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Comparative Study of Pressure-Correction and Godunov-Type

Schemes on Unsteady Compressible Cases.

Frédéric Archambeau∗, Jean-Marc Hérard, Jérôme Laviéville
Department of Fluid Dynamics, Power Generation and Environment, EDF-R&D, France

11th December 2008

Abstract

Two pressure-correction algorithms are studied and compared to an approximate Godunov
scheme on unsteady compressible cases. The first pressure-correction algorithm sequentially solves
the equations for momentum, mass and enthalpy, with sub-iterations which ensure conservativity.
The algorithm also conserves the total enthalpy along a streamline, in a steady flow. The second
pressure-correction algorithm sequentially solves the equations for mass, momentum and energy
without sub-iteration. This scheme is conservative and ensures the discrete positivity of the density.
Total enthalpy is conserved along a streamline, in a steady flow. It is numerically verified that
both pressure-correction algorithms converge towards the exact solution of Riemann problems,
including shock waves, rarefaction waves and contact discontinuities. To achieve this, conservativity
is compulsory. The two pressure-correction algorithms and the approximate Godunov scheme are
finally compared on cases with heat source terms: all schemes converge towards the same solution
as the mesh is refined.

Keywords: compressible flow; pressure-correction algorithm; Godunov scheme; finite volume
conservative scheme; positivity; total enthalpy conservation

Nomenclature

Roman upper case
E total energy, E = ε + 1

2 u2 m2 s−2

H total enthalpy, H = h + 1
2 u2 m2 s−2

L 1D domain length m
LΦ domain length where an energy source term is applied m
P pressure kg m−1 s−2

S area of the interfaces of the mesh m2

T temperature K
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Roman lower case
c speed of sound c =

√
∂ρ P |s m s−1

cP cP = ∂T h|P m2 s−2 K−1

cV cV = ∂T ε|ρ m2 s−2 K−1

eps relative precision for the iterative solver -
ncel number of cells of the mesh -
ntg number of momentum-enthalpy-pressure global iterations -
nthm number of enthalpy-pressure sub-iterations -
h enthalpy h = H − 1

2 u2 m2 s−2

Q mass flux (ρ u) kg m−2 s−1

q mass flux (ρ u) kg m−2 s−1

qac mass flux for advective terms kg m−2 s−1

qf mass flux at cell face kg m−2 s−1

r constant for perfect diatomic gas m2 s−2 K−1

s entropy m2 s−2 K−1

t time s
u velocity m s−1

x space coordinate m

Greek upper case
∆ x distance between the centres of two adjacent cells m
Φ magnitude of the energy source term kg m−1 s−3

Ω volume of a cell, here Ω = Ωi m3

Ωi volume of cell i, here Ωi = S ∆ x m3

Ωtot volume of the computational domain m3

Greek lower case
γ γ = cP

cV
-

ε internal energy ε = E − 1
2 u2 m2 s−2

ρ density kg m−3

Superscripts
n time step number -

-

Subscripts
i mesh cell number -
i + 1/2 mesh interface number -
k enthalpy-pressure sub-iteration number -
m momentum-enthalpy-pressure global iteration number

1 Introduction

Being able to calculate compressible flows is important for aeronautic applications, but also for
power generation industry. Indeed, compressible flows may be encountered in quite a wide variety
of situations. Steam flow in turbines is a quite usual example. It is also crucial to be able to deal
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with compressible flows for the safety studies in the nuclear power-plants (for instance: steam-water
flows in the primary circuit or complex gas mixtures in the containment). The present paper has
been motivated by a safety study on a large electrical power transformer involving a compressible
flow with a very large energy source term independent of density [6], [7]. Indeed, under specific
conditions, an electric arc may strike, accompanied by a very strong and local Joule effect heat
source term (typically 1010 W m−3) and by a modification of the fluid properties at high temper-
ature (typically 30, 000 K): the flow becomes locally compressible and the pressure rise resulting
from such conditions may deteriorate the structure of the power transformer.

We want to demonstrate that so-called pressure-correction algorithms enable us
to retrieve meaningful solutions of compressible Navier-Stokes equations, even when
shock solutions occur. As a first step, the present considerations are limited to Euler equations.

Actually, in order to solve Euler equations with shockwaves, Godunov-type schemes are usually
considered and have already proved to provide very good approximate solutions on any mesh size
([12], [23]). There is a huge amount of literature devoted to the latter framework, which of course
is not recalled here.

To address flows at all speeds, extensions of compressible flow solvers to low- or zero-Mach-
number flows have been proposed. For example, in [21], the authors propose an extension of
compressible flow solvers to variable-density low-Mach-number flows. In [25], an advective upwind
splitting method (AUSM) is used with a pressure velocity coupling through an artificial diffusion
added to the mass flux (only steady-state equations are considered in this contribution). In [8],
methods for extending AUSM based schemes to operate at all speeds are developed (only steady-
state flows are investigated in this contribution).

On the other hand, few papers have been published which address the suitability of pressure-
correction algorithms for Euler equations with shockwaves. In [16], the authors present a coupled
pressure- and temperature-correction algorithm constructed so that Mach-uniform accuracy and
efficiency are obtained: various steady-state test cases are considered. In [2], Mach-uniform accu-
racy and efficiency are also hunted for, using a pressure-correction method on a staggered grid: the
method is applied to steady cases and to two unsteady configurations (a shock tube and a nozzle
flow). An improvement of this method has been provided in [24], with respect to the conservativ-
ity in space of the energy equation (the conservativity in time has not been specifically assessed).
However, for pressure-correction methods applied to transient flows with shockwaves, there seems
to be no published work including a quantitative error analysis of the convergence towards the
exact solution as the mesh is refined.

Of course, we do not expect pressure-correction algorithms to be more efficient than Godunov-
type schemes for shock solutions. Our concern is to show that the domain of application of some
existing pressure-correction schemes covers compressible flows with shocks: even if such schemes
are not optimal, they are stable and converge towards the exact solution.

Hence, we present two pressure-correction algorithms and compare them on the basis of sev-
eral unsteady test-cases for which an exact solution is available (double rarefaction wave, contact
discontinuity, double shock wave, shock tubes and a test-case including a heat source term). The
evolution of the L1-norm of the error obtained with these schemes is displayed as the mesh is refined
(see [9] for a comparison with other finite volume schemes). To the authors’knowledge, this is an
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original contribution of the present paper.
In particular, the present paper examines the impact of conservativity in time (and in space,

of course): it is demonstrated numerically that if this property is not perfectly insured, pressure-
correction schemes may remain stable but do not necessarily converge towards the right shock
solution. This may remain undetected in complex industrial studies.

Eventually, both pressure-correction algorithms and an approximate Godunov scheme are used
to calculate an unsteady test-case including a strong local and constant heat source term, for which
no exact solution exists. The effect of the mesh refinement is studied.

The three algorithms considered in the present study have been implemented in one dimension
of space, with the sole purpose of solving the specific set of equations considered here. Their main
characteristics are summarized hereafter (see table 1 for a summary).

• The first pressure-correction algorithm, called NLK, sequentially solves the equations of mo-
mentum, mass and enthalpy, with sub-iterations to ensure conservativity. The algorithm also
conserves the total enthalpy along a streamline, in a steady flow when no dissipation/source
term is present.

