Jean-Marc Hérard 
  
An hyperbolic three-phase flow model Un modèle hyperbolique d'écoulement triphasique

We introduce an hyperbolic entropy-consistant model to describe three-phase flows, which ensures that void fractions, mass fractions and pressures remain positive through single waves occuring in the one dimensional solution of the Riemann problem.

Version franc ¸aise abrégée

On propose ici un modèle hyperbolique sur l'ensemble des états admissibles, admettant une inégalité d'entropie physiquement admissible, et permettant d'effectuer des simulations d'écoulements triphasiques. Plusieurs modèles hyperboliques ont été proposés dans la littérature récente, qui permettent de simuler des écoulements instationnaires diphasiques, notamment dans [START_REF] Baer | A two phase mixture theory for the deflagration to detonation transition (DDT) in reactive granular materials[END_REF], [START_REF] Coquel | Closure laws for a two fluid two-pressure model[END_REF], [START_REF] Glimm | Two phase flow modelling of a fluid mixing layer[END_REF], [START_REF] Gavrilyuk | A variational principle for two fluid models[END_REF], [START_REF] Gouin | Hamilton's principle and Rankine Hugoniot conditions for general motions of mixtures[END_REF], [START_REF] Kapila | Two phase modeling of a DDT: structure of the velocity relaxation zone[END_REF]. Néanmoins, dans certaines configurations industrielles, il est nécessaire de considérer la présence de trois phases, et dans le domaine nucléaire, on est parfois amené à envisager une modélisation analogue dite à trois champs ( [START_REF] Valette | Annular dispersed flow calculations with a two-phase three field model[END_REF]). La littérature propose pour les écoulements en milieu poreux des modèles triphasiques basés sur la simulation de trois équations de bilan de masse, les vitesses phasiques étant modélisées à l'aide de lois de type Darcy, les écarts de pression entre phases (pressions capillaires) étant représentés par des fonctions des variables de saturation (voir par exemple [START_REF] Frid | A quasi-linear parabolic system for three-phase capillary flow in porous media[END_REF][START_REF] Frid | Initial boundary value problems for a quasi-linear parabolic system in three-phase capillary flow in porous media[END_REF], [START_REF] Chen | Comparison of various formulations of three-phase flow in porous media[END_REF]). La variable d'état de ces systèmes est constituée de deux saturations et d'une pression. La différence essentielle ici réside dans le fait que l'on veut décrire les évolutions des débits massiques et des énergies totales par des équations aux dérivées Email address: jean-marc.herard@edf.fr (Jean-Marc Hérard).

partielles. Le modèle, qui doit prendre en compte les effets de transfert interfacial de quantité de mouvement et d'énergie et autoriser la simulation de phénomènes instationnaires, comporte onze équations d'évolution.

On présente tout d'abord une classe de modèles hyperboliques sans condition ayant une forme symètrique (1), ( 2), ( 3), ( 4), ( 6), [START_REF] Coquel | Closure laws for a two fluid two-pressure model[END_REF]. Cette classe fait intervenir une vitesse interfaciale

