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COMBINATORIAL TREES ARISING IN THE STUDY OF INTERVAL EXCHAN GE
TRANSFORMATIONS

JULIEN CASSAIGNE, £BASTIEN FERENCZI, AND LUCA Q. ZAMBONI

ABSTRACT. In this paper we study a new class of combinatorial objeetsall trees of relations
equipped with an operation we callduction These trees were first introduced in [3] in the context
of interval exchange transformations but they may be stlididependently from a purely combina-
torial point of view. They possess a variety of interestioghbinatorial properties and have already
been linked to a humber of different areas including ergtitéory and number theory [3, 4]. In
a recent sequel to this paper, R. Marsh and S. Schroll hasblissted interesting connections to
the theory of cluster algebras and polygonal triangulati®h For each tree of relations, we let
I'(G) denote the smallest set of trees of relations contaifirand invariant under induction. The
induction mapping allows us to enddwG') with the structure of a connected directed graph, which
we call the graph of graphs. We investigate the structui&(6f) and define a circular order based
on the tree structure which turns out to be a complete inwafga the induction mapping. This gives
a complete characterization Bf{G) which allows us to compute its cardinality in terms of Catala
numbers. We show that the circular order also defines anaahstcondary structure similar to one
occurring in genetics in the study of RNA.

1. INTRODUCTION

In [3] we introduced a new induction algorithm for a family ioterval exchange transforma-
tions 7' in the hyperelliptic Rauzy class. This algorithm, called self-dual inductionprovides
new insight on the symbolic dynamics of the trajectories {(3Qir aim was to describe completely
the trajectories of points, and to relate both the combimetand dynamical properties of the un-
derlying system to the number-theoretic properties of @o@ated multi-dimensional continued
fraction algorithm. ItT" is an exchange oh intervals, then at each stage of our induction, we
induceT” (by first return) on a disjoint union df — 1 sub-intervalst;, each containing the point
$3; of discontinuity of7~! and whose endpoints are in the orbits of the discontinuities This
process defines a multi-dimensional continued fractioorétlygn generated by th&: — 2 param-
eters{l;, r; }1<j<k—1 Wherel; is the distance frony; to the left endpoint of; andr; the distance
from 3; to the right endpoint of’;.

As soon as: > 3, the2k — 2 parameterg/;, r,}1<;<x—1 are not independent and in fact satisfy
k — 2 symmetric relations of the fory = [;, orr; = r; orl; + r; = [; + r; for some: # j.

At each state of the induction, these relations, which arersequence of the isometry of the
transformatioril’ and the nature of the underlying permutation, may be codealtbge onk — 1
nodes (labelled throughk — 1) with labelled edges, where the labels take on three pesgihlies
corresponding to the three different types of relationsusra labelled edge in the tree between
nodesi and; indicates a relation between parameteg {/;,r;} andy € {l;,r;}, and the exact
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form of the relation is given by the edge label. These treescall trees of relationsare at the
very core of the dynamics of hyperelliptic interval exchartgansformations, and in fact in [3]
we show that the entire combinatorial description of thgett@ries ofl” may be deduced directly
from them.

In the present paper we define and study trees of relationgymed with the operation of in-
duction, from a purely combinatorial view, that is removeahfi the context of interval exchange
transformations. Very simply, a tree of relations is a tre@hich each edge is labelled by either
=, or —, and such that no two adjacent edges have the same labele Bigepicts an example of a
tree of relations with ten vertices. These trees, equipp#utire operation of induction, constitute
a new discrete structure possessing rich combinatorigdgrties. Together they define directed
graphs whose vertices consist of trees of relations withioes1 throughk — 1, and where the
directed edges between vertices are given by the inductapping.

FIGURE 1. A tree of relations or( vertices.

An outline of the paper is as follows: k2 we consider an example of an interval exchaihge
on4-intervals, to illustrate the induction algorithm in thentext of interval exchanges.

In §3 we define and study the basic properties of trees of reltidide define the induction
mapping in purely combinatorial terms as a mapping fromstadgelations to trees of relations.

In §4 we show that for every tree of relatio6s the sefl'(G), defined as the smallest set of trees
of relations containing- and invariant under induction, may be endowed with the sirecof a
connected directed graph. We call the directed giafgh) the graph of graphs af.

In §5, §6 and§7, we investigate the structure of the graph of grapfis). For this purpose we
introduce in§5 two auxiliary notionssshapesandfillings: A shape is a tree of relations in which
the vertices are unlabelled, they represent the skelettimedfee, while the filling represents the
passage from shapes to trees. We then show that the trEéS jimealise every possible shape.

