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COMBINATORIAL TREES ARISING IN THE STUDY OF INTERVAL EXCHAN GE
TRANSFORMATIONS

JULIEN CASSAIGNE, ŚEBASTIEN FERENCZI, AND LUCA Q. ZAMBONI

ABSTRACT. In this paper we study a new class of combinatorial objects we call trees of relations
equipped with an operation we callinduction. These trees were first introduced in [3] in the context
of interval exchange transformations but they may be studied independently from a purely combina-
torial point of view. They possess a variety of interesting combinatorial properties and have already
been linked to a number of different areas including ergodictheory and number theory [3, 4]. In
a recent sequel to this paper, R. Marsh and S. Schroll have established interesting connections to
the theory of cluster algebras and polygonal triangulations [5]. For each tree of relationsG, we let
Γ(G) denote the smallest set of trees of relations containingG and invariant under induction. The
induction mapping allows us to endowΓ(G) with the structure of a connected directed graph, which
we call the graph of graphs. We investigate the structure ofΓ(G) and define a circular order based
on the tree structure which turns out to be a complete invariant for the induction mapping. This gives
a complete characterization ofΓ(G) which allows us to compute its cardinality in terms of Catalan
numbers. We show that the circular order also defines an abstract secondary structure similar to one
occurring in genetics in the study of RNA.

1. INTRODUCTION

In [3] we introduced a new induction algorithm for a family ofinterval exchange transforma-
tionsT in the hyperelliptic Rauzy class. This algorithm, called the self-dual induction, provides
new insight on the symbolic dynamics of the trajectories [4]. Our aim was to describe completely
the trajectories of points, and to relate both the combinatorial and dynamical properties of the un-
derlying system to the number-theoretic properties of an associated multi-dimensional continued
fraction algorithm. ItT is an exchange onk intervals, then at each stage of our induction, we
induceT (by first return) on a disjoint union ofk − 1 sub-intervalsEj , each containing the point
βj of discontinuity ofT−1 and whose endpoints are in the orbits of the discontinuitiesof T. This
process defines a multi-dimensional continued fraction algorithm generated by the2k − 2 param-
eters{lj, rj}1≤j≤k−1 wherelj is the distance fromβj to the left endpoint ofEj andrj the distance
from βj to the right endpoint ofEj.

As soon ask ≥ 3, the2k − 2 parameters{lj, rj}1≤j≤k−1 are not independent and in fact satisfy
k − 2 symmetric relations of the formli = lj , or ri = rj or li + ri = lj + rj for somei 6= j.

At each state of the induction, these relations, which are a consequence of the isometry of the
transformationT and the nature of the underlying permutation, may be coded bya tree onk − 1
nodes (labelled1 throughk−1) with labelled edges, where the labels take on three possible values
corresponding to the three different types of relations. Thus a labelled edge in the tree between
nodesi andj indicates a relation between parameterx ∈ {li, ri} andy ∈ {lj, rj}, and the exact
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form of the relation is given by the edge label. These trees, we call trees of relations,are at the
very core of the dynamics of hyperelliptic interval exchange transformations, and in fact in [3]
we show that the entire combinatorial description of the trajectories ofT may be deduced directly
from them.

In the present paper we define and study trees of relations, equipped with the operation of in-
duction, from a purely combinatorial view, that is removed from the context of interval exchange
transformations. Very simply, a tree of relations is a tree in which each edge is labelled by either+,
=, or−, and such that no two adjacent edges have the same label. Figure 1 depicts an example of a
tree of relations with ten vertices. These trees, equipped with the operation of induction, constitute
a new discrete structure possessing rich combinatorial properties. Together they define directed
graphs whose vertices consist of trees of relations with vertices1 throughk − 1, and where the
directed edges between vertices are given by the induction mapping.
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FIGURE 1. A tree of relations on10 vertices.

An outline of the paper is as follows: In§2 we consider an example of an interval exchangeT

on4-intervals, to illustrate the induction algorithm in the context of interval exchanges.
In §3 we define and study the basic properties of trees of relations. We define the induction

mapping in purely combinatorial terms as a mapping from trees of relations to trees of relations.
In §4 we show that for every tree of relationsG, the setΓ(G), defined as the smallest set of trees

of relations containingG and invariant under induction, may be endowed with the structure of a
connected directed graph. We call the directed graphΓ(G) the graph of graphs ofG.

In §5, §6 and§7, we investigate the structure of the graph of graphsΓ(G). For this purpose we
introduce in§5 two auxiliary notions:shapesandfillings: A shape is a tree of relations in which
the vertices are unlabelled, they represent the skeleton ofthe tree, while the filling represents the
passage from shapes to trees. We then show that the trees inΓ(G) realise every possible shape.

In §6 we define a circular order on the vertices of a tree of relations which is determined by its
tree structure. We show that two fillings of a shape are in the sameΓ(G) if and only if they define
the same circular order on their respective vertices: the circular order is a complete invariant for
the induction mapping, and thus gives a full characterization ofΓ(G).

