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EIGENVALUES AND SIMPLICITY OF INTERVAL EXCHANGE
TRANSFORMATIONS

SÉBASTIEN FERENCZI AND LUCA Q. ZAMBONI

ABSTRACT. For a class ofd-interval exchange transformations, which we call the symmetric class,
we define a new self-dual induction process in which the system is successively induced on a union of
sub-intervals. This algorithm gives rise to an underlying graph structure which reflects the dynamical
behavior of the system, through the Rokhlin towers of the induced maps. We apply it to build a
wide assortment of explicit examples on four intervals having different dynamical properties: these
include the first nontrivial examples with eigenvalues (rational or irrational), the first ever example
of an exchange on more than three intervals satisfying Veech’s simplicity (though this weakening
of the notion of minimal self-joinings was designed in 1982 to be satisfied by interval exchange
transformations), and an unexpected example which is non uniquely ergodic, weakly mixing for one
invariant ergodic measure but has rational eigenvalues forthe other invariant ergodic measure.

1. PRELIMINARIES

Interval exchange transformationshave been introduced by Oseledec [32], following an idea
of Arnold [1]; an exchange ofd intervals is defined by a probability vector ofd lengths and a
permutation ond letters; the unit interval is then partitioned according tothe vector of lengths,
andT exchanges the intervals according to the permutation, see Sections 1.1 and 1.2 below for
all definitions. Katok and Stepin [24] used these transformations to exhibit a class of systems
with simple continuous spectrum. Then Keane [25] defined a condition called i.d.o.c. ensuring
minimality, and was the first to use the idea of induction, which was later formalized by Rauzy
[34], as a generalization of the continued fraction algorithm. These tools formed the basis for
future studies of various ergodic and spectral properties for these dynamical systems. For general
properties of interval exchange transformations, the reader can consult the courses of Viana [41]
and Yoccoz [42] [43].

In this paper we studyd-interval exchange transformationsT , defined by a vector(α1, . . . αd) of
lengths and thesymmetricpermutationπi = d+1− i, 1 ≤ i ≤ d; we callI the set of(λ1, . . . , λd)
in R

+d for which T , defined by the vector( λ1

λ1+...λd
, . . . , λd

λ1+...λd
), satisfies the i.d.o.c. condition;

henceforth we shall consider only transformations satisfying this condition: letU , resp.M′, M,
N , S be the subset ofI for whichT is uniquely ergodic, resp. topologically weakly mixing, resp.
weakly mixing for at least one invariant measure, resp. not weakly mixing for at least one invariant
measure, resp. simple for at least one invariant measure. A great part of the history of this area is
made by the difficult results about these sets. After Keane provedm(Rd+\I) = 0 for the Lebesgue
measurem on R

d and the surprising result that (ford = 4) U c (for X ∈ {U ,M′,M,N ,S} we
call Xc its complement inI) is not empty [26], he conjectured thatm(U c) = 0. This conjecture
was proved by Masur [29] and Veech [39], see also Boshernitzan [6] for a combinatorial proof
closer to the spirit of the present paper. Then Veech [40] proved thatm(Mc) = 0 for some
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2 S. FERENCZI AND L.Q. ZAMBONI

permutations, not including the symmetric one ford = 4; it took quite a long time to have, for all
permutations outside the rotation class, firstm(M′c) = 0 (Nogueira-Rudolph [30]), then at last
m(Mc) = m(N ) = 0 (Avila-Forni [4]); whetherm(Sc) = 0 is still an open question asked by
Veech [38]; note that the result on weak mixing in [4] is validboth for one invariant measure and
all invariant measures becausem(U c) = 0.

While all these extremely powerful articles establish generic results for general interval ex-
change transformations, here we aim to provide a detailed analysis of the dynamical behaviour of
specific families of interval exchanges; more precisely, wewant to address problems concerning
relations between the sets defined above, nothing of which was known until recently ford > 3,
except obvious relations asM′ ⊂ M, U ∩ N ∩ M = ∅ and(U ∩ N ) ∪ (U ∩ M) = U . It was
not known whetherN is nonempty or even thatS, which is likely to have full measure (indeed,
the whole notion of simplicity has been devised for that, andVeech’s question has been much in-
vestigated), is nonempty; we can also ask about the non-emptiness of some intersections such as
U c ∩M or (more difficult as these are two small sets)U c ∩N . Another problem is to find explicit
examples (in the sense that maybe the vector of lengths is notgiven, but it can be computed by an
explicit algorithm), and not only existence theorems; veryfew of them were known: ford = 4, ex-
plicit elements ofU c are given by Keane [26] while explicit elements ofU can be deduced from the
same paper, or built from substitutions, or pseudo-Anosov maps, by a classical construction; but
none were known in other sets, even in the bigger ones, until,during the preparation of the present
paper, Sinai and Ulcigrai [35] found explicit elements ofM, while Yoccoz [42] built explicit ele-
ments ofU c for everyk; other related results [22][8] were derived after preliminary versions of the
present paper were circulated, see the discussion in Section 6 below.

Similar questions have been addressed for the (by unanimousconsent much easier) cased = 3,
by Veech [36], del Junco [12], and the present authors plus Holton [15][16][17][18]; the methods
of these papers have had to be considerably upgraded to tackle the next case,d = 4. Thus we have
introduced a new notion of induction, beside the classical ones due to Rauzy [34], Zorich [44],
and more recently Yoccoz ([28] where a good survey of all these notions can also be found). This
self-dualinduction, studied in more details in [21], is a variant of the less well-known induction
of da Rocha [27] [11], and ford = 3 its measure-theoretic properties and self-duality are studied
in [20]. We present it in Section 2 below, and use it in Sections 3 and 4 to build families of
explicit examples of four-interval exchanges; each example is described by four families of Rokhlin
towers, depending on partial quotients of our induction algorithm. After a good choice of these
partial quotients, our transformation will have the required properties through a measure-theoretic
isomorphism with a rank one system. Whether and why this new induction was necessary to
answer the questions we addressed will be discussed at the end of Section 6 below.

What we obtain in the end is some groups of examples ford = 4: two in U ∩ M′ ∩Mc, one
having rational eigenvalues and the other being measure-theoretically isomorphic to an irrational
rotation, one inU ∩M′∩M∩S, and one inU c ∩M′∩M∩N . We find also elements ofU ∩M
which are measure-theoretically isomorphic to some of the so-called Arnoux-Rauzy systems. All
the examples we produce come from expansions having (very) unbounded partial quotients in our
induction algorithm. That makes our elements ofM a priori different from Sinai-Ulcigrai’s ones,
these being obtained from periodic examples relative to a different induction algorithm; in partic-
ular, our examples are all rigid, and completely new; their existence was not unexpected, but the
existence of an example with irrational eigenvalues for thesimpler cased = 3 was the object of
a question of Veech (1984) which was solved only in [17] (2004); our examples prove also that
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Avila-Forni’s result is strictly stronger than Nogueira-Rudolph’s. The first example of an exchange
on more than three intervals which is simple is not surprising, but this resisted the efforts of spe-
cialists during 25 years, and constitutes a first step towards Veech’s open question. As for our last
example, which is weakly mixing for one of the two invariant ergodic measure but has rational
eigenvalues for the other, it came as a surprise even for the authors.

For generalizations (to other permutations and values ofd), see Section 6 below.

Acknowledgments: the authors wish to thank J. Cassaigne, C. Mauduit, and J. Rivat for their
help in arithmetics, T. Monteil for drawing some of the pictures. The second author was partially
supported by grant no. 090038011 from the Icelandic Research Fund.

1.1. The main definitions.

Definition 1.1. A symmetricd-interval exchange transformationis ad-interval exchange transfor-
mationT with probability vector(α1, ..., αd), and permutationπi = d + 1 − i, 1 ≤ i ≤ d defined
by

Tx = x +
∑

π−1j<π−1i

αj −
∑

j<i

αj .

whenx is in the interval

∆i =

[

∑

j<i

αj ,
∑

j≤i

αj

[

.

We denote byβi, 1 ≤ i ≤ d − 1, thei-th discontinuity ofT−1, namelyβi =
∑d

j=d+1−i αj , whileγi

is thei-th discontinuity ofT , namelyγi =
∑i

j=1 αj = 1−βd−j . Then∆1 = [0, γ1[, ∆i = [γi−1, γi[,
2 ≤ i ≤ d − 1 and∆d = [γd−1, 1[.

Definition 1.2. T satisfies theinfinite distinct orbit condition(or i.d.o.c. for short) of Keane[25] if
thed− 1 negative trajectories{T−n(γi)}n≥0, 1 ≤ i ≤ d− 1 of the discontinuities ofT are infinite
disjoint sets.

The i.d.o.c. condition forT is (strictly) weaker than thetotal irrationality condition on the
lengths, where the only rational relation betweenαi, 1 ≤ i ≤ d, is

∑d

i=1 αi = 1. As hereπ is
primitive, the i.d.o.c. condition implies thatT is minimal(every orbit is dense) [25].

1.2. A few notions from ergodic theory. A general reference for this section is [10].

Definition 1.3. A system(X, T ) is uniquely ergodicif it admits only one invariant probability
measure.

Definition 1.4. Let (X, T, µ) be a finite measure-preserving dynamical system.
A real number0 ≤ γ < 1 is an eigenvalueof T (denoted additively) if there exists a non-

constantf in L2(X, R/Z) such thatf ◦ T = f + γ in L2(X, R/Z); f is then aneigenfunctionfor
the eigenvalueγ. As, following[10], we consider only non-constant eigenfunctions,γ = 0 is not
an eigenvalue ifT is ergodic.T is weakly mixingif it has no eigenvalue.

Definition 1.5. (X, T ) is topologically weakly mixingif it has no continuous (non-constant) eigen-
function.
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In the particular case of interval-exchange transformations, the topology we use here is the
standard one (induced by the Lebesgue measure) on the interval [0, 1[ (thoughT itself is not con-
tinuous), but the proofs in the present paper work in the sameway if we viewT as the shift on the
symbolic trajectories, equipped with the product topologyon {1, ..., d}N; the two topologies are
not equivalent, and it does not seem to be known whether a continuous eigenfunction for one has
to be continuous for the other.

Definition 1.6. (X, T, µ) is rigid if there exists a sequencesn → ∞ such that for any measurable
setA µ(T snA∆A) → 0.

Definition 1.7. In (X, T ), a (Rokhlin)towerof baseF is a collection of disjoint measurable sets
called levelsF , TF , . . . ,T h−1F . If X is equipped with a partitionP such that each levelT rF is
contained in one atomPw(r), thenameof the tower is the wordw(0) . . . w(h − 1).

We shall use also the notion ofrank one, for various definitions see [9] [14] [31]. Here we need
only the definition of a particular class of rank one systems;they come equipped with a partition
and an invariant measure; we use the same notation for a towerand its name, ands (for “spacers”)
is the name of one atom of the partition, corresponding to levels added after the initial stage:

Definition 1.8. Letxk andyk be two sequences positive integers, and let the concatenation of two
strings of lettersv andw be denoted multiplicatively byvw, whilevk is a concatenation ofk times
the stringv.