• The second pressure-correction algorithm, called SLK, sequentially solves the equations of
mass, momentum and energy without sub-iteration. By construction, this scheme is con-
servative. Provided a condition on the time step value is satisfied, the scheme ensures the
discrete positivity of the density and of scalar variables when no source term is present. The
algorithm also preserves the total enthalpy along a streamline, in a steady flow when no
dissipation/source term is present.

• The third and last algorithm, VFRoe-ncv, is an approximate conservative Godunov scheme [4].

NLK SLK VFRoe-ncv
Conservativity yes yes yes
Preservation of the total enthalpy yes yes yes
Positivity of the density and of the scalar variables yes

Table 1: Summary of the properties of the algorithms (NLK is assumed to be operated with enough
sub-iterations).

The outline of the present paper is the following. The set of continuous equations is first detailed
and the discrete forms of the two pressure-correction algorithms are indicated (a brief description
of the VFRoe-ncv algorithm is provided in the appendix, referring to [4]). Then, the test-cases are
described and convergence results are presented. In particular, the behaviour of the algorithms on
the test-case with a constant heat source term is discussed.
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2 Governing equations and grid related notations

We will consider the following 1D-problem, for tmin ≤ t ≤ tmax and xmin ≤ x ≤ xmax: ∂tρ + ∂x(ρ u) = 0
∂t(ρ u) + ∂x(ρ u u) + ∂xP = 0
∂t(ρ H) + ∂x(ρ u H) = ∂tP + Φ

(1)

This system stands for the standard Euler equations including a heat source term Φ independant
of time.

The equation of state corresponds to perfect gas thermodynamics:

P = ρ r T (2)

The specific enthalpy, the internal energy, the isobaric and isochoric specific heats and the square
of the sound speed are recalled below:

h =
γ P

(γ − 1) ρ
and ε =

P

(γ − 1) ρ

cP =
r γ

γ − 1
and cV =

r

γ − 1
= cP − r

c2 =
γ P

ρ
and β = ργ

(3)

Except otherwise stated, the following constants are used:

γ = 1.4 and r =
R

M
=

8.31434
28.8 10−3

(4)

The system of continuous equations (1) is used as such for the discretization of the NLK algo-
rithm. For the SLK algorithm, the system is written using the total energy instead of the total
enthalpy:  ∂tρ + ∂x(ρ u) = 0

∂t(ρ u) + ∂x(ρ u u) + ∂xP = 0
∂t(ρ E) + ∂x(ρ u E + u P ) = Φ

(5)

Before providing the details pertaining to the discretization, some notations are introduced, in
association with the numbering of the cells and of the interfaces of the finite volume mesh.

A colocated finite volume approach is used for all schemes, on a uniform 1D mesh containing an
even number of cells, ncel. The cells are numbered from i = 1 to i = ncel. All cells have the same
volume, denoted Ωi = Ω. The distance between the centres of two adjacent cells is ∆ x = L

ncel ,
with L the length of the computational domain.

The interface between two adjacent cells i and i + 1 is referred to as “face i + 1/2”. The two
boundary faces are referred to as faces “1/2” and “ncel + 1/2” respectively. All the faces j, from
j = 1/2 to j = ncel + 1/2, have the same area, S = 1.
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3 NLK algorithm

3.1 Algorithm overview

The scheme is first order in time. At each time step, a global iterative procedure couples the
velocity step and the enthalpy-pressure step; this iterative procedure stops when the variations of
the divergence of the mass flux are sufficiently small (or when the maximum number of iterations
has been reached). At each of these global iterations, the solution proceeds as follows:

• the velocity is predicted, with an explicit pressure gradient and a semi-implicit convection
term; the mass flux is updated using the so-called “Rhie and Chow interpolation” defined in
section 3.3.1;

• a sub-iterative procedure couples enthalpy and pressure corrections; at each sub-iteration of
this procedure:

– the total enthalpy is calculated and the density is updated;
– the enthalpy-pressure sub-iterative procedure stops (and the next global iteration/time

step starts):
∗ if the maximum number of enthalpy-pressure sub-iterations has been reached
∗ or if at least one sub-iteration has been completed and the discrete mass equation is

satisfied (given a predetermined user-defined precision requirement);
– the pressure correction is determined and is used to update the mass flux and the velocity,

the pressure and the density.

3.2 Discretization in time

3.2.1 Global coupling

For m = 1 to m = ntg (unless otherwise stated, ntg = 1), one iterates over the next five steps
(from “Velocity prediction” to “End of the subcycles”), starting with:

Qn+1
m=1 = qn (6)

For n = 0, u0, P 0 and H0 are given, and we take q0 = ρ0 u0 with ρ0 from the equation of state.

3.2.2 Velocity prediction

The predicted velocity u∗m is calculated from:

ρn u∗m − un

∆ t
− u∗m ∂xQn+1

m + ∂x(qn u∗m) = −∂xPn (7)

3.2.3 Enthalpy-pressure coupling

For k = 1 to k = nthm (unless otherwise stated, nthm = 2), one iterates over the next two steps
(enthalpy and pressure correction), starting with:

(u, H, P, q)n+1
m,k=1 = (u∗m,Hn, Pn, ρn u∗m) (8)
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3.2.4 Enthalpy

The total enthalpy Hn+1
m,k+1 is calculated from:

ρn
Hn+1

m,k+1 −Hn

∆ t
−Hn+1

m,k+1 ∂xqn+1
m,k + ∂x(qn+1

m,k Hn+1
m,k+1) =

Pn+1
m,k − Pn

∆ t
+ Φ (9)

Then, an updated density ρn+1
m,k+1/2 is calculated:

ρn+1
m,k+1/2 =

γ Pn+1
m,k

(γ − 1)(Hn+1
m,k+1 −

1
2un+1

m,k un+1
m,k )

(10)

3.2.5 Pressure correction

An updated pressure Pn+1
m,k+1 is calculated from:

Pn+1
m,k+1 − Pn+1

m,k

(c2)n+1
m,k+1/2∆ t

− ∂x∆ t∂x(Pn+1
m,k+1 − Pn+1

m,k ) = −
ρn+1

m,k+1/2 − ρn

∆ t
− ∂xqn+1

m,k (11)

with:

(c2)n+1
m,k+1/2 =

γ Pn+1
m,k

ρn+1
m,k+1/2

(12)

Then, the velocity un+1
m,k+1, the mass flux qn+1

m,k+1 and the density ρn+1
m,k+1 are updated:

un+1
m,k+1 − un+1

m,k

∆ t
= −

∂x(Pn+1
m,k+1 − Pn+1

m,k )

ρn+1
m,k+1/2

qn+1
m,k+1 − qn+1

m,k

∆ t
= −∂x(Pn+1

m,k+1 − Pn+1
m,k )

(13)

ρn+1
m,k+1 =

γ Pn+1
m,k+1

(γ − 1)(Hn+1
m,k+1 −

1
2un+1

m,k+1 un+1
m,k+1)

(14)

It may be useful to indicate the origin of the pressure-correction equation (11). We start from
the discrete mass equation:

ρn+1
m,k+1 − ρn

∆ t
+ ∂xqn+1

m,k+1 = 0

We replace the mass flux qn+1
m,k+1 by its expression according to (13):

qn+1
m,k+1 = qn+1

m,k −∆ t∂x(Pn+1
m,k+1 − Pn+1

m,k )

We split the density variation into two parts as follows:

ρn+1
m,k+1 − ρn = (ρn+1

m,k+1 − ρn+1
m,k+1/2) + (ρn+1

m,k+1/2 − ρn)

The first part vanishes when the iterative process converges. It is modelled as follows:

ρn+1
m,k+1 − ρn+1

m,k+1/2 = (Pn+1
m,k+1 − Pn+1

m,k )/(c2)n+1
m,k+1/2
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3.2.6 End of the subcycles

The subcycles are not necessarily executed up to k = nthm and m = ntg.
To end a given m-subcycle, a convergence test (C1) is carried out at the end of the enthalpy

step, at each k-iteration (except at the first one). The current m-subcycle is interrupted (and the
last pressure step of the subcycle is skipped) if (C1) is verified, that is if k = nthm or if the discrete
mass equation is satisfied (i.e. if the right-hand side of the pressure equation (11) is sufficiently
small).

