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In this paper, we consider data analysis methods for knowledge extraction from large
water datasets. More specifically, we try to connect physico-chemical parameters and
the characteristics of taxons living in sample sites. Among these data analysis methods
we consider Formal Concept Analysis (FCA), which is a recognized tool for classifica-
tion and rule discovery on object-attribute data. Relational Concept Analysis (RCA)
relies on FCA and deals with sets of object-attribute data provided with relations.
RCA produces more informative results but at the expense of an increase in complex-
ity. Besides, in numerous applications of FCA, the partially ordered set of concepts
introducing attributes or objects (AOC-poset, for Attribute-Object-Concept poset) is
used rather than the concept lattice in order to reduce combinatorial problems. AOC-
posets are much smaller and easier to compute than concept lattices and still contain
the information needed to rebuild the initial data. This paper introduces a variant of
the RCA process based on AOC-posets rather than concept lattices. This approach is
compared with RCA based on iceberg lattices. Experiments are performed with various
scaling operators, and a specific operator is introduced to deal with noisy data. We show
that using AOC-poset on water datasets provides a reasonable concept number and al-
lows us to extract meaningful implication rules (association rules which confidence is
1), whose semantics depends on the chosen scaling operator.

Keywords: Formal Concept Analysis, Relational Concept Analysis, implication
rules, water dataset

1. Introduction

Relational Concept Analysis (RCA) is a method for exploring relational data which
has already proved its relevance in several applications (Hacène et al. 2013a). It is
based on the iterative use of the classical Formal Concept Analysis (FCA) algorithm
(Huchard et al. 2007): formal objects are described with formal attributes as in
FCA, and with their relationships with other formal objects. The resulting relational
concepts can be used to extract implication rules linking objects or attributes from
different contexts. However, since RCA is an iterative process and each concept
created from an iteration step can be used to generate concepts at the following
step, it often comes with a combinatorial explosion, and relevant rules are difficult
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to extract from the huge set of built concepts. Various strategies can be used to cope
with this complexity, including separating the initial formal object sets into smallest
ones after a first analysis, or introducing queries (Azmeh et al. 2011b). A promising
strategy consists in using AOC-posets, or Galois sub-hierarchies, i.e. the sub-posets
of concept lattices induced by concepts introducing objects or attributes. AOC-
posets are smaller and easier to compute than concept lattices (Godin and Mili 1993),
and their sets of concepts have interesting properties for extracting implication rules.
In a previous work (Dolques, Le Ber, and Huchard 2013), we have adapted the RCA
process into an RCA-AOC process which uses AOC-posets rather than full concept
lattices at each step of the process. Furthermore we have presented preliminary
results obtained on an application concerning the assessment of watercourses quality.
In this paper, we further refine this preliminary work. We show that RCA-AOC

can handle large relational datasets and can easily extract relevant rules (implication
rules, i.e. association rules which confidence is 1) with a premise composed of one
attribute, in the case of a concrete application. We also introduce a general scaling
operator (the percent scaling operator) and show that it can be used to represent
fuzzy information better suited to our data and corresponding to the expert expec-
tations. We explore and discuss the effect of various scaling operators (existential,
universal strict and percent scaling operators) on the number and interest level of
rules obtained from the RCA-AOC process. Results are given from the analysis of
the FRESQUEAU dataset1 about watercourses.
The paper is organized as follows. A state of the art is presented in Section 2.

Section 3 gives some useful definitions about FCA and AOC-posets. Section 4 de-
tails the RCA process and its variant based on AOC-posets. Section 5 presents the
dataset and the principles of our analysis. The choice of RCA-AOC to perform this
analysis relies on a comparison with RCA based on iceberg lattices. Numerical re-
sults obtained with various scaling operators, and several rules are presented and
discussed in Section 6. Section 7 concludes the paper by opening some perspectives
of this work.

2. State of the art

In this paper, we aim at presenting to biological scientists implication rules extracted
by exploring large relational datasets. Implication rules extraction is closely con-
nected to Galois lattices and Formal Concept Analysis (Bertet, Guillas, and Ogier
2007). This brings us to consider relational dataset exploration in the context of
FCA (Section 2.1), with techniques for dealing with the combinatorial dimension of
the problem (Section 2.2) and implication rules (Section 2.3).

2.1. Integrating relations in FCA

Several approaches to integrate relations in FCA have been proposed, including
power context family (Prediger and Wille 1999), Relational Boolean Factor Analysis
(Krmelova and Trnecka 2013) and approaches connected to logics (Ferré, Ridoux,
and Sigonneau 2005; Baader and Distel 2008).
Prediger and Wille (1999) deal with many-valued contexts that are transformed

into a family of formal contexts under the guidance of a user objective. This family

1http://dataqual.engees.unistra.fr/fresqueau_presentation_gb
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of formal contexts is called the power context family, a notion that has been intro-
duced by Wille (1997). It represents all the k-ary relations on the object set. From
the concept lattices built on the formal contexts of the power context family, con-
cept graphs are extracted which, in turn, are organized into a lattice. Wolff (2009)
proposed another approach for obtaining concept graphs that relies on temporal con-
cept analysis, where conceptual scales are used instead of the concept lattices of the
k-ary relations. Kötters (2013) also considers objects connected by relations. They
introduce a Galois connection (and the derived concept lattice) which associates a
table (variables and the corresponding tuples) to a description that takes the form
of a windowed s-structure. Such a windowed s-structure (designed to be a form of a
query) is roughly a graph with edges labelled by the relations and with some nodes
labelled by variables.
Ferré, Ridoux, and Sigonneau (2005) transform relational data into logical formu-

lae within the framework of logical concept analysis. Object contexts are combined
with relational contexts and equipped with a combined logic. Relational attributes
are defined as follows: (∃r.f)(x) =def ∃x′.(r(x, x′) ∧ f(x)). The concepts’ intents of
the resulting lattice contain either classical attributes (f) or relational attributes
(∃r.f). Meta-relations are also built for navigating from one concept to another.
Baader and Distel (2008) propose a method for computing a basis of general con-
cept inclusions in Description Logics ELgfp where cyclic concept definition has close
connections with RCA.
Boolean Factor Analysis is applied to multi-relational data by Krmelova and Tr-