In §7 we use this invariant to count both the number of shapes as well as the cardinality ofΓ(G),
by formulas involving Catalan numbers.
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In §8 we discuss an interesting connection between the circularstructure defined in§6 and a
similar structure occurring in genetics in the study of RNA.

Recently, R. Marsh and S. Schroll have written a sequel to this paper further extending the
combinatorial theory developed herein and establishing interesting and surprising connections to
polygonalm-angulations, Fuss-Catalan combinatorics, and the theoryof cluster algebras (see [5]).

2. INTERVAL EXCHANGE TRANSFORMATIONS

Let us consider the interval exchange transformationT on 4-intervals as shown in Figure 2 (by
convention, all intervals are open on the right, closed on the left). The transformationT maps by
isometry the first interval[0, 1 − β3[ onto the interval[β3, 1[, the second interval[1 − β3, 1 − β2[
onto[β2, β3[, the third interval[1− β2, 1− β1[ onto[β1, β2[, and the fourth interval[1− β1, 1[ onto
[0, β1[.

0 1 − β3 1 − β2 1 − β1 1

0 β1 β2 β3 1

FIGURE 2. A symmetric4-interval exchange transformation.

For convenience, we further impose the initial condition

0 < β1 < 1 − β3 < β2 < 1 − β2 < β3 < 1 − β1

so thatβ1 is in the intervalE1 = [0, 1 − β3[, β2 in the intervalE2 = [1 − β3, 1 − β2[, andβ3 in
the intervalE3 = [1 − β2, 1 − β1[. For eachj ∈ {1, 2, 3} we consider the two parameterslj , rj

wherelj andrj are defined as the respective distances between the pointβj and the left and right
endpoints ofEj ; thus|Ej| = lj + rj is the length ofEj .

We remark that there are two relations between these parameters, namely thatr1 = r3 and
l2 = l3; they are a consequence of the underlying isometry ofT and the choice of the permutation
by which we re-arrange the intervals. We record (or code) them as follows: forr1 = r3 we write
1−̂3 (or equivalently3−̂1) and forl2 = l3 we write3+̂2 (or equivalently2+̂3). We may combine
these two expressions by forming a tree with vertices{1, 2, 3} and with an undirected edge labelled
− between1 and3 and one labelled+ between2 and3 as shown in Figure 3; this tree is denoted
also by1−̂3+̂2 or 2+̂3−̂1 (see the beginning of§3).

The self-dual induction defined in [3] starts from the three intervalsE1,0 = E1, E2,0 = E2,
E3,0 = E3, and creates three smaller intervalsE1,1, E2,1, E3,1 (thus they are no longer adjacent).
By iteration, we obtain three families of nested intervalsE1,n, E2,n, E3,n. At each step of the
induction we consider the sub-intervalEi,n containing the special pointβi, and recalculate the
corresponding parametersli, ri. It turns out that at each stage there will be two relations between
the parameters of the following form: for somei 6= j, either li = lj , which we code byi+̂j or
equivalently byj+̂i, or ri = rj , which we code byi−̂j or equivalently byj−̂i, or |Ei| = |Ej|, or
equivalentlyli + ri = lj + rj, which we code byi=̂j or equivalently byj=̂i.
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1 3 2
− +

0 1 − β3 1 − β2 1 − β1 1β1 β2 β3

r1 = r3

l2 = l3

FIGURE 3. The coding of the parameters in state0.

The complete definition of the self-dual induction was made in [3]; as it is not necessary to the
understanding of the present paper, we choose to follow firstwhat happens on one example and
postpone the full definition to§3 below, as it requires the full definition of the induction operation
on trees in§2 below. Thus, suppose that in state0 (the initial state) we haver1 > l1, r2 > l2,
r3 > l3. Then, in passing to the subsequent state (state1), each intervalEi is cut from the right by
the amountli, as shown in Figure 4. It follows from the previous relationsthat the new parameters
satisfy the new relationsl2 = l3 (or 2+̂3) and|E1| = |E3| (or 1=̂3).

1 3 2
= +

0 1 − β3 1 − β2
β1 β2 β3

l2 = l3

|E1| = |E3|

FIGURE 4. The coding of the parameters in state1.

Suppose that in state1, the corresponding parameters satisfyl1 > r3, r2 > l2, l3 > r1 (this
happens whenever the parameters in state0 satisfyl1 + l3 > r1 = r3 > max(l1, l3) andr2 > 2l2,
which can be realised). Then the intervalE2 is cut from the right by the amountl2, while the other
intervals are not cut. Although the new parameter values ofl2 andr2 differ from the corresponding
values in the previous state, these two parameters were not involved in the preceding relations and
hence the coding remains unchanged as shown in Figure 5.

Suppose that in state2 the corresponding parameters satisfyl1 > r3, l2 > r2, l3 > r1 (again
there are initial values of the parameters for which this happens). To go to state3, the intervalE1

is cut from the left by the amountr3, andE3 is cut from the left byr1, whileE2 is cut from the left
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1 3 2
= +

0 1 − β3 1 − β2
β1 β2 β3

l2 = l3

|E1| = |E3|

FIGURE 5. The coding of the parameters in state2.

by r2. This gives rise to the coding3+̂1=̂2 as shown in Figure 6.

