
HAL Id: hal-01265418
https://hal.science/hal-01265418v1

Submitted on 2 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Humanoid posture generation on non-Euclidean
manifolds

Stanislas Brossette, Adrien Escande, Grégoire Duchemin, Benjamin Chrétien,
Abderrahmane Kheddar

To cite this version:
Stanislas Brossette, Adrien Escande, Grégoire Duchemin, Benjamin Chrétien, Abderrahmane Khed-
dar. Humanoid posture generation on non-Euclidean manifolds. Humanoids, Nov 2015, Seoul, South
Korea. pp.352-358, �10.1109/HUMANOIDS.2015.7363574�. �hal-01265418�

https://hal.science/hal-01265418v1
https://hal.archives-ouvertes.fr


Humanoid Posture Generation on non-Euclidean Manifolds

Stanislas Brossette1,2, Adrien Escande2, Grégoire Duchemin2, Benjamin Chrétien1,2, Abderrahmane Kheddar2,1

Abstract— We present a reformulation of the posture genera-
tion problem that encompasses non-Euclidean manifolds. Such
a formulation allows a more elegant mathematical description
of the constraints, which we exemplify through some scenarios
in the simulation results section. In our previous work, the
posture generation problem is formulated as a non-linear
optimization program with constraints expressed only through
Euclidean manifolds; we solve the latter problem using on-
the-shelf solvers. Instead, we decided to implement a new SQP
solver that is most suited to non-Euclidean manifolds structural
objects. By doing so, we have a better mastering in the way to
tune and specialize our SQP solver for robotic problems.

I. INTRODUCTION

Computing robot configurations to meet the requirements
of a given set of tasks, within a viable state, is a recurrent
problem whose complexity grows with that of the robot. In
this paper, we are interested in the following generalized
inverse kinematics problem: we search a configuration for
which the robot fulfills tasks under constraints of joint limits,
auto-collision and non-desired collision avoidance, balance,
torque limits, etc. We coined it posture generation. Such a
problem is encountered in both planning and control. In both
cases, computation time and robustness are critical issues.

We have already proposed various implementations of the
humanoid posture generation problem. All of our implemen-
tations formulate the problem as a non-linear optimization
program to address multi-contact planning. In [1], the multi-
contact planner explores the contact space using thousands
of HRP-2 humanoid posture generator (PG) queries; we used
the FSQP solver [2]. In [3], the PG is extended to handle
various humanoid robots and multiple agents, the solver used
is IPOPT [4]. In [5] the PG is extended to various contact
models and used to generate multiple related postures at
once. The latter work and the DRC participation revealed
that re-planning on the fly is necessary and having a robust
PG is crucial in many situations. Other works also make use
of PG, e.g. in [6][7].

Posture generation has been formulated as a problem
over a Euclidean space. Robots variable may however be
more naturally expressed over non-Euclidean manifolds. The
archetypes for this are the rotation part of the root body for
a humanoid robot, and ball joints, whose variables live in
SO(3). Some typical tasks are also naturally formulated on

1CNRS-UM2 LIRMM Interactive Digital Humans, UMR5600, Montpel-
lier, France

2CNRS-AIST Joint Robotics Laboratory (JRL), UMI3218/RL, Tsukuba,
Japan

This work was partially supported by the EU H2020 COMANOID
project. A. Escande was funded by a grant from the Japan Society for
Promotion of Science (JSPS; Grant-in-Aid for JSPS Fellows P13786)

Fig. 1: HRP-4 carrying a 2-kg cube. Left: feet on a sphere, objective
function is to maintain the cube at a given position. Right: right
foot free to move on the floor, objective is to put the cube as far
as possible in a given direction

different manifolds. For example for making contact with
any object that can be mapped on a sphere, the contact
point position for this object can be parametrized in S2.
Human shoulder can be elegantly parametrized on S2 × R,
as proposed in [8].

Formulating the problem over Rn leads either to disconti-
nuities that can prevent the convergence of the optimization
solver, or to cumbersome writing to specify that the variable
is actually living on a manifold (see [9]).

