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come    

An hyperbolic two-fluid model in a porous medium

Introduction

Certaines applications nécessitent d'utiliser des modèles d'écoulement diphasique en milieu poreux. C'est le cas notamment dans les écoulements en gisement pétrolier, dans le domaine du séchage de matériaux, mais également dans certaines applications du domaine nucléaire civil. Dans ce dernier cas, ceci s'explique par le fait que certains niveaux de représentation d'obstacles en géométrie complexe ne sont pas accessibles aujourd'hui, étant donné la puissance de calcul et la mémoire que cette démarche nécessiterait. La notion de porosité dans ce cas est associée au rapport du volume occupé par le fluide sur le volume de controle de référence, celui-ci incluant éventuellement des obstacles solides. Le cadre des modèles considéré ici est celui des modèles bifluides qui ne retient pas l'hypothèse d'équilibre local instantané en pression (voir en particulier les travaux de Baer et Nunziato [START_REF] Baer | A two-phase mixture theory for the deflagration to detonation transition (DDT) in reactive granular materials[END_REF], Kapila et al [START_REF] Kapila | Two-phase modeling of a DDT : structure of the velocity relaxation zone[END_REF], mais aussi [START_REF] Coquel | Closure laws for a two-fluid two-pressure model[END_REF], [4], [START_REF] Glimm | Two-phase flow modelling of a fluid mixing layer[END_REF], [START_REF] Gavrilyuk | Mathematical and numerical modelling of two-phase compressible flows with micro-inertia[END_REF]). L'objectif est de disposer d'un modèle répondant aux exigences naturelles suivantes :

-le modèle doit être hyperbolique sur l'espace des états admissibles ; -le modèle doit être régi par une inégalité d'entropie physique ; -les relations de saut doivent être définies de manière unique à la traversée de chaque onde.

Nous notons la porosité locale, à valeurs dans [0, 1], qui sera supposée ne dépendre que de la variable d'espace, et sera donnée par l'utilisateur. Nous utiliserons en outre les notations classiques ρ k , α k , U k , P k , E k , e k pour représenter les densités de phase, les taux de présence volumique, les vitesses phasiques, les pressions au sein de chaque phase, les énergies totales phasiques et les énergies internes. La donnée des lois d'état permettra d'évaluer

E k = 0.5ρ k U k U k + ρ k e k (P k , ρ k ), et les masses partielles seront notées m k = α k ρ k . La variable d'état sera : W t = ( , α 2 , m 1 , m 2 , m 1 U 1 , m 2 U 2 , α 1 E 1 , α 2 E 2 ) . (1) 
Nous considérons le modèle suivant pour représenter l'écoulement diphasique en milieu poreux :

                         ∂ ∂t = 0 ; ∂α k ∂t + V i ∂α k ∂x = φ k ; ∂ m k ∂t + ∂ m k U k ∂x = 0 ; ∂ m k U k ∂t + ∂ m k U 2 k ∂x + α k ∂P k ∂x + (P k -P i ) ∂α k ∂x = D k ; ∂ α k E k ∂t + ∂ α k U k (E k + P k ) ∂x + P i ∂α k ∂t = Φ k . (2) 
Des lois de fermeture pour V i , P i , mais également pour les termes sources φ k (W ), D k (W ), Φ k (W ) doivent compléter ce système d'équations aux dérivées partielles. On précise ici que D k et Φ k représentent les termes de transfert interfacial de quantité de mouvement et d'énergie. Les contraintes suivantes doivent être assurées :

2 k=1 α k = 1 ; 2 k=1 Φ k (W ) = 0 ; 2 k=1 D k (W ) = 0 ; 2 k=1 φ k (W ) = 0 . (3) 

Lois de fermeture compatibles avec l'inégalité d'entropie

On introduit pour chaque phase les célérités c k et les entropies S k définies par :

(c k ) 2 = γ k P k ρ k = ( P k (ρ k ) 2 - ∂e k (P k , ρ k ) ∂ρ k )( ∂e k (P k , ρ k ) ∂P k ) -1 ; γ k P k ∂S k (P k , ρ k ) ∂P k + ρ k ∂S k (P k , ρ k ) ∂ρ k = 0 .
On introduit les températures T k , qui sont telles que :