To end a given time step, a convergence test (C2) is carried out at the end of each m-
subcycle. The current time step is interrupted if (C2) is verified, that is, if m = ntg or if the
discrete divergence of the mass flux Qn+1

l did not vary between the last two subcycles l = m − 1
and l = m.

With these two stopping tests, variables are updated differently at the end of the time step
and at the end of each m-subcycle:

• at the end of the last m-subcycle of a given time step (the conditions (C1) and (C2) are true,
m = mmax 6 ntg and k = kmax 6 nthm), the variables are updated for the next time-step
as follows:

(u, P, q)n+1 = (u, P, q)n+1
mmax,kmax

Hn+1 = Hn+1
mmax,kmax+1 and ρn+1 = ρn+1

mmax,kmax+1/2

(15)

• at the end of all other m-subcycles (the condition (C1) is true, the condition (C2) is false,
and k = kmax 6 nthm), only Q needs to be updated for the next m-subcycle:

Qn+1
m+1 = qn+1

m,kmax
(16)

3.3 Discretization in space

3.3.1 Velocity prediction

The upwind scheme is used for the convective term ∂x(qn u∗), while all other terms are centred.
With uc,i+1/2 standing for the upwind face value with respect to qn

i+1/2 and Pn
i+1/2 standing for the

(centred) linear interpolation for pressure, we have:

ρn
i Ωi

∆ t
(u∗m)i −

(
(Qn+1

m )i+1/2 − (Qn+1
m )i−1/2

)
S (u∗m)i

+
(
qn
i+1/2 (u∗m)c,i+1/2 − qn

i−1/2 (u∗m)c,i−1/2

)
S

=
ρn

i Ωi

∆ t
un

i −
(
Pn

i+1/2 − Pn
i−1/2

)
S

(17)

Once the velocity field has been predicted, the mass flux is updated, using the so-called Rhie
and Chow interpolation, defined below (ρn

c,i+1/2 is the upwind face value):

(q∗m)i+1/2 =
1
2

((u∗m)i+1 + (u∗m)i) ρn
c,i+1/2

+
∆ t

2

(
Pn

i+3/2 − Pn
i+1/2

∆ x
+

Pn
i+1/2 − Pn

i−1/2

∆ x

)
−∆ t

Pn
i+1 − Pn

i

∆ x

(18)
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3.3.2 Enthalpy

The upwind scheme is used for the convective term ∂x(qn+1
m,k Hn+1

m,k+1), while all other terms are
centred. With Hc,i+1/2 standing for the upwind face value with respect to (qn+1

m,k )i+1/2, we have:

ρn
i Ωi

∆ t
(Hn+1

m,k+1)i −
(
(qn+1

m,k )i+1/2 − (qn+1
m,k )i−1/2

)
(Hn+1

m,k+1)i S

+
(
(qn+1

m,k )i+1/2 (Hn+1
m,k+1)c,i+1/2 − (qn+1

m,k )i−1/2 (Hn+1
m,k+1)c,i−1/2

)
S

=
ρn

i Ωi

∆ t
Hn

i +
(Pn+1

m,k )i − (Pn)i

∆ t
Ωi + Φi Ωi

(19)

3.3.3 Pressure correction

A centred discretization in space is used:

Ωi

((c2)n+1
m,k+1/2)i∆ t

δPi − ∆ t
(
(∂x δP )f,i+1/2 − (∂x δP )f,i−1/2

)
S

= −
(ρn+1

m,k+1/2)i − ρn
i

∆ t
Ωi −

(
(qn+1

m,k )i+1/2 − (qn+1
m,k )i−1/2

)
S

(20)

with the notations: 

δP = Pn+1
m,k+1 − Pn+1

m,k

((c2)n+1
m,k+1/2)i =

γ (Pn+1
m,k )i

(ρn+1
m,k+1/2)i

(∂x δP )f,i+1/2 =
δPi+1 − δPi

∆ x

(21)

The left-hand side of the pressure-correction equation shall vanish for k sufficiently large and,
in this case, the pressure-correction equation is the discrete form of the continuity equation.

Once the pressure-correction equation has been solved, the mass flux at internal faces i + 1/2
(for 0 < i < ncel) is updated:

(qn+1
m,k+1)i+1/2 = (qn+1

m,k )i+1/2 −∆ t
δPi+1 − δPi

∆ x
(22)

Similarly, the velocity is updated. With δPi+1/2 standing for the linear interpolation of δP at
the face i + 1/2, we have:

(un+1
m,k+1)i = (un+1

m,k )i −
∆ t

(ρn+1
m,k+1/2)i

δPi+1/2 − δPi−1/2

∆ x
(23)
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3.4 Discrete properties

3.4.1 Conservativity

Conservativity in space is ensured by construction with the finite volume scheme used.

Conservativity in time is verified provided the iterative procedures converge (sufficiently large
values of ntg and of nthm are required). Indeed, conservativity in time requires:

ρn u∗mmax
− un

∆ t
− u∗mmax

∂xQn+1
mmax

=
ρn+1 un+1 − ρn un

∆ t
(24)

and:

ρn
Hn+1

mmax,kmax+1 −Hn

∆ t
−Hn+1

mmax,kmax+1 ∂xqn+1
mmax,kmax

=
ρn+1 Hn+1 − ρn Hn

∆ t
(25)

These relations hold if the enthalpy-pressure and the global iterative cycles are converged.
Indeed, at convergence we have:

u∗mmax
= un+1 and Hn+1

mmax,kmax+1 = Hn+1 (26)

At convergence, we also have:

ρn+1
mmax,kmax+1/2 = ρn+1 so that:

ρn+1 − ρn

∆ t
+ ∂xqn+1

mmax,kmax
= 0 (27)

Moreover, convergence yields:

∂xqn+1
mmax,kmax

= ∂xqn+1
mmax−1,kmax

(28)

Finally, since:
Qn+1

mmax
= qn+1

mmax−1,kmax
(29)

we have:
ρn+1 − ρn

∆ t
+ ∂xQn+1

mmax
= 0 (30)

and equations (24) and (25) are recovered.

3.4.2 Preservation of the total enthalpy

For steady-state 1D flows, the total enthalpy H at interfaces is conserved, with the following discrete
definition: H = Hi+1/2 = Hc,i+1/2. A similar property holds for multidimensional flows.