In this paper, we propose a new optimization solver able
to work on generic smooth manifolds. We take inspiration
from the approach used for unconstrained optimization on
manifold [10] and adapt it to constrained optimization. To the
best of our knowledge, constrained optimization on manifold
has drawn few research for now. This is likely due to the
fact that in most problems the only constraint is to be on the
manifold. We are only aware of the work of Schulman et
al. [11], where the authors explain the adaptation of their
solver to work on SE(3). This adaptation is however not
valid for general manifolds without more care about hessian
computation.

The second contribution of this paper is a Posture Genera-
tion framework developed to ease the writing of functions, so
that the user can focus on the problem formulation without
having to care about the tedious bookkeeping inherent to
optimization problems of this size.

A background motivation for this work is to have our own
optimization solver, instead of a black box. We will now be
able to specialize the solver specifically to robotic problems,
by leveraging modeling properties and approximations, for a
gain in time and robustness. We also look forward to using
this solver for problems with a varying number of constraints
along the iterations (such as when complex collision con-
straints are considered).



The rest of the paper is organized in a classical way: we
start with a bit of math to describe the foundations; then we
introduce the PG per se, the problem formulation followed
with illustration of successful generations.

II. OPTIMIZATION ON MANIFOLDS

In this section, we describe a Sequential Quadratic Pro-
gramming (SQP) approach [12] to solve the following non-
linear constrained optimization program

min.
x∈M

f(x) (1)

subject to l ≤ c(x)≤ u

where M is a n-dimensional smooth manifold and c is a
m-dimensional real-valued function.

A. Representation problem

When M = Rn, the problem (1) is solved iteratively,
starting from an initial guess x0 and performing successive
steps xi+1 = xi+pi where pi is the increment found at the
i-th iteration, until convergence is achieved. The strategy to
compute pi depends on the solver.

This classical scheme cannot be readily applied to op-
timization over non-Euclidean manifolds. First of all, only
(a subset of) the real numbers can be stored in computers.
To manipulate elements of M we need to choose a way to
represent them in memory. This boils down to choosing a
representation space E = Rr (with r ≥ n) and a map

ψ :
x 7→ x
M → E

In the following, we identify M with the set ψ(M) ⊆ E.
With this representation, it is tempting to simply transform

problem (1) as an optimization over Rr with objective
f ◦ ψ−1 and constraint c ◦ ψ−1, and solve it with a usual
solver. But depending on the representation choice, one of
the two following problems arises:
(i) r = n, then it is not possible in the general non-Euclidean
case to find ψ without derivative discontinuities. This can
lead to critical convergence problems,
(ii) r > n, then most elements of E do not represent
an element of M and ψ cannot be surjective. Constraints
need to be added to force the solution on M. As a result,
the problem has more variables and constraints w.r.t (i).
Moreover, the additional constraints are unlikely to be met
along the iteration process (even if xi is an element of M,
xi + pi is likely not, as nothing enforces it). This means
that in order to evaluate f ◦ ψ−1 and c ◦ ψ−1 at a given xi,
one has to project it on ψ(M) first, effectively computing
f ◦ ψ−1 ◦ π and c ◦ ψ−1 ◦ π, where π is the projection. The
composition by π is an additional burden in programming
(see e.g. in [13]).

As a simple example, the set of 3D-rotations SO(3) is a
manifold of dimension 3. The following (classical) choices
can be made
• Rotation matrix R ∈ R3×3 ≈ R9, additional con-

straints: {RtR = I , det(R) = 1}, projection by
orthogonalization,

• Quaternion q ∈ R4, additional constraints: {‖q‖ = 1},
projection π(x) = x/ ‖x‖,

• Euler angles (E = R3), singularities when reaching
gimbal lock.

B. Local parametrization

By definition, there is always, at a point x of a smooth
n-dimensional manifold M, a smooth map ϕx between an
open set of TxM, the tangent space to M at x, and a
neighborhood of x, with ϕx(0) = x. TxM can be identified
with Rn. This gives us a local parametrization for M. The
driving idea of the optimization on manifolds is to change
the parametrization at each iteration. Applying this idea, we
can reformulate Problem (1) around xi as

min.
z∈Txi

M
f ◦ ϕxi

(z) (2)

subject to l ≤ c ◦ ϕxi
(z)≤ b

This is an optimization problem on Rn. If we perform one
iteration of a classical solver starting from z0 = 0, we get an
iterate z1, which corresponds to the iterate xi+1 = ϕxi

(z1).
We can then reformulate Problem (1) around xi+1, perform
a new iteration and repeat the process until convergence.