Suppose that in state3 the corresponding parameters satisfyl1 < r2, l2 < r1, l3 < r3. In passing
from Figure 6 to Figure 7 the intervalE1 is cut from the right by the amountl2 andE2 is cut from
the right byl1, whileE3 is cut from the right byl3.

3 1 2
+ =

β1 β2 β3

l1 = l3

|E1| = |E2|

FIGURE 6. The coding of the parameters in state3.

As it turns out, each state has been coded by a tree of relations. We next build a graph whose
vertices consist of all trees of relations coding the possible states, and where there is a labelled
directed edge between any two adjacent (or consecutive) states. The edges are labelled by either+
if the intervals are cut from the left, or− if they are cut from the right. The resulting graph is shown
in Figure 17 below, where the highlighted edges represent the initial path between consecutive
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3 1 2
+ −

β1 β2 β3

l1 = l3

r1 = r2

FIGURE 7. The coding of the parameters in state4.

states outlined in the present example. If we iterate the self-dual induction infinitely many times
we obtain an infinite path in this graph.

3. TREES OF RELATIONS AND INDUCTION

By a treewe mean a non-oriented connected graph which has no cycles.

Definition 3.1. A tree of relations on a finite nonempty setK is a treeG satisfying the following
three conditions:

• The vertices ofG are the elements ofK.
• Each edge ofG is labelled with{+,=,−}.
• No two adjacent edges ofG have the same label.

Notations. Throughout this paper, we consider edges labelled with{+,=,−}. We use the
notationa+̂b, resp.a=̂b, a−̂b, to denote the edge labelled+, resp.=, −, between the verticesa
andb. By further abbreviation, in describing a given tree of relationsG we write just (for example)
thata+̂b in G to express that there is an edgea+̂b in G, anda+̂b=̂c instead ofa+̂b andb=̂c. The
hats are used only to avoid writing expressions like1 = 2 or 1 − 2 = 3, and thus are not needed
in pictures or in expressions like a+ edge. Clearlya+̂b is equivalent tob+̂a, and the same if we
replace+ by − or =.

Example 3.2. The tree given in Figure 1 can be described in many equivalentways, for example
1−̂2=̂3+̂10, 2+̂6=̂9, 6−̂7, 3−̂4=̂5+̂8, or alternatively8+̂5=̂4−̂3=̂2+̂6−̂7, 6=̂9, 2−̂1, 10+̂3.

To each tree of relationsG on K we associate three bijectionss, t, u : K → K defined as
follows: for eacha ∈ K we put

• s(a) = b if a=̂b for someb 6= a. Otherwise sets(a) = a.

• t(a) = b if a+̂b for someb 6= a. Otherwise sett(a) = a.

• u(a) = b if a−̂b for someb 6= a. Otherwise setu(a) = a.

It is immediate that
s2 = t2 = u2 = Id.
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Definition 3.3. LetG be a tree of relations. By a positive chain we mean a maximal connected
subtree ofG having no− edges. Similarly a negative chain is a maximal connected subtree ofG
having no+ edges. By a signed chain we mean either a positive or a negative chain.

Figures 8 and 9 illustrate the positive and negative chains respectively of the tree of relations
given in Figure 1.
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FIGURE 8. The positive chains in Figure 1.
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FIGURE 9. The negative chains in Figure 1.

We next define an operation on trees of relations which we callinduction. This operation asso-
ciates to each tree of relationsG onK and each signed chainB of G, a tree of relationsJB(G) on
K as follows:

Definition 3.4. LetG be a tree of relations onK, with first bijections, andB be a signed chain.
The tree of relationsJB(G) is defined by the verticesa, a ∈ K, and the following edges
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• if a ∈ B, b ∈ B, anda+̂b in G, thens(a)=̂s(b) in JB(G),
• if a ∈ B, b ∈ B, anda−̂b in G, thens(a)=̂s(b) in JB(G),
• if a ∈ B, b ∈ B, B is a positive chain, anda=̂b in G, thena+̂b in JB(G),
• if a ∈ B, b ∈ B, B is a negative chain, anda=̂b in G, thena−̂b in JB(G),
• if a 6∈ B or b 6∈ B, andaR̂b in G, thenaR̂b in JB(G), forR ∈ {+,=,−}.

It is readily verified thatJB(G) is a tree of relations. We note thatB′ = JB(B) is again a signed
chain inJB(G). The mapping(G,B) 7→ JB(G) may be described geometrically in three simple
steps as shown in Figures 11-13: We consider the tree of relations in Figure 1 and the highlighted
negative chainB consisting of vertices{1, 2, 3, 4, 5} (see Figure 10). The resulting tree is shown
in Figure 14.

The induction on a disjoint union of signed chains, though itis not effectively used in the present
paper, is an important tool in the definition of the inductionon interval exchange transformations
(§3 below):

Definition 3.5. For a unionB = B1... ∪ Bk of piecewise disjoint signed chains, we defineJB(G)
as the compositionJBk

◦ ...JB1
(G), which by Definition 3.4 above is independent of the order of

theBi.
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FIGURE 10. An induction on the tree of Figure 1.
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FIGURE 11. Step 1: Prune auxiliary branches to isolateB.
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FIGURE 12. Step 2: Exchange verticesa↔ s(a) and edges− ↔= .