necka (2013, 2014). The relational factors are tuples of boolean factors extracted
from the various data tables in an independent way. Several connection schemas
can be applied that act similarly to the scaling operators of RCA. Compared to
RCA which builds initially upon all formal concepts that can be extracted from the
object-attribute tables and iterates, the boolean factors are only a part of the formal
concepts.
Hacène et al. (2013a) propose RCA whose originality is to compute in an itera-

tive manner (with a possible stop at each step) several concept lattices from data
represented in relational format. The concept lattices are connected by links that
abstract the relations between objects (the "relational attributes"). Several opera-
tors, borrowed to Description Logics, build the links between concepts. In RCA, the
scaling operation allows us to consider different kinds of granularity for the relations
between the concepts.
The initial RCA framework, using whole concept lattices, has been used for the

analysis and modernization of UML models (Dao et al. 2004; Arévalo et al. 2006;
Dolques et al. 2012), namely in class diagrams and in use case diagrams. Moha
et al. (2008) use concept lattices to exploit relations, between methods and between
methods and attributes, to detect and fix design defects. Model transformations are
learned from transformation examples thanks to several kinds of relations between
model elements (e.g. between elements inside a model, transformation links between
source elements and target elements) by Saada et al. (2012). Azmeh et al. (2011a) use
the relations between abstract tasks in an abstract orchestration to classify relevant
Web services to instantiate the tasks. Other applications can be found in ontology
engineering (Bendaoud, Napoli, and Toussaint 2008; Rouane-Hacène, Valtchev, and
Nkambou 2011; Shi et al. 2011). In these applications, the datasets are medium-size
guarantying the feasibility of the approach. In the FRESQUEAU project, we have
larger sets of data and it is necessary to reduce the lattice size.
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2.2. Reducing lattice size

The size of a concept lattice can be exponentially bigger than the size of its context,
the size of a concept lattice being bounded by 2min(|G|,|M|). Iceberg lattices and
AOC-posets are two ways of reducing the number of concepts, which benefits and
drawbacks will be presented in more details in Section 5.
Iceberg lattices have been introduced by Stumme et al. (2002) for their use in

Knowlegdge Discovery databases. An iceberg lattice is induced by the subset of
"frequent" concepts, i.e., concepts which have an extent support greater than a
given threshold. It is described by the authors as a visualization method for large
databases, a condensed representation for frequent itemsets and a visualization tool
for association rules.
To our best knowledge, the AOC-posets have been firstly used by Godin and Mili

(1993) in the domain of software engineering (object-oriented programming). AOC-
posets have also been used in applications of FCA to non-monotonic reasoning and
domain theory (Hitzler 2004) and to produce classifications from linguistic data (Os-
swald and Pedersen 2002; Petersen 2001), because of their capability to structure
knowledge. Osswald and Petersen (2003) argue that AOC-posets are more compact
than concept lattices, and that the price of recovering missing rules is not too high.
Aboud et al. (2014) compare efficiency of concept lattices and AOC-posets for classi-
fying components in subtyping-based directories. The conclusion is that in real-case
studies (dynamic environments), AOC-posets provide more realistic classification
structures for storage and execution time.
Specific parts of the AOC-poset (mainly the attribute-concepts part, namely AC-

poset) are used in several works. AC-posets help optimizing class inheritance hierar-
chy in object-oriented programming (Godin et al. 1998; Huchard, Dicky, and Leblanc
2000). In this context, the concepts are interpreted as classes and the concept spe-
cialization is interpreted as class inheritance. AC-posets are more appropriate than
concept lattices because in the general case, there is little interest to create classes
empty of attributes and methods. In software product line applications of FCA
(Ryssel, Ploennigs, and Kabitzsch 2011; Al-Msie’deen et al. 2013), the concepts are
extracted from the formal context mapping products to features. Ryssel, Ploennigs,
and Kabitzsch (2011) use the attribute concepts for inferring the 1-1 implication
rules, as well as a part of feature diagrams and, with more computation, an implica-
tion base. Al-Msie’deen et al. (2013) consider concepts of the AOC-poset as blocks
of code entities that are variation points in a software system.

2.3. Extracting rules

Many approaches exist to extract logical rules from data either in a supervised
context for building decision tree (Quinlan 1986) or classification rules (Clark and
Boswell 1991), or in an unsupervised context for association rules learning (Agrawal,
Imieliński, and Swami 1993). In our context, we are interested in proposing to biolog-
ical scientists sets of implication rules (association rules of confidence 1). Implication
rules have been extensively studied, and defining implicational bases is studied in
Bertet and Monjardet (2010). Other work of Adaricheva, Nation, and Rand (2011)
identifies in the basis of a reduced closure system the binary part composed of the
rules such that both the premise and the conclusion are singletons.
Here implication rules are built upon the relational dataset. Their extraction is

done by considering a main lattice and the relational attributes that connect this
lattice to the others. For extracting a significant subset of the implication rules,
AOC-posets are relevant because they contain all the irreducible elements and more
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precisely all the concepts that introduce attributes. Besides, the poset may be used
to explore rules that are in the neighborhood of a point of interest. For a reduced
context 2, the concepts of the AOC-poset are exactly the irreducible elements. In this
case, for implication rules where premise is a single attribute, we can consider only
the meet-irreducible elements3 (attribute-concepts). In our case, the formal context
is not reduced and we use all attribute-concepts (which include the meet-irreducible
elements) for building implication rules with premise containing one single attribute
a and conclusion containing a set of attributes S which is roughly the intent of the
concept, with some attribute removal as it is explained in Section 6. These rules can
be easily transformed into binary ones by writing all rules a→ s with s ∈ S.
The relational aspect of the approach permits the extraction of rules from complex

relational data which would require to be transformed by propositionalization ap-
proaches (Lachiche 2010) for many learning approaches. It also could be compared
to Inductive Logic Programming (Muggleton and de Raedt 1994) in some ways as
it will result in first order logic formulas. ILP being a supervised approach, its goal
differs as it will try to find the right premise for a given conclusion. The expressivity
of the results of our approach is far more restricted than with ILP, even with all the
scaling operators that can be imagined, leading to better performances but with a
restricted output language.