Fig. 2: There are many possible choices for ϕx but not all yield a
curve ϕx(tz) which is going in the same direction as z: ϕ1 and
ϕ2 are correct choices, ϕ3 is not.

However, convergence cannot be achieved without care on
the choice of ϕxi

: it must be such that for any z, the curve
t 7→ ϕxi

(tz) is tangent to z, see Fig. 2, so that the update
xi+1 = ϕxi

(z1) is made in the direction given by z1.
The exponential map is a good theoretical candidate, but

it is often impractical or expensive to compute. Depending
on the manifold, cheaper maps can be chosen.

With the iterative formulation approach described above,
we do not have any parametrization issue, do not need
additional constraints, and have the minimum number of
optimization parameters. But we still need a map ψ and real
space E to represent the xi and keep track of them in a
global way. The xi are guaranteed to be on M so we can
choose a representation with r > n where ψ is singularity-
free without any drawback. Also, the programmer can write
the function f ′ = f ◦ ψ−1 as if it was a function from E to
R without the need to project on ψ(M) first (same goes for
c′ = c ◦ ψ−1). For example if M = SO(3) and E = R3×3,
xi is automatically a rotation matrix and can be used directly
as such when writing the function.



C. Local SQP on manifolds

We choose to adopt an SQP approach to solve our prob-
lem. We first define the Lagrangian function

Lx(z, λ) = f ◦ ϕx(z)− λT c ◦ ϕx(z) (3)

with λ ∈ Rm the vector of Lagrange multipliers, and note
Hk the Hessian matrix∇2

zzLxk
. Taking z0 = 0, the first SQP

step for Problem (2) is computed by solving the following
quadratic program

min.
z∈Rn

∂f ◦ ϕxk

∂z
(0)T z+

1

2
zTHkz (4)

subject to l ≤ c ◦ ϕxk
(0) +

∂c◦ϕxk

∂z (0)z ≤ u

The basic SQP approach adapted to manifolds can be
summarized as follows

1) set k = 0 and xk to the initial value
2) compute z from Problem (4) for current xk
3) set xk = ϕxk

(z)
4) if convergence is not yet achieved go-to step 2
Computations of function values and derivatives are based

on the fact that f ◦ ϕ = f ′ ◦ ψ ◦ ϕ (and same for c), and

f ′ : E → R
ψ ◦ ϕ : Rn → E

are representable functions. The gradient of f ◦ ϕ is

∂f ◦ ϕx

∂z
=
∂f ′

∂y
(ψ ◦ ϕx)×

∂(ψ ◦ ϕx)

∂z
(5)

D. Practical implementation

The above SQP algorithm works locally, i.e. when starting
close enough to the solution. In practice, various possible re-
finements are made to ensure convergence from any starting
point. We detail hereafter our choices.

Maps ϕxi are only valid locally, and we need to account
for this: a step z found by Problem (4) should not be outside
the validity region of the map. We could enforce this by
adding a constraint z−map ≤ z ≤ z+map in (4). This leads
naturally to trust region methods that we therefore favor over
line-search approaches.

To know if a step z is acceptable or not, one usually uses a
penalty-based merit function. In our early tests, the update of
the penalty parameters proved to be difficult with our types
of problems. We now use a filter instead.

Our algorithm is an adaptation of Fletcher’s filter SQP [14]
to the case of manifolds: we use an adaptive trust-region
that is intersected with the validity region of ϕxi

, and a new
iterate xi+1 = ϕxi

(z) is accepted if either the cost function
or the sum of constraint violations is made better than for
any previous iterates.