Example 3.6.We look again at the trees in§2 above.
Let G be 1−̂3+̂2. Thens = (123), t = (132), u = (321). The positive chains areB1 = 3+̂2,
B2 = 1, the negative chains areB3 = 1−̂3 andB4 = 2. JB1

(G) is 1−̂3=̂2, JB3
(G) is 1=̂3+̂2,

JB2
(G) andJB4

(G) areG. When we went from state0 to 1, we induced successively on the two
negative chainsB3 andB4, thus by Definition 3.5 on the unionB3 ∪ B4.
LetG be1=̂3+̂2. Thens = (321), t = (132), u = (123). The only positive chain isB1 = 1=̂3+̂2,
the negative chains areB2 = 1=̂3 andB3 = 2. JB1

(G) is 2=̂1+̂3, JB2
(G) is 1−̂3+̂2, JB3

(G) is
G. When we went from state1 to 2, we induced on the negative chainB3, and from state2 to state
3 we induced on the positive chainB1.
LetG be2=̂1+̂3; to go from state3 to 4, we induced on the union of the two negative chains2=̂1
and3.
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FIGURE 13. Step 3: Re-join pruned branches to their original connections.
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FIGURE 14. The resulting tree of relations.

We can now give the full rules of the self-dual induction in [3]. At a given stage, they depend
both on the relations betweenli andri, coded by a tree of relationsG with first bijections, and on
the signs of theli − rs(i) = ls(i) − ri. Namely, letB be the union of all positive chains on which
li > rs(i) on every vertex, and of all negative chains on whichli < rs(i) on every vertex; then, ifi
is a vertex of a positive chain inB, Ei is cut on the left by an amountrs(i), while if i is a vertex of
a negative chain inB, Ei is cut on the right by an amountls(i); if i is a vertex outside ofB, Ei is
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not cut. It is proved in [3] thatthe tree of relations at the next stage isJB(G). Note that the two
other bijections of the treeG are also used in [3], but for technical reasons there we use slightly
different maps, namelyp = ts andm = us.

As is explained in [3], these rules, and the definitions of trees and induction, come naturally
from the requirements of the self-dual induction, and this theory needs the whole machinery of
trees of relations to work satisfactorily.

The proof of the following lemma is immediate from the above definitions:

Lemma 3.7. LetB a signed chain of a tree of relationsG. The bijections(s′, t′, u′) of JB(G) are
given as follows:

• if a ∈ B andB is a positive chain,,s′(a) = sts(a), t′(a) = s(a), u′(a) = u(a);
• if a ∈ B andB is a negative chain,,s′(a) = sus(a), t′(a) = t(a), u′(a) = s(a);
• if a 6∈ B, s′(a) = s(a), t′(a) = t(a), u′(a) = u(a).

4. GRAPHS OF GRAPHS

In this section we use the induction mapping to construct a graph whose vertices consist of trees
of relations withk vertices, and where the directed edges between vertices aredefined in terms of
the induction mapping.

Definition 4.1. For a given tree of relationsG, let Γ(G) be the smallest set of trees of relations on
K which containsG and is closed under induction.

We giveΓ(G) the structure of an oriented graph as follows: for eachG′ ∈ Γ(G) and each signed
edgeB of G′, we place a directed edge fromG′ to JB(G′) labelled+ (resp.−) if B is a positive
(resp. negative) chain. We callΓ(G) agraph of graphs.

Let k be a positive integer. We define theinitial tree of relationson the setK = {1, 2, . . . , k},
denotedG0(k), by

G0(k) = 1−̂k+̂2−̂(k − 1)+̂3−̂(k − 2) . . .

As we saw in§2 for k = 3, this is the tree of relations which codes the relations between the
parameters of the self-dual induction in the initial state for an interval exchange transformation on
k+1 intervals, with suitable conditions on the permutation which re-arranges the intervals, and on
the positions of the discontinuities.

We denote byΓ(k) the graph of graphsΓ(G0(k)). Figures 15, 16 and 17 illustrateΓ(1),Γ(2)
andΓ(3) (the highlighted edges inΓ(3) correspond to the example in§2). We shall see later that
Γ(4) has 28 vertices whileΓ(5) has 90 vertices.

1

+

–

FIGURE 15. The graph of graphsΓ(1).
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FIGURE 16. The graph of graphsΓ(2).
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FIGURE 17. The graph of graphsΓ(3).

5. SHAPES & F ILLINGS

In the next three sections we shall investigate the structure of Γ(k), and in particular determine
its cardinality. We begin by introducing the following two auxiliary notions.

Definition 5.1. Ashapeis a (non-oriented) treeF withk unnamed vertices andk−1 edges labelled
+, −, or =, such that two adjacent edges never have the same label.
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Theshape of a tree of relationsG is the tree obtained fromG by removing the labels of the
vertices. We say thatG is a filling of its shape.