3. From FCA Basics to AOC-posets

Formal Concept Analysis (Ganter and Wille 1999) aims at extracting an ordered set
of concepts from a dataset, called a Formal Context, composed of objects described
by attributes. A formal context K is a 3-tuple (G,M, I), where I ⊆ G ×M.

Table 1. Formal Context KTaxons of animals (taxons) described by their life traits

Animal M
H
1

M
H
2

M
H
3

M
H
4

M
H
5

M
H
8

M
H
9

Aeschnidae ×
Agabus × × ×
Agraylea ×
Agriotypus × × ×
Ancylus × ×
Anisus × × ×
Anodonta × × ×
Anthomyiidae × × ×

Table 1 is a Formal Context KTaxons = (GTaxons,MTaxons, ITaxons) which de-
scribes taxons, i.e., animals or plants, by characteristics they may own. The consid-
ered taxons here are macro-invertebrates that can be found in rivers. We took the
examples of the following kinds of animals : Aeschnidae (Aes.), Agabus (Agb.),
Agraylea (Aga.), Agriotypus (Agi.), Ancylus (Anc.), Anisus (Ani.), Anodonta
(Ano.), Anthomyiidae (Ant.). They are described by their microhabitats: MH1

2Which has no identical rows, no identical columns, no row which is the intersection of several other rows,
and no column which is the intersection of several other columns (Ganter and Wille 1999).
3Elements of the lattice with a unique successor, while considering ascending order in our diagram repre-
sentations: lowest elements are below greatest elements.
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(flags/boulders/cobbles/pebbles), MH2 (gravel), MH3 (sand), MH4 (silt), MH5
(macrophytes), MH8 (organic detritus/litter), MH9 (mud).
Given a K = (G,M, I) formal context, a formal concept associates a maxi-

mal set of objects with the maximal set of attributes they share. It is thus a
C = (Extent(C), Intent(C)) pair where:

• Extent(C) = {g ∈ G|∀m ∈ Intent(C), (g,m) ∈ I} is the extent of the concept
(objects covered by the concepts),
• Intent(C) = {m ∈ M|∀g ∈ Extent(C), (g,m) ∈ I} is the intent of the

concept (shared attributes).

Given two formal concepts C1 = (E1, I1) and C2 = (E2, I2) of K, the concept spe-
cialization order ≤s is defined by C1 ≤s C2 if and only if E1 ⊆ E2 (and equivalently
I2 ⊆ I1).

CAlat0
 
 

CAlat1
MH1

 

CAlat2
MH2
Anc

CAlat3
 

Agi

CAlat4
MH3

 

CAlat5
 
 

CAlat6
MH4
Ano

CAlat9
 

Ant

CAlat12
 

Agb

CAlat13
 

Ani

CAlat15
MH9

 

CAlat7
 
 

CAlat8
MH5
Aga

CAlat10
 
 

CAlat11
MH8
Aes

CAlat14
 
 

(a) Concept lattice of taxons L0Taxons

CAaocp1
MH3

CAaocp0
MH1

CAaocp2
MH9

CAaocp6

Ant

CAaocp9
MH8
Aes

CAaocp4
MH5
Aga

CAaocp5

Ani

CAaocp8

Agi

CAaocp10
MH2
Anc

CAaocp7
MH4
Ano

CAaocp3

Agb

(b) AOC poset AOCTaxons

Figure 1. Concept lattice vs. AOC poset for KTaxons formal context

Let CK be the set of all concepts of a K formal context. This set of concepts
provided with the specialization order (CK, ≤s) has a lattice structure, and is called
the concept lattice associated with K.
Fig. 1(a) shows the concept lattice associated with the formal context of Table 1.

For simplicity’s sake, the lattice representation shows attributes (resp. objects) only
in the concept where they are introduced. An attribute is introduced in the highest
concept (for ≤s) where it appears, and it is (top-down) inherited in the subcon-
cepts. For example, in Fig. 1(a), MH2 attribute is introduced in CAlat2 concept. It
is inherited by CAlat2 subconcepts: CAlat3 and CAlat5. Symmetrically, an object
is introduced in the lowest concept (for ≤s) where it appears, and it is (bottom-up)
inherited in the super-concepts. For example, in Fig. 1(a), Anc. object is introduced
in CAlat2 concept. It is inherited by CAlat2 super-concepts: CAlat0 and CAlat1.
In other words, the representation shows the simplified intents (intents restricted
to introduced attributes) and simplified extents (extents restricted to introduced
objects) which will be denoted respectively IntentS(C) and ExtentS(C) for a given
concept C.
Given the potential complexity of the lattice computing in time and space, as the
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size of the lattice can rise up to 2min(|G|,|M|) concepts, several FCA applications (see
Section 2) use only a sub-order of (CK, ≤s) built only from the object concepts (which
introduce at least one object) or the attribute concepts (which introduce at least one
attribute). In Fig. 1(a), CAlat13 and CAlat2 are examples of object concepts; CAlat1
and CAlat2 are examples of attribute concepts; CAlat7, CAlat14 and CAlat10 are
examples of concepts that do not introduce any object or any attribute.
The specific sub-order of the concept lattice restricted to object concepts and

attribute concepts is called an AOC-poset (for Attribute-Object-Concept poset) or
sometimes Galois Sub-Hierarchy, but we consider the latter term less explicit. Fig.
1(b) shows the AOC-poset for the context of Table 1. The size of an AOC-poset
can be significantly smaller than the size of the lattice built from the same context,
the number of concepts of an AOC-poset being bounded by |G| + |M|. On our
small example, the AOC-poset has five concepts less than the corresponding lattice.
However, an AOC-poset is sufficient to recover the entire context. In the following
sections, AOC-posets will be part of a novel approach using their properties to reduce
the set of concepts generated to a more reasonable number.