Aside from the manifold adaptation, our main departure
from Fletcher is in the Hessian computation where we used
an approximation, since the exact one is too expensive to
compute in our problems. After testing several possibilities,
we settled for a self-scaling damped BFGS update [15], [12],
adapted to the manifold framework. More precisely, given

the Hessian approximation Hk at iteration k, we compute
the approximation Hk+1 as follows

sk = Tz(z), yk = ∇zLxk+1
(0, λk+1)− Tz(Lxk

(0, λk))

θk =

{
1 if sTk yk ≥ 0.2sTk H̃ksk

0.8sTk H̃ksk
sTk H̃ksk−sTk yk

otherwise

rk = θkyk + (1− θk) H̃ksk (damped update)

τk = min

(
1,

sTk rk

sTk H̃ksk

)
(self-scaling)

Hk+1 = τk

(
H̃k −

H̃ksks
T
k H̃k

sTk H̃ksk

)
+
rkr

T
k

sTk rk

where Tz is a vector transport along z (see [10]) and H̃k is
such that for u ∈ Txk+1

M, H̃ku = Tz
(
HkT −1z (u)

)
.

Despite Powell’s update, Hk might not be positive definite
(but still symmetric). We regularize it as follows: we first per-
form a Bunch-Kaufman factorization PkHkP

T
k = LkBkL

T
k

where Pk is a permutation matrix, Lk is unit lower triangular
and Bk is block diagonal with blocks of size 1× 1 or 2× 2
(obtaining Bk as a diagonal matrix is not numerically sta-
ble for Cholesky-like decomposition of indefinite matrices),
see [16]. The eigenvalue decomposition Bk = QkDkQ

T
k

is immediate and cheap to compute. From the diagonal
matrix Dk we form D′k such that d′ii = max (dii, µmin)
where µmin > 0 is user-defined (we typically set it to 0.1).
Defining L′k = LkQk(D

′
k)

1/2, we get a regularized matrix
H ′k = PT

k LkL
T
k Pk. In our case, we use LSSOL [17] for

solving the QP (4), which directly accepts the factorized form
(Pk, L

′
k). This avoids an internal Cholesky factorization so

that our regularization does not add too much time to the
overall process of building and solving the QP.

The code for ψ ◦ ϕ, its gradient and the vector transport
needs only to be implemented once for each elementary
manifold (it is then trivial to get those functions for Cartesian
products of manifolds). The composition with f ′ and c′

is done automatically. The expression of those functions is
adapted from [18].

III. POSTURE GENERATION, VARIABLES AND
ARCHITECTURE

Writing a posture generation problem can easily become
cumbersome without the appropriate tools. Common pitfalls
are for example writing the derivative of a function, manag-
ing how the Jacobian matrices of the already implemented
functions are modified when a variable is added to the
problem, adding a new type of constraint, or correctly writing
a function on a sub-manifold of the problem manifold. A fair
amount of bookkeeping is always necessary, which should
not be the charge of the user writing the constraints. In
our PG, we propose an architecture automating most of
the problematic tasks, so that the user can focus on the
mathematical formulation of the problem.

A. Geometric expressions
Most constraints are geometric. In order to simplify the

writing of functions, we use a dedicated system of expression



graph encapsulated in a set of geometric objects. The main
idea is to separate the purely mathematical logic from the
geometric one. As an example if Pr and Vr are a point
and a vector attached to the camera of the robot, and Pe

is a fixed point in the environment, the constraint (Pe −
Pr).Vr = 0 can be used to have the robot look at Pe.
With our system, the user creates only those objects and
write the code (Pe-Pr).dot(Vr) to get the value needed.
The geometric layer takes care that all the quantities are
expressed in the correct frame, the mathematical layer per-
forms the corresponding operations. If q is a variable object,
(Pe-Pr).dot(Vr).diff(q) returns automatically the
differential of the expression w.r.t. q. This makes the writing
of the constraints very easy.

At the mathematical level, we consider 5 types of expres-
sions which can be either variables or constants:
• Scalar, a 1-dimensional element of R
• Coordinates, a 3-dimensional element of R3

• Rotation, a 3× 3 matrix representing a 3D rotation
• Transformation, a 4 × 4 matrix representation of a 3D

isometry
• Array, a dynamic size array

The meaningful unary (inverse, opposite, norm...) and binary
(multiplication, addition, subtraction, dot product...) opera-
tions (with their derivatives by chain rule) are implemented.
We also have a Function class for more complicated ex-
pressions, for example expressing q 7→ Ti(q) where Ti is
the transformation between the reference frame of the robot
and the frame of its i-th body 1. The combinations of those
elementary operations defines a computation graph.