V i (V i = β 1 U 1 + β 2 U 2 + β 3 U 3 , avec β 1 + β 2 + β 3 = 1)
, et six fonctions P kl (k = l) intervenant dans le transfert interfacial de quantité de mouvement et d'énergie, qui sont liées par [START_REF] Chen | Comparison of various formulations of three-phase flow in porous media[END_REF]. On se concentre ensuite sur un de ces modèles qui s'apparente au modèle non symétrique de Baer et Nunziato ( [START_REF] Baer | A two phase mixture theory for the deflagration to detonation transition (DDT) in reactive granular materials[END_REF], [START_REF] Kapila | Two phase modeling of a DDT: structure of the velocity relaxation zone[END_REF]), et correspond au choix V i = U 1 (la phase 1 est diluée) associé à [START_REF] Coquel | Relaxation of energy and approximate Riemann solvers for general pressure laws in Fluid Dynamics[END_REF]. Si les termes sources de trainée statique et les termes de relaxation en pression vérifient les conditions ( 9), [START_REF] Frid | Initial boundary value problems for a quasi-linear parabolic system in three-phase capillary flow in porous media[END_REF] le système global est alors muni d'une inégalité d'entropie [START_REF] Ët | Numerical modelling of two phase flows using the two-fluid two-pressure approach[END_REF] valable pour les solutions régulières. Pour de telles solutions, le principe du maximum pour les taux de présence est vérifié. En outre, si chaque phase est munie d'une loi de type gaz parfait, les pressions phasiques restent positives, ainsi que les densités partielles, modulo des conditions classiques portant sur les champs de vitesse. Ce résultat reste valable lorsqu'on analyse les ondes simples isolées, dans une perspective de résolution du problème de Riemann unidimensionnel sous jacent. Cette propriété est intimement liée au fait que le champ associé à la valeur propre V i est linéairement dégénéré d'une part, et à la forme des tranferts interfaciaux de quantité de mouvement et d'énergie totale phasique d'autre part. On est en effet ainsi en mesure de donner un sens aux produits non conservatifs sous jacents, tout comme dans le cadre diphasique (voir [START_REF] Coquel | Closure laws for a two fluid two-pressure model[END_REF]). Les lois de fermeture des transferts interfaciaux de quantité de mouvement proposés dans [START_REF] Valette | Annular dispersed flow calculations with a two-phase three field model[END_REF] par exemple, permettent de satisfaire la condition [START_REF] Frid | A quasi-linear parabolic system for three-phase capillary flow in porous media[END_REF]. Le modèle considéré, muni de ses lois de fermeture, autorise ainsi la simulation d'écoulements triphasiques, en considérant indifféremment des schémas simples tels que le schéma de Rusanov, ou un schéma de Godunov approché tel que ceux décrits dans [START_REF] Buffard | A sequel to a rough Godunov scheme. Application to real gas flows[END_REF]. Il est indéniable que le nombre d'ondes présentes dans le système convectif nécessite l'utilisation de schémas précis et de maillages très fins, si l'on souhaite effectuer une approximation raisonnable des solutions du système considéré. Cette remarque vaut d'autant plus que le système comporte trois champs linéairement dégénérés distincts associés à des valeurs propres de module faible devant celui afférent aux ondes "rapides". Tout comme dans le cadre diphasique ( [START_REF] Hurisse | A relaxation method to compute two-fluid models[END_REF]), il est également possible, en ayant recours aux techniques de relaxation ( [START_REF] Baudin | A relaxation method for two-phase flow models with hydrodynamic closure law[END_REF], [START_REF] Caro | DINMOD : a diffuse interface model for two-phase flows modelling[END_REF], [START_REF] Coquel | Relaxation of energy and approximate Riemann solvers for general pressure laws in Fluid Dynamics[END_REF]) et en utilisant par exemple un schéma pour l 'étape de relaxation semblable à celui introduit dans [START_REF] Coquel | A numerical method using upwind schemes for the resolution of two phase flows[END_REF], de simuler sur maillage grossier le modèle avec relaxation instantanée en pression semblable à celui de [START_REF] Valette | Annular dispersed flow calculations with a two-phase three field model[END_REF]. Il est a priori possible de prendre en compte des modèles de turbulence statistique élémentaires avec fermeture en un point, sans remettre en cause le domaine d'hyperbolicité. Dans ce cas néanmoins, le problème de fermeture des relations de saut pour la variable d'énergie cinétique turbulente phasique dans les champs vraiment non linéaires reste conjectural. On renvoie le lecteur à [START_REF] Érard | A three-phase flow model[END_REF] pour plus de détails sur les propriétés du modèle, sa mise en oeuvre numérique par technique de type Volumes Finis, et des formes des termes sources de transfert de masse et d'énergie compatibles avec l'inégalité d'entropie.