4. RCA-AOC: A variant of Relational Concept Analysis with
AOC-poset

This section describes the classical RCA approach and the proposed variant of the
process for a new approach.

4.1. Relational Concept Analysis: the lattice-based approach

In the RCA input dataset, objects of several categories are described by attributes
and by relations to objects. This kind of dataset is called a Relational Context
Family. For more details about RCA, the reader is invited to read Hacène et al.
(2013b) where we borrow notations that refine these of Hacène et al. (2013a).

Definition 1 (Relational Context Family (RCF)). A Relational Context Family
(denoted RCF) is a (K,R) pair where:

• K = {Ki}i=1,...,n is a set of Ki = (Gi,Mi, Ii) formal contexts (object-attribute
relations), where Gi is the set of objects, Mi is the set of attributes and Ii ⊆
Gi ×Mi.
• R = {rj}j=1,...,p is a set of rj object-object relations where rj ⊆ Gk × Gl for
some k, l ∈ {1, . . . , n}.

In the following we will be using the notation dom(rj) to denote the domain of
the relation rj and ran(rj) to denote the range of rj .
To illustrate RCA, we use an RCF composed of the Taxons context denoted
KTaxons (Table 1), a Sites context, denoted KSites (Table at the left-hand side
of Fig. 2), and a contains relation, denoted by rcontains (Table 2).
RCA integrates object-object relations as new attributes (called relational at-

tributes) in formal contexts. Object-object relations link source objects to target
objects. They are different from object-attribute relations by the fact that target
objects are classified in concepts which are used to produce relational attributes.
Using simple attributes, the FCA approach is able to make a one-step concept dis-
covery, where a concept such as “sites containing Agb individuals” will emerge. The
RCA objective is to compose several relations. In our simple case, RCA will allow
us to recognize the group of sites (site3 and site5) which contain animals owning
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Site N
H
4

S
O
4

site0 × ×
site1 ×
site2 ×
site3 ×
site4 ×
site5 ×

CSlat0
 
 

CSlat1
NH4
site3
site4
site5

CSlat2
 

site0

CSlat3
SO4
site1
site2

Figure 2. Formal Context of Sites KSites (left), Concept lattice of Sites (right, L0Sites)

Table 2. Relation rcontains

contains ↗ A
es

A
gb

A
ga

A
gi

A
n
c

A
n
i

A
n
o

A
nt

site0 x x
site1 x x x
site2 x x
site3 x
site4 x
site5 x

MH5 and MH8 attributes, that live on macrophytes or on organic detritus.
The principle followed by RCA consists of transforming an object-object relation

r into a relation between objects of one category (the domain of r), and relational
attributes that involve concepts formed on objects of the other category (the range
of r) using scaling operators. These relational attributes have the general syntactic
form q r(C), where q is a quantifier, r is the relation and C is a concept whose extent
contains objects of the category which is the range of r. Quantifiers are chosen within
a set Q which includes the ∃ quantifier, which is the most used up to now and which
is used in this paper to illustrate the approach. Two other quantifiers are defined
below. In the next definitions, for r ⊆ G1 × G2 a relation, and o1 ∈ G1, we denote
the image set of o1 by r(o1) = {o2 ∈ G2|(o1, o2) ∈ r}.

Definition 2 (Existential scaling). Let K = (G,M, I) and Kr = (Gr,Mr, Ir) be two
contexts, and r a relation, where G is the domain of r, and Gr is the range of r.
Let Cr be the concept set built on on Kr. For every object o ∈ G and every concept
Cr ∈ Cr, if r(o) has a non-empty intersection with Extent(Cr) then the relational
attribute ∃r(Cr) is added to the attributes of o. This operation is called existential
scaling on K, Cr and r.

The existential scaling applied to the KSites context (right-hand side of Fig. 2),
for the rcontains relation (Table 2) and the concept set of animal lattice (Fig. 1(a)) is
presented in Table 3 after the vertical triple bar (the two columns that precede the
triple bar correspond to the initial site context). In this table, relational attributes
(with ∃ scaling) encode relations between sites and groups of taxons. For example,
site0 owns relational attribute ∃cont(CAlat11), expressing that site0 contains one
of the taxons (Aes) grouped in concept CAlat11.
There are several scaling operations for dealing with relational contexts (Hacène
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Table 3. Existential Scaling of Formal Context of sites. cont is the abbreviation of contains

Site N
H

4

S
O

4

∃c
on

t(
C

A
la

t0
)

∃c
on

t(
C

A
la

t1
)

∃c
on

t(
C

A
la

t2
)

∃c
on

t(
C

A
la

t3
)

∃c
on

t(
C

A
la

t4
)

∃c
on

t(
C

A
la

t5
)

∃c
on

t(
C

A
la

t6
)

∃c
on

t(
C

A
la

t7
)

∃c
on

t(
C

A
la

t8
)

∃c
on

t(
C

A
la

t9
)

∃c
on

t(
C

A
la

t1
0)

∃c
on

t(
C

A
la

t1
1)

∃c
on

t(
C

A
la

t1
2)

∃c
on

t(
C

A
la

t1
3)

∃c
on

t(
C

A
la

t1
4)

∃c
on

t(
C

A
la

t1
5)

site0 × × × × ×
site1 × × × × × × × ×
site2 × × × × × ×
site3 × × × × × × × ×
site4 × × × × × × × ×
site5 × × × × × × × ×

et al. 2013a). We define here the universal strict scaling operator ∀∃ and a general
percent operator S>n%, an operator we newly introduce to handle noisy results. This
last scaling comes in various levels, according to application needs.

Definition 3 (Universal strict Scaling). Let K = (G,M, I) and Kr = (Gr,Mr, Ir)
be two contexts, and r a relation, where G is the domain of r, and Gr is the range of
r. Let Cr be the concept set built on on Kr. For every object o ∈ G and every concept
Cr ∈ Cr, if r(o) is included in Extent(C), then the relational attribute ∀∃r(C) is
added to the attributes of o.