In §6 we define a circular order on the vertices of a tree of ratatighich is determined by its
tree structure. We show that two fillings of a shape are in #meed’(G) if and only if they define
the same circular order on their respective vertices: trailar order is a complete invariant for
the induction mapping, and thus gives a full characteoratif I'(G).

In §7 we use this invariant to count both the number of shapes thaswhe cardinality of'(G),
by formulas involving Catalan numbers.
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In §8 we discuss an interesting connection between the cirstilacture defined 86 and a
similar structure occurring in genetics in the study of RNA.

Recently, R. Marsh and S. Schroll have written a sequel t® phper further extending the
combinatorial theory developed herein and establishitey@sting and surprising connections to
polygonalm-angulations, Fuss-Catalan combinatorics, and the thefaryister algebras (see [5]).

2. INTERVAL EXCHANGE TRANSFORMATIONS

Let us consider the interval exchange transformatiaim 4-intervals as shown in Figure 2 (by
convention, all intervals are open on the right, closed en¢ift). The transformatiod” maps by
isometry the first intervald, 1 — (5[ onto the intervalss, 1], the second intervall — 35,1 — (5]
onto|[f,, (3], the third intervall — /35, 1 — ;[ onto[3;, 52, and the fourth intervdll — 3, 1] onto

[0751['

0 1 g, 1- 4, 1-p 1

0 61 52 53 1

FIGURE 2. A symmetrici-interval exchange transformation.

For convenience, we further impose the initial condition

0<B<1=F<fo<l-05<B<l-05

so thatf, is in the intervalE;, = [0,1 — (53], 5o in the intervalE, = [1 — (33,1 — (], and 53 in
the intervalE; = [1 — (5,1 — f34[. For eachj € {1,2,3} we consider the two parametérsr;
wherel; andr; are defined as the respective distances between thefaanid the left and right
endpoints ofF;; thus|E;| = I; + r; is the length off;.

We remark that there are two relations between these pagesnetamely that; = r3 and
l, = l3; they are a consequence of the underlying isometf§ ahd the choice of the permutation
by which we re-arrange the intervals. We record (or codenths follows: forr; = r3 we write
1-3 (or equivalently3—1) and forl, = I3 we write 342 (or equivalently2+3). We may combine
these two expressions by forming a tree with vertice2, 3} and with an undirected edge labelled
— betweenl and3 and one labelled- betweer2 and3 as shown in Figure 3; this tree is denoted
also byl =312 or2+3-1 (see the beginning ¢).

The self-dual induction defined in [3] starts from the threteivalsE, o = Ey, Eay = Es,
Es, = Ej5, and creates three smaller intervals,, E» ., E5; (thus they are no longer adjacent).
By iteration, we obtain three families of nested intervals,, E,,, Es,. At each step of the
induction we consider the sub-intervAal,, containing the special point;, and recalculate the
corresponding parametelsr;. It turns out that at each stage there will be two relations/benh
the parameters of the following form: for some# j, eitherl; = [;, which we code byi+; or
equivalently byj+i, or r; = r;, which we code by—; or equivalently byj—i, or | E;| = |E}]|, or
equivalentlyl; + r; = [; + r;, which we code by=; or equivalently byj=:.
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T =7"Ts

lgzlg

0 b 1—'ﬁ3 Ba 1—'52 B3 1_'g1 1

o ® @
FIGURE 3. The coding of the parameters in state

The complete definition of the self-dual induction was madf8]; as it is not necessary to the
understanding of the present paper, we choose to followvinstt happens on one example and
postpone the full definition t§3 below, as it requires the full definition of the inductioreogtion
on trees ing2 below. Thus, suppose that in statéthe initial state) we have;, > [y, ro > [y,
r3 > I[3. Then, in passing to the subsequent state ($dawach interval; is cut from the right by
the amount;, as shown in Figure 4. It follows from the previous relatitimest the new parameters
satisfy the new relationls = I5 (or 2+3) and|E, | = | E3| (or 1=3).

lo =13

|EL| = | B3

O—6@—0

FIGURE 4. The coding of the parameters in state

Suppose that in state the corresponding parameters satikfy> r3, 7o > Iy, I3 > ry (this
happens whenever the parameters in siaatisfyl, + l3 > 1 = r3 > max(ly,[3) andry > 21,
which can be realised). Then the intervalis cut from the right by the amoufy, while the other
intervals are not cut. Although the new parameter valuésardr, differ from the corresponding
values in the previous state, these two parameters werevaived in the preceding relations and
hence the coding remains unchanged as shown in Figure 5.