The geometric layer consists of physical or geometric
objects, named features, which exist independently of their
mathematical expression in a given reference frame. We have
so far 4 objects:
• A Frame, defined by a Transformation expression and

a reference frame.
• A Point and a Vector, defined by a Coordinates expres-

sion and a reference frame.
• A Wrench, defined by a pair of Coordinates expressions

and a reference frame.
We have a special World Frame object to serve as starting
reference frame.

For each feature, one can get its expression in a given
frame. Basic operations are defined between those features
(when applicable). For example, the subtraction between two
Points gives a Vector. The geometric logic resides in the
change of frame and those operations.

B. Automatic mapping
The manifold M, on which the optimization takes place,

is a Cartesian product of several sub-manifolds. Same goes
for their representation spaces:

M =M1 ×M2 ×M3 × . . .
E = E1 × E2 × E3 × . . .

(6)

1The kinematics of rigid body systems is handled by the RBDyn library
(https://github.com/jorisv/RBDyn)

From the solver’s viewpoint, the entry space of each function
is the complete manifold. But for the developer, writing a
function on the complete E is cumbersome because (i) of
the need to manage indexes, and (ii) when the function is
implemented, the complete E may not be known. A user-
written function f is usually defined on a subset of E, say
EI = Ei × Ej × Ek . . ., that is minimalist for that function,
and should not account for unrelated manifolds. One does not
want to think about the values of the forces when writing a
geometric constraint for example. Our automatic mapping
tool generates the correct projection functions πI such that
the developer can write a function f on EI while the solver
receives it as a function f ◦ πI on E. This idea is illustrated
by the example in Fig. 3

Fig. 3: automatic variable mapping

C. Problem Generator

The problem generator is the tool constructing the op-
timization problem. It registers all the variables and the
functions related to a given problem. Each function is
likely to bring additional variables with it. For each contact
contributing to the balance, a variable on R3 representing the
contact force is added to the problem. The associated wrench
is added to the stability constraints. Once the registration is
complete, the complete manifold of the problem is generated
and uses the information of the Automatic mapping to “plug”
each function with the correct sub-manifold. Subsequently,
the optimization problem can be generated and passed to the
solver. The communication between the solver and the gen-
erated problem is made through the RobOptim framework2.

IV. PROBLEM FORMULATIONS

Let q = [qTF ; q
T
r ] ∈ R3×SO(3)×Mr be the combination

of the free-flyer of the robot qF ∈ R3 × SO(3) and the
articular parameters qr ∈ Mr. Let Wi(p) = {fi,mi(p)} be
the wrench (force+moment) applied by the environment onto
the robot at contact i and expressed on point p. A frame F
is composed of a reference point and an orthonormal basis
of 3 vectors F = {O, (x, y, z)}.

Here is a list of constraints that we consider in our problem
(implementation of other ones is on-going):
• Joint limits q− ≤ qr ≤ q+:

These cannot be directly translated on manifolds
other than Rn. For example, spherical joints can be

2http://www.roboptim.net/



parametrized on S2×R, then the S2 part can be limited
by a cone, and the R part can have real bounds.

• The contact constraint consists in identifying the fea-
tures of two frames F1 and F2. For example, for a planar
contact, we get the set of equation 7.

(O2 −O1).z1 = 0

z2.z1 ≤ 0

z2.x1 = 0

z2.y1 = 0

(7)

Note that on F2 only the point O2 and the vector z2 are
necessary. Other types of contacts can be created that
way, by equalizing other features, as explained in [1].

• The stability constraint ensures that the Euler-Newton
equation (8) is balanced for the set of external wrenches
applied to the robot (gravity WG and contact forces
Wi). ∑

i

Wi(p) +WG(p) = 0 (8)

For each contact that bears forces (”stability” contact), a
wrench applied on the robot at the contact point is added
to the problem. That wrench is parametrized on a subset
of R6 depending on the type of contact. For punctual
contacts, the moment part is null on the application
point. Only a parametrization of the force part on R3

is needed. We model planar contacts as a combination
of punctual forces applied at each vertex of the contact
polygon. In the case of interaction forces between 2
robots, only one wrench is created and it is used as is
in the stability equation of one robot and its opposite is
used for the stability of the second robot.