Therank one system defined by the wordH0 and the towersHk+1 = syk+1H
xk+1

k szk+1, where, if
h0 is the length ofH0 andhk+1 = xk+1hk+yk+1+zk+1 the length ofHk+1, we have

∑+∞

k=1
yk+1+zk+1

xk+1hk
<

+∞, is the system(X, T, µ) built bycutting and stackingin the following way: we start from a set
E of measureξ, which is cut intoH0 equal parts to make the first tower. To get thej + 1-tower, we
cut thej-tower intoxj+1 columns, stack these columns by putting thexj+1-th above thexj+1 − 1-
th . . . above the first, and addzj+1 spacerlevels (that is, pieces ofEc with equal measure ) one
above the other above the top, andyj+1 spacer levels one above the other under the bottom.T is
the transformation that sends each point in a tower, except those in the top level, to the point just
above.

The numberξ and the common measureρj of the spacer levels in thej-tower are defined
uniquely so thatµ is a probability preserved byT , andX is partitioned so thatH0 is the name of
the0-tower, whileEc is the atom nameds.

A standard argument proves that

Proposition 1.1. The rank one systems defined above are rigid.

The following necessary condition for anyθ to be an eigenvalue of a rank one transformation
was originally deduced (in [17]) from a condition of Choksi and Nadkarni [9]; we give it here with
a new direct proof adapted from [7]:

Proposition 1.2. If θ is an eigenvalue for the rank one system defined above by the word H0 and
the towersHk+1 = syk+1H

xk+1

k szk+1 , thenxk+1||hkθ|| → 0 whenk → +∞, where|| || denotes
the distance to the nearest integer.

Proof
Let f be an eigenfunction for the eigenvalueθ; theσ-algebra generated by the levels of thek-tower
converges to the fullσ-algebra whenk tends to infinity, thus for eachε > 0 there existsN(ε) such
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that for allk > N(ε) there existsfk, which satisfies
∫

||f − fk||dµ < ε and is constant on each
level of thek-tower.

Let j be any integer with0 ≤ j ≤
[

xk+1
2

]

. Let τk be the union of the levels of thek-tower
between theyk + 1-th andyk + [xk

2
]hk−1-th levels; by construction, for any pointω in τk, T jhk−1ω

is in the same level of thek−1-tower asω. Thus forµ-almost everyω in τk, fk(T
jhk−1ω) = fk(ω)

while f(T jhk−1ω) = θjhk−1 + f(ω); we have
∫

τk

||fk ◦ T jhk−1 − jθhk−1 − fk||dµ =

∫

τk

||jθhk−1||dµ = ||jθhk−1||µ(τk)

and
∫

τk

||fk ◦ T jhk−1 − jθhk−1 − fk||dµ ≤

∫

τk

||fk ◦ T jhk−1 − f ◦ T jhk−1||dµ +

∫

τk

||fk − f ||dµ < 2ε.

As µ(τk) ≥ 1
3

for k large enough, the above estimates imply||jθhk−1|| < 6ε, for any integer
0 ≤ j ≤

[

xk+1
2

]

. Thus||jθhk−1|| < 12ε for any integer0 ≤ j ≤ xk.
Let ε < 1

40
, and suppose||xkθhk−1|| 6= xk||θhk−1||: let i be the smallest0 ≤ j ≤ xk such that

||jθhk−1|| 6= j||θhk−1||, theni ≥ 2 and||(i − 1)θhk−1|| = (i − 1)||θhk−1||, thusi||θhk−1|| = (i −
1)||θhk−1||+||θhk−1|| = ||(i−1)θhk−1||+||θhk−1|| < 18ε < 1

2
thus||iθhk−1|| = ||(i||θhk−1||)|| =

i||θhk−1||, contradiction. Thus we getxk||θhk−1|| < 12ε. �

Definition 1.9. A self-joining (of order two) of a system(X, T, µ) is any measureν on X × X,
invariant underT × T , for which both marginals areµ.

An ergodic system(X, T, µ) is simple(of order two) if any ergodic self-joining of order twoν
is either the product measureµ × µ or a measure defined byν(A × B) = µ(A ∩ U−1B) for some
measurable transformationU commuting withT .

2. THE SELF-DUAL INDUCTION

In the remainder of this paper (except for one example in Section 2.2), we calltransformationT
a symmetricd-interval exchange transformation satisfying the i.d.o.c. condition and the condition
of alternate discontinuities:

β1 < γ1 < β2 < γ2 < ...βd−1 < γd−1.

The condition of alternate discontinuities avoids introducing a lot of particular cases in the first
steps of our induction; the way it can be dispensed with is discussed in Section 6 below.

2.1. Castles and induction: definitions. Our transformationT is now fixed, on the interval[0, 1[.
We consider itsinduced maps: an induced map ofT on a setY is the mapy → T r(y)y where, for
y ∈ Y , r(y) is the smallestr ≥ 1 such thatT ry is in Y (when such anr exists, which will be true
in all cases considered in this paper).

In classical inductions,Y is generally an interval; here we consider disjoint unions of d − 1
intervals; and as for any induction, there is a canonical wayto build towers; following [11], we say
that a union of towers is acastle(the Ornstein school used the wordsstacksandgadgetsinstead of
towers and castles).

Definition 2.1. Givend − 1 disjoint intervalsEi, 1 ≤ i ≤ d − 1, let S be the induced map of
T on E1 ∪ ...Ed−1. Theinduction castleof theEi is the unique partition ofX into levelsT rIi,t,
1 ≤ i ≤ d − 1, 1 ≤ t ≤ ki, 0 ≤ r ≤ hi,t − 1, where

• each intervalEi is partitioned intoki subintervalsIi,t, 1 ≤ t ≤ ki,
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• SIi,t is a subinterval ofEji,t
, and onIi,t S = T hi,t.

A castle is indeed a union of Rokhlin towers, each tower beingmade with the levelsT rIi,t,
0 ≤ r ≤ hi,t − 1. Note that theki are finite by compactness, but that in general each of thed − 1
intervals could be partitioned in many subintervals; only for interval exchange transformations and
the type of induction chosen shall we be able to bound these numbers.

We define now a new induction operation, as a way to associated − 1 new intervalsE ′
i to d − 1

intervalsEi, 1 ≤ i ≤ d − 1. It was primarily motivated by considerations from word combina-
torics, thed − 1 families of subintervals corresponding to thebispecial factors of the associated
language, which implies that their endpoints are the points where theorbit of any discontinuity of
T comes close to any discontinuity ofT−1; this in turn implies an interesting geometric property
of the natural extension of our induction, studied in [20] for d = 3, which prompted us to call our
inductionself-dual.

The process is discussed and described in full generality in[21]; we give here a self-contained
and slightly different description, adapted to our present(mainly ergodic) aims: indeed, the result
we use in the present paper is the explicit description of theinduction castles, which appears only
as a by-product in [21]. Our intervals will be built so that the induction castles have always a nice
structure: namely, the intervals at the initial stage are the ∆i, 1 ≤ i ≤ d − 1, and, as we shall see
in Lemma 2.2 below, their induction castle isbinary:

Definition 2.2. A castle isbinary if for each1 ≤ i ≤ d − 1 ki = 2 and there are exactly twojl,t,
1 ≤ l ≤ d − 1, t = 1, 2 which are equal toi.

When a castle is binary, we denote byEi,m andEi,p the left and right subintervals among the
two Ii,t, byEi,− andEi,+ the left and right subintervals among the twoSIl,t which are inEi. Also,
we denote byp(i), resp.m(i), thej such thatEj containsSEi,p, resp.SEi,m. Finally, we denote
by li, resp.ri, the length ofEi,−, resp.Ei,+ for 1 ≤ i ≤ d − 1.

It seems likely that for all binary castles we haveSEi,m = Em(i),+ andSEi,p = Ep(i),−, but we
have not been able to find a direct proof using the i.d.o.c. condition. Indeed, we do not know any
example of a binary castle other than those built by our induction, or small variants of it (see also
Section 2.2 below), and for them the above properties are true by construction, implying thatp and
m are bijections.

One of our aims is to keep all induction castles binary throughout the process; to achieve that,
we use an auxiliary property, which at the initial stage is satisfied withs being the identity:

Definition 2.3. A binary castle issymmetricif it is endowed with a bijections on {1, ..., d − 1}
such that

s−1 = psp = msm = s

and that for alli, we have therelations

• ls(i) + rs(i) = li + ri

• li = lps(i),
• ri = rms(i).

The relations above are studied in depth in [21] where (in contrast with the present paper) they
are used as the basic tool to define the induction.
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Definition 2.4. A relation is calledtrivial if it is ls(i) + rs(i) = li + ri with s(i) = i, or li = lps(i)

with ps(i) = i, or ri = rms(i) with ms(i) = i, non-trivialotherwise.

We may haves = Id, the identity; in that case all the relationsls(i) + rs(i) = li + ri are trivial,
and the only non-trivial relations areli = lp(i) for p(i) 6= i andri = rm(i) for m(i) 6= i; this is what
happens (ford = 4 intervals) in the first stage of the example in Section 2.2 just below, where it
turns out that there are only two different non-trivial relations. It can also happen thats has a cycle
of length two, as in the second stage of the example in Section2.2; then whens(i) 6= i, the non-
trivial relationls(i) + rs(i) = li + ri expresses that the intervalsEi andEs(i) have the same length,
but there are also non-trivial relationsli = lps(i) or ri = rms(i). Indeed in [21] it is proved that
in all binary symmetric castles used in the induction, thereare exactlyd − 2 different non-trivial
relations, and we shall check this ford = 4 in Lemma 3.1 below. Note that in a symmetric binary
castlep andm are bijections.

Binary symmetric castles are conveniently described by thefollowing object:

Definition 2.5. Thecastle graphof a binary symmetric castle is the oriented graphG whose ver-
tices are the two-letters wordsis(i), 1 ≤ i ≤ d − 1, and for eachi there is apositiveedge from
is(i) to p(i)sp(i) and anegativeedge fromis(i) to m(i)sm(i).

The induction associates tod − 1 intervalsEi containingβi, 1 ≤ i ≤ d − 1, a new family of
intervalsE ′

i. For a given1 ≤ i ≤ d − 1, eitherE ′
i = Ei, or E ′

i = Ei,m, or E ′
i = Ei,p, with the

notations of Definition 2.2. WhenEi is cut, it is cut by the point separatingEi,m andEi,p, which
is indeed the first pointT−sγj, s > 0, 1 ≤ j ≤ d − 1, to fall in the interior ofEi, see [21] for
details; the choice ofEi,m or Ei,p is then made to ensure thatβi is in E ′

i. The choices of cutting or
not cuttingEi are made so that the induction castle of theE ′

i remains binary symmetric, this will
be the difficult part and this last property is the crucial onefor the sequel.

Definition 2.6. We callself-dual inductionthe following process: supposeEi = [βi − li, βi + ri[,
1 ≤ i ≤ d − 1 ared − 1 disjoint subintervals such that their induction castle is binary symmetric
and has a castle graphG with bijectionsp, m, s, and that for everyi li − rs(i) = ls(i) − ri 6= 0; we
define theinstructionι by the sign (+ or −) of this last quantity,

ιi = ιs(i) = sgn(li − rs(i)) = sgn(ls(i) − ri);

let C be the maximal union of same-sign circuits ofG using only the edges starting fromis(i) and
of signιi, 1 ≤ i ≤ d − 1; then we defined − 1 new disjoint intervals by

• if is(i) ∈ C andιi = +, E ′
i = Ei,p,

• if is(i) ∈ C andιi = −, E ′
i = Ei,m,

• if is(i) 6∈ C, E ′
i = Ei.