Suppose that in statethe corresponding parameters satisfy> r3, Iy > 1o, I3 > 71 (again
there are initial values of the parameters for which thisjesms). To go to statg the intervalE);
is cut from the left by the amoumt, and F5 is cut from the left by, while E; is cut from the left



COMBINATORIAL TREES

lo =13

| By | = | B3|

O—06—O
FIGURE 5. The coding of the parameters in state

by r,. This gives rise to the coding-1=2 as shown in Figure 6.

Suppose that in statethe corresponding parameters satisfy: o, [, < 71, I3 < r3. In passing

from Figure 6 to Figure 7 the interval, is cut from the right by the amouit and E, is cut from
the right byl , while E; is cut from the right bys.

b B2 B3

O—0O—O
FIGURE 6. The coding of the parameters in state

As it turns out, each state has been coded by a tree of redatide next build a graph whose
vertices consist of all trees of relations coding the pdessktates, and where there is a labelled
directed edge between any two adjacent (or consecutitesstBhe edges are labelled by either
if the intervals are cut from the left, ef if they are cut from the right. The resulting graph is shown
in Figure 17 below, where the highlighted edges represenirtitial path between consecutive
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l1:l3

&—0O—0@

FIGURE 7. The coding of the parameters in state

states outlined in the present example. If we iterate thedsell induction infinitely many times
we obtain an infinite path in this graph.

3. TREES OF RELATIONS AND INDUCTION
By atreewe mean a non-oriented connected graph which has no cycles.

Definition 3.1. A tree of relations on a finite nonempty gétis a treeGG satisfying the following
three conditions:

e The vertices of7 are the elements df’.

e Each edge of- is labelled with{+, =, —}.

¢ No two adjacent edges 6f have the same label.

Notations. Throughout this paper, we consider edges labelled fith=, —}. We use the
notationa-b, resp. a=b, a—b, to denote the edge labelled, resp. =, —, between the vertices
andb. By further abbreviation, in describing a given tree of tielas G we write just (for example)
thata-+b in G to express that there is an edgeb in G, anda-+b=c instead ofa-+b andb=c. The
hats are used only to avoid writing expressions like 2 or 1 — 2 = 3, and thus are not needed
in pictures or in expressions like-aedge. Clearly:+b is equivalent t+-a, and the same if we
replace+ by — or =.

Example 3.2. The tree given in Figure 1 can be described in many equivalags, for example
1-223+10, 24629, 67, 3-4=518, or alternative\8+-5=4—-32246—-7, 6=9, 2—1, 10+3.

To each tree of relation& on K we associate three bijectionst,u : K — K defined as
follows: for eachu € K we put
e s(a) = bif a=bfor someb # a. Otherwise set(a) = a.
e t(a) = bif a+b for someb # a. Otherwise set(a) = a.
e u(a) = bif a—b for someb # a. Otherwise seti(a) = a.
It is immediate that
s?=t*=u?=1Id.
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Definition 3.3. Let G be a tree of relations. By a positive chain we mean a maximaheoted
subtree ofG having no— edges. Similarly a negative chain is a maximal connectettesgalofG
having no+ edges. By a signed chain we mean either a positive or a negettiain.

Figures 8 and 9 illustrate the positive and negative chaspactively of the tree of relations
given in Figure 1.

FIGURE 8. The positive chains in Figure 1.

FIGURE 9. The negative chains in Figure 1.

We next define an operation on trees of relations which werdiliction This operation asso-
ciates to each tree of relationson K and each signed chais of GG, a tree of relationgz(G) on
K as follows:

Definition 3.4. Let G be a tree of relations ok, with first bijections, and B be a signed chain.
The tree of relationg (G) is defined by the vertices a € K, and the following edges
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if a € B,b € B,anda+bin G, thens(a)=s(b) in Jp(G),
ifa € B,b € B,anda—bin G, thens(a)=s(b) in Jp(G),
if « € B, b € B, Bis apositive chain, and=b in G, thena+b in J(G),
if « € B, b € B, Bis anegative chain, and=b in G, thena—b in Jz(G),
ifa & Borb¢ B, andaRbin G, thenaRbin J5(G), for R € {+,=, —1.

It is readily verified that/s (G) is a tree of relations. We note th&t = .J5(B) is again a signed
chain inJz(G). The mapping G, B) — Jg(G) may be described geometrically in three simple
steps as shown in Figures 11-13: We consider the tree ofoesain Figure 1 and the highlighted
negative chairB consisting of vertice$1, 2, 3,4, 5} (see Figure 10). The resulting tree is shown
in Figure 14.

The induction on a disjoint union of signed chains, thoughiitot effectively used in the present
paper, is an important tool in the definition of the inductamninterval exchange transformations
(83 below):

Definition 3.5. For a unionB = B ... U By, of piecewise disjoint signed chains, we defiRéG)
as the compositiods, o ...Jp, (G), which by Definition 3.4 above is independent of the order of
the B;.