1/T k = ( ∂S k (P k , ρ k ) ∂P k )( ∂e k (P k , ρ k ) ∂P k ) -1 , et on définit l'entropie : S = (m 1 S 1 + m 2 S 2 ), et le flux d'entropie convectif : f S = (m 1 S 1 U 1 + m 2 S 2 U 2 ).
Enfin, on retient les fermetures suivantes pour les grandeurs d'interface V i , P i :

V i = µ(W )U 1 + (1 -µ(W ))U 2 ; P i = P 0 i (W ) + δP 1 i (W, ∇W ) . (4) 
avec µ(W ) dans l'intervalle [0, 1] supposé connu. Cette fonction µ(W ) sera précisée dans la proposition 3. Les solutions régulières du système diphasique vérifient alors l'équation :

∂S ∂t + ∂f S ∂x + ((P i -P 1 )(U 1 -V i )/T 1 + (P i -P 2 )(V i -U 2 )/T 2 )) ∂α 1 ∂x = (m 1 R 1 + m 2 R 2 ) . (5) 
avec :

m k R k = (Φ k -D k U k -φ k (P i -P k ))/T k .
Dès lors, si l'on considère les lois de fermeture

P 0 i (W ) et δP 1 i (W, ∇W ) suivantes :    P 0 i (W ) = ((1 -µ(W ))P 1 /T 1 + µ(W )P 2 /T 2 )/((1 -µ(W ))/T 1 + µ(W )/T 2 ) ; δP 1 i (W, ∇W ) = C(W )(m 1 + m 2 )(U 1 -U 2 ) 2 sg((U 2 -U 1 ) ∂α 1 ∂x ) . (6) 
où C(W ) est une fonction adimensionnelle à valeurs positives, la loi d'évolution d'entropie S prendra la forme :

∂S ∂t + ∂f S ∂x ≥ (m 1 R 1 + m 2 R 2 ) . (7) 
Les relations (4), ( 6) déterminent totalement P i . On remarque que les lois de fermeture pour P i satisfont le principe d'objectivité, et qu'en outre, dans le cas d'un équilibre local simultané des vitesses et pressions phasiques, i.e. P 1 = P 2 = π et U 1 = U 2 = U , on aura : P i = π. La contribution δP 1 i prend en compte le déséquilibre cinématique local instantané de vitesse de phase, et contribue dans (5) à la production d'entropie du système. Lorsque C(W ) = 0, le troisième terme dans l'équation (5) est nul. Il reste maintenant à munir le modèle de lois de fermeture pour les inconnues

φ 2 (W ), D 2 (W ), Φ 2 (W ), et à préciser µ(W ) qui donnera la vitesse d'interface V i . Propriété 1 : On pose : Φ k = ψ k + V i D k , pour k = 1, 2, et on note k = 3 -k.
Les fermetures suivantes :

ψ k = K T (1/T k -1/T k ) + φ k δP 1 i D k = K u (U k -U k ) φ k = K P (P k -P k ) (8) 
assurent un bilan d'entropie physiquement admissible, si K T , K U , K P sont à valeurs positives, puisque :

0 ≤ ∂S ∂t + ∂f S ∂x (9) 
Lorsque C(W ) = 0, on note que les modèles (8) sont conformes à ceux proposés dans la littérature (voir [START_REF] Baer | A two-phase mixture theory for the deflagration to detonation transition (DDT) in reactive granular materials[END_REF][START_REF] Coquel | Closure laws for a two-fluid two-pressure model[END_REF]4,[START_REF] Gavrilyuk | Mathematical and numerical modelling of two-phase compressible flows with micro-inertia[END_REF][START_REF] Kapila | Two-phase modeling of a DDT : structure of the velocity relaxation zone[END_REF]). Ils s'évanouissent lorsque les écarts de température, de vitesse et de pression s'annulent. Ces modèles sont distincts de ceux proposés dans [START_REF] Glimm | Two-phase flow modelling of a fluid mixing layer[END_REF][START_REF] Lhuillier | A mean field description of two-phase flows with phase changes[END_REF], où P i = α 2 P 1 + α 1 P 2 . Il existe une analogie formelle entre le modèle discret limite ( [16], p. 308) issu de l'approche DEM, et le modèle continu dissipatif (6) lorsque C(W ) est non nul.

