-+1, by the same proof as in
Proposition 4.5.

And T andT” are measure-theoretically isomorphic as in the proof op&sdion 4.5, as build
an isomorphism between” and7” by sending somel”,, to strings of spacers of length, on a
part of the space of measurgwith >~ ¢, < +oo0. O




22 S. FERENCZI AND L.Q. ZAMBONI

Theorem 4.7.For any integerN > 2, one can construct recursively sequenges:, p such that
the corresponding transformatich is uniquely ergodic, topologically weakly mixing, and h@s
as an eigenvalue.

Proof
We build the partial quotients for the self-dual inducti@fallows: at stagé > 1, we assume
andb, are coprimep, > a;, anday is a multiple of N; by Bezout’s identity we can find positive
integersqe;, andd. such that)a, — b).b, = 1. We choose firspy, such thap, > b, and

karlbk +c, =0 mod N;

this is possible as; is invertible modulaz;, hence modulaV; then we choose, . ; large enough
for Npy1ap > Qk((pk_H + 1)bk + ¢ + dk), Npy1 > (l;g, and such tha(mkH + l)ak + pk—i—lbk + ¢k
is coprime withb, — ay; this is possible as, is invertible modulob, — ay; finally we choose
Mpy1 = tgr1ax4q fOr somet,,; € N*, henceay,; andb,., are again coprime, ang .| > a1,
while a1 is a multiple of V.

At the initial stage, ifN = 2 or N = 4 we can choose:, such thab, is coprime witha,, and
our assumptions are satisfied at stageo we begin the above processtat 0. Otherwise, our
assumptions will be satisfied at stagein the following way: we choose:, such thatn, and
mg + 4 are both coprime with N (let 4N = [[’_, 7" be the decomposition of N into prime
factors, withmy =2 < m < ...;for0 < i < s, let ¥, be the set 0 < m < 4N such thatn and
m + 4 are coprime withr, ..., 7;: we have#W¥, = 2N, and, by the Chinese remainder theorem,
#Wip = #Vi(1 — =), thus# W, = [[_on* ' [[_,(m — 2) > 0, and anym, in ¥, is
convenient). Thusy, is coprime withN and with4 andm, + 4 is coprime withm, /N, and for any
ny and any element of Z/myNZ we can findp; such that; = (mg+4)p; +4n;+mey+10 =z
mod Nmy. Hence we choose amy, and therp; such that:; is a multiple of N and coprime with
mo = by — ag, then, withm, = t,a; for somet; € N*, we get that,; andb; are coprime.

Our transformatiory” satisfies the hypothesis of Proposition 4.5, thus is unygesjodic and
measure-theoretically isomorphic to the rank one systém Proposition 4.51 is topologically
weakly mixing by Proposition 4.4.

On (X', T"), for k > 1 we putgy(z) = 4 if « lies in thepN + j-th level of the towerA},, for
integers) <p < % —1,0 <5 < N — 1. Because, is a multiple of NV, this is consistent and the
¢1, converge inL*(X, R/Z) to a functionp, which satisfied”¢ = + + ¢. ThusT” andT" have the
required eigenvalue. O

We can also build such a transformati@nwith both rational and irrational eigenvalues, by
building af such that the:,, are the denominators of its convergents, multiplied\ay

We turn now to weakly mixing examples; the first one imitates famous rank one system of
del Junco-Rudolph [13] by ensuring a recurrence relatjon = yx.1ax + 1.

Theorem 4.8.0ne can construct recursively sequenges:, p such that the corresponding trans-
formationT is uniquely ergodic, weakly mixing, and simple (of order)two

Proof
We build the partial quotients for the self-dual inducti@cursively as follows: we choose,
such that, andb, are coprime, and we havwe > a,.

At stagek, we assume,, andb, are coprime, ané, > a;; we choose,; such that

Prr1be + e =1 mod  ay;
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this is possible ag, is invertible moduloa,; then we choose,.,; large enough forn,  ja; >
2% ((pry1 + )by, + ¢ + dy,), and such thatn,, | + 1)ag + pry1br + cx is coprime withb, — ay, and
Myy1 = tgr1axs1 fOr somet,,; € N*. Thusay,, andb,,, are again coprime, angl,; > a 1.