FIGURE 10. Aninduction on the tree of Figure 1.
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FIGURE 12. Step 2: Exchange vertices— s(a) and edges- <= .

Example 3.6. We look again at the trees {2 above.

Let G be1-3+2. Thens = (123), t = (132), u = (321). The positive chains ar8, = 3+2,
B, = 1, the negative chains afg; = 1-3 and B, = 2. Jp, (G) is 1-3=2, Jp,(G) is 1=342,
JB,(G) andJg, (G) areG. When we went from stat@to 1, we induced successively on the two
negative chaing3; and By, thus by Definition 3.5 on the unioBs U Bj.

Let G be1=3+2. Thens = (321),t = (132), u = (123). The only positive chain i8, = 1=3+2,
the negative chains am®, = 1=3 andB; = 2. Jp,(G) is 22143, Jp,(G) is 1-3+2, Jp,(G) is
G. When we went from stateto 2, we induced on the negative chdify, and from state to state
3 we induced on the positive chaisy .

Let G be2=1+-3; to go from states to 4, we induced on the union of the two negative chaag
and3.
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FIGURE 13. Step 3: Re-join pruned branches to their original cotioes.

FIGURE 14. The resulting tree of relations.

We can now give the full rules of the self-dual induction if. [At a given stage, they depend
both on the relations betweénandr;, coded by a tree of relatioris with first bijections, and on
the signs of thé;, — r,;) = [ — r;. Namely, let5 be the union of all positive chains on which
l; > ry;) on every vertex, and of all negative chains on whick r,;y on every vertex; then, if
is a vertex of a positive chain iB, E; is cut on the left by an amouni;), while if 7 is a vertex of
a negative chain i3, £; is cut on the right by an amoufy;; if 7 is a vertex outside oB, £; is
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not cut. It is proved in [3] thathe tree of relations at the next stagejis(G). Note that the two
other bijections of the tre& are also used in [3], but for technical reasons there we urgletlyl
different maps, namely = ts andm = us.

As is explained in [3], these rules, and the definitions oéd¢rand induction, come naturally
from the requirements of the self-dual induction, and theoty needs the whole machinery of
trees of relations to work satisfactorily.

The proof of the following lemma is immediate from the aboeémitions:

Lemma 3.7. Let B a signed chain of a tree of relatioris. The bijectionss’,¢', u’) of J(G) are
given as follows:

e if « € B and B is a positive chain,s'(a) = sts(a), t ( ) = s(a), u/'(a) = u(a);

e if « € B and B is a negative chaing'(a) = sus(a), t'(a) = t(a), v'(a) = s(a);

e ifad B,s(a) =s(a),t'(a) =t(a), v(a) = u(a).

4. GRAPHS OF GRAPHS

In this section we use the induction mapping to construcaglywhose vertices consist of trees
of relations withk vertices, and where the directed edges between verticelefined in terms of
the induction mapping.

Definition 4.1. For a given tree of relation&:, letI'(G) be the smallest set of trees of relations on
K which containg~ and is closed under induction.

We givel'(G) the structure of an oriented graph as follows: for e@¢k I'(G) and each signed
edgeB of G/, we place a directed edge fro@¥ to Jz(G’) labelled+ (resp.—) if B is a positive
(resp. negative) chain. We cdl(G) agraph of graphs

Let k& be a positive integer. We define thetial tree of relationson the set’ = {1,2,...,k},
denoted=(k), by
Go(k) =1-k+2-(k - 1)+3=-(k—2)...
As we saw in§2 for £ = 3, this is the tree of relations which codes the relations betwthe
parameters of the self-dual induction in the initial statedn interval exchange transformation on
k + 1 intervals, with suitable conditions on the permutationatirie-arranges the intervals, and on
the positions of the discontinuities.

We denote byl'(k) the graph of graph¥(Gy(k)). Figures 15, 16 and 17 illustraig1), I'(2)
andI'(3) (the highlighted edges ifi(3) correspond to the example §2). We shall see later that
I'(4) has 28 vertices whil&(5) has 90 vertices.

+

FIGURE 15. The graph of graphs(1).
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FIGURE 17. The graph of graphs(3).

5. SHAPES & FILLINGS

In the next three sections we shall investigate the straattif' (%), and in particular determine
its cardinality. We begin by introducing the following twadliary notions.

Definition 5.1. Ashapas a (non-oriented) treé’ with £ unnamed vertices anig-1 edges labelled
+, —, or =, such that two adjacent edges never have the same label.
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The shape of a tree of relations is the tree obtained front by removing the labels of the
vertices. We say thét is afilling of its shape.