Introduction

Some applications in the nuclear power energy and petroleum engineering require modelling of three phase flows, either in a one dimensional or in a three dimensional framework. In order to compute unsteady flows in an expected meaningful way, and especially when one aims at predicting phenomena such as the boiling crisis, or the loss of primary coolant accidents, or any other severe situation, one needs to handle well posed initial value problems. Since single pressure models may fail in many situations, when one refines the mesh size ( [START_REF] Hurisse | A relaxation method to compute two-fluid models[END_REF]), owing to the loss of hyperbolicity, we propose herein a class of hyperbolic models to deal with this kind of flows. The basic ideas rely on the counterpart of the two-phase two-pressure formalism which is now quite well-known ([1], [START_REF] Coquel | Closure laws for a two fluid two-pressure model[END_REF], [START_REF] Ët | Numerical modelling of two phase flows using the two-fluid two-pressure approach[END_REF], [START_REF] Glimm | Two phase flow modelling of a fluid mixing layer[END_REF], [START_REF] Gavrilyuk | A variational principle for two fluid models[END_REF], [START_REF] Gouin | Hamilton's principle and Rankine Hugoniot conditions for general motions of mixtures[END_REF], [START_REF] Kapila | Two phase modeling of a DDT: structure of the velocity relaxation zone[END_REF]). One of the main difficulties here is to define correct interfacial transfer terms, in such a way that for physically relevant initial conditions, smooth solutions but also discontinuous solutions are correctly defined, and remain in their physical domain. Another goal consists in getting a physically admissible entropy condition to keep the whole under control. An -obviously compulsory-underlying assumption in the model is that the interface should remain thin in the convective process, as already mentionned in [START_REF] Coquel | Closure laws for a two fluid two-pressure model[END_REF] for instance. This corresponds to the fact that the field associated with the eigenvalue V i should be linearly degenerated. Though some non conservative terms are present in the system, the internal structure of fields will be such that non conservative products are well defined.

A class of hyperbolic models

We first present here a general class of hyperbolic models which is symmetric with respect to the phase index. We will focus in the next section on a particular model that belongs to this class. The density, velocity, pressure, internal energy and total energy within phase k will be denoted ρ k , U k , P k , e k = e k (P k , ρ k ) and E k = 0.5ρ k U k U k + ρ k e k respectively, and the volumetric fraction of phase labelled k is defined as α k . Setting m k = α k ρ k , the state variable W which lies in R 11 is:

W t = (α 2 , α 3 , m 1 , m 2 , m 3 , m 1 U 1 , m 2 U 2 , m 3 U 3 , α 1 E 1 , α 2 E 2 , α 3 E 3 ) . (1) 
A model for the interface velocity denoted V i will be required. We also need to introduce scalar functions φ k (W ) and momentum interfacial transfer terms S U k (for k = 1, 2, 3) which must comply with the constraints:

3 k=1 α k = 1 ; 3 k=1 φ k (W ) = 0 ; 3 k=1 S U k (W ) = 0 . (2) 
Using an initial condition W (x, 0) = W 0 (x) and suitable boundary conditions, the governing set of equations is:

(I + D(W )) ∂W ∂t + ∂F (W ) ∂x + C(W ) ∂G(W ) ∂x = S(W ) + ∂ ∂x (E(W ) ∂W ∂x ) . (3) 
The fluxes F (W ), G(W ) and the source terms S(W ) lie in R 11 .

F (W ) t = (0, 0, m 1 U 1 , m 2 U 2 , m 3 U 3 , α 1 (ρ 1 U 2 1 + P 1 ), α 2 (ρ 2 U 2 2 + P 2 ), α 3 (ρ 3 U 2 3 + P 3 ), α 1 U 1 (E 1 + P 1 ), α 2 U 2 (E 2 + P 2 ), α 3 U 3 (E 3 + P 3 )) .
Second rank tensors C(W ), D(W ), E(W ) lie in R 11×11 . The non-conservative convective terms are :

           D(W )
∂W ∂t = (0, 0, 0, 0, 0, 0, 0, 0, -

3 l=1,l =1 P 1l ∂α l ∂t , - 3 
l=1,l =2 P 2l ∂α l ∂t , - 3 
l=1,l =3 P 3l ∂α l ∂t ) ; C(W ) ∂G(W ) ∂x = (V i ∂α 2 ∂x , V i ∂α 3 ∂x , 0, 0, 0, 3 l=1,l =1 P 1l ∂α l ∂x , 3 l=1,l =2 P 2l ∂α l ∂x , 3 l=1,l =3 P 3l ∂α l ∂x , 0, 0, 0) . (4) 
and contribute to the interfacial transfer if the six unknowns P kl obey the two constraints:

P 12 + P 32 = P 13 + P 23 = P 21 + P 31 .