Definition 4 (Percent Scaling). Let K = (G,M, I) and Kr = (Gr,Mr, Ir) be two
contexts, and r a relation, where G is the domain of r, and Gr is the range of r.
Let Cr be the concept set built on on Kr. Let n be a value, n ∈ [1, 100]. For every
object o ∈ G and every concept Cr ∈ Cr, if more than n percent of r(o) is included
in Extent(C) (i.e., |r(o) ∩ Extent(C)| > n|r(o)|/100), then the relational attribute
S>n%r(C) is added to the attributes of o.

For defining more precisely the scaling operators, a generic function κ is introduced
which maps a scaling operator, a relation r and an object subset in the range of r
to a subset from the domain of r.

κ : Q ×R ×
⋃
i=1,...,n 2Gi →

⋃
i=1,...,n 2Gi

In the case of the existential scaling operator, for a relation r ⊆ Gk × Gl, the
function κ is instantiated as:

κ∃ : R× 2Gl → 2Gk

(r, Sl) → {o|r(o) ∩ Sl 6= ∅}

The generic notion of scaling operator can now be defined as follows.

Definition 5 (Scaling operator). Let Kk = (Gk,Mk, Ik) and Kl = (Gl,Ml, Il) be
two contexts, r ⊆ Gk × Gl a relation, and Cl a concept set on Kl; q denotes a
scaling quantifier. The scaling operator S(r,q),Cl over Kk yields the derived context
(G+,M+, I+) = S(r,q),Cl(Kk), where:

• G+ = Gk,
• M+ = {′q r(c)′ | c ∈ Cl},
• I+ =

⋃
c∈Cl κ(q, r, Extent(c))× {′q r(c)′}.

Definition 6 (Relational extension of a context Kk = (Gk,Mk, Ik)). Under Def. 5,
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let Rk = {rj , 1 ≤ j ≤ pk|dom(rj) = Gk} be the set of relations with domain Gk. Let
ρ be a mapping from R to Q which associates a scaling operator to each object-object
relation rj. Let a set of concept lattices L where each lattice LGl

corresponds to a
context Kl = (Gl,Ml, Il) from K with 1 ≤ l ≤ pk. Each Gl is the range of a relation
rj ∈ Rk. The relational extension of the Kk context, consists of apposing to Kk the
respective scaling upon each rj ∈ Rk:

Eρ,L(Kk) = Kk | S(r1,ρ(r1)),Lran(r1)
(Kk) | . . . | S(rpk ,ρ(rpk )),Lran(rpk

)
(Kk)

Table 3 shows the relational extension of KSites, when considering ρ(rcontains) = ∃
and the concept set of animal lattice of Fig. 1(a). If an additional relation connect-
ing sites to another kind of objects, for example, rinHEregion, connecting sites to
hydro-ecoregions (e.g. Alsace plain, Parisian Basin, ...) were in the dataset, then the
relational extension of KSites would include the scaling upon rinHEregion too.
The relational extension of the wholeK is composed of all the relational extensions

of all Ki in K.

Definition 7 (Relational extension of an RCF). Under the previous definitions, the
relational extension of K is:

E∗ρ,L(K) = {Eρ,L(K1), . . . ,Eρ,L(Kn)}

In our example, if we consider only the existential scaling and the animal and
site lattices of Fig. 1(a) and right-hand side of Fig. 2, the relational extension of K
would be composed of the relational extensions of KTaxons and KSites. The relational
extension of KTaxons is simply KTaxons, because there is no outgoing relation. The
relational extension of KSites has been shown in Table 3.
Now a whole construction process consists in building a finite sequence of contexts

and concept lattices associated with (K,R) and ρ. The first set of contexts (step 0)
is K0 = K. The contexts of step p are used to build the associated concept lattices.
The Lp set composed of the lattices at step p is used to calculate the relational
extension. The set of contexts at step p+ 1 is defined using the relational extension:
Kp+1 = E∗ρ,Lp

(K). The last sequence is obtained when the fix point is reached, i.e.,
when the obtained lattice family is isomorphic to the one from the previous step
and the contexts are unchanged. The RCA process guarantees that such a fix point
exists.
For our example, the fix point is obtained after two steps. The lattice for taxons

is the same during all the process (see Fig. 1(a)). The final lattice for sites is shown
in Fig. 3. In L1Sites lattice, we observe:

• CSlat11 represents the group of sites (site0, site3 and site5) which own
relational attribute ∃cont(CAlat11), meaning that they contain at least one
individual from CAlat11 extent (individuals owning property MH8).
• CSlat10 represents the group of sites (site3 and site5) which own relational

attribute ∃cont(CAlat10), meaning that they contain at least one individual
from CAlat10 extent (individuals owning properties MH5 and MH8).
• CSlat15 represents the group of sites (site1 and site4) which own rela-

tional attribute ∃cont(CAlat1) and relational attribute ∃cont(CAlat15), mean-
ing that they contain at least one individual from CAlat1 extent (individuals
owning property MH1) and an individual from CAlat15 extent (individuals own-
ing property MH9).

10
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∃ cont(CAlat15)

 

Figure 3. Lattice of sites (L1Sites) (step 1 of RCA)

4.2. A variant of RCA based on AOC-posets

As explained in Section 2, AOC-posets are used as a scalable alternative to concepts
lattices in some application domains where the remaining concepts give the needed
information or structure. We call RCA-AOC the variant of RCA which uses AOC-
posets instead of lattices. The principle of RCA-AOC is roughly the same as this
of classical RCA. A consequence of using AOC-posets, is that, with some (rare)
specific circular data schemas, RCA-AOC may diverge. The precise convergence
conditions are under study. Nevertheless, in the current application we can assume
the convergence of this method.
We illustrate the variant with the same example. Table 4 shows, after the triple

bar, S(rcontains,∃),CTaxons
(KSites) where CTaxons is the set of concepts of the AOC-poset

of Fig. 1(b). For a purpose of notation, we now use the concepts of the AOC-poset
CTaxons instead of the lattice LTaxons when we apply the definitions of the previous
sections.
The whole Table 4 shows the relational extension of the site context. The rela-

tional extension of our relational context family is composed of Table 1 (no outgoing
relation), and Table 4. The AOC-poset built from this extended context is shown
on Fig. 4. Comparing this AOC-poset and the lattice presented in Fig. 3 we observe
that 6 concepts have disappeared. The other concepts are as follows.