A rootedtree of relations (resp. shape) is a tree of relation (resp. shape) together with the choice
of one vertex, called theroot.

Proposition 5.2. For any tree of relationsG, there exists a tree of relationsG⋆ without any= edge
and a sequence of inductionsJB1

, ... JBn
such thatG⋆ = JBn

...JB1
(G).

Proof
If G has no= edge, we are done; otherwise, we shall relate, by a sequence of inductions,G to a
tree of relationsG′ having one less= edge.

An = edge between two verticesa andb has at most four adjacent edgesa−̂y1, a+̂y2, b−̂y3,
b+̂y4; for y ∈ {y1, ...y4} let Gy(a, b) be the connected component containingy of the treeG
deprived of the edge fromy to its adjacenta or b vertex. We say thata=̂b is anextremal= edge if
there is at most onei such thatGyi

(a, b) has at least one= edge; if it exists, we call thisGyi
(a, b)

thedangeroussubtree ofa=̂b; note that the non-dangerousGyi
(a, b) contain no vertex with more

than two adjacent edges, because three edges adjacent to onecommon vertex must have three
different labels. For example, the= edges between vertices9 and6 and between vertices4 and5
in Figure 1 are extremal, while the= edge between vertices2 and3 is not extremal.

There is at least one extremal= edge, since otherwise we can follow a directed infinite path in
G andG is not a finite tree.

Supposea=̂b is an extremal edge ofG = G0, and suppose first that it has a dangerous subtree
and the edge leading to it is a+ edge. We denote byb0 the vertex which is on that edge and on the
extremal edge, and bya0 the other vertex on the extremal edge.

We build a finite sequence of graphsGn such that

• Gn+1 is obtained fromGn by a sequence of one or two inductions of sign(−1)n+1;
• if n is even,Gn has an extremal= edgean=̂bn, with at most four adjacent edgesan−̂xn,
an+̂yn, bn−̂zn, bn+̂tn, such thattn exists,Gtn(an, bn) is made of the union ofGt0(a0, b0)
and a branch fromt0 to tn with n vertices (t0 excluded,tn included), and is the dangerous
subtree ofan=̂bn;

• if n is odd, the same is true with all signs changed to the opposite.

This is true forn = 0, for a unique choice of(x0, y0, z0, t0). Supposen is even; then we consider
the four possibilities for the negative chain containing the edgean=̂bn:

• if it is xn−̂an=̂bn−̂zn, we induce on it, getting the negative chainzn=̂an−̂bn=̂xn, and
induce on this new chain, gettingGn+1 with the negative chainan−̂zn=̂xn−̂bn. Then we
putan+1 = yn, bn+1 = xn.

• If it is xn−̂an=̂bn, we induce on it, getting the negative chainxn=̂bn−̂an, and induce on
this new chain, gettingGn+1 with the negative chainbn−̂xn=̂an. Then we putan+1 = an,
bn+1 = xn.

• If it is an=̂bn−̂zn, we induce on it, gettingGn+1 with the negative chainbn−̂an=̂zn. Then
we putan+1 = zn, bn+1 = bn.

• If it is an=̂bn, we induce on it, gettingGn+1 with the negative chainbn−̂an and we stop the
process.

Forn odd we do the same construction, changing each sign to its opposite; and the sequenceGn

has the claimed properties; note thatGn+1 has the same number of= edges asGn, except at the
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last step where this number decreases by one. If the dangerous subtree ofa=̂b in G0 is linked to
b0 by a− edge, we do the same process with all signs changed. If there is no dangerous subtree of
a=̂b in G0, butG0 is not reduced toa=̂b, we chooseb0 to bea or b, andt0 such thatb0ê0t0, where
e0 = + or e0 = −, and do the same construction as above, definingtn by bnêntn whereen is the
sign of(−1)ne0; all our assertions remain true except thatGtn(an, bn) is not the dangerous subtree
of an=̂bn. If G0 is reduced toa=̂b, we defineG1 as the treea−̂b and stop the process. In all cases,
as all theGn have the same finite number of vertices, the process has to stop, and the finalGn = G′

has one= edge less thanG0. �

Corollary 5.3. If G hask vertices, every possible shape withk vertices appears as the shape of a
tree of relations inΓ(G).

Proof
By Proposition 5.2, it is enough to show that every shape without = edges appears. Ifk is odd,
there is only one such shape, the shape of the initial tree−̂.+̂...+̂ and the result is proved.

If k is even, the shapes without= edges arê−.+̂....−̂ and +̂.−̂....+̂; we have shown that
Γ(G) contains one tree with one of these shapes, for examplea1−̂a2+̂a3...a2p−1−̂a2p; then by
a negative inductionΓ(G) contains alsoa1=̂a2+̂a3=̂...a2p−1=̂a2p, hence by a positive induction
a2+̂a1=̂a4+̂a3 ...=̂a2p+̂a2p−1, hence by a negative inductiona2+̂a1 −̂a4+̂a3 ...−̂a2p+̂a2p−1; thus
the other one of the two shapes is the shape of at least one treein Γ(G), and similarly if we start
from the opposite one. �

6. CIRCULAR ORDER, AND DESCRIPTION OF THE GRAPH OF GRAPHS

Lemma 6.1. LetG be a tree of relations,s,t,u its bijections; we say thatb is thesuccessorof a if
b = tsu(a); this defines a total circular order on the vertices ofG, invariant by any induction.