2.2. Castles and induction: examples.It is time now to look at castles and castle graphs in
concrete situations. We look first at what happens ford = 4 intervals, at the first stage of the
induction, see Lemma 2.2 below. To draw the pictures, we assume, together with the condition
of alternate discontinuities, thatβ1, resp. β2, β3, is to the left ofT−1γ3, resp. T−1γ2, T−1γ1.
Figure 1 shows the induction castle of the intervalsE1 = ∆1 = [0, γ1[, E2 = ∆2 = [γ1, γ2[,
E3 = ∆3 = [γ2, γ3[; it is made of three towers, which we draw separately becausewe choose to
forget thatE1, E2 andE3 are adjacent, as it happens at this stage only; to save space,we denote by
γ

(j)
i the pointT−jγi.
The picture shows that the castle is binary, withE1,− = [0, β1[, E1,+ = [β1, γ1[, E1,m =

[0, T−1γ3[, E1,p = [T−1γ3, γ1[, [γ3, 1[= TE1,p, E2,− = [γ1, β2[, and so on. The labels give the
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4

1

0 β1 γ
(1)
3

γ1

γ3 1

2

γ1 β2 γ
(1)
2

γ2

3

γ2 β3 γ
(1)
1

γ3

FIGURE 1. First stage of towers1, 2 & 3.

names of the towers: on the first tower they indicate thatE1 is a subinterval of∆1 andTE1,p is a
subinterval of∆4, thus when we read them from bottom to top, we get theM1 andP1 of Lemma
2.4 below. We see also thatS = T 2 onE1,p, S = T everywhere else.

Some more information we have not yet written is thatSE1,m ⊂ E3 thusm(1) = 3; indeed we
haveSE1,m = E3,+, and similarlySE1,p = E1,−, SE2,m = E2,+, SE2,p = E3,−, SE3,m = E1,+,
SE3,p = E2,−, thusp(1) = 1, m(2) = 2, p(2) = 3, m(3) = 1, p(3) = 2. Moreover we check
that the castle is indeed symmetric fors = Id: this means checkingp2 = m2 = Id and the nine
relations on lengths in Definition 2.3: five of them are trivial (li+ri = li+ri for i = 1, 2, 3, l1 = l1,
r2 = r2), the non-trivial ones arer1 = r3 andl2 = l3, each of them appearing for two values ofi.

Thus the information which was not in the picture of the castle is conveniently summarized by
the castle graph on the left of Figure 2, which is vertexI of the graph of graphsΓ4, see Lemma 3.1
below.

11 33 22

–

– +

+

–+

I

13

22

31

–

–

–

+ +

+

IV

FIGURE 2. The castle graphs at first and second stage.

We look now at what happens at the next stage, assuming the condition of alternate discontinu-
ities, and the respective positions ofβi andT−1γj from the first stage.
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Applying Definition 2.6, we see that at the first stage the instruction isι1 = ι2 = ι3 = −. In
the castle graph there is a− circuit with the vertices11 and33, and a− loop around the vertex22,
thusC = {11, 22, 33}, and fori = 1, 2, 3 theEi at second stage is theEi,m of first stage.

Thus we can draw the induction castle of the newE1, E2, E3; to position the points, we make
the extra assumption thatβ1, resp.β2, β3, is to the left ofT−2γ1, resp.T−2γ2, T−2γ3.

3

1

0 β1 γ
(1)
3γ

(2)
1

γ
(1)
1

γ3

2

2

γ1 β2 γ
(1)
2γ

(2)
2

γ
(1)
2

γ2

1

3

4

γ2 β3 γ
(1)
1γ

(2)
3

γ
(1)
3

γ1

γ3 1

FIGURE 3. Second stage of towers1, 2 & 3.

The reader can now decipher this picture as in the previous stage. The extra information is
that nowm(1) = 3, p(1) = 2, m(2) = 2, p(2) = 3, m(3) = 1, p(3) = 1, and the new castle is
symmetric with the involutions(1) = 3, s(2) = 2, s(3) = 1; this involves checkingpsp = msm =
s and the non-trivial relationsr1 + l1 = r3 + l3 (the intervalsE1 andE3 have the same length),
l2 = l3. Thus the new castle graph is shown on the right of Figure 2; itis vertexIV of the graph of
graphsΓ4, see Lemma 3.1 below.

A non-symmetricbinary castle can be found in Section 5.1 of [21], for a4-interval exchange
with permutationπ1 = 4, π2 = 3, π3 = 1, π4 = 2. In the initial stage, the castle ofE1, E2,
E3 is binary withp(1) = 3, m(1) = 2, p(2) = 1, m(2) = 3 p(3) = 2, m(2) = 1, and the
relations between the parameters areli,n + ri,n = lp(i),n + rm(i),n, i = 1, 2, 3 (these hold also for
the symmetric castles considered in the present paper, see the proof of Proposition 2.1 below) but
they do not yield the relations of Definition 2.3, and indeed in [21] we choose the parameters so
that no relationli = lj, ri = rj or li + ri = lj + rj holds fori 6= j. Thus for no choice ofs can the
relations in Definition 2.3 be satisfied.

With the symmetric permutationπ1 = 4, π2 = 3, π3 = 2, π4 = 1, we get non-symmetric
castles when we induce against the rules of Definition 2.6, for example if at the first stage above
we choose the newE1 to be the full oldE1 instead of the oldE1,m, but such castles are not binary
either.

As one of the referees pointed out, for a binary castle wherem andp are bijections, the reciprocal
map is also a binary castle, whose combinatorics is given bym−1 andp−1, and, for a symmetric
binary castle, the reciprocal castle has the same combinatorics up to a permutation of names by
an involution. This last condition, however, is in general weaker than the symmetry we define,
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as it is satisfied by the non-symmetric castle defined above for a non-symmetric permutationπ,
with the involutions(1) = 1, s(2) = 3, s(3) = 2; what are missing there are the non-trivial
relations between the lengths, for examplel2 + r2 = l3 + r3. Still, it is quite possible that when
the permutationπ is the symmetric one every binary castle is symmetric, see the remark after
Definition 2.2. We do not know whether a castle can have the same combinatorics as its reciprocal
castle up to a permutation of names which is not an involution.

2.3. Castles and induction: results.The following proposition describes how the induction
works, and gives conditions ensuring that it can be iterated.

Proposition 2.1. If Ei, 1 ≤ i ≤ d − 1, is a set of disjoint intervals such that

(1) Ei = [βi − li, βi + ri[, li > 0, ri > 0,
(2) all their endpoints are of the formT aγb for a ≤ 1 andb = 1, 2, 3,
(3) their induction castle is binary symmetric, with bijectionsp, m, s,
(4) SEi,p = Ep(i),− = [βp(i) − lp(i), βp(i)[,
(5) SEi,m = Em(i),+ = [βm(i), βm(i) + rm(i)[.

Then we can apply the self-dual induction to theEi, and the newE ′
i satisfy (1) to (5), with new

parametersl′i, r′i, and bijectionsp′, m′, s′ given by the following rules

• if is(i) ∈ C and ιi = +, l′i = li − rs(i) = ls(i) − ri, r′i = ri, s′(i) = sp(i), p′(i) = p(i),
m′(i) = mp(i),

• if is(i) ∈ C andιi = −, l′i = li, r′i = ri − ls(i) = rs(i) − li, s′(i) = sm(i), p′(i) = pm(i),
m′(i) = m(i),

• if is(i) 6∈ C, l′i = li, r′i = ri, s′(i) = s(i), p′(i) = p(i), m′(i) = m(i).

Proof
We know thatEi,− = [βi − li, βi[ andEi,+ = [βi, βi + ri[; the symmetry of the castle implies
the relations of Definition 2.3. We know also thatEi,p is the right subinterval ofEi with the same
length asEp(i),−, namely

Ei,p = [βi − lp(i) + ri, βi + ri[.

Similarly
Ei,m = [βi − li, βi − li + rm(i)[.

This implies thetrain-track equalities(see [33] for example)li +ri = lp(i) +rm(i), which is another
way of stating the above relations (the equivalence of the set of the train-track equalities and the
set of relations in Definition 2.3 is shown in [21], it is not used in the present paper).

This implies also thatli − rs(i) = ls(i) − ri 6= 0, as otherwiseβi would be the left endpoint of
Ei,p, hence its image byS would be the left endpoint ofEp(i), which is impossible because of (2)
and the i.d.o.c. condition.

Thus we can apply the self-dual induction, withC as in the definition. LetS ′ be the induced
map ofT onE ′

1 ∪ ...E ′
d−1.

If is(i) ∈ C, with ιi = +: we say thatEi has beencut on the left; because of the relation
lp(i) = ls(i), we havelp(i) − ri > 0, and thusβi ∈ Ei,p = E ′

i. If is(i) ∈ C with ιi = −, whereEi is
cut on the right, we use the relationrm(i) = rs(i) to prove thatβi ∈ Ei,m = E ′

i. If is(i) 6∈ C, Ei is
not cut andβi ∈ Ei = E ′

i. Thus in each case we can definel′i andr′i, they are given by the claimed
expression. Moreover the endpoints of theE ′

i have the required form.
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βk

βj

βi

Mj

Pi

Ek,+

Ej,−

Ei,− Ei,+

Ej,m

Ei,m Ei,p

T−aγ

T−bγ′

FIGURE 4. Evolution of Rokhlin towers.

We look at the action ofS ′ on E ′
i. Supposeis(i) ∈ C, with ιi = +. Then the situation is com-

pletely described in Figure 4, wherej = p(i) andk = m(j), while thePi andMi are the names of
the towers, to be discussed in Section 2.5 below.

As p(i)sp(i) is also inC, Ep(i),− intersects bothEp(i),p andEp(i),m. The newE ′
p(i) is Ep(i),p =

[βp(i)− lpp(i) +rp(i), βp(i) +rp(i)[. The image ofE ′
i by S is the intervalEp(i),−, which is not included

in the newE ′
p(i): it is made ofXi = Ep(i),m, the left subinterval ofEp(i) which is not inE ′

p(i), and
Yi = Ep(i),− ∩ Ep(i),p.

This creates a partition ofE ′
i: the right subinterval ofE ′

i with the same length asYi, which we
denote byE ′

i,p, is sent byS onYi ⊂ E ′
p(i), and on this intervalS ′ = S. The left subinterval ofE ′

i

with the same length asXi, which we denote byE ′
i,m, is sent byS on Xi ⊂ Ep(i) − E ′

p(i); then
Xi = Ep(i),m is sent byS onEmp(i),+ ⊂ Emp(i). Asp(i)sp(i) is on the same positive circuit inC as
is(i), it cannot be on a negative circuit inC, hence neither canmp(i)smp(i); hencemp(i)smp(i)
is either on a positive circuit inC, or not inC, hence eitherEmp(i) has been cut on the left or not
cut; thusEmp(i),+ ⊂ E ′

mp(i). Hence onE ′
i,m we haveS ′ = S2, andS ′ sendsE ′

i,m onto a subinterval
of Emp(i).