• 6 Concepts introducing objects are similar in the two hierarchies, i.e., they
have same simplified-extents and same simplified-intents’ cardinality.
• 2 Concepts introducing simple attributes are similar in the two hierarchies.
• 3 Concepts CSlat6, CSlat7, and CSlat11 correspond respectively to three

concepts of the AOC-poset, CSaocp3, CSaocp5, and CSaocp4 : they have the
same extents (including inheriting objects).
• 1 Concept CSlat15 from L1Sites disappears since both its simplified-intent and

its simplified-extent are empty.
• 5 Concepts from L1Sites have no corresponding concepts in the AOC-poset since
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Table 4. Existential Scaling of Formal Context of sites S(rcontains,∃),CTaxons
(KSites)
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site0 × × × ×
site1 × × × × × × ×
site2 × × × × ×
site3 × × × × ×
site4 × × × × ×
site5 × × × × ×
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Figure 4. AOC-poset AOC2
Sites for the K2

Sites formal context

the relational attributes they introduce do not correspond to any concepts of
the AOC-poset AOCTaxons (Fig. 1(b)).

The whole construction process consists in building a (possibly infinite) sequence
of contexts and AOC-posets. In this simple example, the following steps do not
produce any new concept (a fix-point is reached), but, as we said, in the general case
the process may diverge. Both approaches are implemented in a single tool called
RCAExplore 4. RCAExplore was originally created to implement an exploration
process described in Dolques et al. (2013) which permits the redefinition of the
construction configuration at each iteration of the process. This tool is developed in
Java and implements the RCA process with a modular architecture: new concept
generation algorithms and new scaling operators can easily be implemented to be
used by the RCA process. The tool proposes a few concept generators among which
are a concept lattice building using an adapted version of the AddIntent algorithm
(van der Merwe, Obiedkov, and Kourie 2004) and an AOC-poset building using

4http://dataqual.engees.unistra.fr/logiciels/rcaExplore
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Hermes algorithm (Berry et al. 2012).

5. Analysing Water datasets

We present in this section an application of our approach to FRESQUEAU project.
We first describe the used dataset and the addressed problems. We show that AOC-
posets are relevant with respect to iceberg lattices.

5.1. The dataset

We rely on a large database collecting data on Alsatian streams and water areas
(North-east of France) which is described by Grac et al. (2011), and more data are
available through the current FRESQUEAU project, concerning larger areas and
periods. The data, which have been collected during 3 years over 40 sites in the
Alsace plain, come either from samples (e.g., physical, physico-chemical and bio-
logical data collected on stream sites), synthetic data (e.g., biological indices, land
cover) or from the literature (e.g., information about the aquatic species living in
the streams that were analysed with FCA in a previous work (Bertaux et al. 2009)).
More precisely in this paper we work with three tables. The first one gives values
of 27 physical (e.g., state of the river bed, presence of hydraulic structures) and
physico-chemical parameters (e.g., temperature, pH, sulfite SO4, nitrite NH4, or-
ganic matters) collected on 49 stream sites5. The second table gives the level of
population for 197 macro-invertebrates (e.g., Ancylus, Anisus, Anodonta) collected
on the same 49 sites. The third one describes the macro-invertebrates with 18 differ-
ent life traits, i.e., their characteristics and functioning, e.g., life cycle, reproduction
mode, etc. Each life trait is represented by several modalities (e.g., for the life trait
life cycle there are two possible modalities: less than a year or more than a year).
The number of modalities over all life traits is 116. We look for rules combining life
traits and physico-chemical parameters, e.g., “the M modality of the T life trait is
associated with a high value of the C physico-chemical parameter”.
Data are modeled within 4 formal contexts: stream sites, physico-chemical param-

eters, life traits and macro-invertebrates and we consider the three relations between
them that are described by our tables: level of physico-chemical parameter, popula-
tion of macro-invertebrates and life trait of macro-invertebrates. We separate values
into several classes by preprocessing the numerical values of the different relations.
So the level of physico-chemical parameter relation has been split into 5 binary rela-
tions describing 5 different levels, the population of macro-invertebrates relation has
been split into 3 different binary relations and the life trait of macro-invertebrates
relation has been split into 6 binary relations. This binarisation process has been
accomplished under the guidance of a domain expert. The whole relational context
family, denoted RCFw in the following, is represented in Figure 5.

5.2. Principles of the approach

The initial need of the domain experts is to find relations between the physico-
chemical state of a watercourse and the life trait modalities of the taxons living there.
The output result has to be limited in size and complexity as it will be analyzed by
hand and some metrics should be provided to highlight the most relevant results.

5In the following both physical and physico-chemical parameters are called physico-chemical parameters.
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Figure 5. Relational schema of RCFw.

We propose here to meet these needs by extracting implication rules between
physico-chemical characters and life trait modalities. The rules will be proposed to
the experts sorted by support. Tests are made using 3 different scaling operators on
the relational context family RCFw:

• the universal strict scaling operator ∀∃ described in Definition 3.
• the percent scaling operator S>n% described in Definition 4. Three values of
n are used.
• the existential scaling operator ∃, described in Definition 5.