Proof
We check first the invariance under the inductionJB for B a signed chain. Lets′, t′, u′ be as in
Lemma 3.7; suppose thata ∈ B andB is a negative chain; thenu′a = sa is inB, s′u′a = sussa =
sua is inB, and thust′s′u′a = t′sua = tsua; similarly, if a ∈ B andB is a positive chain, we get
t′s′u′a = sstsua = tsua; if a is not inB t′s′u′a = tsua.

Because of this invariance and Proposition 5.2, we need onlyto check that we have a to-
tal circular order for trees without= edges. And for a treea1−̂a2+̂a3...−̂a2p we get the order
(a1, a3, ...a2p−1, a2p, a2p−2, ...a2, a1); for a treea1+̂a2−̂a3...+̂a2p we get the order(a1, a2, ...a2p−2

, a2p, a2p−1, ...a3, a1); for a treea1−̂a2+̂a3...+̂a2p+1 we get the order(a1, a3, ...a2p+1 , a2p, a2p−2

, ...a2, a1). �

The circular order described above may be described geometrically as follows: starting from
any vertexx in a tree of relationsG, we move fromx to the vertexy wherex andy are joined by a
− edge. Ifx is not incident to a− edge, we takey to bex. Next we move fromy to z wherey and
z are joined by a= edge. Again, if no such edge exists, we takez to bey. Finally we move fromz
tow wherew is joined toz by a+ edge. Thenw is the successor ofx. For the tree in Figure 1, the
circular order is(1, 10, 3, 8, 5, 4, 6, 7, 9, 2, 1) while for every tree in Example 3.5 it is(1, 2, 3, 1).

Proposition 6.2. A tree of relationsG is in Γ(G′) if and only if the circular order of its vertices,
given byt, is the same as the one ofG′.
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Proof
By Lemma 6.1, the condition is necessary. By Proposition 5.2, it is enough to check the sufficiency
for trees of relations without= edges.

If k is odd, the only shape iŝ−.+̂....+̂; for it, every possible filling is of the forma1−̂a2+̂a3

...+̂a2p+1 where the circular order(a1, a3, ...a2p+1, a2p, a2p−2, ...a2, a1) coincides with the circular
order onG′ by assumption. This makesk trees of relations, one of which belongs toΓ(G′) by
Corollary 5.3. We call ita1

1−̂a
1
2+̂a

1
3−̂...+̂a

1
2p+1; all the others can be reached from it by induction,

first by negative inductions going toa1
1=̂a

1
2+̂a

1
3=̂...+̂a

1
2p+1, then by inducing successively1 ≤ l ≤

k times on the whole positive chain, and ending with negative inductions to replace= edges by−
edges.

If k is even, take the shapê−.+̂....−̂; for it, every possible filling is of the forma1−̂a2+̂a3

...−̂a2p where the circular order(a1, a3, ...a2p−1, a2p, a2p−2, ...a2, a1) coincides with the order of
G′; this givesk

2
trees of relations, one of them belongs toΓ(G′) by Corollary 5.3, we call ita1

1−̂a
1
2

+̂a1
3...−̂a

1
2p−1; all the others can be reached from it, first by negative inductions going toa1

1=̂a
1
2+̂

a1
3=̂...+̂a

1
2p−1, then inducing successively2 ≤ 2l ≤ 2k times on the whole positive chain, and

ending with negative inductions. The proof is similar for the shapê+.−̂....+̂. �

Corollary 6.3. If G is a trees of relations withk vertices, thenΓ(G) is obtained fromΓ(k) by a
renumbering of the vertices.G is in Γ(k) if and only if its circular order is(1, 2, ...k, 1).

Proof
Immediate from Proposition 6.2 and computation of the circular order ofG0(k). �

7. CARDINALITY OF THE GRAPH OF GRAPHS

Lemma 7.1. Let F be a shape, andσ a bijection (vertex to vertex, edge to edge, preserving the
labels) such thatσF = F . Thenσ is an involution; ifσ is not the identity,k is even, andF is the
disjoint union of two subtreesF1 andF2 and an edgee such thatσe = e, σF1 = F2, σF2 = F1.

For a givenF there is at most one suchσ different from the identity.

Proof
We considerσ as an isometry of a compact metric space by replacing edges bysegments of length
1. As such,σ has a fixed point.

If the fixed point is a vertex,σ has to fix the adjacent edges (which are all distinct) hence the
adjacent vertices, and, continuing this reasoning, we get thatσ is the identity.

If the fixed point is an edgee, eitherσ fixes its two end vertices or it exchanges them. In the first
case, againσ is the identity. In the second case, we get the desired decomposition given above and
thusk is even. Andσ2 fixesF1 and one of its vertices, thus is the identity onF1, and similarly on
F2, thus onF .