Thus, in the new castle,E ′
i is indeed partitioned into two subintervals, and we can definep′(i) =

p(i) andm′(i) = mp(i). S ′E ′
i,p is the intervalYi, which is the left subinterval ofE ′

p′(i) of length
l′p′(i), hence we can call itE ′

p′(i),− = [βp′(i) − l′p′(i), βp′(i)[. And, whetherEmp(i) has been cut on the
left or not cut,S ′E ′

i,m is the intervalE ′
m′(i),+ = [βm′(i), βm′(i) + r′m′(i)[.
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A similar reasoning takes care of the caseis(i) ∈ C with ιi = −, where we can definep′(i),
m′(i), E ′

p′(i),− andE ′
m′(i),+ by the claimed formulas.

If is(i) 6∈ C, Ei is not cut andS sendsE ′
i,p = Ei,p onEp(i),−, which is still inE ′

p(i) asp(i)sp(i)
cannot be on a positive circuit ofC and henceEp(i) has not been cut on the left; similarlyS sends
E ′

i,m onEm(i),+ ⊂ E ′
m(i), thus we definep′(i), m′(i), E ′

p′(i),− andE ′
m′(i),+ by the claimed formulas.

As p′ andm′ are bijections, the new induction castle is indeed binary, and ourp′ andm′ are its
defining bijections. We define nows′ by s′ = sp onC ∩{ι = +}, s′ = sm onC ∩{ι = −}, s′ = s
on Cc. It is then straightforward to check that the castle is symmetric: for example ifis(i) ∈ C
andιi = +, s(i)i is also inC (asιs(i) = ιi), hencems(i)sms(i) cannot be on a negative circuit
in C and hencer′ms(i) = rms(i), while r′i = ri andm′s′(i) = mpsp(i) = ms(i); hence the relation
r′i = r′m′s′(i) is satisfied, and similarly for the other cases and relations.

Thus we have proved (1) to (5) for theE ′
i. �

Lemma 2.2. If we putEi = ∆i, 1 ≤ i ≤ d− 1, they satisfy (1) to (5), and their castle graphG0 is
defined by the bijectionss(i) = i, 1 ≤ i ≤ d − 1, m(i) = d − i, 1 ≤ i ≤ d − 1, p(i) = d + 1 − i,
2 ≤ i ≤ d − 1, p(1) = 1.

Proof
The proof consists of a simple verification, using the relative positions of theβi andγi which are
assumed in the condition of alternate discontinuities. �

2.4. The graph of graphs. As for the classical inductions, the self-dual induction isrepresented
by paths in a graph; each vertex of this graph is not a permutation as in the case of the Rauzy
induction, but a castle graph:

Definition 2.7. Given a castle graphG with bijectionsp, m, s, an instructiononG is a map from
the set of vertices ofG to {−, +}d−1 such thatι ◦ s = ι; the castle graphJιG is the castle graph
defined by the bijectionsp′, m′, s′ described in Proposition 2.1.

Let G0 be as in Lemma 2.2, letG(G0) be the smallest set of castle graphs which containsG0

and is stable by the mapJι for all possible instructionsι. Thegraph of graphsΓd is the oriented
graph whose vertices are the elements ofG(G0), with an edge labeled byι fromG to Jι(G).

If Ei are intervals satisfying (1) to (5), and their castle graph is a vertexa of the graph of graphs;
if we apply the self-dual induction, the castle graph of the intervalsE ′

i is the vertexb such that from
a to b there is an edge labeled by the instructionι of Proposition 2.1.

Definition 2.8. Let Γ be an infinite path in the graph of graphs; letGn, n ∈ N be its vertices; for
eachn, let ιn be the instruction labeling the edge fromGn to Gn+1, let sn, pn, mn be the bijections
defining the castle graphGn, let Cn be the maximal union of same-sign circuits ofGn using only
the edges starting fromisn(i) and of signιni, 1 ≤ i ≤ 3.

Γ is admissibleif
• G0 is as in Lemma 2.2,
• if i 6∈ Cn, ιn+1i = ιni,
• for eachi, ιni = + for infinitely manyn,
• for eachi, ιni = − for infinitely manyn.

The following theorem is proved in [21]; the proof uses elaborate combinatorial tools; in the
next section we give a simpler proof ford = 4, to make the present paper self-contained.
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Theorem 2.3. Every transformationT defines an admissible infinite path in the graph of graphs.
Every admissible infinite path in the graph of graphs is the path of at least one transformationT .

2.5. Names. The self-dual induction gives a way to generate any transformationT by 2d − 2
families of Rokhlin towers; when we know the path ofT in the graph of graphs, we know how to
build these towers recursively, or, equivalently, how to build their names for the partition of[0, 1[
into ∆i, 1 ≤ i ≤ d.

In the initial castle, and hence in all the castles we consider, each levelT rEi,p is contained in
one interval∆w(r,i,p), w(r, i, p) ∈ {1, ...d − 1}, and the same holds if we replacep by m. Thus we
can define the names of our towers as in Definition 1.7; there are 2d − 2 names, we denote byPi

andMi the names of the towers of basesEi,p andEi,m.

Lemma 2.4. In the initial castle,P1 = 1d, Mi = i, 1 ≤ i ≤ d − 1, Pi = i, 2 ≤ i ≤ d − 1.
If we apply the self-dual induction to a castle with namesPi andMi, the new namesP ′

i andM ′
i

are given by

• if is(i) ∈ C andιi = +, P ′
i = Pi, M ′

i = PiMp(i);
• if is(i) ∈ C andιi = −, P ′

i = MiPm(i), M ′
i = Mi;

• if is(i) 6∈ C, P ′
i = Pi, M ′

i = Mi.

Proof
The proof can be obtained by following the steps of the proof of Proposition 2.1, adding the names
Mi andPi of the towers as in Figure 4. �

In classical inductions, we generateT by only d families of Rokhlin towers; this is possible
also for the self-dual induction, by inducingT further on one of ourd − 1 subintervals; but, as
will be seen in Lemma 4.2, this requires the knowledge of the path in the graph of graphs some
way beyond the stage we are considering, thus we shall do it only for some particular families
of examples; more generally, the reasoning of Lemma 4.2 and the result in its corollary can be
repeated for any given infinite path in the graph of graphs.

3. STRUCTURE OF SYMMETRIC4-INTERVAL EXCHANGE TRANSFORMATIONS

Throughout the remainder of this paper, we restrict ourselves tod = 4.

Lemma 3.1. The graph of graphsΓ4 is the graph whose vertices are

I s = (123), p = (132), m = (321), with nontrivial relationsr1 = r3, l2 = l3,
II s = (123), p = (321), m = (213), with r1 = r2, l1 = l3,

III s = (123), p = (213), m = (132), with r2 = r3, l2 = l1,
IV s = (321), p = (231), m = (321), with l1 + r1 = l3 + r3, l2 = l3,
V s = (213), p = (231), m = (213), with l1 + r1 = l2 + r2, l1 = l3,

VI s = (132), p = (231), m = (132), with l2 + r2 = l3 + r3, l2 = l1,
VII s = (132), p = (132), m = (312), with l2 + r2 = l3 + r3, r1 = r2,

VIII s = (321), p = (321), m = (312), with l1 + r1 = l3 + r3, r1 = r3,
IX s = (213), p = (213), m = (312), with l1 + r1 = l2 + r2, r2 = r3,

and whose edges, labeled by instructions(ι1, ι2, ι3), are the following

from I (−, +,−) and (−,−,−) to IV , (−, +, +) and (+, +, +) to V II, (−,−, +), (+,−,−),
(+,−, +), (+, +,−) to I,
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from II (−,−, +) and (−,−,−) to V , (+,−, +) and (+, +, +) to V III, (−, +,−), (−, +, +),
(+,−,−), (+, +,−) to II,

from III (+,−,−) and (−,−,−) to V I, (+, +,−) and (+, +, +) to IX, (−,−, +), (−, +,−),
(−, +, +), (+,−, +) to III,

from IV (+, +, +) to V , (−, +,−) and(−,−,−) to I, (+,−, +) to IV ,
from V (+, +, +) to V I, (−,−, +) and(−,−,−) to II, (+, +,−) to V ,

from V I (+, +, +) to IV , (+,−,−) and(−,−,−) to III, (−, +, +) to V I,
from V II (−,−,−) to IX, (−, +, +) and(+, +, +) to I, (+,−,−) to V II,

from V III (−,−,−) to V II, (+,−, +) and(+, +, +) to II, (−, +,−) to V III,
from IX (−,−,−) to V III, (+, +,−) and(+, +, +) to III, (−,−, +) to IX.

Proof
The proof follows from straightforward computations, applying Definition 2.6. In each case, the
knowledge ofm, p ands allows us to write the set of non-trivial relations of Definition 2.4.

A simplified graph of graphs is shown in Figure 5: we have omitted the edges going from one
vertex to itself, an edge+.+ denotes two edges,(+,−, +) and(+, +, +), and similarly for other
edges labeled with points.
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FIGURE 5. The graph of graphs.

We prove now Theorem 2.3 ford = 4. Only Proposition 3.4 and Lemma 3.3, restricted to some
of the particular cases studied in the proof of the lemma, arenecessary for the sequel, but we wish
to give the reader the complete recipe to make his own examples.

Proposition 3.2.Every transformationT defines an admissible infinite path in the graph of graphs.
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Proof
GivenT , we start fromEi = ∆i and apply the self-dual induction recursively; we get an infinite
path in the graph of graphs (though only admissibility will prove that it does not become station-
ary). The first condition of admissibility (Definition 2.8 above) is satisfied because of Lemma 2.2
and the second one because of Definition 2.6 and Proposition 2.1.

Let Ei,n be the intervalEi at stagen; let us prove first thatwheneverEi,n is cut for infinitely
manyn, then it is cut on the right for infinitely manyn and cut on the left for infinitely many
n. Indeed, by construction, the left and right endpoints ofEi,n are respectivelyT a(n)γb(n) and
T a′(n)γb′(n), for integersa(n) ≤ 1 anda′(n) ≤ 1, and there is no pointT xγb(n) or T x′

γb′(n) inside
Ei,n for a(n) ≤ x ≤ 1 anda′(n) ≤ x′ ≤ 1. If Ei,n is cut infinitely often,a(n) → −∞ or
a′(n) → −∞, and thus there existsj andc(n) → −∞ such thatEi,n does not contain anyT xγj

for c(n) ≤ x ≤ 1. But this contradicts minimality ifEi,n is ultimately not cut to the right (resp.
left).

We prove now that eachEi,n is indeed cut for infinitely manyn; this is done by looking precisely
at the possible paths in the graph of graph. There are27 cases to consider, we look at two of the
most significant.

Suppose for someN GN is vertexI, and let us show thatE1,n will be cut at least once for
n ≥ N . If ιN1 = +, 1sN(1) = 11 is in CN , because there is a+ loop around11 in the castle graph
I, and we are done forn = N .