• The friction cone constraint limits the tangential part of
every forces to avoid slippage. We write it as 9 (with µ
the friction coefficient)

µ2f2z − f2x − f2y ≥ 0

fz ≥ 0
(9)

The frame in which the constraints are written matters
critically. Most often, the frame’s configuration depends on
a part of the optimization variables, that must be accounted
for in computing the constraints’ Jacobian. Our framework
computes such dependencies automatically.

Our current PG (i.e. coding state) does not include yet
collisions and auto-collisions, nor torque limits. Their im-
plementation is on-going and is simply the matter of coding
time. Another important part is its cost function. We only
mention the cost function that have specificities when dealing
with manifolds, the distance to a reference posture q0. On
a robot that has all its articulations parametrized on R the
distance can be expressed simply with the Euclidean norm
d = ‖qj − q0‖2. Since we work on non-Euclidean manifolds,
the logarithm function on the manifold must be used. It gives
the distance vector between two points in the tangent space,
the norm of this vector can be used as a distance. So we get
d =

∥∥logq0(qr)
∥∥2.

V. SIMULATION RESULTS

Here, we present several posture generation problems res-
olution that leverage the specific capabilities of our software.

A. Application to plan-sphere contact

When we consider a planar contact, having a frame FS

fixed in reference to FB is sufficient because the equations
describing that contact are invariant w.r.t. the point’s location.
But for different contact topologies, the location of the
contact point in the body’s frame FB matters. We propose
to parametrize the location and normal of the contact point
with an additional variable.

We consider the contact between a body’s flat surface SB

of normal nB , with the surface of a sphere Ss of center cs,
radius rs, and let ps and ns be a point and its normal to
SS . The most general way to express such a constraint is to
ensure that ps is on SB and that ns and nB are opposite.
This means creating a variable vS2 on the manifold S2 and
map pS and nS on it. In our framework, this constraint is
expressed exactly as the contact between 2 planar surfaces,
once the mappings of ps(vS2) and ns(vS2) are done. In a
framework that does not handle manifolds (as we do), it
would require to setup a specific constraint, ensuring that
the distance between cs and SB is equal to rS .

In Fig. 4 we show the results obtained by solving a
problem where the HRP2-Kai robot has to keep its feet in
contact with the ground at fixed positions, touch a sphere
with a side of its right wrist and point as far as possible in a
given direction d with its left hand, under balance constraints.
The top row of Fig. 4 shows the results for this problem with
several different d. In every situation, the projection of the
CoM is outside the polygon of support, meaning that such
postures would not be reached without leaning on the sphere.

B. Contact with parametrized wrist

Fig. 5: Parametrization of the wrist of HRP2-Kai
Being able to choose the location of the contact point on

the sphere is interesting, but a limitation of this formulation
is that the contact point on the wrist of the robot is restricted
to one single user-defined face. Instead, we describe the
shape of the wrist body as a parametric function and let
the contact point on the wrist as well as its counterpart on
the sphere, result from the optimization process. The section
of HRP2-Kai’s wrist is a square with rounded edges. We
parametrize this shape as shown in Fig. 5: we consider the
angular coordinate θ of the point on the section. It is added
as a variable to the problem. The shape of a quarter of
section [0;π/2] is a succession of a vertical line, a quarter



Fig. 4: HRP2-Kai leaning on sphere with right wrist to point the left gripper as far as possible in 4 cardinal directions. Top row:
semi-predefined contact; Bottom row: free contact with parametrized wrist. Projection of the CoM on the ground (green dots)