4 SLK algorithm

4.1 Algorithm overview

A first implementation of the algorithm is described in [18]. The scheme is first order in time. At
each time step, the solution proceeds as follows:

10



• density step: density and mass flux are calculated (the mass flux will be used in the next two
steps),

• momentum step: velocity is calculated as a solution of the momentum equation, using the
mass flux obtained at the end of the first step (density step),

• energy step: total energy is determined, using the mass flux obtained at the end of the first
step (density step) and pressure is updated.

It is pointed out that the so-called Rhie and Chow interpolation is not used in the SLK algorithm.

4.2 Discretization in time

4.2.1 Density step

The density ρn+1 and the mass flux qn+1
ac are calculated. Note that qn+1

ac will be used for the
advective terms in the momentum and energy equations.

ρn+1 − ρn

∆ t
+ ∂x (qn −∆ t θ β ∂x sn)− ∂x (∆ t(c2 ∂x ρn+1)) = 0 (31)

qn+1
ac = qn −∆ t

(
c2 ∂x ρn+1 + θ β ∂x sn

)
(32)

In these equations and below, θ allows to take β∂x s into account (θ = 1) or not (θ = 0). Unless
otherwise stated, all the computations presented here have been carried out with θ = 1.

4.2.2 Momentum step

The velocity un+1 is calculated as follows:

ρn un+1 − un

∆ t
− un+1 ∂xqn+1

ac + ∂x(qn+1
ac un+1) = −∂xPn (33)

Variants of the algorithm may be derived, using a predicted pressure P pred instead of Pn in the
momentum equation (33). For example, using an isothermal approximation:

P pred = Pn ρn+1

ρn
(34)

or, using an isentropic approximation:

P pred = Pn

(
ρn+1

ρn

)γ

(35)

All the calculations presented here have been carried out using Pn in the momentum equation.
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4.2.3 Energy step

The total energy En+1 is calculated:

ρn En+1 − En

∆ t
− En+1 ∂xqn+1

ac + ∂x

(
qn+1
ac

(
En+1 +

Pn

ρn+1

))
= Φ (36)

Finally, the pressure is updated:

Pn+1 = (γ − 1) ρn+1
(
En+1 − 1

2 un+1 un+1
)

(37)

4.3 Discretization in space

4.3.1 Density step

The upwind scheme is used for the mass flux divergence, while all other terms are centred. With
un

i+1/2 standing for the (centred) linear interpolation for velocity and ρc,i+1/2 standing for the
upwind face value with respect to un

i+1/2, we have:

Ωi
ρn+1

i − ρn
i

∆ t
+ (ρn

c,i+1/2 un
i+1/2 − ρn

c,i−1/2 un
i−1/2) S

− ∆ t
(
θ βn

h,i+1/2 (∂x sn)f,i+1/2 − θ βn
h,i−1/2 (∂x sn)f,i−1/2

)
S

− ∆ t
(
(c2)n

h,i+1/2 (∂x ρn+1)f,i+1/2 − (c2)n
h,i−1/2 (∂x ρn+1)f,i−1/2

)
S = 0

(38)

In this equation, βn
h,i+1/2 and (c2)n

h,i+1/2 are harmonic interpolations at the face i + 1/2, with
the following notation (f standing for β or c2):

fn
h,i+1/2 = 2

fn
i+1 fn

i

fn
i+1 + fn

i

(39)

The gradients (∂x sn)f,i+1/2 and (∂x ρn+1)f,i+1/2 are calculated directly at the face i+1/2 using
the values of s and ρ in the two neighbouring cells.

The mass flux at the faces is calculated as follows:

qn+1
ac,i+1/2 = ρn

c,i+1/2 un
i+1/2

− ∆ t
(
θ βn

h,i+1/2 (∂x sn)f,i+1/2 + (c2)n
h,i+1/2 (∂x ρn+1)f,i+1/2

) (40)

4.3.2 Momentum step

The upwind scheme is used for the convective term ∂x(qn+1
ac u∗), while all other terms are cen-

tred (un+1
c,i+1/2 stands for the upwind face value with respect to qn+1

ac,i+1/2 and Pn
i+1/2 is the linear

interpolation for pressure):

ρn
i Ωi

∆ t
un+1

i −
(
qn+1
ac,i+1/2 − qn+1

ac,i−1/2

)
S un+1

i +
(
qn+1
ac,i+1/2 un+1

c,i+1/2 − qn+1
ac,i−1/2 un+1

c,i−1/2

)
S

=
ρn

i Ωi

∆ t
un

i − (Pn
i+1/2 − Pn

i−1/2) S

(41)
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4.3.3 Energy step

As for momentum, the upwind scheme is used for the convective term ∂x

(
qn+1
ac

(
En+1 + P n

ρn+1

))
,

while all other terms are centred. With En+1
c,i+1/2, Pn

c,i+1/2 and ρn+1
c,i+1/2 standing for the upwind face

values with respect to qn+1
ac,i+1/2, we have:

ρn
i Ωi

∆ t
En+1

i −
(
qn+1
ac,i+1/2 − qn+1

ac,i−1/2

)
S En+1

i

+

(
qn+1
ac,i+1/2

(
En+1

c,i+1/2 +
Pn

c,i+1/2

ρn+1
c,i+1/2

)
− qn+1

ac,i−1/2

(
En+1

c,i−1/2 +
Pn

c,i−1/2

ρn+1
c,i−1/2

))
S

=
ρn

i Ωi

∆ t
En

i + Φ Ωi

(42)

4.4 Discrete properties

4.4.1 Conservativity

This property is verified by construction of the algorithm.
Conservativity in space is ensured by construction (finite volume scheme). Conservativity in

time is ensured if the following relation holds for u (and a similar one for E instead of u):

ρn un+1 − un

∆ t
− un+1 ∂xqn+1

ac =
ρn+1 un+1 − ρn un

∆ t
(43)

This relation is ensured by the discrete form of the mass equation (from (31) and (32)):

−∂xqn+1
ac =

ρn+1 − ρn

∆ t
(44)

4.4.2 Positivity of the density

The density equation (38) is recalled hereafter. The convective velocity w = u−∆ t θ ρ−1 β ∂x s is
introduced to deal simultaneously with the cases θ = 0 and θ = 1:

Ωi

∆ t
ρn+1

i − ∆ t
(
(c2)n

h,i+1/2 (∂x ρn+1)f,i+1/2 − (c2)n
h,i−1/2 (∂x ρn+1)f,i−1/2

)
S

=
Ωi

∆ t
ρn

i −
(
ρn

c,i+1/2 wn
i+1/2 − ρn

c,i−1/2 wn
i−1/2

)
S

(45)

With the explicit treatment adopted here for the convective term (ρn
c,i+1/2 wn

i+1/2 −
ρn

c,i−1/2 wn
i−1/2), a condition that ensures the discrete positivity of the density for 1D flows may be

derived as indicated below (a similar condition holds for multidimensional flows).
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The matrix of the system is a M-matrix1 and it is stricly diagonal dominant2. Hence, the
positivity of the right-hand side is sufficient to ensure the discrete positivity of the density.