We suppose now thatιN1 = −. If ιN3 = −, we are done as11 is in CN , because of the−
circuit {11, 33}. For alln ≥ N if E1,n is never cutwe haveιn1 = − and we can go only fromI
to V II, I to I, V II to I, or V II to V II; henceιn3 = + for all n ≥ N , as otherwise1sn(1) is in
Cn, either because we are inI with a− circuit {11, 33}, or because we are inV II with a− circuit
{11, 23, 32} andιn2 = ιn3 becausesn(2) = 3. Then, if there existsN ′ such that for alln ≥ N ′

E3,n is not cut, we haveιn2 = − for n ≥ N ′, otherwise3sn(3) is in Cn, as both inI andV II
there is a+ circuit {2s(2), 3s(3)}. Then for alln ≥ N ′ Gn is vertexI (if it was vertexV II we
would haveιn2 = ιn3), and2sn(2) = 22 is in Cn because there is a− loop around22, thusE2,n is
cut infinitely often but ultimately only on the right, which as we just proved is impossible. SoE3,n

has to be cut infinitely often, hence infinitely often on the right, and, for somen > N , ιn3 = −,
contradiction.

Suppose for someN GN is vertexIV , and let us show thatE2,n will be cut at least once for
n ≥ N . As there is a− loop around22 in the castle graphIV , this implies thatιn2 = + for
all n ≥ N . As there is a+ circuit (13, 22, 31) in the castle graphIV , this implies in turn that
ιn1 = ιn3 = − for all n ≥ N such that we are inIV . As E2,n is never cut, we can only go from
IV to I, from I to IV , and fromI to I (but not fromIV to IV ); this implies that we are inI for
infinitely manyn, and thatιn3 = − also for alln ≥ N such that we are inI, because of the+
circuit (22, 33) in I. Let N ′ be ann for which we are inI; if E3,n was never cut forn ≥ N ′, this
would meanιn1 = + for all n ≥ N ′, we would stay always inI, andE1,n would be cut infinitely
often (thanks to the loop around11 in I) but only on the left, and this is impossible. ThusE3,n is
cut for somen ≥ N ′, thus for infinitely manyn, thusE3,n is cut on the left for infinitely manyn,
and this contradicts the assumption onιn3.
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The same reasoning applies, mutatis mutandis, for anyEi,N whenGN is any vertex, and we
have proved the last two conditions of admissibility. �

Definition 3.1. We say thati takes+, resp−, at stagen, if ιni = +, resp−, andisn(i) ∈ Cn.
We say thatij takes+, resp−, at stagen if i takes+, resp−, at stagen andsn(i) = j.

Lemma 3.3. Let G0, . . .Gn, . . . be a given admissible path in the graph of graphs. For any1 ≤
i ≤ 3, 1 ≤ j ≤ 3 and any pair of signse ∈ {−, +}, e′ ∈ {−, +}, there exist a positive integert
and a finite sequence1 ≤ js ≤ 3, 0 ≤ s ≤ t, such that

• j0 = i, e0 = e, jt = j, (−1)te = e′,
• for all 1 ≤ s ≤ t, js−1js takes(−1)se at infinitely many stages.

Proof
The result is clearly true for paths where eachij takes+ and− at infinitely many stages; admis-
sibility implies eachi takes+ and− at infinitely many stages, but it is not always true for each
ij, and we must prove the lemma individually for paths where each of the18 possibilities does not
occur.

Note that if an admissible path visits all vertices ultimately, to allow the transitions eachij has
to take+ and− infinitely often, and the lemma is proved. Now we look at admissible paths who
do not visit all vertices. An admissible path cannot visit only one vertex ultimately, as, when we go
from I to I, 3 cannot take+ nor−, and similarly for the other vertices. An admissible path cannot
visit ultimately only two adjacent vertices: if they areI andIV , 2 and3 cannot take+ ultimately,
and all the other possibilities are similar.

We look now at a path which ultimately visits only the vertices I, IV andV II: to allow the
transitions22, 33, 23, 32 take+ infinitely often, 11, 33, 13, 31 take− infinitely often and, to
ensure admissibility,11 takes+ infinitely often and22 takes− infinitely often, and this is enough
to satisfy the lemma: for example, takei = 1, e = −; then by puttingj1 = 1, j2 = 3 we get
the result for(j, e′) = (1, +) and(j, e′) = (3,−); by puttingj3 = j4 = 2, we get the result for
(j, e′) = (2, +) and(j, e′) = (2,−), while by puttingj3 = 3 we get the result for(j, e′) = (3, +);
and a similar computation works for other(i, e).

For a path which ultimately visits only the verticesIV , V andV I: then, to allow the transitions,
13, 22, 31, 11, 23, 32, 12, 21, 33 take+ infinitely often, and, to ensure admissibility,11, 22 and33
take− infinitely often, and we check this is again enough to satisfythe lemma. Let us now take
a path which ultimately visits only the verticesI, IV , V , II, V III, V II, I, and always in that
circular order; then, to allow the transitions,13, 31, 22, 11, 33, 23, 32 take+ infinitely often,11,
33, 12, 21, 13, 31, 22 take− infinitely often, and again this is enough to satisfy the lemma.

Other cases are similar to one of these or contain more possibilities. �

Proposition 3.4. Every admissible infinite path in the graph of graphs is the path of at least one
transformationT .

Proof
The proof (in contrast with the general proof in [21] which uses word combinatorics) follows the
strategy of [26]: we find the coordinatesl1,0, r1,0, l2,0, r2,0, l3,0, r3,0 defining our transformation by
showing that some intersection of open cones is nonempty, though here we have to take its further
intersection with a subspace of dimension4 because of the nontrivial relations defined in Definition
2.4 and expressed in Lemma 3.1.

Let G0, . . .Gn, . . . be a given admissible path. Letιn andCn be the associated instructions and
unions of same-sign circuits.
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We need to find a sequence of strictly positive vectors

vn = (l1,n, r1,n, l2,n, r2,n, l3,n, r3,n)

such that for eachn,

• the coordinates ofvn satisfy the two non-trivial relations corresponding toGn as stated in
Lemma 3.1,

• vn+1 = Unvn,

where the linear operatorUn fromR
6 toR

6 is defined byUn(l1, r1, l2, r2, l3, r3) = (l′1, r
′
1, l

′
2, r

′
2, l

′
3, r

′
3)

with

• if isn(i) ∈ Cn andιni = +, l′i = li − rsn(i), r′i = ri,
• if isn(i) ∈ Cn andιn = −, l′i = li, r′i = ri − lsn(i),
• if isn(i) 6∈ Cn, l′i = li, r′i = ri.

A direct consequence of the formulas is thatUn is invertible and the matrix ofU−1
n has nonneg-

ative entries. What we shall show now is thatfor anyk, anyn large enough,Wk,n = U−1
k . . . U−1

n

has a matrix whose all entries are strictly positive.
We look at howvn is deduced fromvn+1; if ism(i) ∈ Cm andιmi = +, we haveri,m = ri,m+1

and

li,m = li,m+1 + rsm(i),m = li,m+1 + rsm(i),m+1

assm(i)i is in the same positive circuit inCm asism(i). Similarly, if ism(i) ∈ Cm andιmi = −,
we haveli,m = li,m+1 andri,m = ri,m+1 + lsm(i),m+1, and if ism(i) 6∈ Cm we haveli,m = li,m+1

andri,m = ri,m+1. Henceli,m+1 appears always in the expression ofli,m, and hence in everyli,p
for p ≤ m; it appears also in the expression ofrj,m whenij takes− at stagem, and if there exists
q ≤ m such thatij has taken− at stageq, it appears in everyri,p for p ≤ q.

Let k > 0 be fixed. We takei andj and two signse ande′, and choosej1, ..., jt as in Lemma
3.3. Asjs−1js takes(−1)se at infinitely many stages, we can findk < k1 < ...kt such thatjs−1js

takes(−1)se at stageks for all 1 ≤ s ≤ t. And if n > kt, this implies thatlj,n if e′ = −, resp.rj,n

if e′ = +, appears in the coordinateli,k of vk if e = +, resp.ri,k if e = −. By doing the same for
every choice of1 ≤ i ≤ 3, 1 ≤ j ≤ 3, e ∈ {−, +}, e′ ∈ {−, +} and takingn larger than all the
correspondingkt, we get our assertion onWk,n.

We write now the reasoning of [26], in a little more explicit way; letΩ = {li > 0, ri > 0, i =
1, 2, 3} be the open positive cone inR6, Ω = {li ≥ 0, ri ≥ 0, i = 1, 2, 3} its closure,Kn = W1,nΩ,
Kn = W1,nΩ, K ′

n = Kn \ {0}; we haveKn ⊂ K ′
n ⊂ Kn. The condition on the matrices ensures

that for allk andn > k, if v is in Ω with at least one strictly positive coordinate, thenWk,nv is in
Ω, thus

∩n≥1Kn = ∩n≥1Kn \ {0} = ∩n≥1K
′
n.

The last part of Keane’s reasoning (which will not be used here but imitated) says that eachK ′
n

is invariant byv → λv for any scalarλ, thus theK ′
n are decreasing compact sets in a projective

space, thus their infinite intersection is non-empty; thus∩n≥1Kn is non-empty.

We introduce now the relations: letΞn be the subset ofR6 made of vectors(l1, r1, l2, r2, l3, r3)
whose coordinates satisfy the two non-trivial relations corresponding toGn in Lemma 3.1; in
particularΞ0 = {r1 = r3, l2 = l3} asG0 is vertexI. It follows from Proposition 2.1, and can also
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be re-checked by direct computation, that

Ξn+1 = UnΞn.

Now, the above considerations imply thatΞ0 ∩ ∩n≥1Kn = Ξ0 ∩ ∩n≥1K
′
n. We look at the in-

tersections of theK ′
n with the spaceΞ0 = {r1 = r3, l2 = l3}: they are nonempty as, because

of the expression of the relations in Lemma 3.1, each(Ω ∩ Ξn+1) is non-empty, thus also its
image byW1,n, and we haveW1,nΩ ∩ Ξ0 = W1,n(Ω ∩ Ξn+1) = Ξ0 ∩ Kn ⊂ Ξ0 ∩ K ′

n. Each
Ξ0 ∩ K ′

n is invariant byv → λv for any scalarλ, thus theΞ0 ∩ K ′
n are decreasing compact sets

in a projective space, thus their infinite intersection is non-empty. Thus the infinite intersection
∩+∞

n=1(Ξ0 ∩ W1,nΩ) = ∩+∞
n=1W1,n(Ω ∩ Ξn+1) is non-empty.

A vectorv0 in this latter set is such thatvn has strictly positive coordinates for alln, and satisfies
the required relations for alln. After normalization byl1,0 +r1,0 + l2,0 +r2,0 + l3,0 +r3,0 + l1,0 = 1,
we define a symmetric4-interval exchange transformation byα1 = l1,0 + r1,0, α2 = l2,0 + r2,0,
α3 = l3,0 + r3,0, α4 = l1,0, and the required inequalities on theβi andγj are satisfied.

By construction the self-dual induction is iterated infinitely, defining the pathG0, . . . ,Gn, . . . and
by admissibility eachEi is cut infinitely often on the left and on the right; thus the height of each
tower tends to+∞; as the negative orbits of the discontinuities ofT appear as the endpoints of
levels in the castles, while the negative orbits of the discontinuities ofT−1 appear in the interiors
of these levels, the i.d.o.c. condition is satisfied. �

4. UNIQUELY ERGODIC EXAMPLES

In this section, we define a family of examples depending on three sequences of integersmk, nk,
pk, which we call thepartial quotients for the self-dual induction: mk (respnk, pk) is the number
of consecutive times when22 (resp. 33, 11) takes−, the− edge from22 (resp. 33, 11) being a
loop in the castle graph.