For a givenF , if it existse is unique (as there is the same number of vertices on each side), and
σ is defined uniquely on the adjacent edges, and thus everywhere. �

Definition 7.2. A shapeF is said to besymmetricif there exists aσ as in Lemma 7.1, different
from the identity. We call such aσ a symmetry.

Lemma 7.3. If k is odd, every shape hask different fillings inΓ(k); if k is even, every symmetric
shape hask

2
different fillings and every non-symmetric shape hask different fillings.
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Proof
Given a shapeF , we fix a way to relate it by a sequence of inductions, as in the proof of Proposition
5.2, to a shapeF ′ without = edges; ifF is non-symmetric, this defines a mapφ from the fillings
G of F to the fillingsG′ of F ′ (if φ gives a different image to one filling written in two different
ways, this defines a symmetry onF ).

If F andF ′ are non-symmetric, thenφ is a bijection. This happens ifk is odd by Lemma 7.1,
and in ths case we need only consider the shapeF ′ = −̂.+̂....+̂; we have seen in the proof of
Proposition 6.2 that it hask fillings, thus so hasF .

If k is even, andF is non-symmetric; thenF ′ is one of the (symmetric) shapeŝ−.+̂....−̂ and
+̂.−̂....+̂, eaxh of which hask

2
fillings, andφ is two-to-one, henceF hask fillings.

If k is even, andF is symmetric; then we can relateF to anF ′ without= edges such that at each
stage the shape is symmetric (by working simultaneously on one extremal̂= in F1 and its image
under the symmetry); thus ourφ sends the symmetry ofF to the (unique) symmetry ofF ′, thusφ
is well defined and one-to-one, henceF hask

2
fillings. �

Corollary 7.4. Γ(k) containsk trees of relations without= edges.

Proposition 7.5.
#Γ(k) = Catk+1 − Catk

where Catk = (2k)!
(k+1)(k!)2

is thek-th Catalan number.

The number of different shapes isCatk+1−Catk
k

if k is odd, andCatk+1−Catk
k

+ 3
2
Catk

2

if k is
even.

Proof
We count first the numberρ(k) of rooted shapes (where we have specified one vertex, see Definition
5.1 above) onk letters. We define four quantities,

• ρ0(k) is the number of rooted shapes with no edge from the root;
• ρ1(k) is the number of rooted shapes with one edge from the root, labelled +, resp. =,

resp.− (these three numbers being equal);
• ρ2(k) is the number of rooted shapes with two edges from the root, labelled+ and−, resp.

= and−, resp.+ and=;
• ρ3(k) is the number of rooted shapes with three edges from the root;
• ζ(k) is the number of rooted shapes with no edge from the root labelled+, resp.=, resp.
−.

We have

• ρ(k) = ρ0(k) + 3ρ1(k) + 3ρ2(k) + ρ3(k);
• ζ(k) = ρ0(k) + 2ρ1(k) + ρ2(k);
• ρ0(1) = 1, ρ0(k) = 0 if k > 1;
• ρ1(k) = ζ(k − 1);
• ρ2(k) =

∑
p+q=k−1 ζ(p)ζ(q);

• ρ3(k) =
∑

p+q+r=k−1 ζ(p)ζ(q)ζ(r).

In terms of power seriesRi =
∑

k≥1 ρi(k)X
k, Z =

∑
k≥1 ζ(k)X

k we getR1 = XZ, R2 =

XZ2, R3 = XZ3. HenceZ = X(Z2 + 2Z + 1), XZ2 + (2X − 1)Z + X = 0, and the only
admissible solution isZ = 1−

√
1−4X

2X
− 1. This givesζ(k) = Catk.

NowR = X(Z + 1)3 = Z(Z + 1) = Z
X
− Z − 1, thusρ(k) = ζ(k + 1) − ζ(k).
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If k is odd, one shape givesk rooted shapes, so the number of shapes isρ(k)
k

and the number of
trees of relations inΓk is ρ(k) by Lemma 7.3.

If k is even, a symmetric shape is made with one central edge (3 choices) and a compatible
rooted shape onk

2
letters, thus the numberτ(k) of symmetric shapes is3ζ(k

2
). A symmetric shape

corresponds tok
2

rooted shapes and a non-symmetric shape corresponds tok rooted shapes; ifψ(k)

is the number of non-symmetric shapes,ρ(k) = k
2
τ(k)+kψ(k). By Lemma 7.3 the number of trees

of relations inΓk is thusρ(k), and, by computingψ(k), we get the claimed number of shapes.�

Note that if we fix an order on the labels, such as− smaller than= and= smaller than+, the
rooted shapes whose root has no− (resp.=, +) edge, whose number isζ(k), are in bijection with
the set of ordered (incomplete) binary trees (suspending them by the root) and this proves again
thatζ(k) is thek-th Catalan number; see [9] for example.

The sequence of numbers of shapes begins by1, 3, 3, 10, 18, 57... and seems to be a new se-
quence, not yet in theOn-line Encyclopedia of Integer Sequences[6].