The right-hand side of the density equation reads:

bi = cii ρn
i + ci(i+1) ρn

i+1 + ci(i−1) ρn
i−1 (47)

with: 
cii =

Ωi

∆ t
−
(
sp(wn

i+1/2) wn
i+1/2 − (1− sp(wn

i−1/2))wn
i−1/2

)
S

ci(i+1) = −
(
(1− sp(wn

i+1/2))wn
i+1/2

)
S

ci(i−1) = −
(
−sp(wn

i−1/2) wn
i−1/2

)
S

(48)

with sp(a) returning 1 if a is positive and 0 otherwise.
The coefficients ci(i−1) and ci(i+1) are always positive. Hence, a condition sufficient to ensure

the discrete positivity of the density is cii > 0, that is:

Ωi

∆ t
−
(
sp(wn

i+1/2) wn
i+1/2 − (1− sp(wn

i−1/2))wn
i−1/2

)
S > 0 (49)

or:
Ωi

∆ t
−
(
Max(0, wn

i+1/2)−Min(0, wn
i−1/2)

)
S > 0 (50)

This condition ensures the discrete positivity of the density. It may also be put under a slightly
different form:

Ωi

∆ t
−
(
Max(0, wn

i+1/2) + Max(0,−wn
i−1/2)

)
S > 0 (51)

For θ = 0 (i.e. with w = u), the condition (50) may be illustrated as follows, with reference to
a CFL condition based on the velocity of the fluid (and not on the speed of sound):

• for a uniform velocity field, the condition corresponds to a “CFL=1” constraint.

• in the centre of a symmetric double rarefaction wave, the condition corresponds to a “CFL=0.5”
constraint.

• in the centre of a symmetric double shock wave, the condition does not imply any limitation.

1A M-matrix is defined as a matrix which has the following properties: all the diagonal terms are non-zero and have
the same sign and all the off-diagonal terms have the opposite sign.

2The associated coefficients read:8>>>>>>>><>>>>>>>>:

aii =
Ωi

∆ t
+

∆ t

∆ x

`
(c2)n

h,i+1/2 + (c2)n
h,i−1/2

´
S

ai(i+1) = −∆ t

∆ x
(c2)n

h,i+1/2 S

ai(i−1) = −∆ t

∆ x
(c2)n

h,i−1/2 S

(46)
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With a semi-implicit treatment of the convective term (ρn+1
c,i+1/2 wn

i+1/2−ρn+1
c,i−1/2 wn

i−1/2),
a quite different condition is obtained (none of the present computations has been carried out with
this option).

The associated density equation reads:

Ωi

∆ t
ρn+1

i + (ρn+1
c,i+1/2 wn

i+1/2 − ρn+1
c,i−1/2 wn

i−1/2) S

− ∆ t
(
(c2)n

h,i+1/2 (∂x ρn+1)f,i+1/2 − (c2)n
h,i−1/2 (∂x ρn+1)f,i−1/2

)
S =

Ωi

∆ t
ρn

i

(52)

The right-hand side is positive. The positivity of the density is ensured if the matrix of the system is
a strictly diagonal dominant M-matrix with positive diagonal terms. The coefficients of the matrix
are: 

aii =
Ωi

∆ t
+

(
sp(wn

i+1/2)wn
i+1/2 − (1− sp(wn

i−1/2))wn
i−1/2

)
S

+
∆ t

∆ x

(
(c2)n

h,i+1/2 + (c2)n
h,i−1/2

)
S

ai(i+1) =
(
(1− sp(wn

i+1/2))wn
i+1/2

)
S − ∆ t

∆ x
(c2)n

h,i+1/2 S

ai(i−1) =
(
−sp(wn

i−1/2) wn
i−1/2

)
S − ∆ t

∆ x
(c2)n

h,i−1/2 S

(53)

From the definition of sp (sp(a) returns 1 if a is positive and 0 otherwise) and from the positivity of
(c2)n

h,i±1/2, it follows that the off-diagonal coefficients are negative and that the diagonal coefficients
are strictly positive.

Hence, we have |aii| − |ai(i+1)| − |ai(i−1)| = aii + ai(i+1) + ai(i−1) and a sufficient condition for
the positivity of the density is aii + ai(i+1) + ai(i−1) > 0, that is:

Ωi

∆ t
+ (wn

i+1/2 − wn
i−1/2) S > 0 (54)

This condition (54) may be illustrated as follows, for θ = 0 (i.e. with w = u):

• for a uniform velocity field or in the centre of a symmetric double rarefaction wave, the
condition does not imply any limitation,

• in the centre of a symmetric double shock wave, the condition corresponds to a “CFL=0.5”
constraint (CFL based on the velocity of the fluid).

4.4.3 Preservation of the total enthalpy

For steady-state 1D flows, the total enthalpy H at interfaces is conserved, with the following discrete
definition: H = Hi+1/2 = Ec,i+1/2 + Pc,i+1/2

ρc,i+1/2
. A similar property holds for multidimensional flows.

5 Approximate Godunov scheme VFRoe-ncv

To provide a reference solution for the present computations with a heat source term, many
Godunov-type schemes may be selected, amongst which the most popular are the approximate

15



Roe scheme [20] and the exact Godunov scheme [13] (see [12] and [23] for a review). In the present
study, the approximate Godunov scheme VFRoe-ncv has been adopted. The implementation of
the scheme is first order in time.

The VFRoe-ncv scheme was first introduced in [4]. A comparison of this scheme with the exact
Godunov scheme in the framework of shallow water equations can also be found in [3]. The ability
of VFRoe-ncv to handle very strong rarefaction waves is discussed in [10]. Its ability to calculate
moving contact discontinuities is investigated in detail in [11], focusing on Euler equations with
complex equations of state.

Moreover, a detailed comparison of VFRoe-ncv to many Riemann solvers is available in [9]. This
paper provides rates of convergence for many test cases (including Sod test case, sonic rarefaction
waves, ...) and schemes (original VFRoe scheme, Rusanov scheme, VFFC scheme, relaxation
schemes and VFRoe-ncv schemes).

The present VFRoe-ncv version uses the non-conservative state-variable Y = (ρ, u, P ). As Roe
linearized Riemann solver, it requires an entropy fix at sonic points. More details are provided in
the appendix.

6 Presentation of the test-cases

6.1 Test-cases without heat source term

For all computations considered in the present section, the following conditions hold.

• The source term Φ is zero and we use γ = 1.4 for all the test-cases.

• The time interval considered is [tmin; tmax], with tmin = 0 and tmax = 3. 10−3 s, except for the
sonic shock tube TST that was run with tmax = 0.2 s. In space, the domain extends over the
interval [−L/2;L/2], with L = 4 m. The boundary conditions are zero-flux conditions for all
variables. Moreover, the domain is sufficiently large so that no wave reaches the boundaries
before the simulations are stopped at t = tmax.

The initial conditions are detailed hereafter.
Contact discontinuity: CD ρ = 1. for x < 0 and ρ = 0.125 for x > 0

u = 200.
P = 105

(55)

Sod shock tube: SOD ρ = 1. for x < 0 and ρ = 0.125 for x > 0
u = 0.
P = 105 for x < 0 and P = 104 for x > 0

(56)

Sonic shock tube (Toro [23]): TST ρ = 1. for x < 0 and ρ = 0.125 for x > 0
u = 0.75 for x < 0 and u = 0 for x > 0
P = 1 for x < 0 and P = 0.1 for x > 0

(57)
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Symmetric double expansion (or “double expansion wave”): SDE ρ = 1.
u = −100. for x < 0 and u = 100. for x > 0
P = 105

(58)

Symmetric double shock (or “double shock wave”): SDS ρ = 1.
u = 100. for x < 0 and u = −100. for x > 0
P = 105

(59)

The method used to calculate the analytical solutions is presented in [22].