Nature du système convectif

Propriété 2 : -Le système convectif associé à la partie homogène du premier ordre de (2) admet les valeurs propres suivantes :

λ 0 = 0, λ 1 = V i , λ 2 = U 1 , λ 3 = U 1 -c 1 , λ 4 = U 1 + c 1 , λ 5 = U 2 , λ 6 = U 2 -c 2 , λ 7 = U 2 + c 2 .
L'espace engendré par les vecteurs propres associés est de dimension 8 si et seulement si :

|V i -U k | = c k , et |U k | = c k , pour k = 1, 2.
Si une de ces conditions est violée, la résonance apparaît. -Les champs associés aux valeurs propres λ 0 , λ 2 , λ 5 sont linéairement dégénérés, et les champs associés aux valeurs propres λ 3 , λ 4 , λ 6 , λ 7 sont vraiment non linéaires.

La nature du champ associé à λ 1 est donnée par la propriété suivante, équivalente à celle donnée dans [START_REF] Coquel | Closure laws for a two-fluid two-pressure model[END_REF]4] :

Propriété 3 : Le champ associé à la valeur propre λ 1 est linéairement dégénéré si :

V i = U 1 , ou : V i = U 2 , ou : V i = m 1 U 1 + m 2 U 2 m 1 + m 2 (10) 
Il est clair que la probabilité d'occurrence de la résonance est faible dans un écoulement de type eau-vapeur en régime fortement pressurisé tel que ceux que l'on trouve dans un circuit primaire de centrale nucléaire. Le cas où V i = U 1 , associé donc via l'équation (6) à P i = P 2 , correspond au modèle de Baer-Nunziato [START_REF] Baer | A two-phase mixture theory for the deflagration to detonation transition (DDT) in reactive granular materials[END_REF] (voir aussi [START_REF] Kapila | Two-phase modeling of a DDT : structure of the velocity relaxation zone[END_REF][START_REF] Gavrilyuk | Mathematical and numerical modelling of two-phase compressible flows with micro-inertia[END_REF][START_REF] Papin | Fermetures entropiques pour les systèmes bifluides à sept équations[END_REF]16]). Par la suite, on considérera les fermetures pour V i de type [START_REF] Érard | A simple method to compute two-fluid models[END_REF]. Les lois (10) sont clairement distinctes de celles proposées dans [START_REF] Glimm | Two-phase flow modelling of a fluid mixing layer[END_REF] -

V i = α 2 U 1 + α 1 U 2 -ou dans [12] -V i = (U 1 + U 2 )/2-.
On rappelle que cette dernière joue un rôle particulier dans le bilan d'entropie [START_REF] Gavrilyuk | Mathematical and numerical modelling of two-phase compressible flows with micro-inertia[END_REF], puisqu'elle fait disparaitre les contributions de vitesse relative. Bien que la démarche soit totalement différente, l'objectif ici est comme dans [START_REF] Papin | Fermetures entropiques pour les systèmes bifluides à sept équations[END_REF]16], de gérer la présence des termes convectifs non conservatifs.

Comportement du système à la traversée de l'onde stationnaire

Le champ associé à l'onde stationnaire correspond à une éventuelle variation brusque de porosité. Cet élément est fondamental, et constitue une difficulté "classique". Dans un cadre non dissipatif, on peut assimiler le comportement du fluide à celui des invariants de Riemann I 0 k (W ) de l'onde considérée, soit

I 0 k (W l ) = I 0 k (W r ), sachant que :
Propriété 4 : Les invariants de Riemann de l'onde stationnaire associée à λ 0 sont :

I 0 1 (W ) = α 2 ; I 0 2 (W ) = S 1 ; I 0 3 (W ) = S 2 ; I 0 4 (W ) = m 1 U 1 ; I 0 5 (W ) = m 2 U 2 ; I 0 6 (W ) = e 1 + P 1 ρ 1 + U 2 1 2 ; I 0 7 (W ) = e 2 + P 2 ρ 2 + U 2 2 2

Relations de saut dans les ondes simples

On s'intéresse au problème de Riemann unidimensionnel associé au système convectif pur issu de (2), et doté de conditions initiales discontinues W L et W R de part et d'autre de l'interface initiale située en x = 0. On se restreint au cas où le modèle de vitesse interfaciale V i garantit que l'onde associée à λ 1 est linéairement dégénérée. Dans ce cadre, la solution auto-similaire α 2 (x, t) = α 2 (x/t) est simple. En effet, on aura :