Those operators are applied on the relation population of macro-invertebrates while
other relations, due to the fact they are mostly targeting singleton concepts (Physico-
chemical parameters and life traits are attributes for relational classification but they
are not classified by other attributes), will use the existential scaling operator.
Classical RCA leads to a combinatorial explosion of the number of concepts that

forces us to try other methods of classification that reduce the number of concepts.
The use of iceberg lattices has been considered but the choice of the threshold is
arbitrary. On our case study, the number of concepts obtained by computing iceberg
lattices on one object-attribute relation, while computing AOC-posets on others,
depending on the chosen threshold is represented in Figure 6 and is compared to the
number of concepts obtained with AOC-posets on all object-attribute relations. The
threshold is here described in percentage of the number of objects in the concept,
e.g., iceberg(90) will only compute the concepts with an extent size greater than 90%
of the number of objects. The number of concepts grows exponentially and there are
more than 10,000 concepts by lattice with a threshold around 80%.
Iceberg lattices limit the concepts computed to the most general ones, which is

useful to extract only the most frequent behaviors found in the data, but makes it
impossible to extract less frequent but interesting behaviors that could be found with
an AOC-poset. The figure also illustrates the impracticality of classical RCA (which
is equivalent to iceberg lattices with a threshold of 0%) as it is not computable (in
time and in memory) on a desktop configuration6 and the number of concepts is far
too large to be manually analyzed by the expert.

6. Extracting Implication Rules

Implication rules are implications that are verified by the whole considered dataset.
Some implication rules can be extracted from the AOC-poset concepts by considering

6Experiments were done on a Processor Intel R©CoreTM2 Duo CPU L9600 @ 2.13GHz × 2 and 1.7 GiB of
RAM.
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Figure 6. Concept number explosion with Iceberg-lattices compared to AOC-posets. For the streamsite
lattice on the LHS and for the taxons lattice on the RHS.

their simplified intent.
An attribute a from the simplified intent of a concept C is an attribute that is not

contained in the intent of any concept more general than C, i.e., the set of all the
objects sharing a is the extent of C. The objects from the extent also all share the
attributes of the full intent of C, but they may not be the only ones. By consequence,
for every object o in the dataset, the presence of a implies the presence of all the
attributes from the intent of C. Thus, rules are calculated as follows:

for Concept C do
if simplifiedIntent(C) 6= ∅ then

for Attribute a ∈ simplifiedIntent(C) do
a→ ∧{b|b ∈ fullIntent(C) ∧ a 6= b};

For instance, in Fig. 1(b) we can consider the concept CAaocp7.
Intent(CAaocp7) = {MH4 ,MH3 ,MH9} and IntentS (CAaocp7) = {MH4}
which means that in all the dataset the rule MH4 → MH3 ∧MH9 is verified. In
natural language this rule says that taxons living in silt (MH4) also live in sand
(MH3) and mud (MH9). Note that this rule cannot be taken as relevant considering
the small size of the example.
All the concepts with non empty simplified intent can be found in the AOC-poset

meaning that all the rules having one element in the premise can be found with
an AOC-poset. Extracting rules from an existing AOC-poset is straightforward as
it consists in reading the simplified intent and the full intent of each concept. The
concept order permits to extract rules ordered by support, the rules extracted from
the most general concepts having a larger support than more specific rules. The use
of RCA permits to use relational attributes in implication rules and thus obtain
more expressiveness.
Furthermore, when the attribute number in the rule conclusion is important, the

rule is difficult to interpret. We thus propose to extract simplified rules, following to
the application needs. The following simplifications are applied.

• First, if the implication rule has a relational attribute as premise pointing to a
concept Cp, then we will only keep in the conclusion relational attribute point-
ing to concepts that are from a different AOC-poset than the one containing
Cp. This is motivated by the fact that we want to see how some variables can
be influenced by variables from different types, e.g., we would like to find how
the physico-chemical state of water influences the taxons living in it.
• In the conclusion, for a given relation and a given scaling operator, only the
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most specific of the pointed concepts are kept. Indeed, with the scaling oper-
ators we use, we have the property that if a concept contains in its intent a
relational attribute pointing to a concept C, then it will also contains the rela-
tional attributes with the same relation and the same scaling operator pointing
to all the concepts more general than C. This property is not necessarily shared
by every scaling operator.
• Finally we consider attributes in the intent of C that are inherited from all the

concepts that are more general than C and that are separated by at most 3
generalization relations to the current concept C (this can be modified accord-
ing to the application needs). This is to prevent from having the most shared
attributes of the dataset in the conclusion of every computed rule.

6.1. Experiments

Experience shows that the full rules describing the most specific concepts can be
really large as the size of their intent is large. However, some attributes of these
concepts were found to be irrelevant. For instance, the dataset describes fresh water
stream sites, so most of the taxons have a high level of affinity with the modality
fresh water of the trait salinity. Hence a high affinity with the modality fresh water
will appear in most of the concepts and is not considered as relevant to experts since
all considered watercourses are fresh water. Seeing that, we produced the previously
described simplified rules according to experts request.

Table 5. Description of the results depending on the scaling operator

Scaling
Operator

Number
of

Concepts

Full Rules describing Simplified Rules describing

Life traits Physico-chemical Life traits Physico-chemical
parameters parameters

∃ 954 1428 134 170 134
S>25% 696 917 134 285 134
S>50% 502 708 134 301 134
S>75% 412 627 134 312 134
∀∃ 390 589 134 305 134

From the obtained AOC-posets we extracted two sets of rules: rules with physico-
chemical parameters in the premise and rules with life traits in the premise. Table 5
denotes the number of concepts in the site AOC-poset obtained for each scaling
operator and the number of simplified and full rules. The different scaling operators
have a direct influence on the number of generated concepts: the ∃ scaling operator
is the less constrained and produces the biggest number of concepts, which are found
too generic as the simple occurrence of a modality will add a new attribute to an
object. The ∀∃ scaling operator is the most constrained and produces the lowest
number of concepts, which are found too specific. Indeed the ∀∃ scaling operator
requires that all the taxons found share a characteristic to add this characteristic
as an attribute to a stream site. In between we introduce 3 instances of the percent
operator, respectively S>25%, S>50% and S>75%. The S>50% operator, which we
call the majority operator, is found to be a good compromise as it requires several
occurrences of a modality for it to be considered but allows some exceptions. Exact
implications can be hard to find, especially on real world data with a lot of external
parameters influencing the results. The percent operator helps us coping with noise
in the dataset that makes the use of ∀∃ inefficient; furthermore it provides stronger
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rules than the ∃ scaling operator that only reveals that ubiquitous taxons are present
everywhere.
We obtained 1428 rules describing life traits with the existential operator, and

around half of it with the majority operator. Simplifying the rules also leads to a
reduction of their number, which means that many rules were built from general
attributes. The reduction of the rule number after simplification is more important
with existential scaling as relational attributes describing life traits are more general
and are introduced higher in the AOC poset. However this reduction is not neces-
sarily following the value of the percent operator as we can note that the number
of simplified rules describing life traits is higher with S>75% than with ∀∃, which
would be equivalent to S=100%. The number of rules describing physico-chemical
parameters is quite surprising as it depends neither on the operator used nor on the
simplification process. This is partly explained by the following properties of the
dataset.