Our transformatiorf” satisfies the hypothesis of Proposition 4.5, thus is unygeejodic and
measure-theoretically isomorphic to the rank one systém

By constructiona; ., = y..1a; + 1 for positive integersy,.; > 21, ThusT’ is measure-
theoretically isomorphic to the rank one systéindefined by the wordl, and the towers!”, . ; =
s(A”)¥k+1, as we build an isomorphism betwe®hi and7” by sending somel”,. to strings of
spacers of lengthy, on a part of the space of measurevith z;::; € < +00.

This last system is weakly mixing and simple exactly in thmsavay as del Junco - Rudolph’s
map [13], which is the rank one system defined by séfpand the towersg{; ,; = H,f'“sH,fk (this
defines a transformation by an appropriate modification dimden 1.8); the main (and quite
involved) argument in Theorem 1 of [13] uses only the fact thare are isolated spacers between
long concatenations of the same tower. O

Note that we deduce from [13] that this system is gsme (it has no nontrivial invariant sub-
-algebra) and rigid.

Of course, as most transformatioh'sare weakly mixing, we may expect to find many more
examples with this property. Indeed, we can build a lot ofrthy adapting to the family of trans-
formationsT’ in the present section the method described in the proof ebiidm 5.5 below.

Another unexpected way is to use the so-caledoux-Rauzy systend]. These are symbolic
systems defined by three nam€g Y}, Z,., build recursively by using a sequence of combinatorial
rules; by rulel, X;,1 = X, Y1 = Ve Xk, Zpp1 = 2 X by rule2, Xpp1 = XY, Y1 = Y,
Zev1 = ZpYy byrule3, Xp1 = XoZk, Y1 = Y2y, Zri1 = Zp. At the beginning X, = 1,

Yy = 12, Z, = 13. Here we restrict ourselves to a paréar class of ArnouxziRaystems, built
by applying successively rulegs; | times, rule2 g¢s;, o times, rule3 ¢s;, 3 times, then ruld ¢34
times and so on, starting froim= 0; this gives a uniquely ergodic (by Boshernitzan’s resulh@s
complexity [5]) systemY, S), and, when the, grow to infinity fast enough, as a straightforward
consequence of the definition, this system is measuredhealty isomorphic to a rank one system
defined by the word/, and the towerg/,., ; = s (Hj)%+1, where, fork = 3[+1 (resp.k = 3[+2,

k = 31+ 3) H, has namé&,, , (resp.Z, X), andt, is the lengthotZ,, ., (resp.X,Y’). These
systems are proved to be weakly mixing in [7].

Proposition 4.9. One can construct recursively sequeneesn, p such that the corresponding
transformation?” is uniquely ergodic, weakly mixing, and measure-theoadifigsomorphic to an
Arnoux-Rauzy system.

Proof
We build simultaneouslyn, ny, pr defining our transformatiofd’ and ¢, defining our Arnoux-
Rauzy system.

At each stageq, andb, are coprimep, > ai, anda, = hy, h, being the length off,. At
the beginning, we choose the first parameters so that thenpssms are satisfied at stage At
stagek choose firspy. 1, such that, ift, is defined above fromy, ... g and the rules defining an
Arnoux-Rauzy system, as the length4f ., , resp.X, Y according to the class éfmodulo3,

pk+1bk + ¢ =t mod A
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then we choose,,; large enough for satisfying the hypothesis of Propositidhahd such that
(ngs1 + 1)ag + pra1br + ¢ is coprime withb, — ay, thenmy. 1 = ug. a5, fOr a positive integer
ug+1, SO thatay,, andb,., are again coprime, angl,; > a,.;. Then we choose;.; so that

hi+1 = axy1. We conclude as in the proof of Theorem 4.6. O

Note that all the examples in this section are rigid by Pramrsl.1.