The third author together with R. Marsh and S. Schroll have shown that the set of shapes onk-
vertices is in bijection with the set of all labelled triangulations of a regular(k + 2)-sided polygon
up to rotations, where the edges of each triangle are labelled +,=,− in the clockwise direction.
Although we do not exploit this point in this paper, the induction mapping may be defined on
shapes by simply forgetting the labeling of the vertices. Inthis way, the induction mapping may be
regarded as a mapping defined on labelled triangulated polygons. This alternative perspective leads
to another proof of the results obtained in§7 by way of a formula due to Brown [1] for the number
of triangulations of a regular(k+ 2)-sided polygon up to rotations which incidentally corresponds
with the number of isomorphism classes of (basic) cluster-tilted algebras of typeAk−1 [8].

8. SECONDARY STRUCTURES OF GENETIC SEQUENCES

In §6 we associated a circular order to a tree structure; now we start from a circular order and
a structure imitated from the secondary structures of RNA (see for example [2]) and get trees of
relations. Namely

Definition 8.1. Let S be the periodic circular string on three symbols(XY Z)k; we equip it with
an origin and denote it byX1Y1Z1...XkYkZk. A pseudo knot-free secondary structureΣ onS is a
set of links between two different instances of symbolX, or two different instances of symbolY ,
or two different instances of symbolZ, such that any pair of distinct links, drawn inside the circle,
have an empty intersection.

Proposition 8.2. Let Σ be a pseudo knot-free secondary structure as above. We definea graphG
by puttinga+̂b, resp.a=̂b, resp.a−̂b, if there is a link betweenXa andXb, resp.Ya andYb, resp.
Za andZb. ThenG is a disjoint union of trees of relationsGi, 1 ≤ i ≤ d, such that ifi 6= j, a1

anda2 are vertices ofGi, andb1 andb2 are vertices ofGj, we cannot havea1 < b1 < a2 < b2 in
the circular order(1, ...k, 1). We can then define the mapss, t, u as in§3. For any vertexa ofGi,
tsu(a) is the next element ofGi in the circular order(1, ...k, 1).

Proof
Note first that two adjacent edges inG have different labels, otherwise two different links inΣ
have a nonempty intersection.
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We show thatG has no loop; suppose there is a loop with verticesa1, ... ar; then it cannot be
the case that all of its edges are labelled=. If there is an edgeai+̂bi, there is a link betweenXai

andXbi
. Then any link fromYai

or Zai
not intersecting thisX-link goes toYc or Zc for some

ai < c < bi (in the circular order), while any link fromYbi
or Zbi

not intersecting theX-link goes
to Yd or Zd for somebi < d < ai (in the circular order), and there is no way to close the loop.A
similar reasoning applies if there is an edgeai−̂bi.

ThusG is indeed a disjoint union of trees of relationsGi, and the condition on four vertices
is necessary to avoid nonempty intersections. For a vertexa of Gi, eitheru(a) = a or there is a
link betweenZa andZu(a), eithersu(a) = u(a) or there is a link betweenYsu(a) andYu(a), either
tsu(a) = su(a) or there is a link betweenZsu(a) andZtsu(a). Thustsu(a) is a vertex ofGi, and,
to avoid nonempty intersections, every vertex situated strictly betweena andtsu(a) can be linked
only to another vertex strictly betweena andtsu(a), thus such a vertex is not inGi. �

Proposition 8.3. LetG be a disjoint union of trees of relationsGi, 1 ≤ i ≤ d; we equip the set
of all vertices of theGi with any circular order compatible with the circular ordertsu defined on
eachGi, and such that ifa1 anda2 are vertices ofGi, b1 and b2 vertices ofGj , we do not have
a1 < b1 < a2 < b2 in this order. We define a link betweenXa andXb, resp.Ya andYb, resp.Za

andZb, whenever there is an edgea+̂b, resp.a=̂b, resp.a−̂b in G; then we get a pseudo knot-free
secondary structure as above.

Proof
What we have to prove is that any two distinct links have a nonempty intersection. When we have
one tree of relationsG, this is trivially true ifG has no= edge; and the definition of the induction
in §3 implies that this property is stable under induction, thusthe result follows by Proposition
5.2. When we have several trees, the condition on the order allows to mix the structures without
creating intersections. �

Proposition 8.4. A single tree of relations defines a pseudo knot-free secondary structure which is
maximal: no link can be added on the same set of vertices.

Proof
Any extra link would add an extra edge but by Proposition 8.2 the new graph has to be a union of
trees. �

Figures 18 and 19 illustrate pseudo knot-free structures corresponding to the trees of relations
1+̂2=̂3 and1+̂2−̂3 in Γ(3). Figure 20 illustrates an intersection between the arcs forthe tree of
relations3−̂1+̂2 not contained inΓ(3) (of course there would be no intersection if we used the
circular order defined by3−̂1+̂2, namely(1, 3, 2, 1)).

Example 8.5. The forest1+̂2−̂3, 4=̂5 also defines a maximal pseudo knot-free secondary struc-
ture.

Thus, to ensure that a given structureΣ on(XY Z)k corresponds to a single tree of relations, we
need to specify thatΣ hask − 1 links.
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