Arootedtree of relations (resp. shape) is a tree of relation (redpagee) together with the choice
of one vertex, called th@ot

Proposition 5.2. For any tree of relationg~, there exists a tree of relatiords, without any= edge
and a sequence of inductiods,, ... Jp, such thatz, = Jg, ... 5, (G).

Proof
If G has no= edge, we are done; otherwise, we shall relate, by a sequémuduations,G to a
tree of relationg’ having one less- edge.

An = edge between two verticesandb has at most four adjacent edgesy,, a-+y., b—vys,
btys; for y € {yi,..us} let G,(a,b) be the connected component containingf the treeG
deprived of the edge fromto its adjacent. or b vertex. We say that=b is anextremal= edge if
there is at most onesuch thai,, (a, b) has at least one: edge; if it exists, we call thi&,, (a, b)
the dangeroussubtree otv=0b; note that the non-dangerods, (a, b) contain no vertex with more
than two adjacent edges, because three edges adjacent tmmngon vertex must have three
different labels. For example, the edges between verticOsand6 and between verticesand5
in Figure 1 are extremal, while the edge between verticsand3 is not extremal.

There is at least one extremaledge, since otherwise we can follow a directed infinite path i
G andG is not a finite tree.

Supposer=b is an extremal edge @F = G, and suppose first that it has a dangerous subtree
and the edge leading to it isfaedge. We denote by, the vertex which is on that edge and on the
extremal edge, and hy, the other vertex on the extremal edge.

We build a finite sequence of grap@is such that

e (i, is obtained front7,, by a sequence of one or two inductions of sign )"!;

e if n is even,iG,, has an extremat edgea,=b,, with at most four adjacent edges—x,,,
An+Yn, bu—2n, by+t,, such that,, exists,G;, (a,,b,) is made of the union oy, (ag, by)
and a branch from, to ¢,, with n vertices (, excluded¢, included), and is the dangerous
subtree ofi,,=b,,;

e if nis odd, the same is true with all signs changed to the opposite

This is true fom = 0, for a unique choice ofz, yo, 20, to). Suppose: is even; then we consider
the four possibilities for the negative chain containing #ugez,=b,,:

o if it is x,—a,=b,—z,, We induce on it, getting the negative chain=a, —b,=xz,, and
induce on this new chain, gettir@, ., with the negative chain,,—z,=x,—b,. Then we
pUtanJrl :A Yn, anrl = Tn. .

e Ifitis x,—a,=b,, we induce on it, getting the negative chain=b,,—a,,, and induce on
this new chain, getting,,, with the negative chaih, —z,,=a,. Then we puti, ., = a,,
bn+1 = Tp-

e Ifitis a,=b,—z,, we induce on it, gettingy,,.; with the negative chaih,~a,=z,. Then
we puta, 1 = 2, bn+1 =b,.

e Ifitis a,=b,, we induce on it, getting,,.; with the negative chaih, —a,, and we stop the
process.

Forn odd we do the same construction, changing each sign to itsstiepand the sequencg,
has the claimed properties; note tliat, ; has the same number ef edges as~,,, except at the
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last step where this number decreases by one. If the dargysubiree ofi=b in G is linked to
by by a— edge, we do the same process with all signs changed. If thegedangerous subtree of
a=b in Gy, butG, is not reduced ta=b, we choosé, to bea or b, andt, such thabyeyty, where
ep = + Oreg = —, and do the same construction as above, defitjray b, ¢,t, wheree, is the
sign of (—1)"eo; all our assertions remain true except tbat(a,, b, ) is not the dangerous subtree
of a,=b,. If G, is reduced ta=b, we defineG; as the tree—b and stop the process. In all cases,
as all the#,, have the same finite number of vertices, the process hagtgestd the finalz,, = G’
has one= edge less that,. O

Corollary 5.3. If G hask vertices, every possible shape witlertices appears as the shape of a
tree of relations in'(G).

Proof
By Proposition 5.2, it is enough to show that every shapemwith- edges appears. kis odd,
there is only one such shape, the shape of the initialtree..+ and the result is proved.

If kis even, the shapes without edges are~.+....~ and +.—....+; we have shown that
['(G) contains one tree with one of these shapes, for exampl@,+as...as, 1 —as,; then by
a negative inductionF(G) contains alsa; =ay+az=...as, 1_a2p, hence by a posmve induction
astai=as+az ...=ag,+as, 1, hence by a negative induction+a, —ay+asz ...—ag,+as, 1; thus
the other one of the two shapes is the shape of at least onm trg¢é&r), and S|m|IarIy if we start
from the opposite one. O

6. CIRCULAR ORDER, AND DESCRIPTION OF THE GRAPH OF GRAPHS

Lemma 6.1. Let G be a tree of relationss,t,u its bijections; we say thdtis thesuccessoof a if
b = tsu(a); this defines a total circular order on the vertices@®f invariant by any induction.