of circle and a horizontal line. This pattern is repeated for
the 3 other quarters. The equations are given in Fig. 5. In
our framework, we define the function describing the shape
of the wrist, create a frame parametrized by that function
and then define the contact between that frame and the point
and normal on the sphere. This formulation not only is very
easy to implement, but most importantly, allows for richer
posture generations. The optimization algorithm chooses the
contact point on the sphere as well as the contact point on
the wrist, which leads to a wider accessibility range, and a
better satisfaction of the cost function. The bottom row of
Fig. 4 displays the results of this simulation for the robot
pointing in 4 directions. Notice that on the 2nd and the 4th
(pointing forward and to the left) images, the results for the 2
types of models are nearly identical. Whereas in the 1st and
3rd images, different faces of the wrist have been chosen(On
the 1st, the wrist is rotated by 180◦, and 90◦) on the 3rd).
In these 4 cases, the contact with parametrized wrist gives a
better cost of the objective function. This observation scales:
we solved this problem for 5000 random pointing directions,
and in average, the contact with parametrized wrist allows to
reach 5mm further. The success rate of the solver is 98.5%
in the parametrized wrist case against 99.9% when the face
is fixed. The numbers of iterations are similar.

This method is certainly scalable, and can be used for any
kind of humanoid robot and environment. Yet, it requires
to have a parametric equation of the surface. We plan to
implement a method to generate a parametrized surface point
and its normal directly from the 3D mesh of an object. The
accompanying video shows the optimization process for the
problem with parametrized wrist. Notice on the video that
the contact point on the wrist changes sides all along the

iterations.

C. Contact with an object parametrized on S2
In this simulation case, we want the HRP-4 robot (anther

model) to carry a cube with its two hands. The most general
way to do it is to select a face of the cube for each
contact, and enforce the contact between that face and the
hand’s surface. We propose to approximate the cube with a
superellipsoid and to parametrize the resulting shape on S2.
The implicit equation of a superellipsoid is S(x, y, z) = 0,
with

S(x, y, z) =
(∣∣∣ x
A

∣∣∣r + ∣∣∣ y
B

∣∣∣r) t
r

+
∣∣∣ z
C

∣∣∣t − 1 (10)

A point in S2 is represented by a vector v = (x, y, z)
in E = R3. To a given unit vector v we associate a point
αv on the surface of the superellipsoid by solving S(αv) =

0 for α. At this point, the normal is given by
∇S(αv)
‖∇S(αv)‖

which simplifies into
∇S(v)
‖∇S(v)‖

. Given this parametrization,

we write a contact constraint between the frame of the hand
of the robot and the point and normal on the surface of the
superellipsoid.

In Fig. 1 we present some results for a posture generation
problem with manipulation: On the left side, the feet are
free to move on a sphere, and, on the right side, the left
foot position is fixed and the right foot is free to move on
the ground. The hands must be in contact with the cube.
The cube is free to move (parametrized by R3 × SO(3))
and has it own set of Euler-Newton equations, which must
be fulfilled. On the accompanying video, one can observe
how the contact points on the cube evolve along with the
optimization.



Fig. 6: Posture generation for a human avatar

D. Posture Generation with a human model

The geometric model of a human is much more complex
than the one of a humanoid robot in terms of topology. Even
with the simplest models, the shoulders, wrists, ankles, or
hips need to be described as spherical joints, and therefore
be parameterized on SO(3). We showcase that our solver is
able to handle such complex models as a human avatar in
Fig. 6. Our human model has spherical joints on its wrists,
shoulders, torso, hips and ankles. With the addition to the
free-flyer, the manifold that contains the articular space of
that human model is:MH = SO(3)×R3× (SO(3))

9×R4.
We fixed the neck’s joints as well as the fingers to avoid
unnecessary variables. In this simulation, we require the
human to stand on an inclined slope while leaning on the
left side’s wall. Since we have not yet implemented the
boundary limits on spherical joints, the model could reach
non desired configurations. That issue limits for the time
being the number of scenarios that we can solve. But the use
of a cost function on the posture of type d =

∥∥logq0(qj)
∥∥2,

attracting the avatar to a basic standing posture, allowed us
to have acceptable results.