6.2 Analytical case with heat source term (case A)

With ξ =
x

t
and A an arbitrary constant, the heat source term Φ considered here is:

Φ = − A

27
2− γ

γ − 1
1
t

ξ4 (60)

Indeed, with this source term, an analytical solution exists:
ρ = A ξ2

u = 2
3 ξ

P = A
18 ξ4

(61)

The length of the domain on which errors are calculated is the same as for the above test-
cases without heat source term (L = 4m). Nevertheless, to make the influence of the (Dirichlet)
boundary conditions as small as possible, the computational domain is extended on both sides.
Hence, the computational domain extends over the interval [xmin;xmax] with xmin = 1 and xmax =
xmin + 3 L = 13 (so that x > 0) and the domain on which errors are calculated is restricted to the
following interval: [xmin + L;xmax − L], that is [5; 9].

The time interval considered is [tmin; tmax], with tmin = 0.010 s and tmax = 0.011 s (so that
t > 0).

To keep the variables between reasonable limits, the constant value A = 10−5 has been adopted.

6.3 Test-case with a constant heat source term (case B)

The initial conditions are the following:  ρ = 1.
u = 0.
P = 105

(62)

The source term Φ is constant and defined as follows:

Φ(x, t > 0) = 1010 for |x| < LΦ

2
= 0.1

= 0 elsewhere
(63)
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The boundary conditions are zero-flux conditions for all variables. Moreover, the domain is
sufficiently large (L = 4m) so that no wave reaches the boundaries before simulations are stopped
at t = tmax = 1.4 10−3 s.

The reference solution considered has been obtained using VFRoe-ncv method [4], with an
automatic limitation of the time step and on a mesh 27 times as fine as the finest mesh used for
the pressure-correction solvers (i.e. on a mesh containing 174,960 regular cells).

7 Results

7.1 Time step management

All schemes considered in the present paper are first order in time (and space).
The computations with VFRoe-ncv were carried out with an automatic time step limitation:

the time step is uniform in space and varies in time to keep the CFL number lower or equal to 0.5
((u + c)∆ t/∆ x 6 0.5).

For each computation with NLK and SLK, the time step is uniform in space and constant in
time3. For a given test case, convergence studies have been carried out keeping ∆ t/∆ x constant
for all meshes. The maximum values of the CFL numbers obtained at the end of each calculation
are provided in the following sections.

7.2 Error calculation

On the uniform meshes considered here, fi standing for the value of a variable f at the centre of
cell i, the “L1-error” of “L1-difference” between f and a reference solution fref is evaluated as
follows, unless otherwise stated:

ef
L1 =

ncel∑
i=1

|fi − fref,i|

ncel∑
i=1

|fref,i|
(64)

For the analytical case with a heat source term, the summations are not carried out over the
whole domain, but only over the cells located in the interval of interest [xmin +L;xmax−L] defined
in section 6.2.

The orders of convergence is estimated from the L1-errors (or L1-difference) obtained on the
finest two meshes.

7.3 Test-cases without heat source term

For the tests reported in the present section, NLK algorithm is operated using large values for the
maximum numbers of subcycles: ntg = 20 and nthm = 20; tests have also been carried out with
smaller values of these numbers, to study the effect of the potential loss of conservativity in time
on the convergence towards the exact solution.

3This choice has been motivated by the need for comparing easily the transients during the early tests. Moreover,
the aim of the present study was not to make any assessment related to the CPU requirements of the algorithms but to
show they had the capability of addressing shock solutions.
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Convergence is studied as the mesh is refined (80, 160, 320, 640, 1,280, 2,560, 5,120 and 10,240-
cell meshes) keeping the ratio ∆ t

∆ x constant for all meshes. The time step value on the coarser mesh
is ∆ t = 2. 10−5 s for all cases but TST for which we use ∆ t = 8. 10−3 s. The maximum values of
the CFL numbers obtained at the end of the computations are summarized in table 2.

CD SOD TST SDE SDS
u∆ t/∆ x 0.08 0.12 0.23 0.04 0.04

(u + c)∆ t/∆ x 0.50 0.28 0.45 0.19 0.19

Table 2: Maximum CFL numbers obtained at the end of the calculation of the test-cases without heat source
term.

Using Smoller’s method [22] to calculate the reference solution for the cases described in sec-
tion 6.1, the L1-norm of the error for density, velocity, pressure and total energy is plotted in
figures 4 to 7 and the corresponding values of the orders of convergence obtained from the L1-error
on the finest two meshes are indicated in tables 3 to 6.

For these homogeneous test-cases, we expect to retrieve the following classical results for so-
called ”first-order” schemes.

• When considering a concentration C whose variation only occurs through the contact dis-
continuity, we expect to find at time t0 that eC

L1(∆ x, t0) = BC(t0)∆ x1/2 (where BC(t0) is
a constant depending only on t0). If we turn to the velocity and pressure variables, one
should observe that eU,P

L1 (∆ x, t0) = BU,P (t0)∆ x, due to the fact that these variables remain
unchanged across the linearly degenerated field.

• If we focus on the density and total energy variables, which vary through both the con-
tact discontinuity and the genuinely non linear fields, the competition between both rates
of convergence should result in the following behaviour on very fine meshes: eρ,E

L1 (∆ x, t0) =
Bρ,E(t0)∆ x1/2. Nonetheless, if one restricts to intermediate mesh sizes, the rate of conver-
gence should be an average value in the range [ 12 , 1].

The analysis of the results reported hereafter can be summarized as follows: these test-cases
clearly demonstrate that it is possible to capture shocks, expansions and contact dis-
continuities with a conservative pressure-correction algorithm. Details are provided below.

• For the double shock wave and Sod shock tube (which both involve shocks), the NLK al-
gorithm converges towards the correct solution as the mesh is refined when the maximum
numbers of subcycles are sufficiently large (here ntg = 20 and nthm = 20): see figure 5
and table 4. If the maximum numbers of subcycles are too small (typically, ntg = 1 and
nthm = 2), the algorithm NLK no longer converges towards the right shock solution (figure 7
and tables 5 and 6). This shortcoming is also visible with the choice (ntg = 1 and nthm = 20).
This can be easily explained by the fact that the discrete time derivative of the mean momen-
tum is not strictly conservative unless convergence (with respect to m-subcycles associated
with ntg) is achieved. This is a well known feature for non-conservative schemes which are
used for the computation of systems of conservation laws (see [15] and [11] for instance). The
SLK algorithm, which preserves the conservative form by construction, does not encounter
this difficulty.
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SLK CD SOD TST SDE SDS
density 0.501 0.619 0.611 0.864 0.996
velocity 0.987 0.844 0.778 0.874 1.011
pressure 0.993 0.863 0.771 0.864 0.999

Table 3: Orders of convergence for the test-cases without heat source term: SLK algorithm