Proof
We check first the invariance under the inductifnfor B a signed chain. Let', ¢, «' be as in
Lemma 3.7; suppose thatc B andB is a negative chain; therfla = saisin B, s'u'a = sussa =
sua is in B, and thug's'v/a = t'sua = tsua; similarly, if « € B andB is a positive chain, we get
t's'u'a = sstsua = tsua; if aisnotinB t's'u'a = tsua.

Because of this invariance and Proposition 5.2, we need mnsheck that we have a to-
tal circular order for trees without edges. And for a tree; —ay+as...—as, we get the order
(al, g, ...Aop—1, A2p, A2p—2, ...A2, al); for a treea,l:Faglag...%agp we get the Orde(al, ag, ...agp—2
, A2py A2p—1, -..A3, al); for a treea11a2$a3...5ra2p+1 we get the Orde(al, ag, ...agpt1 5 A2p, A2p—2
, ..., al). ]

The circular order described above may be described geigaitras follows: starting from
any vertexr in a tree of relationss, we move frome to the vertexy wherex andy are joined by a
— edge. Ifx is notincident to a- edge, we takeg to bex. Next we move frony to z wherey and
z are joined by a= edge. Again, if no such edge exists, we take bey. Finally we move from:
to w wherew is joined toz by a+ edge. Thenw is the successor of. For the tree in Figure 1, the
circular order g1, 10, 3,8,5,4,6,7,9, 2, 1) while for every tree in Example 3.5it (g, 2,3, 1).

Proposition 6.2. A tree of relationg is in I'(G”) if and only if the circular order of its vertices,
given byt, is the same as the one Gf.
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Proof
By Lemma 6.1, the condition is necessary. By Propositionigi2enough to check the sufficiency
for trees of relations without edges.

If k& is odd, the only shape is.+....+; for it, every possible filling is of the forma; —a,+as
...-Fag, 1 Where the circular ord€a,, as, ...azp 1, azp, azy_a, ...az, a;) coincides with the circular
order onG’ by assumption. This makéstrees of relations, one of which belongsIt¢G’) by
Corollary 5.3. We call i; —aj+a3—...+a,, ,; all the others can be reached from it by induction,
first by negative inductions going @ﬁa%aga...#a;w then by inducing successively< [ <
k times on the whole positive chain, and ending with negatideictions to replace edges by
edges.

If k is even, take the shape.+....—; for it, every possible filling is of the forna, —as+as
...—ag, where the circular ordefa,, as, ...asp 1, azp, azy 2, ...az, a;) coincides with the order of
G'; this givesg trees of relations, one of them belongdt@.’) by Corollary 5.3, we call it:} —a3
+aj}...—a},_,; all the others can be reached from it, first by negative itidns going toa{ =aj+
a3=...+a},_,, then inducing successively < 2/ < 2k times on the whole positive chain, and
ending with negative inductions. The proof is similar foe hapel-.—....+. O

Corollary 6.3. If G is a trees of relations witlt vertices, therl'(G) is obtained fronT'(k) by a
renumbering of the vertices: is in I'(k) if and only if its circular order is(1,2, ...k, 1).

Proof
Immediate from Proposition 6.2 and computation of the dacarder ofG (k). O

7. CARDINALITY OF THE GRAPH OF GRAPHS

Lemma 7.1. Let F' be a shape, and a bijection (vertex to vertex, edge to edge, preserving the
labels) such that ' = F'. Theno is an involution; ifo is not the identityk is even, and is the
disjoint union of two subtreek; and F; and an edge such thatve = ¢, 0 F} = F5, oF5 = F7.

For a givenF there is at most one suehdifferent from the identity.

Proof
We consider as an isometry of a compact metric space by replacing edgesdmgents of length
1. As suchg has a fixed point.

If the fixed point is a vertexg has to fix the adjacent edges (which are all distinct) henee th
adjacent vertices, and, continuing this reasoning, wehggtitis the identity.

If the fixed point is an edge, eithero fixes its two end vertices or it exchanges them. In the first
case, agaim is the identity. In the second case, we get the desired dezsitign given above and
thusk is even. Ando? fixes F; and one of its vertices, thus is the identity Bn and similarly on
F,, thus onF'.