Definition 4.1. Givenm = {mk, k ∈ N}, n = {nk, k ∈ N
⋆}, p = {pk, k ∈ N

⋆}, let Γ(m, n, p)
be the admissible path defined as follows, which starts fromI, then makes infinitely many circuits
through verticesIV , V , V I: laps are numbered fromk = 0; before lap0, we go fromI to IV by
(−,−,−); for all k ≥ 0, at the beginning of lapk we are inIV ; we apply instruction(+,−, +)
mk times ifk > 0, resp.m0−1 times ifk = 0, staying inIV , then go toV by(+, +, +), then apply
instruction(+, +,−) nk+1 times, staying inV , then go toV I by (+, +, +), then apply instruction
(−, +, +) pk+1 times, staying inV I, then go toIV by (+, +, +).

All transformationsT in this section are such that their path in the graph of graphsis a
Γ(m, n, p).

Note that in Definition 4.1, and hence in Lemma 4.1 below, whenwe look at what happens be-
tween vertexIV in lap k and vertexIV in lap k + 1, we have chosen to usemk, nk+1 andpk+1.
This is intentional, because the fundamental Corollary 4.3below, which depends on what happens
between just after vertexIV in lap k and just after vertexIV in lap k + 1, will thus depend on
nk+1, pk+1 andmk+1, and that corollary will be used extensively in the sequel. The casek = 0 is
special, as22 takes− when we go from the initial state to vertexIV in lap 0, thus22 has to take
− only m0 − 1 times in the latter situation.

Lemma 4.1. The names of towersPi(k) andMi(k) when we are in vertexIV at the beginning of
lap k are given by the following rules:
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• P1(k + 1) = (P1(k)M2(k)mkP2(k)M3(k))pk+1P1(k)
• P2(k + 1) = M2(k)mkP2(k)
• P3(k + 1) = (P3(k)M1(k))nk+1P3(k),
• M1(k + 1) = (P1(k)M2(k)mkP2(k)M3(k))pk+1P1(k)M2(k)mkP2(k)P3(k)M1(k),
• M2(k + 1) = M2(k)mkP2(k)(P3(k)M1(k))nk+1P3(k)P1(k)M2(k),
• M3(k + 1) = (P3(k)M1(k))nk+1P3(k)P1(k)M2(k)mkP2(k)M3(k);

with mk replaced bym0 − 1 if k = 0, and initial valuesP1(0) = 13, P2(0) = 22, P3(0) = 314,
M1(0) = 1, M2(0) = 2, M3(0) = 3.

Proof
The proof comes from applying Lemma 2.4 at each stage.

As was announced in Section 2.5, we replace the six towers by four:

Lemma 4.2. Let E1(k) be the intervalE1 when we are in vertexIV at the beginning of lapk; its
induction castle is made of four towers, whose names are

• Ak = M1(k)P3(k),
• Bk = P1(k)M2(k)mkP2(k)M3(k),
• Ck = P1(k)M2(k)mkP2(k)P3(k),
• Dk = P1(k)M2(k)mk+1P2(k)P3(k),

with all mk replaced bym0 − 1 if k = 0.

Proof
The induced map ofT on E1(k) is an induced map of the induced map ofT onE1(k) ∪ E2(k) ∪
E3(k), whose castle is vertexIV . To find the castle we want, we look at concatenations of towers
starting fromE1(k) and coming back to it, and this corresponds to paths in the castle graphIV :
starting from13, we can go to31 by M1 and come back to13 by M3 or P3, or else go to22 by
P1, make an unknown number of times the loopM2 around22, then go to31 by P2 and come
back to13 by M3 or P3; thus the possible names of our concatenations of towers areM1(k)P3(k),
M1(k)M3(k), P1(k)M2(k)sP2(k)M3(k), andP1(k)M2(k)tP2(k)P3(k) for (a priori) any positive
integerss and t. But the same formulas hold withk replaced byk + 1, while concatenations
of towers starting fromE1(k + 1) and coming back to it are also concatenations of the above
concatenations starting fromE1(k) and coming back to it. Taking into account the formulas of
Lemma 4.1, we see thatM1(k)M3(k) does not occur, and that there are only two possible values
for t, t = mk andt = mk + 1, and one possible value fors, s = mk (with the usual modification
for k = 0). �

Corollary 4.3. The above names are given by the formulas

• Ak+1 = B
pk+1

k CkA
nk+1+1
k ,

• Bk+1 = B
pk+1

k Ck(A
nk+1

k Dk)
mk+1A

nk+1

k Bk,
• Ck+1 = B

pk+1

k Ck(A
nk+1

k Dk)
mk+1A

nk+1

k

• Dk+1 = B
pk+1

k Ck(A
nk+1

k Dk)
mk+1+1A

nk+1

k .

with initial valuesA0 = 1314, B0 = 132m0−1223, C0 = 132m0−122314, D0 = 132m022314.

In all the sequel we denote byak, bk, ck, dk the lengths of the namesAk, Bk, Ck, Dk; these are
also the heights of the corresponding towers, which we denote by towerAk, towerBk, towerCk,
towerDk, each of these being ak-tower.
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By minimality, for eachǫ, if k is large enough, the lengths of the intervals are all less than ǫ;
hence any integrable functionf can be approximated (inL1 for example) by functionsfk which
are constant on each level of eachk-tower. Thus the above formulas give a complete description
of T as a system ofrank at most four by intervals(the original reference on finite rank is [31], but
finite rank by intervals was not defined in print before [14]).From these formulas,T is determined
up to measure-theoretic and topological isomorphisms.

Now, the secret for building interesting examples is to playon our partial quotients; we shall first
ensure that our system is of rank one, the towerAk being the only one which is not of very small
measure (for any invariant measureµ, but this fact by itself ensures thatµ is unique). Moreover,
this is a rank one system as in Definition 1.8, and all its properties come from the values ofak.
In Theorem 4.6 we ensure that theak are the denominators of the convergents (for the Euclid
algorithm) of an irrationalθ, and thusT hasθ as an eigenvalue, and even is measure-theoretically
isomorphic to the irrational rotation of angleθ. In Theorem 4.7, eachak will be a multiple of an
integerN , andT has 1

N
as an eigenvalue. In both cases, as the towerBk is not negligible from the

topological point of view, a relation betweenak andbk will ensure topological weak mixing.

Proposition 4.4. If for infinitely manyk, there exist positive integersa′
k, b′k such thata′

kak−b′kbk =
1, and we havenk+1 > a′

k, pk+1 > b′k; then the transformationT is topologically weakly mixing.

Proof
Recall that the union of the bases of the towersAk, Bk, Ck, Dk is the intervalE1(k), and, by
minimality, for eachǫ, if k is large enough, the lengths of the intervals are all less than ǫ. Let
θ be an eigenvalue with a continuous eigenfunctionf ; then, for givenǫ, if k is large enough,
|f(z)−f(y)| < ǫ (in R/Z) if z andy are inE1(k). Because in the formulas of Corollary 4.3A

nk+1

k

occurs in (for example)Ak+1, there existsx in the basis of the towerAk such thatT a′

k
akx is again

in E1(k) hence
||θa′

kak|| = |f(T a′

k
akx) − f(x)| ≤ ǫ;

similarly there existsy in the basis of the towerBk such thatT b′
k
bky is again inE1(k), and we get

||θ(a′
kak − b′kbk)|| < ǫ,

henceθ = 0, which is not possible asT is minimal and the existence of a continuous non-constant
eigenfunction forθ = 0 would imply the existence of a non-trivial closed invariantsubset. �

Proposition 4.5. If
+∞
∑

k=1

(pk+1 + 1)bk + ck + dk

nk+1ak

< +∞,

thenT is uniquely ergodic and(X, T, µ) is measure-theoretically isomorphic to the rank one sys-
tem(X ′, T ′, µ′) defined (as in Definition 1.8) by the wordA0 and the towers

A′
k+1 = sak+1−(nk+1+1)ak(A′

k)
nk+1+1.

Proof
Note that the above condition usesdk and notmk+1dk as it is enough since bothAnk+1

k andDk

have their lengths multiplied bymk+1 in the formulas of Corollary 4.3.
Let µ be any invariant probability forT : each level in a given tower has the same measure,

hence the above condition ensures that the towersBk, Ck, Dk, have measure at mostǫk, thek-th
term in the above series, in each towerAk+1, Bk+1, Ck+1, Dk+1, hence in the whole space, where
∑+∞

k=0 ǫk < +∞. The system(X, T, µ) is then ofrank one by intervalsas the sequence of towers
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Ak generate the whole space, see for example [14] for precise definitions. We build a measure-
theoretic isomorphism between(X, T, µ) and(X ′, T ′, µ′), by sending thej-th level of the tower
Ak to thej-th level of the towerA′

k for T ′: it is consistent by construction, as the length ofA′
k

is ak, and is defined almost everywhere because of the condition onǫk. The unique ergodicity
is a consequence of the rank one by intervals: as is mentionedin Definition 1.8, the definition
of µ′ ensures that it is the unique invariant probability measureon (X ′, T ′), and any invariant
measureν 6= µ on (X, T ) would define an invariant measureν ′ 6= µ′ on (X ′, T ′) through the
above isomorphism. �

Theorem 4.6.One can construct recursively sequencesm, n, p such that the corresponding trans-
formationT is uniquely ergodic, topologically weakly mixing, and measure-theoretically isomor-
phic to an irrational rotation onT1.

Proof
We build the partial quotients for the self-dual induction recursively as follows: we choosem0

such thata0 andb0 are coprime, and we haveb0 > a0.
At stagek, we assumeak andbk are coprime, andbk > ak; by Bezout’s identity we can find

positive integersa′
k andb′k such thata′

kak − b′kbk = 1. We choose firstpk+1, such that

pk+1 > b′k and

pk+1bk + ck ≡ ak−1 mod ak;

this is possible asbk is invertible moduloak; then we choosenk+1 large enough for

nk+1ak > 2k((pk+1 + 1)bk + ck + dk),

nk+1 > a′
k,

and such that
(nk+1 + 1)ak + pk+1bk + ck is coprime with bk − ak;

this is possible asak is invertible modulobk − ak; finally we choose

mk+1 = tk+1ak+1 for some tk+1 ∈ N
⋆.

As by Corollary 4.3bk+1 − ak+1 = bk − ak + mk+1(nk+1ak + dk), we havebk+1 − ak+1 ≡ bk − ak

moduloak+1 by choice ofmk+1 as in the previous equation; asbk − ak is invertible moduloak+1,
so isbk+1 − ak+1, and thusak+1 andbk+1 are again coprime, andbk+1 > ak+1.

Our transformationT satisfies the hypothesis of Proposition 4.5, thus is uniquely ergodic and
measure-theoretically isomorphic to the rank one systemT ′. T is topologically weakly mixing by
Proposition 4.4.