5. NON UNIQUELY ERGODIC EXAMPLES

Definition 5.1. Givenm = {my, k € N}, n = {ng, k € N*}, withn,,; > my > ny, letT'(m,n)
be the admissible path defined as follows, which starts ffaand then follows infinitely many
timesapathV — 1 —VII—-1—-1V:

let fo = ny, e = my — fr_r and fp = ngy1 — e, for k > 1, thuse, > 0 and f, > 0. Atthe
beginning of stepr we are in/V'; we go tol by (—, —, —), then apply instructioni+, —, +) e, — 1
times, staying irf, then then gotd’ /1 by (+, +, +), then go tal by (+, +, +), apply instruction
(+,—,—) frx — 1 times, staying i1, then go back tdV by (—, —, —). Before stef, starting from
I we apply instructiorf+, —, —) f, — 1 times, staying irf, then go taV by (—, —, —).

All transformations” in this section are such that their path in the graph of gra'pzhsl“(m, n).

Indeed, in this definitiomn, is the number of consecutive times wh&htakes—, the — edge
from 22 being a loop in the castle grapP2 does take- when we are i/ or IV but not when
we are inV/ 11, som,, counts also the number of times we are consecutively iV, and/ again,
between two passageslify /. Similarly n,, is the number of consecutive times whentakes+,
the+ edge froml 1 being a loop in the castle graph, and that happens when wa am@r iV /1.

Thee, and f;, can be seen as auxiliary quantities with = ¢, + fr_1 andng,, = e + fi; the
indexing has been chosen so that Lemma 5.1 depends ¢n and Corollary 5.3 will thus depend
onnyg.1 andmy 1, and only that corollary will be used in the sequel.

In the same way as in the previous section we prove

Lemma 5.1. The names of tower8;(k) and M;(k) when we are in vertekV at the beginning of
stepk are given by the following rules:

Pi(k+1) = (M;(k)Ps (k)5 M,y (k) My (k) Py (F),

By(k+1) = ( 2 (k) Py (k) Ms (k) Py (k) Mo (k)T Mo () P (k).

Py(k + 1) = M (k) Py (k) Ma(k) Py (k) My (k) My (F) Ps (k),

My(k+1) = (Ml(k)Ps(k))e”f"Ml

My(k + 1) = My(k)** Py(k) Ms (k) Py (k) Ma(k),

Ms(k + 1) = Ms(k)Py(k) My (k) Py (k) Ms(k);

with initial values P,(0) = (14)/07113, P,(0) = 2/0t!, P3(0) = 314, M;(0) = (14)711,

Note thatP,(k + 1) does indeed contaii/,(k + 1), and evenVl,(k + 1), as a strict prefix, as
the last instruction i$— — —) from I, and the instruction fo2 has been- f; times.

Lemma 5.2. Let £, (k) be the intervalF’; when we are in vertekV at the beginning of step; its
induction castle is made of four towers, whose names are

[ ] Ak = M1<]{Z)P3(l{?),

[ J Bk = Ml(]{})M:;(]{I),
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o C) = P(k)My(k) Py(k)M;s(k),

o Dy = Py(k)My(k)* T Py(k) M3 (k).
Corollary 5.3. The above names are given by the formulas

° Ak+1 == Azk+lBkaAk,

e By = A" BLCy,

o Chi1 = A BLCy D Gy,

o Dyiy = AP BLCL DTG
with initial valuesA; = (14)™1314, By = (14)m~113, C} = (14)™~1132m+13,
Dy = (14)m~1132m1+23,

Towers and lengths are denoted as in the previous sectiomwéeshall fix our partial quotients
so that the towerd, and the tower$®),. behave like independent systems, so that the transformatio
T has two ergodic invariant measures, one mainly concedtmateéhe towersi, and giving a rank
one system with this family of towers, and the other doing shene with the tower®),. By
ensuring the, are even, we get an eigenvalélefor the first system, while the length&g will
ensure the second one is weakly mixing by contradicting tibermn in Proposition 1.2.

Proposition 5.4. If

Npt10
— Npg1ay,
400
g0y +bp +2¢, 1
Z Mpy1d <Z’
— k+1dg

thenT has exactly two ergodic invariant probability measurgsand p.; (X, T, 111) is measure-
theoretically isomorphic to the rank one system defined éybrd A; and the towers

U — I \Mg41 oOk41—Nk410k .
A1 = (Ak) S )

(X, T, us) is measure-theoretically isomorphic to the rank one systefimed by the word, and

the towers

Dl,€+1 — Sdk+1_(mk+1+1)dk_ck(D’)Zlk+1+1sck.