For a givenF', if it existse is unique (as there is the same number of vertices on each are
o is defined uniquely on the adjacent edges, and thus evergwher O

Definition 7.2. A shapeF' is said to besymmetricif there exists ar as in Lemma 7.1, different
from the identity. We call such@aa symmetry

Lemma 7.3. If k is odd, every shape hdsdifferent fillings inI'(k); if k is even, every symmetric
shape ha% different fillings and every non-symmetric shape hakfferent fillings.
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Proof
Given a shapé’, we fix a way to relate it by a sequence of inductions, as in theffpf Proposition
5.2, to a shapé” without = edges; ifF" is non-symmetric, this defines a magrom the fillings
G of F to the fillingsG’ of F” (if ¢ gives a different image to one filling written in two diffetten
ways, this defines a symmetry @r).

If FandF’ are non-symmetric, thep is a bijection. This happens ifis odd by Lemma 7.1,
and in ths case we need only consider the shidpe- —.+....+; we have seen in the proof of
Proposition 6.2 that it hasfillings, thus so hag'.

If k& is even, andF is non-symmetric; thed” is one of the (symmetric) shapes+....— and
+.=....4, eaxh of which ha$ fillings, and¢ is two-to-one, hencé” hask fillings.

If k& is even, and” is symmetric; then we can relatéto an/” without= edges such that at each
stage the shape is symmetric (by working simultaneouslyreextremal= in £} and its image
under the symmetry); thus oursends the symmetry df to the (unique) symmetry af”, thus¢
is well defined and one-to-one, hengenas: fillings. O

Corollary 7.4. T'(k) containsk trees of relations without edges.

Proposition 7.5.
#I'(k) = Caty,; — Cat,

where Cat = % is thek-th Catalan number.

The number of different shapesM if £ is odd, andw + %Catg if & is
even.

Proof
We count first the numbex( k) of rooted shapes (where we have specified one vertex, seétdefin
5.1 above) ork letters. We define four quantities,

e (k) is the number of rooted shapes with no edge from the root;

e pi(k) is the number of rooted shapes with one edge from the roct|lé&ab+, resp. =,
resp.— (these three numbers being equal);

e po(k) is the number of rooted shapes with two edges from the rdme)lled+ and—, resp.
= and—, resp.+ and=;

e p3(k) is the number of rooted shapes with three edges from the root;

e ((k) is the number of rooted shapes with no edge from the rootlbel, resp.=, resp.

We have

p(k) = po(k) + 3p1(k) + 3p2(k) + ps(k);
C(k) = po(k) + 2p1(k) + pa(k);
) =1, po(k) =0if k > 1;
)=k = 1);
p2(k) =3 qmi1 C(P)C(a);
p3(k) =>4 grrmne1 CP)C(@)C(r).
In terms of power serie®;, = >, ., pi(k) X", Z = 3 ,., C(k)X* we getR, = XZ, Ry =
XZ% Ry = XZ° HenceZ = X(Z> +27Z + 1), XZ*> + (2X — 1)Z + X = 0, and the only
admissible solution ig = :=Y1=2X _ 1 This gives( (k) = Cat,.

Now R = X(Z + 1)} = Z(QZXJr 1) =% — 7 —1,thusp(k) = C(k+ 1) — C(k).

e 6 o o o o
=
[y
—
N

A
X
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If £ is odd, one shape givésrooted shapes, so the number of shapé%isand the number of
trees of relations il is p(k) by Lemma 7.3.

If k£ is even, a symmetric shape is made with one central edge (Bef)and a compatible
rooted shape o@ letters, thus the numbei k) of symmetric shapes Br;(g). A symmetric shape
corresponds té rooted shapes and a non-symmetric shape correspokdsdted shapes; if (k)
is the number of non-symmetric shape@;) = £7(k)+kv (k). By Lemma 7.3 the number of trees
of relations inl'y, is thusp(k), and, by computing (&), we get the claimed number of shape§l

Note that if we fix an order on the labels, such-asmaller than= and= smaller than+, the
rooted shapes whose root has-ndresp.=, +) edge, whose number {§k), are in bijection with
the set of ordered (incomplete) binary trees (suspendie thy the root) and this proves again
that( (k) is thek-th Catalan number; see [9] for example.