• The scaling operators are not applied on the relation level of physico-chemical
parameters which means that the relational attributes extracted from this
relation are always the same associated to the same sets of objects. The number
of relational attributes pointing to a concept describing a physico-chemical
parameter is always the same: 25× 5 = 135.
• There exist in life traits some modalities that are shared by nearly all the

taxons studied here, e.g., as we study only freshwater watercourses all the
taxons will have a strong affinity with freshwater. This means that in every
sample, for every physico-chemical parameter at every value, we can create a
rule implying strong affinity to freshwater.
• In our dataset, only one relational attribute pointing to a concept describing a

physical parameter does not describe a sample, i.e., a rule can not be created
from it. Actually this physical parameter admits only four value classes in the
current dataset.

Besides, the simplification process we used defines arbitrarily, considering the ex-
pert feedback, to put in the rule conclusions only attributes introduced by concepts
distant from at most 3 by the generalization relation. When reducing this limit,
experiments show that the rule number may be lower.

6.2. Rule examples and discussion

The rule presented below is an example of rules extracted from the experimental
data and selected as a relevant one by the expert:

S>50% high_population(
∃strong_affinity(transversaldistribution : banks and sidearms))

→ ∃good_state(banks)

This rule means that if a site of the dataset has more than half of its highly
represented taxons having a transversal distribution mainly on banks and sidearms,
then the state of its banks is considered as good. The following rule represents
another knowledge extracted from the dataset:
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S>50% high_population(
∃strong_affinity(slow current))

→ ∃bad_state(hydrology)

This rule means that if a site of the dataset has more than half of its highly
represented taxons preferring slow current, then the hydrological state of the site is
considered as bad. Each rule is extracted from a concept and as such a partial order
can be defined on the rules, following the partial order of the concepts that generate
them. The experts can follow this partial order to analyze the rules.
The levels that are referred here are defined specifically to each physico-chemical

parameter, each taxon, and each biological character. For the physico-chemical pa-
rameters, chemical parameters are usually attached to a level of concentration, phys-
ical parameters have different kinds of values describing the state of the site. The
same goes for the taxon presence. For the biological characters it refers to an affinity
of the species to the modality of a particular biological trait (e.g., for its habitat,
an animal may have a stronger affinity with sand than gravel, but may be found in
both of them).
Although the modeling can have several variants for analysis purpose (the current

one being established with domain experts) and several approaches could be used
to limit the number of concepts, we saw with the current modeling, that classical
RCA reveals scale issues while we are only working on a small part of the data.
Using AOC-poset allows us to handle large data without exploding the number of
concepts. Besides, reducing the number of concepts means that the extracted in-
formation is also reduced. For the stream site concepts, from which we extract the
rules, the AOC-poset keeps the relevant data as we still have the concepts where
each attribute is introduced and the concept order. For the macro-invertebrates how-
ever, several concepts are lost that represent combinations of shared life traits. We
still have to measure the impact of the missing concepts on the results but it would
seem appropriate to combine the RCA-AOC approach with a more traditional lat-
tice building approach that would compute (using the AOC-poset) a few additional
relevant concepts for the macro-invertebrates while keeping the number of stream
site concepts low with AOC-poset.
The rule format, with premises of size 1, is a small set of all the rules that can be

generated, but the premise being a relational attribute we obtain more expressivity
than could be obtained for instance with classical FCA. By varying scaling operators
rules can be more general or specific and the concept pointed by the relational
attribute can be a rich description with several attributes, e.g., with a relational
attribute pointing to a taxon concept, we can have a premise including several life
traits modalities.

7. Conclusion

This paper has detailed and refined the RCA-AOC process that we introduced
in Dolques, Le Ber, and Huchard (2013). This process is based on AOC-poset in or-
der to deal with computational complexity over big datasets. Actually AOC-posets
reduce the number of concepts, with no information lost as the context can still
be retrieved from an AOC-poset. It allows us to compute implication rules linking
attributes from different tables. According to the chosen scaling operator, various
rules can be obtained. In this paper we have introduced a specific operator for ex-
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ploring relational data about watercourses and aquatic species characteristics. The
approach proved to be efficient and revealed relevant rules.
In the future, we will work on specifying the convergence conditions of AOC-poset

based RCA. Indeed, more complex datasets may include cycles between objects.
Convergence is ensured with the RCA specification from Hacène et al. (2013a) where
the set of concepts used at each step is the set of concepts of the whole lattice.
With AOC-posets, the convergence is not guaranteed when there are cycles between
objects.
Regarding our application aim, we will study how to extract bases of binary rules,

and how to calculate some of the non-binary rules by reconstructing from the AOC-
poset parts of the lattice that experts have identified as significant. We also plan to
evaluate with the experts whether they prefer to interpret reduced rule sets (impli-
cation rule bases) or at the contrary more complete rule sets (containing inferences).
A tool for vizualising the results and assisting their exploration is under develop-

ment. Finally the approach will be tested on other datasets of the FRESQUEAU
project, and compared with other approaches for relational data mining such as sta-
tistical approaches (Doledec et al. 1996) or propositionalization (Lachiche 2010). A
first attempt is described in Dolques et al. (2014).
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