VI. DISCUSSION AND CONCLUSION

Writing the posture generation problem as a non-linear
optimization problem on non-Euclidean manifolds proves
to be an elegant approach in terms of code structuring
and user interface, in addition to mathematical readability.
This work is still on-going and only preliminary results
of the current state of the implementation are shown. We
illustrate some posture generation problems with the HRP2-
Kai and the HRP-4 humanoid robots; the results are very
promising indeed. Our future (on-going) work is focused on
the following streams:
• complement other functionalities as ready-to-use tem-

plates (e.g. constraints on task forces, collision avoid-
ance, etc.);

• specialize the solver to humanoid PG problems and
benchmark various numerical approaches (e.g. for the

choice of the Hessian approximation, the trust region,
tuning some parameters, etc.) and exploiting, if any,
robotic model properties;

• improve convergence, numerical robustness and compu-
tation time of the PG. Currently, the resolution of any of
the presented problems takes a few seconds on a laptop
with Intel Core i7-3840QM CPU @ 2.80GHz. We aim
at reducing it to a tenth of a second.

Once the code is more stable and finalized, we plan to make
it open-source.

REFERENCES

[1] A. Escande, A. Kheddar, and S. Miossec, “Planning contact points for
humanoid robots,” Robotics and Autonomous Systems, vol. 61, no. 5,
pp. 428–442, 2013.

[2] C. Lawrence, J. L. Zhou, and A. L. Tits, “User’s guide for CFSQP
version 2.5: A C code for solving (large scale) constrained nonlinear
(minimax) optimization problems, generating iterates satisfying all
inequality constraints,” 1997.

[3] K. Bouyarmane and A. Kheddar, “Humanoid robot locomotion and
manipulation step planning,” Advanced Robotics, vol. 26, no. 10, pp.
1099–1126, 2012.

[4] A. Wächter and L. Biegleri, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Math. Program., vol. 106, no. 1, pp. 25–57, 2006.

[5] J. Vaillant, A. Kheddar, H. Audren, F. Keith, S. Brossette, K. Kaneko,
M. Morisawa, E. Yoshida, and F. Kanehiro, “Vertical Ladder Climbing
by HRP-2 Humanoid Robot,” in IEEE-RAS Int. Conf. Humanoid
Robot., Madrid, Spain, 2014, pp. 671–676.

[6] K. Hauser, T. Bretl, and J.-C. Latombe, “Non-gaited humanoid
locomotion planning,” in IEEE-RAS Int. Conf. Humanoid Robots,
December 5-7 2005, pp. 7–12.

[7] A. Aristidou and J. Lasenby, “Inverse Kinematics: a review of existing
techniques and introduction of a new fast iterative solver,” University
of Cambridge, Tech. Rep., 2009.

[8] P. Baerlocher and R. Boulic, “Parametrization and range of motion of
the ball-and-socket joint,” in Deform. Avatars, 2001, pp. 180–190.

[9] K. Bouyarmane and A. Kheddar, “On the dynamics modeling of free-
floating-base articulated mechanisms and applications to humanoid
whole-body dynamics and control,” in IEEE-RAS Int. Conf. Humanoid
Robots, 2012.

[10] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms
on Matrix Manifolds. Princeton University Press, 2008.

[11] J. Schulman, Y. Duan, J. Ho, a. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” Int. J. Rob. Res.,
2014.

[12] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed.
Springer, 2006.

[13] K. Bouyarmane and A. Kheddar, “On the dynamics modeling of free-
floating-base articulated mechanisms and applications to humanoid
whole-body dynamics and control,” in IEEE-RAS Int. Conf. Humanoid
Robot., Osaka, Japan, Nov. 29 - Dec. 1 2012, pp. 36–42.

[14] R. Fletcher and S. Leyffer, “Nonlinear programming without a penalty
function,” Mathematical Programming, vol. 91, pp. 239–269, 2000.

[15] J. Nocedal and Y.-x. Yuan, “Analysis of a self-scaling quasi-newton
method,” Mathematical Programming, vol. 61, no. 1-3, pp. 19–37,
1993.

[16] G. Golub and C. Van Loan, Matrix computations, 3rd ed. John
Hopkins University Press, 1996.

[17] P. E. E. Gill, S. J. Hammarling, W. Murray, M. A. Saunders, and M. H.
Wright, “User’s guide for lssol (version 1.0): a fortran package for
constrained linear least-squares and convex quadratic programming,”
Standford University, Standord, California 94305, Tech. Rep. 86-1,
January 1986.

[18] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre, “Manopt, a
matlab toolbox for optimization on manifolds,” Journal of Machine
Learning Research, vol. 15, pp. 1455–1459, 2014.