Proof
Let ¢, andn, be respectively thé-th term of the first and second series above. [Ldte any
invariant probability for7: each level in a given tower has the same measure, hence akie ab
conditions and the formulas in Corollary 5.3 ensure thatoeer A, has measure at leakt— ¢,
in the towerA, ., ; and the toweD, has measure at lealst- ), in the towerD;., 1, while the towers
By, Cx have measure at most + 7, in each towerd, 1, Byi1, Cri1, Diy1, hence in the whole
space.

Thus we can build a measure-theoretic isomorphism betweerank one systerfiX’, 7", 1//)
with towers A, and (X, T") equipped with some invariant probability measusewhich we re-
trieve fromy/, andy, is ergodic ag/’ is. We do the same for the rank one system with tow#rs
defining an ergodig:.,. Then the towerd; has measure greater thérior w1 and smaller tha@
for us, thus they are different, and it is known [23] [37] thathas at most two invariant ergodic
probabilities. O

Note that the two convergent series conditions are exaletyohe needed in the definition of
rank one systems.
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Theorem 5.5. One can construct recursively sequeneesn such that the corresponding trans-
formationT" is not uniquely ergodic, topologically weakly mixing, wigakiixing for one of its
invariant ergodic measures, while for the other one it Iém an eigenvalue.

Proof
We fix M > 5 such that for ally > M there exist a prime number betweén/10 and 9y /10
and a prime number betweeéty /10 and14y/10. This is possible as a consequence of the prime
numbers theorem.

At the beginning, note that,, b; are even; we choose andm; such that; is even; is odd,
a; andd; are coprime.

Given ay, by, ¢, di, Somep, to be specified later, and the assumptions thaand d, are
coprime,ay, by, ¢, are even and, is odd, we choose the next partial quotients as follows.z}.et
be the greatest common divisor@f anddy, with dy, = d} zy., pr = p).z. Note thatd), > 2 asdj, is
odd. Letp”, be an inverse of;, modd,.. We choose first a unit, of Z/d},Z such that

uy, Z pr(ax —c) +t mod d, forany —d/2M <t <d/2M.

This is possible: itl;, > M, we take the class moduit) of one of the two prime numbers defined
above fory = dj, (the first one if the class qf, (ax — ¢) is betweerD) andd), /2, the second one
otherwise), while i2 < d; < M this forbids at most one unit. We choose now a uRiof Z/d,Z
such that
up = p’ru, mod d

(this is possible as, to be a unit, has just to be coprime with the prime factorsdpfwhich are
not factors ofZ}). Now we choose,.,, large enough for the first condition of Proposition 5.4 and
such that

Np1a = Uk, — G — b — ¢, mod dk,
thusay. 1 is coprime withd,; and we choose them, ., large enough for the second condition of
Proposition 5.4 and such that

(mygy1 + 1)dy, + ¢, — ai  is invertible modulo ay. 1.
Thus our assumptions are satisfiedfor 1 (note thatm,; has to be even).

We explain now how to choose thg. Whenm, . ; andn,_, are fixed, for any) < p < d; there
is at most one integér < [ < dj 1 such that

D [ 1
dp  dip|  2Mdg

We call this integef = ¢;.1(p), when it exists. Now, our choice of partial quotients ensuhat
Prdii1 = pruk + pr(ce — ar) moddy, andpyus, # pr(ax — ¢) + ¢ modd,, for any —d, /2M <
t < di/2M (by multiplying by z; the relation satisfied by, , andp, u,, modd,), thusp,dy1 # t
modd,, for any —d;/2M < t < di/2M; this means exactly that, ., (px) does not existStarting
from k; = 1, we define inductively a sequence of integeysat stagej we putp,, = 1; then
Pr+1 = Ok, +1(2) if it exists, otherwisepy, .1 = ¢, 1(3) if it exists, and so on... If n@y, 1 (p)
exists anymore, we plt;,, = k; + 1, otherwisep,, 1 will be somegy; 11(p), and forp,;, ., we try
first g, 20, +1(p + 1) if it exists, thendy, ,2dx, 41 (p + 2) and so on.... If NGy, ¢, +1(q) EXists
anymore, we puk;,; = k; + 1, otherwisepy, ,» is Somepy, 2, +1(q), and forp, 3 we try first
D1, +30k,1201,41(q + 1) if it exists, and so on. .. After at mos}, — 1 steps, we have definéd.
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and ensured that for afly< p < dy,, there exist$ < k;,; suchthat, . .. ¢, ,1(p) does not exist;
then we start again from,,,, = 1. ’