Because of the second equation in the choice ofpk+1 aboveak+1 = yk+1ak + ak−1 for positive
integersyk+1. We choose the irrationalθ whose partial quotients (for the Euclid algorithm) are
y0, y1, . . . so that theak are the denominators of its convergents. For the rotation ofangleθ, the
standard Sturmian trajectories (see [19] for example) are concatenations of wordsA”k andC”k

with C”k+1 = A”k andA”k+1 = C”k(A”k)
yk+1. As

∑+∞

k=1
ak−1

yk+1ak
< +∞ because the hypothesis

of Proposition 4.5 is satisfied, this rotation is measure-theoretically isomorphic to the rank one
system defined by the wordA”0 and the towersA”k+1 = sak−1(A”k)

yk+1, by the same proof as in
Proposition 4.5.

And T ′ andT” are measure-theoretically isomorphic as in the proof of Proposition 4.5, as build
an isomorphism betweenT” andT ′ by sending someA”k to strings of spacers of lengthak, on a
part of the space of measureǫk with

∑+∞

k=1 ǫk < +∞. �
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Theorem 4.7. For any integerN ≥ 2, one can construct recursively sequencesm, n, p such that
the corresponding transformationT is uniquely ergodic, topologically weakly mixing, and has1

N

as an eigenvalue.

Proof
We build the partial quotients for the self-dual induction as follows: at stagek ≥ 1, we assumeak

andbk are coprime,bk > ak andak is a multiple ofN ; by Bezout’s identity we can find positive
integersa′

k andb′k such thata′
kak − b′kbk = 1. We choose firstpk+1, such thatpk+1 > b′k and

pk+1bk + ck ≡ 0 mod N ;

this is possible asbk is invertible moduloak hence moduloN ; then we choosenk+1 large enough
for nk+1ak > 2k((pk+1 + 1)bk + ck + dk), nk+1 > a′

k, and such that(nk+1 + 1)ak + pk+1bk + ck

is coprime withbk − ak; this is possible asak is invertible modulobk − ak; finally we choose
mk+1 = tk+1ak+1 for sometk+1 ∈ N

⋆, henceak+1 andbk+1 are again coprime, andbk+1 > ak+1,
while ak+1 is a multiple ofN .

At the initial stage, ifN = 2 or N = 4 we can choosem0 such thatb0 is coprime witha0, and
our assumptions are satisfied at stage0, so we begin the above process atk = 0. Otherwise, our
assumptions will be satisfied at stage1, in the following way: we choosem0 such thatm0 and
m0 + 4 are both coprime with4N (let 4N =

∏s

i=0 παi

i be the decomposition of4N into prime
factors, withπ0 = 2 < π1 < ...; for 0 ≤ i ≤ s, let Ψi be the set of0 < m < 4N such thatm and
m + 4 are coprime withπ0, ...,πi: we have#Ψ0 = 2N , and, by the Chinese remainder theorem,
#Ψi+1 = #Ψi(1 − 1

2πi+1
), thus#Ψs =

∏s

i=0 παi−1
i

∏s

i=1(πi − 2) > 0, and anym0 in Ψs is
convenient). Thusm0 is coprime withN and with4 andm0 +4 is coprime withm0N , and for any
n1 and any elementx of Z/m0NZ we can findp1 such thata1 = (m0 +4)p1 +4n1 +m0 +10 ≡ x
modNm0. Hence we choose anyn1, and thenp1 such thata1 is a multiple ofN and coprime with
m0 = b0 − a0, then, withm1 = t1a1 for somet1 ∈ N

⋆, we get thata1 andb1 are coprime.
Our transformationT satisfies the hypothesis of Proposition 4.5, thus is uniquely ergodic and

measure-theoretically isomorphic to the rank one systemT ′ in Proposition 4.5.T is topologically
weakly mixing by Proposition 4.4.

On (X ′, T ′), for k ≥ 1 we putφk(x) = j

N
if x lies in thepN + j-th level of the towerA′

k, for
integers0 ≤ p ≤ ak

N
− 1, 0 ≤ j ≤ N − 1. Becauseak is a multiple ofN , this is consistent and the

φk converge inL2(X, R/Z) to a functionφ, which satisfiesT ′φ = 1
N

+ φ. ThusT ′ andT have the
required eigenvalue. �

We can also build such a transformationT with both rational and irrational eigenvalues, by
building aθ such that theak are the denominators of its convergents, multiplied byN .

We turn now to weakly mixing examples; the first one imitates the famous rank one system of
del Junco-Rudolph [13] by ensuring a recurrence relationak+1 = yk+1ak + 1.

Theorem 4.8.One can construct recursively sequencesm, n, p such that the corresponding trans-
formationT is uniquely ergodic, weakly mixing, and simple (of order two).

Proof
We build the partial quotients for the self-dual induction recursively as follows: we choosem0

such thata0 andb0 are coprime, and we haveb0 > a0.
At stagek, we assumeak andbk are coprime, andbk > ak; we choosepk+1 such that

pk+1bk + ck ≡ 1 mod ak;
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this is possible asbk is invertible moduloak; then we choosenk+1 large enough fornk+1ak >
2k((pk+1 + 1)bk + ck + dk), and such that(nk+1 + 1)ak + pk+1bk + ck is coprime withbk − ak, and
mk+1 = tk+1ak+1 for sometk+1 ∈ N

⋆. Thusak+1 andbk+1 are again coprime, andbk+1 > ak+1.
Our transformationT satisfies the hypothesis of Proposition 4.5, thus is uniquely ergodic and

measure-theoretically isomorphic to the rank one systemT ′.
By constructionak+1 = yk+1ak + 1 for positive integersyk+1 > 2k+1. ThusT ′ is measure-

theoretically isomorphic to the rank one systemT” defined by the wordA0 and the towersA”k+1 =
s(A”k)

yk+1 , as we build an isomorphism betweenT” andT ′ by sending someA”k to strings of
spacers of lengthak, on a part of the space of measureǫk with

∑+∞

k=1 ǫk < +∞.
This last system is weakly mixing and simple exactly in the same way as del Junco - Rudolph’s

map [13], which is the rank one system defined by someH0 and the towersHk+1 = H2k

k sH2k

k (this
defines a transformation by an appropriate modification of Definition 1.8); the main (and quite
involved) argument in Theorem 1 of [13] uses only the fact that there are isolated spacers between
long concatenations of the same tower. �

Note that we deduce from [13] that this system is alsoprime(it has no nontrivial invariant sub-σ
-algebra) and rigid.

Of course, as most transformationsT are weakly mixing, we may expect to find many more
examples with this property. Indeed, we can build a lot of them by adapting to the family of trans-
formationsT in the present section the method described in the proof of Theorem 5.5 below.

Another unexpected way is to use the so-calledArnoux-Rauzy systems[3]. These are symbolic
systems defined by three namesXk, Yk, Zk, build recursively by using a sequence of combinatorial
rules; by rule1, Xk+1 = Xk, Yk+1 = YkXk, Zk+1 = ZkXk; by rule2, Xk+1 = XkYk, Yk+1 = Yk,
Zk+1 = ZkYk; by rule3, Xk+1 = XkZk, Yk+1 = YkZk, Zk+1 = Zk. At the beginning,X0 = 1,
Y0 = 12, Z0 = 13. Here we restrict ourselves to a paréar class of Arnoux-Rauzy systems, built
by applying successively rule1 q3l+1 times, rule2 q3l+2 times, rule3 q3l+3 times, then rule1 q3l+4

times and so on, starting froml = 0; this gives a uniquely ergodic (by Boshernitzan’s result using
complexity [5]) system(Y, S), and, when theqk grow to infinity fast enough, as a straightforward
consequence of the definition, this system is measure-theoretically isomorphic to a rank one system
defined by the wordH0 and the towersHk+1 = stk(Hk)

qk+1, where, fork = 3l+1 (resp.k = 3l+2,
k = 3l+3) Hk has nameYq1+...qk

(resp.Z, X), andtk is the length ofZq1+...qk
(resp.X, Y ). These

systems are proved to be weakly mixing in [7].

Proposition 4.9. One can construct recursively sequencesm, n, p such that the corresponding
transformationT is uniquely ergodic, weakly mixing, and measure-theoretically isomorphic to an
Arnoux-Rauzy system.

Proof
We build simultaneouslymk, nk, pk defining our transformationT andqk defining our Arnoux-
Rauzy system.

At each stage,ak andbk are coprime,bk > ak, andak = hk, hk being the length ofHk. At
the beginning, we choose the first parameters so that the assumptions are satisfied at stage1. At
stagek choose firstpk+1, such that, iftk is defined above fromq1, ... ,qk and the rules defining an
Arnoux-Rauzy system, as the length ofZq1+...qk

, resp.X, Y according to the class ofk modulo3,

pk+1bk + ck ≡ tk mod ak;
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then we choosenk+1 large enough for satisfying the hypothesis of Proposition 4.5 and such that
(nk+1 + 1)ak + pk+1bk + ck is coprime withbk − ak, thenmk+1 = uk+1ak+1, for a positive integer
uk+1, so thatak+1 andbk+1 are again coprime, andbk+1 > ak+1. Then we chooseqk+1 so that
hk+1 = ak+1. We conclude as in the proof of Theorem 4.6. �

Note that all the examples in this section are rigid by Proposition 1.1.

5. NON UNIQUELY ERGODIC EXAMPLES

Definition 5.1. Givenm = {mk, k ∈ N}, n = {nk, k ∈ N
⋆}, with nk+1 > mk > nk, let Γ(m, n)

be the admissible path defined as follows, which starts fromI and then follows infinitely many
times a pathIV − I − V II − I − IV :

let f0 = n1, ek = mk − fk−1 andfk = nk+1 − ek for k ≥ 1, thusek > 0 andfk > 0. At the
beginning of stepk we are inIV ; we go toI by (−,−,−), then apply instruction(+,−, +) ek − 1
times, staying inI, then then go toV II by (+, +, +), then go toI by (+, +, +), apply instruction
(+,−,−) fk − 1 times, staying inI, then go back toIV by (−,−,−). Before step1, starting from
I we apply instruction(+,−,−) f0 − 1 times, staying inI, then go toIV by (−,−,−).

All transformationsT in this section are such that their path in the graph of graphsis aΓ(m, n).

Indeed, in this definitionmk is the number of consecutive times when22 takes−, the− edge
from 22 being a loop in the castle graph;22 does take− when we are inI or IV but not when
we are inV II, somk counts also the number of times we are consecutively inI, IV , andI again,
between two passages inV II. Similarly nk is the number of consecutive times when11 takes+,
the+ edge from11 being a loop in the castle graph, and that happens when we are in I or V II.

Theek andfk can be seen as auxiliary quantities withmk = ek + fk−1 andnk+1 = ek + fk; the
indexing has been chosen so that Lemma 5.1 depends onek, fk, and Corollary 5.3 will thus depend
onnk+1 andmk+1, and only that corollary will be used in the sequel.

In the same way as in the previous section we prove

Lemma 5.1. The names of towersPi(k) andMi(k) when we are in vertexIV at the beginning of
stepk are given by the following rules:

• P1(k + 1) = (M1(k)P3(k))ek+fkM1(k)M3(k)P1(k),
• P2(k + 1) = (M2(k)ekP2(k)M3(k)P1(k)M2(k))fkM2(k)ekP2(k),
• P3(k + 1) = M3(k)P1(k)M2(k)ekP2(k)M3(k)M1(k)P3(k),
• M1(k + 1) = (M1(k)P3(k))ek+fkM1,
• M2(k + 1) = M2(k)ekP2(k)M3(k)P1(k)M2(k),
• M3(k + 1) = M3(k)P1(k)M2(k)ekP2(k)M3(k);

with initial valuesP1(0) = (14)f0−113, P2(0) = 2f0+1, P3(0) = 314, M1(0) = (14)f0−11,
M2(0) = 2, M3(0) = 3.