α 2 (x, t) = α L si : x/t < V i ; α 2 (x, t) = α R si : x/t > V i . (11) 
Dans le cas d'une onde simple non stationnaire se déplacant à la vitesse σ, et en l'absence de phénomène de résonance, les relations de saut à la traversée d'une discontinuité séparant deux états W l et W r seront données par :

∆(α k ) = 0 ; ∆(ρ k (U k -σ)) = 0 ; ∆(ρ k U k (U k -σ) + P k ) = 0 ; ∆(E k (U k -σ) + P k U k ) = 0 . si σ = V i , et en notant ∆(ψ) = ψ r -ψ l .
Par contre, si l'on s'intéresse à l'onde associée à σ = V i , séparant deux états W l et W r , ceux-ci seront tels que :

I 1 k (W l ) = I 1 k (W r ) I 1
k (W ) désignant un invariant de Riemann de l'onde λ 1 . Si l'on s'intéresse au cas V i = U 1 , ceux-ci s'écrivent :

I 1-2 1 (W ) = , I 1-2 2 (W ) = m 2 (U 2 -U 1 ) , I 1-2 3 (W ) = S 2 (P 2 , ρ 2 ), I 1-2 4 (W ) = U 1 , I 1-2 5 (W ) = (1 -α 2 )P 1 + α 2 P 2 + m 2 (U 2 -U 1 ) 2 , I 1-2 6 (W ) = e 2 (P 2 , ρ 2 ) + P2 ρ2 + (U 2 -U 1 ) 2 /2, l'onde associée à U 1 étant double. Le cas V i = U 2 est symétrique. Si : V i = (m 1 U 1 + m 2 U 2 )/(m 1 + m 2 )
, on renvoie à [START_REF] Coquel | Closure laws for a two-fluid two-pressure model[END_REF]. On dispose donc d'un unique jeu de relations de saut pour une onde de choc simple. Ceci permet dès lors d'envisager de manière raisonnable la simulation du système (2) à l'aide de techniques classiques de type Volumes Finis (voir [START_REF] Archambeau | Computing hyperbolic two-fluid models with a porous interface[END_REF]). Il est clair que la simulation d'écoulements passant brutalement d'un milieu fluide ( = 1) à un milieu uniformément poreux ( = 0.6) est assez délicate (voir la figure 1, qui donne, pour un schéma classique, la représentation sur un maillage assez fin des invariants I 0 6 (W ) et I 0 7 (W )), et nécessite le développement de schémas numériques adaptés ([1]).

Conclusion

Le modèle d'écoulement diphasique bifluide poreux proposé, qui est doté d'une inégalité d'entropie physique, vérifie les propriétés attendues (hyperbolicité, caractérisation entropique, relations de saut uniques). La prise en compte du transfert de masse entre phases ne modifie pas la construction globale (voir [7], [START_REF] Érard | A three-phase flow model[END_REF]). L'extension des résultats au cadre multi-dimensionnel est immédiate. Le formalisme peut aussi être étendu au cadre de modèles à trois phases tels que ceux introduits dans [START_REF] Érard | A three-phase flow model[END_REF]. Le modèle permet également de simuler sur maillage grossier les modèles bifluides classiques, en s'inspirant notamment des travaux décrits dans [START_REF] Érard | A simple method to compute two-fluid models[END_REF], [7], [START_REF] Munkejord | Comparison of Roe-type methods for solving the two-fluid model with and without pressure relaxation[END_REF], [START_REF] Érard | A relaxation scheme to compute three-phase flow models[END_REF]. L'introduction d'une équation d'aire interfaciale (voir par exemple [START_REF] Lhuillier | Evolution of the volumetric interfacial area in two-phase mixtures[END_REF]) pourrait vraisemblablement permettre d'améliorer la qualité du modèle, sans modifier les propriétés structurelles du modèle considéré. 
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 61 FIG. 1. Enthalpies totalesh k + U 2 k /2 (k = 1, 2)au voisinage de l'interface située en x = 0.35 séparant le milieu fluide (à gauche, = 1) et le milieu poreux (à droite, = 0.6) pour un maillage régulier comportant 10000 mailles. A l'instant initial, un problème de Riemann déclenché en x = 0.3 a généré une onde de détente qui a traversé l'interface fluide/poreux. Le cas a été simulé avec un schéma de Rusanov modifié.