We apply Proposition 5.4 to get; andu,. As a; is always even( X, T, i11) has an eigenvalue
: asin Theorem 4.7. Now, létbe an eigenvalue fqtX, T’ ;1,): by Proposition 1.2 we must have
my1||di8]| < g3 for & large enough, which impliel¢ — | < m for k large enough and
somel < t, < dy; this implies that for alk large enoughy,.. (1) exists and i, and this is
impossible by the choice ¢f,. Thus(X, T, us) is weakly mixing, which implies the topological
weak mixing ofT" (which we could also have ensured directly as in Propositidin O

As in [26] we can choose the vector of lengths (among a segaigrassible solutions), so that
11 IS the Lebesgue measure, or so thats the Lebesgue measure, or so that neithamor p is
the Lebesgue measure. Note that 7', ;) and(X, T, ) are rigid by Proposition 1.1.

6. QUESTIONS AND COMMENTS

Among examples we would have liked to build are transforomati” with two (or more) ratio-
nally independent irrational eigenvalues; a similar relsas been claimed by Parreau and Guenais
(still unpublished) fokl = 3 intervals, by very different methods which do not geneeal@d > 3;
the methods of the present paper being based on rank oneywahabuld need is an explicit rank
one construction for rotations @, and this in itself is an interesting open problem.

Very interesting also would be a transformatigrwith a continuous eigenfunction; this does
not exist ford = 3 intervals [30]; for everyl > 4 nontrivial examples have been derived by Hmili
[22] (in answer to a question asked in a preliminary versiothe present paper): these examples
are semi-conjugate, in a rather straightforward way, tatrons ofT;. Older examples have been
built by Arnoux and Yoccoz [2] for some permutation @a-= 7 intervals: they are semi-conjugate,
in a non-straightforward way, to rotations®f. No example we know of has total irrationality.

The condition of alternate discontinuities simplifies titeation but can be dispensed with, see
[21]. The generalization of our methods to build exampled artervals should not introduce any
fundamental difficulty but the computations become horoersg as for other permutations than
the symmetric one, while our self-dual induction is not dediin the general case, it can be made
to work on classes of examples as in [21]; but the c¢ase 4 for one non-trivial permutation is
representative of the whole problem, as happens for Kef2@sron-uniquely ergodic examples
which were not extended beyond that until a recent cours@otdz [42].

We recall that Veech’s question on simplicity is far fromeal; another question is to define a
setM” as in the introduction by requiring to betopologically strongly mixingthat is, for every
Borelian A and B, T"A N B is nonempty forn large enough. Boshernitzan (unpublished) has
proved thatM” is empty ford = 3 intervals, but, after many computer simulations, conjesgu
that M” is of full measure forl > 4 intervals. Again during the process of refereeing the prese
paper, this question has been mostly solvedifer 4 by Chaika [8] (he gets a residual set, though
not necessarily of full measure).

As for the specificity of the self-dual induction: it is pdsig that these or similar examples
could have been obtained via other well-known inductionhods, by first building a parametrized
family of examples, and then manipulating the parametensledd this approach was used by
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Chaika to answer a related question [8], starting from thelfaof examples in [26] which was
built by using a variant of the Rauzy induction (actuallyeaidr to Rauzy).

However, the authors found the self-dual induction devetbperein to be well suited for this
task. In particular, one can stress the role of the quastitie call partial quotients, which appear
naturally as the number of consecutive times a given looplisvied in a castle graph, and which
share some of the arithmetic properties of the usual paytiatients in the Euclid algorithm; in-
deed, in the simpler case df = 3 intervals, they are used to define a multiplicative selfidua
induction [20], though this is less obvious i@k 4.
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