Note thatP2(k + 1) does indeed containM2(k + 1), and evenM2(k + 1)fk, as a strict prefix, as
the last instruction is(−−−) from I, and the instruction for2 has been− fk times.

Lemma 5.2. LetE1(k) be the intervalE1 when we are in vertexIV at the beginning of stepk; its
induction castle is made of four towers, whose names are

• Ak = M1(k)P3(k),
• Bk = M1(k)M3(k),
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• Ck = P1(k)M2(k)ekP2(k)M3(k),
• Dk = P1(k)M2(k)ek+1P2(k)M3(k).

Corollary 5.3. The above names are given by the formulas
• Ak+1 = A

nk+1

k BkCkAk,
• Bk+1 = A

nk+1

k BkCk,
• Ck+1 = A

nk+1

k BkCkD
mk+1

k Ck,
• Dk+1 = A

nk+1

k BkCkD
mk+1+1
k Ck.

with initial valuesA1 = (14)n11314, B1 = (14)n1−113, C1 = (14)n1−1132m1+13,
D1 = (14)n1−1132m1+23.

Towers and lengths are denoted as in the previous section. Now we shall fix our partial quotients
so that the towersAk and the towersDk behave like independent systems, so that the transformation
T has two ergodic invariant measures, one mainly concentrated on the towersAk and giving a rank
one system with this family of towers, and the other doing thesame with the towersDk. By
ensuring theak are even, we get an eigenvalue1

2
for the first system, while the lengthsdk will

ensure the second one is weakly mixing by contradicting the criterion in Proposition 1.2.

Proposition 5.4. If
+∞
∑

k=1

bk + ck

nk+1ak

<
1

4
,

+∞
∑

k=1

nk+1ak + bk + 2ck

mk+1dk

<
1

4
,

thenT has exactly two ergodic invariant probability measuresµ1 andµ2; (X, T, µ1) is measure-
theoretically isomorphic to the rank one system defined by the wordA1 and the towers

A′
k+1 = (A′

k)
nk+1sak+1−nk+1ak ;

(X, T, µ2) is measure-theoretically isomorphic to the rank one systemdefined by the wordD1 and
the towers

D′
k+1 = sdk+1−(mk+1+1)dk−ck(D′)

mk+1+1
k sck .

Proof
Let ǫk andηk be respectively thek-th term of the first and second series above. Letµ be any
invariant probability forT : each level in a given tower has the same measure, hence the above
conditions and the formulas in Corollary 5.3 ensure that thetowerAk has measure at least1 − ǫk

in the towerAk+1 and the towerDk has measure at least1−ηk in the towerDk+1, while the towers
Bk, Ck have measure at mostǫk + ηk in each towerAk+1, Bk+1, Ck+1, Dk+1, hence in the whole
space.

Thus we can build a measure-theoretic isomorphism between the rank one system(X ′, T ′, µ′)
with towersA′

k and (X, T ) equipped with some invariant probability measureµ1 which we re-
trieve fromµ′, andµ1 is ergodic asµ′ is. We do the same for the rank one system with towersD′

k,
defining an ergodicµ2. Then the towerA1 has measure greater than1

2
for µ1 and smaller than1

2
for µ2, thus they are different, and it is known [23] [37] thatT has at most two invariant ergodic
probabilities. �

Note that the two convergent series conditions are exactly the one needed in the definition of
rank one systems.
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Theorem 5.5. One can construct recursively sequencesm, n such that the corresponding trans-
formationT is not uniquely ergodic, topologically weakly mixing, weakly mixing for one of its
invariant ergodic measures, while for the other one it has1

2
as an eigenvalue.

Proof
We fix M > 5 such that for ally ≥ M there exist a prime number between6y/10 and9y/10
and a prime number between11y/10 and14y/10. This is possible as a consequence of the prime
numbers theorem.

At the beginning, note thata1, b1 are even; we choosen1 andm1 such thatc1 is even,d1 is odd,
a1 andd1 are coprime.

Given ak, bk, ck, dk, somepk to be specified later, and the assumptions thatak and dk are
coprime,ak, bk, ck are even anddk is odd, we choose the next partial quotients as follows. Letzk

be the greatest common divisor ofpk anddk, with dk = d′
kzk, pk = p′kzk. Note thatd′

k > 2 asdk is
odd. Letp”k be an inverse ofp′k moddk. We choose first a unitu′

k of Z/d′
kZ such that

u′
k 6≡ p′k(ak − ck) + t′ mod d′

k for any − d′
k/2M < t′ < d′

k/2M.

This is possible: ifd′
k ≥ M , we take the class modulod′

k of one of the two prime numbers defined
above fory = d′

k (the first one if the class ofp′k(ak − ck) is between0 andd′
k/2, the second one

otherwise), while if2 < d′
k < M this forbids at most one unit. We choose now a unituk of Z/dkZ

such that
uk ≡ p”ku

′
k mod d′

k

(this is possible as, to be a unit,uk has just to be coprime with the prime factors ofdk which are
not factors ofd′

k). Now we choosenk+1 large enough for the first condition of Proposition 5.4 and
such that

nk+1ak ≡ uk − ak − bk − ck mod dk,

thusak+1 is coprime withdk; and we choose thenmk+1 large enough for the second condition of
Proposition 5.4 and such that

(mk+1 + 1)dk + ck − ak is invertible modulo ak+1.

Thus our assumptions are satisfied fork + 1 (note thatmk+1 has to be even).

We explain now how to choose thepk. Whenmk+1 andnk+1 are fixed, for any0 < p < dk there
is at most one integer0 < l < dk+1 such that

∣

∣

∣

∣

p

dk

−
l

dk+1

∣

∣

∣

∣

<
1

2Mdk+1
.

We call this integerl = φk+1(p), when it exists. Now, our choice of partial quotients ensures that
pkdk+1 ≡ pkuk + pk(ck − ak) moddk, andpkuk 6≡ pk(ak − ck) + t moddk for any−dk/2M <
t < dk/2M (by multiplying byzk the relation satisfied byu′

k, andp′kuk, modd′
k), thuspkdk+1 6≡ t

moddk for any−dk/2M < t < dk/2M ; this means exactly thatφk+1(pk) does not exist. Starting
from k1 = 1, we define inductively a sequence of integerskj; at stagej we putpkj

= 1; then
pkj+1 = φkj+1(2) if it exists, otherwisepkj+1 = φkj+1(3) if it exists, and so on. . . If noφkj+1(p)
exists anymore, we putkj+1 = kj +1, otherwisepkj+1 will be someφkj+1(p), and forpkj+2 we try
first φkj+2φkj+1(p + 1) if it exists, thenφkj+2φkj+1(p + 2) and so on. . . If noφkj+2φkj+1(q) exists
anymore, we putkj+1 = kj + 1, otherwisepkj+2 is someφkj+2φkj+1(q), and forpkj+3 we try first
φkj+3φkj+2φkj+1(q + 1) if it exists, and so on. . . After at mostdkj

− 1 steps, we have definedkj+1
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and ensured that for any0 < p < dkj
, there existst ≤ kj+1 such thatφt . . . φkj+1(p) does not exist;

then we start again frompkj+1
= 1.

We apply Proposition 5.4 to getµ1 andµ2. As ak is always even,(X, T, µ1) has an eigenvalue
1
2

as in Theorem 4.7. Now, letθ be an eigenvalue for(X, T, µ2): by Proposition 1.2 we must have
mk+1||dkθ|| < 1

4M
for k large enough, which implies|θ − tk

dk
| < 1

3Mdk+1
for k large enough and

some0 < tk < dk; this implies that for allk large enoughφk+1(tk) exists and istk+1, and this is
impossible by the choice ofpk. Thus(X, T, µ2) is weakly mixing, which implies the topological
weak mixing ofT (which we could also have ensured directly as in Proposition4.4). �

As in [26] we can choose the vector of lengths (among a segmentof possible solutions), so that
µ1 is the Lebesgue measure, or so thatµ2 is the Lebesgue measure, or so that neitherµ1 nor µ2 is
the Lebesgue measure. Note that(X, T, µ1) and(X, T, µ2) are rigid by Proposition 1.1.

6. QUESTIONS AND COMMENTS

Among examples we would have liked to build are transformationsT with two (or more) ratio-
nally independent irrational eigenvalues; a similar result has been claimed by Parreau and Guenais
(still unpublished) ford = 3 intervals, by very different methods which do not generalize tod > 3;
the methods of the present paper being based on rank one, whatwe would need is an explicit rank
one construction for rotations ofT

2, and this in itself is an interesting open problem.
Very interesting also would be a transformationT with a continuous eigenfunction; this does

not exist ford = 3 intervals [30]; for everyd ≥ 4 nontrivial examples have been derived by Hmili
[22] (in answer to a question asked in a preliminary version of the present paper): these examples
are semi-conjugate, in a rather straightforward way, to rotations ofT1. Older examples have been
built by Arnoux and Yoccoz [2] for some permutation ond = 7 intervals: they are semi-conjugate,
in a non-straightforward way, to rotations ofT2. No example we know of has total irrationality.

The condition of alternate discontinuities simplifies the situation but can be dispensed with, see
[21]. The generalization of our methods to build examples ond intervals should not introduce any
fundamental difficulty but the computations become horrendous; as for other permutations than
the symmetric one, while our self-dual induction is not defined in the general case, it can be made
to work on classes of examples as in [21]; but the cased = 4 for one non-trivial permutation is
representative of the whole problem, as happens for Keane’s[26] non-uniquely ergodic examples
which were not extended beyond that until a recent course of Yoccoz [42].

We recall that Veech’s question on simplicity is far from solved; another question is to define a
setM” as in the introduction by requiringT to betopologically strongly mixing, that is, for every
BorelianA andB, T nA ∩ B is nonempty forn large enough. Boshernitzan (unpublished) has
proved thatM” is empty ford = 3 intervals, but, after many computer simulations, conjectures
thatM” is of full measure ford ≥ 4 intervals. Again during the process of refereeing the present
paper, this question has been mostly solved ford = 4 by Chaika [8] (he gets a residual set, though
not necessarily of full measure).

As for the specificity of the self-dual induction: it is possible that these or similar examples
could have been obtained via other well-known induction methods, by first building a parametrized
family of examples, and then manipulating the parameters. Indeed this approach was used by
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Chaika to answer a related question [8], starting from the family of examples in [26] which was
built by using a variant of the Rauzy induction (actually anterior to Rauzy).

However, the authors found the self-dual induction developed herein to be well suited for this
task. In particular, one can stress the role of the quantities we call partial quotients, which appear
naturally as the number of consecutive times a given loop is followed in a castle graph, and which
share some of the arithmetic properties of the usual partialquotients in the Euclid algorithm; in-
deed, in the simpler case ofd = 3 intervals, they are used to define a multiplicative self-dual
induction [20], though this is less obvious ford = 4.
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