The sequence of numbers of shapes begins,By3, 10, 18, 57... and seems to be a new se-
guence, not yet in th®n-line Encyclopedia of Integer Sequenf#s

The third author together with R. Marsh and S. Schroll hawshthat the set of shapes én
vertices is in bijection with the set of all labelled triahgtions of a regulaftk + 2)-sided polygon
up to rotations, where the edges of each triangle are labelle-, — in the clockwise direction.
Although we do not exploit this point in this paper, the inloc mapping may be defined on
shapes by simply forgetting the labeling of the verticeghia way, the induction mapping may be
regarded as a mapping defined on labelled triangulated posydrhis alternative perspective leads
to another proof of the results obtainedihby way of a formula due to Brown [1] for the number
of triangulations of a reguldik + 2)-sided polygon up to rotations which incidentally corresg®
with the number of isomorphism classes of (basic) cluskiedtalgebras of typel,_; [8].

8. SECONDARY STRUCTURES OF GENETIC SEQUENCES

In §6 we associated a circular order to a tree structure; now arefsdbm a circular order and
a structure imitated from the secondary structures of RN& fer example [2]) and get trees of
relations. Namely

Definition 8.1. Let S be the periodic circular string on three symbgl§'Y 2)*; we equip it with
an origin and denote it bX,Y; 7;... X, Y. Z,.. A pseudo knot-free secondary structdren S is a
set of links between two different instances of symbobr two different instances of symbpl
or two different instances of symh@| such that any pair of distinct links, drawn inside the acl
have an empty intersection.

Proposition 8.2. Let Y be a pseudo knot-free secondary structure as above. We dafiraphG
by puttinga--b, resp.a=b, resp.a—b, if there is a link betweeX,, and X, resp.Y, andY;, resp.
Z, and Z,. ThenG is a disjoint union of trees of relations;, 1 < ¢ < d, such thatifi # j, a;
anda, are vertices of5;, andb, andb, are vertices of7;, we cannot have; < b; < a; < by in
the circular order(1, ...k, 1). We can then define the magg, v as in§3. For any vertex: of G;,
tsu(a) is the next element @¥; in the circular order(1, ...k, 1).

Proof
Note first that two adjacent edges hhave different labels, otherwise two different linksn
have a nonempty intersection.
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We show thatG has no loop; suppose there is a loop with verticgs.. a,; then it cannot be
the case that all of its edges are labekedIf there is an edge;+b;, there is a link betweex,,
and X,,. Then any link fromY,, or Z,, not intersecting thisX-link goes toY, or Z. for some
a; < ¢ < b; (in the circular order), while any link fror,, or Z,, not intersecting the&X-link goes
to Y, or Z, for someb; < d < a; (in the circular order), and there is no way to close the lodp.
similar reasoning applies if there is an edgeb;.

Thus G is indeed a disjoint union of trees of relatio@6$, and the condition on four vertices
is necessary to avoid nonempty intersections. For a vertexG;, eitheru(a) = a or there is a
link betweenZ, andZ,,), eithersu(a) = u(a) or there is a link betweel,,) andY,,), either
tsu(a) = su(a) or there is a link betweed,,,) and Zy,,). Thustsu(a) is a vertex ofG;, and,
to avoid nonempty intersections, every vertex situatadtsttbetween: andtsu(a) can be linked
only to another vertex strictly betweerandtsu(a), thus such a vertex is not i, . O

Proposition 8.3. Let G be a disjoint union of trees of relatiorts;, 1 < i < d; we equip the set
of all vertices of the~; with any circular order compatible with the circular ordeésu defined on
eachG;, and such that if;; anda, are vertices of7;, b; and b, vertices ofGG;, we do not have
a; < by < as < by in this order. We define a link betweé), and X,, resp.Y, andY;, resp. Z,
and Z,, whenever there is an edge-b, resp.a=b, resp.a—b in G; then we get a pseudo knot-free
secondary structure as above.

Proof
What we have to prove is that any two distinct links have a ngotg intersection. When we have
one tree of relation&, this is trivially true if G has no= edge; and the definition of the induction
in §3 implies that this property is stable under induction, tthesresult follows by Proposition
5.2. When we have several trees, the condition on the ortimvsato mix the structures without
creating intersections. O

Proposition 8.4. A single tree of relations defines a pseudo knot-free secgratiaicture which is
maximal: no link can be added on the same set of vertices.

Proof
Any extra link would add an extra edge but by Proposition Be2riew graph has to be a union of
trees. 0

Figures 18 and 19 illustrate pseudo knot-free structuregsponding to the trees of relations
1+2=3 and1+2-3 in I'(3). Figure 20 illustrates an intersection between the arc¢hitree of
relations3—1-+2 not contained if'(3) (of course there would be no intersection if we used the
circular order defined bg—1+2, namely(1, 3,2, 1)).

Example 8.5. The forestl +2-3, 4=5 also defines a maximal pseudo knot-free secondary struc-
ture.

Thus, to ensure that a given structdren (XY Z)* corresponds to a single tree of relations, we
need to specify that hask — 1 links.
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