NLK(20,20) CD SOD TST SDE SDS
density 0.500 0.592 0.568 0.805 1.093
velocity 1.002 0.585 0.525 0.809 1.082
pressure 0.999 0.704 0.592 0.805 1.104

Table 4: Orders of convergence for the test-cases without heat source term: NLK algorithm with ntg = 20 and
nthm = 20

NLK(01,20) CD SOD TST SDE SDS
density 0.500 0.188 0.215 0.792 0.125
velocity 1.001 0.053 0.055 0.795 0.258
pressure 0.989 0.101 0.124 0.796 0.131

Table 5: Orders of convergence for the test-cases without heat source term: NLK algorithm with ntg = 1 and
nthm = 20

NLK(01,02) CD SOD TST SDE SDS
density 0.500 0.214 0.222 0.795 0.118
velocity 1.002 0.053 0.056 0.800 0.174
pressure 0.989 0.108 0.136 0.798 0.124

Table 6: Orders of convergence for the test-cases without heat source term: NLK algorithm with ntg = 1 and
nthm = 2
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• If we restrict to the test-cases involving a pure contact discontinuity or a double rarefaction
wave, we retrieve a convergence rate between 0.5 and 1 for ρ and E, whatever the algorithm
(and whatever the numbers of subcycles for NLK). Similarly, the rate of convergence is close
to 1 for U and P for both SLK and NLK: see figures 4, 5, 6 and 7, and tables 3, 4, 5 and 6.

• If one turns to the approximate Godunov scheme VFRoe-ncv, the reader is referred to [9]
for measures of error in L1-norm for the same test-cases. We emphasize that the rates of
convergence are very similar to those measured here for the SLK algorithm.

Finally, we underline that neither NLK nor SLK require any specific treatment for the sonic
shock tube at x = 0 (see figure 1). Moreover, we also checked that the SLK algorithm converges
towards the exact solution for a very strong rarefaction case (shock tube with γ = 1.01, starting
with the following initial state: (ρ, u, P ) = (103, 0., 105) for x < 0 and (ρ, u, P ) = (10−2, 0., 5) for
x > 0).
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0.4
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SLK algorithm (160 cells)

SLK algorithm (1,280 cells)
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Figure 1: Sonic shock tube. Comparison of the density, velocity and pressure profiles obtained with the SLK
algorithm (160, 1,280 and 10,240-cell meshes) with the analytical solution at t = tmax = 0.2 s

.
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7.4 Analytical case with a heat source term (case A)

This case corresponds to the source term (60) and to the solution (61). It provides the opportunity
of studying the convergence of the algorithm as the mesh is refined on a regular solution with a
heat source term.

For this test-case, NLK algorithm is operated with the default values of the subcycle parameters:
ntg = 1 and nthm = 2.

The mesh refinement and the time step are the same as those used for the test-cases without
heat source term. Convergence is studied as the mesh is refined keeping the ratio ∆ t

∆ x constant for
all meshes, with ∆ t = 2. 10−5 s on the coarsest mesh. The maximum values of the CFL numbers
obtained at the end of the computations are u∆ t/∆ x = 0.32 and (u + c)∆ t/∆ x = 0.45.

Both pressure-correction algorithms converge satisfactorily (figure 8 and table 7): first
order rate of convergence is achieved on all quantities, as expected, since the solution is regular (at
least C1).

SLK NLK(01,02)
density 1.000 1.000
velocity 0.999 0.999
pressure 0.999 0.999

Table 7: Orders of convergence for case A

7.5 Test-case with constant heat source term (case B)

This case corresponds to the initial condition (62) and to the source term (63).
The convergence of the pressure-correction solvers is studied as the mesh is refined (80, 240,

720, 2,160 and 6,480-cell meshes4), keeping a constant ratio ∆ t
∆ x , with ∆ t = 2. 10−5 s on the

coarsest mesh for NLK, and with ∆ t = 2. 10−7 s on the coarsest mesh for SLK (SLK fails with
∆ t = 2. 10−5 s).

The maximum values of the CFL numbers obtained at the end of the computations with SLK
are: u∆ t/∆ x = 1.6 10−3 and (u + c)∆ t/∆ x = 0.49 (the corresponding values obtained for NLK
are approximately 100 times larger).

The solution provided by VFRoe-ncv on a mesh containing 80 × 37 = 174, 960 cells has been
taken as the reference solution.

For this test-case, the NLK algorithm has first been operated with the default values of the
subcycle parameters, ntg = 1 and nthm = 2, since satisfactory results for the previous test-case
(case A) had been obtained with these values. Then, complementary computations have been
carried out with larger values of the subcycle parameters, ntg = 20 and nthm = 20, to study the
effect of ensuring exact conservativity.

4On the 80-cell mesh, the heating zone extends over only 2 cells. The meshes are refined successively by a factor
of 3 so that transferring the VFRoe-ncv reference solution to the cell centres of coarser meshes does not require any
interpolation.

22



Some solutions obtained with NLK and SLK are plotted in the figure 2 along with the reference
solution obtained with VFRoe-ncv. A zoom on the profiles close to the border of the heating zone
is presented in the figure 3.

When the mesh is refined, the solutions obtained with NLK (with enough sub-
iterations) and with SLK converge towards the VFRoe-ncv reference solution. Indeed,
from the table 8 and from the figure 9, we can conclude that:

• the solutions provided by NLK operated with (ntg = 20 and nthm = 20) and by SLK converge
towards the VFRoe-ncv reference solution when the mesh is refined (it is pointed out that,
in this case, both NLK and SLK are fully conservative),

• if NLK is operated with ntg = 1 and nthm = 2, the solution does not converge towards the
reference solution obtained with VFRoe-ncv as the mesh is refined.

A difficulty is encountered by NLK and SLK at the border of the heating zone (figure 3):

• on coarse meshes5 (plots are not presented here), the profile obtained with SLK exhibits large
velocity oscillations in space, and NLK operated with ntg = 20 and nthm = 20 produces
an even more unphysical solution. The velocity profile produced by NLK with ntg = 1 and
nthm = 2 does not exhibit such oscillations.

• as the mesh is refined, the spatial oscillations observed on the solutions produced by NLK
and SLK tend to diminish. On finer meshes, the velocity solution obtained with NLK is less
perturbated than that obtained with SLK.

SLK NLK(01,02) NLK(20,20)
density 0.724 0.265 0.609
velocity 1.077 0.050 1.014
pressure 1.033 0.005 0.881

Table 8: Orders of convergence for case B (for NLK, the orders of convergence have been calculated using the
errors obtained on the 2,160 and the 720-cell meshes)

8 Conclusion

The ability to solve compressible flows with pressure-correction schemes has been investigated. Two
algorithms have been studied.

The SLK algorithm sequentially solves mass, momentum and energy without sub-iteration. It
is conservative. Under classical conditions, it ensures the discrete positivity of the density and of
the scalar variables and preserves the total enthalpy.

The NLK algorithm sequentially solves momentum, enthalpy and pressure with sub-iterations
which ensure conservativity. Under classical conditions, it preserves the total enthalpy.

5It is important to observe the behaviour of the solution on coarse meshes in the perspective of three-dimensional
computations. With the 240-cell mesh, the heating zone extends over 6 cells.
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The present conservative pressure-correction algorithms capture relevant shock so-
lutions.

Indeed, both algorithms exhibit satisfactory convergence properties on standard compressible
transients (double shock wave, double rarefaction wave, contact discontinuity, Sod shock tube,
sonic shock tube) and on a regular test-case with a heat source term. Moreover, it is demonstrated
numerically that if the maximum numbers of iterations are not sufficiently large to ensure con-
servativity, the NLK algorithm does not capture the right shock solutions. The SLK algorithm is
not subjected to this difficulty since it is conservative by nature and does not involve any iterative
process.

At last, a stiff test-case with a constant heat source term has been studied. When the mesh is
refined, SLK and NLK solutions converge towards the VFRoe-ncv solution chosen as a reference
solution (NLK must be operated with sufficiently large maximum numbers of sub-iterations). Both
algorithms SLK and NLK exhibit stable velocity oscillations at the border of the heating zone;
these oscillations diminish as the mesh is refined. On sufficiently fine meshes, the oscillations are
smaller with the NLK algorithm than they are with the SLK algorithm. On coarse meshes, the
NLK algorithm exhibits a more satisfactory behaviour (with respect to the velocity profile) if it is
operated with a small number of sub-iterations (but, consequently, with a loss of conservativity).
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Figure 2: Comparison of the density, velocity, pressure and total energy profiles obtained with the SLK, NLK
(720-cell mesh) and VFRoe-ncv (174,960-cell mesh) algorithms on the constant heat source term case (case B)

at t = tmax = 1.4 10−3 s.
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Figure 3: Comparison of the density, velocity, pressure and total energy profiles obtained with the SLK, NLK
(720-cell mesh) and VFRoe-ncv (174,960-cell mesh) algorithms on the constant heat source term case (case B)

at t = tmax = 1.4 10−3 s - Detailed view close to the border of the heat source zone.
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Appendix

Approximate Godunov scheme VFRoe-ncv

To provide a reference solution for the present computations with a heat source term, many
Godunov-type schemes may be selected, amongst which the most popular are the approximate
Roe scheme [20] and the exact Godunov scheme [13] (see [12] and [23] for a review). In the present
study, the VFRoe-ncv [4] scheme has been adopted.

We recall herein the basis of the VFRoe-ncv scheme, which has also been investigated and
compared with various Riemann solvers in references [9] and [11]. For the sake of simplicity, we
restrict to regular meshes of size ∆x such that: ∆x = xi+ 1

2
− xi− 1

2
, i ∈ Z. The time step is

∆t = tn+1 − tn, n ∈ N. We define W : R× R+ → Rp the exact solution of the hyperbolic system:{
∂W

∂t
+

∂F (W )
∂x

= 0

W (x, 0) = W0(x)

where the spatial flux F is C1(Rp, Rp). Let Wn
i be the approximate value of

1
∆x

∫ x
i+ 1

2

x
i− 1

2

W (x, tn)dx.

Integrating over [xi− 1
2
;xi+ 1

2
]× [tn; tn+1] provides:

Wn+1
i = Wn

i − ∆t

∆x

(
φn

i+ 1
2
− φn

i− 1
2

)
where φn

i+ 1
2

stands for the numerical flux through the interface {xi+ 1
2
} × [tn; tn+1]. The time step

is in agreement with some CFL condition in order to gain stability. φn
i+ 1

2
usually only depends

on Wn
i and Wn

i+1 when restricting to so-called first order schemes, that is φn
i+ 1

2
= φ(Wn

i ,Wn
i+1) .

Whatever the scheme is, the numerical flux must comply with the consistent condition (see [17]):

φ(V, V ) = F (V )

We present now approximate Godunov fluxes φ(WL,WR) associated with the 1D Riemann problem:
∂W

∂t
+

∂F (W )
∂x

= 0

W (x, 0) =
{

WL if x < 0
WR otherwise

(65)

VFRoe-ncv scheme is an approximate Godunov scheme where the approximate value at the
interface between two cells is calculated as detailed below. Let us consider some change of variable
Y = Y (W ) in such a way that W,Y (Y ) is invertible. The counterpart of above system for regular
solutions is:

∂Y

∂t
+ B(Y )

∂Y

∂x
= 0

where B(Y ) = (W,Y (Y ))−1A(W (Y )) W,Y (Y ) (A(W ) stands for the Jacobian matrix of flux F (W )).
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Now, the numerical flux φ(WL,WR) is obtained by solving the linearized hyperbolic system:
∂Y

∂t
+ B(Ŷ )

∂Y

∂x
= 0

Y (x, 0) =
{

YL = Y (WL) if x < 0
YR = Y (WR) otherwise

(66)

where Ŷ agrees with the condition: Ŷ (YL, YL) = YL, and also Ŷ (YL, YR) = Ŷ (YR, YL).

The classical choice for Ŷ in (66) is :

Ŷ (YL, YR) = Ŷ (1)(YL, YR) = (YL + YR)/2

Hence it enables us to calculate Y ∗(x
t ;YL, YR), and thus to set:

φ(WL,WR) = F (W (Y ∗(0;YL, YR)))

In order to calculate Y ∗(x
t ;YL, YR), we need to introduce l̃k, λ̃k and r̃k, k = 1, ..., p, left eigenvectors,

eigenvalues and right eigenvectors of matrix B(Ŷ ) respectively. The solution Y ∗(x
t ;YL, YR) of the

linear Riemann problem (66) is defined everywhere (except along x
t = λ̃k):

Y ∗
(x

t
;YL, YR

)
= YL +

∑
x
t >fλk

(t l̃k.(YR − YL))r̃k

= YR −
∑

x
t <fλk

(t l̃k.(YR − YL))r̃k

Combining the last equalities enables us to write the latter in a slightly different form:

YR − YL =
∑

k=1,p

(t l̃k.(YR − YL))r̃k =
∑

k=1,p

α̃kr̃k (67)

setting: α̃k =t l̃k.(YR − YL).

The explicit form of the Finite Volume method VFRoe-ncv is:

Wn+1
i −Wn

i +
∆t

∆x

(
F (W (Y ∗(0;Y n

i , Y n
i+1)))− F (W (Y ∗(0;Y n

i−1, Y
n
i )))

)
= 0
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Convergence plots for the test-cases without heat source term
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Figure 4: SLK algorithm - L1-errors for the test-cases without heat source term.
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Figure 5: NLK algorithm with ntg = 20 and nthm = 20 - L1-errors for the test-cases without heat source
term.
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Figure 6: NLK algorithm with ntg = 1 and nthm = 20 - L1-errors for the test-cases without heat source term.
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Figure 7: NLK algorithm with ntg = 1 and nthm = 2 - L1-errors for the test-cases without heat source term.
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Convergence plots for the analytical test-case with a heat source term
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Figure 8: NLK and SLK L1-errors for the analytical test-case with a heat source term (case A); the results
with NLK were obtained using ntg = 1 and nthm = 2.
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Convergence plots for the test-case with a constant heat source term
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Figure 9: L1-difference between the NLK and VFRoe-ncv solutions (curves NLK) and between the SLK and
VFRoe-ncv solutions (curves SLK) for the test-case with a constant heat source term (case B); the results with

NLK were obtained using two sets of parameters: (ntg = 1 and nthm = 2) and (ntg = 20 and nthm = 20).
The dotted and the dashed lines help to visualize the convergence slopes of 0.5 and 1 respectively.
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