Viscous terms should at least account for the following contributions (thermal fluxes might be included):

E(W ) ∂W ∂x = (0, 0, 0, 0, 0, α 1 µ 1 ∂U 1 ∂x , α 2 µ 2 ∂U 2 ∂x , α 3 µ 3 ∂U 3 ∂x , α 1 µ 1 U 1 ∂U 1 ∂x , α 2 µ 2 U 2 ∂U 2 ∂x , α 3 µ 3 U 3 ∂U 3 ∂x ) . (6) 
Source terms S(W ) account for mass transfer terms, drag effects, energy loss, and other contributions. To simplify our presentation, we only retain here the effect of pressure relaxation and drag effects. Thus: [START_REF] Coquel | Closure laws for a two fluid two-pressure model[END_REF], [START_REF] Ët | Numerical modelling of two phase flows using the two-fluid two-pressure approach[END_REF]-can be found in [START_REF] Érard | A three-phase flow model[END_REF], appendix G, which provides a unique set of unknowns P kl in terms of V i ), and thus consider the particular choice V i = U 1 together with:. P 13 = P 31 = P 32 = P 3 ; P 12 = P 21 = P 23 = P 2 .

S(W ) = (φ 2 , φ 3 , 0, 0, 0, S U1 , S U2 , S U3 , V i S U1 , V i S U2 , V i S U3 ) . (7) 

Main properties of a particular three-phase flow model

We now focus on the counterpart of the asymmetric Baer-Nunziatto model (other choices -including the symmetric case

V i = ( k m k U k )/( k m k ) discussed in
(

) 8 
This for instance will correspond to the situation where the phase labelled 1 is dilute. We focus first on the homogeneous problem associated with the left hand side of (3). We define as usual specific entropies s k and speeds c k in terms of the density ρ k and the internal energy e k :

(c k ) 2 = γ k P k ρ k = ( P k (ρ k ) 2 - ∂e k (P k , ρ k ) ∂ρ k )( ∂e k (P k , ρ k ) ∂P k ) -1 ; γ k P k ∂s k (P k , ρ k ) ∂P k + ρ k ∂s k (P k , ρ k ) ∂ρ k = 0 .
Property 1 : The homogeneous system associated with the left hand side of (3) has real eigenvalues:

λ 1,2,3 = U 1 , λ 4 = U 2 , λ 5 = U 3 , λ 6 = U 1 -c 1 , λ 7 = U 1 + c 1 , λ 8 = U 2 -c 2 , λ 9 = U 2 + c 2 , λ 10 = U 3 -c 3 ,λ 11 = U 3 + c 3 .
Associated right eigenvectors span the whole space

R 11 unless |U 1 -U k | = c k , for k = 2, 3.
Fields associated with eigenvalues λ k with k in 1, 5 are Linearly Degenerated ; other fields are Genuinely Non Linear.

Riemann invariants through LD fields associated with k = 4, 5 and GNL fields may be computed quite easily (see [START_REF] Érard | A three-phase flow model[END_REF]). Moreover: Property 2 : 2.1 The latter system admits the following Riemann invariants through the 1 -2 -3 LD wave:

I 1-2-3 1 (W ) = m 2 (U 2 -U 1 ) ; I 1-2-3 2 (W ) = m 3 (U 3 -U 1 ) ; I 1-2-3 3 (W ) = s 2 ; I 1-2-3 4 (W ) = s 3 ; I 1-2-3 5 (W ) = U 1 ; I 1-2-3 6 (W ) = α 1 P 1 + α 2 P 2 + α 3 P 3 + m 2 (U 1 -U 2 ) 2 + m 3 (U 1 -U 3 ) 2 ; I 1-2-3 7 (W ) = 2e 2 + 2 P 2 ρ 2 + (U 1 -U 2 ) 2 ; I 1-2-3 8 (W ) = 2e 3 + 2 P 3 ρ 3 + (U 1 -U 3 ) 2
2.2 We note ∆(ψ) = ψ r -ψ l . Apart from the 1 -2 -3 LD wave, the following exact jump conditions hold for k = 1, 2, 3, through any discontinuity separating states l, r moving with speed σ:

∆(α k ) = 0 ; ∆(m k (U k -σ)) = 0 ; ∆(m k U k (U k -σ) + α k P k ) = 0 ; ∆(α k E k (U k -σ) + α k P k U k ) = 0 .
We also need to define:

a k = (s k ) -1 ( ∂s k (P k , ρ k ) ∂P k )( ∂e k (P k , ρ k ) ∂P k ) -1
, and we introduce : η k = Log(s k ), and the

pair (η, F η ) such that : η = -m 1 η 1 -m 2 η 2 -m 3 η 3 and F η = -m 1 η 1 U 1 -m 2 η 2 U 2 -m 3 η 3 U 3 .
We assume in addition that drag terms S U k (W ) and source terms φ k (W ) in (3) comply with:

0 ≤ a 2 (U 1 -U 2 )S U2 (W ) + a 3 (U 1 -U 3 )S U3 (W ) . ( 9 
) 0 ≤ a 1 (φ 1 P 1 + φ 2 P 2 + φ 3 P 3 ) . (10) 
Condition [START_REF] Frid | Initial boundary value problems for a quasi-linear parabolic system in three-phase capillary flow in porous media[END_REF] reads: φ 2 (P 1 -P 2 ) + φ 3 (P 1 -P 3 ) ≤ 0 since φ 1 + φ 2 + φ 3 = 0 and a 1 > 0 for standard EOS.

Property 3 : Closures in agreement with constraints ( 9), [START_REF] Frid | Initial boundary value problems for a quasi-linear parabolic system in three-phase capillary flow in porous media[END_REF] ensure that the following entropy inequality holds for regular solutions of (3):

∂η ∂t + ∂F η ∂x ≤ 0 . (11) 
We from now will assume that the conditions ( 9) , [START_REF] Frid | Initial boundary value problems for a quasi-linear parabolic system in three-phase capillary flow in porous media[END_REF] are fulfilled. For conveniency we will choose here :

φ 2 = f 1-2 ( 
W )α 1 α 2 (P 2 -P 1 )/(P 1 + P 2 + P 3 ) + f 2-3 (W )α 2 α 3 (P 2 -P 3 )/(P 1 + P 2 + P 3 ) ;

φ 3 = f 1-3 ( 
W )α 1 α 3 (P 3 -P 1 )/(P 1 + P 2 + P 3 ) + f 2-3 (W )α 2 α 3 (P 3 -P 2 )/(P 1 + P 2 + P 3 ) .

The three positive scalar functions f k-l (W ) denote frequencies which should remain bounded over Ω × [0, T ]. It is easy to check that φ 1 P 1 + φ 2 P 2 + φ 3 P 3 = (P 1 + P 2 + P 3 ) -1 ( k<l f k-l (W )α k α l (P l -P k ) 2 ) > 0. Moreover, we get:

∂π ∂t + U 1 ∂π ∂x = π( k<l f k-l (W )(α k -α l )(P l -P k ))(P 1 + P 2 + P 3 ) -1 , when defining π = α 1 α 2 α 3 .
This guarantees that regular solutions α k (x, t) will remain in the admissible range [0, 1] over Ω × [0, T ]. This is the straightforward counterpart of the closure law in two-phase flow models (see references herein). Moreover, we will rely on standard closures of the form (see [START_REF] Valette | Annular dispersed flow calculations with a two-phase three field model[END_REF] for instance):

S U k (W ) = ψ k (W )(U 1 -U k ) (for k = 2, 3).
where the scalar functions ψ 2 (W ), ψ 3 (W ) should remain positive. Hence ( 9) and ( 10) hold.

Property 4 : We assume perfect gas state law within each phase (k = 1, 2, 3). We consider a single wave associated with λ m , separating states l, r. If the initial conditions satisfy: (α k ) L,R (1 -α k ) L,R = 0, for k = 1, 2, 3 the connection of states through this wave ensures that all states are in agreement with:

0 ≤ α k , 0 ≤ m k , 0 ≤ P k .
Actually, the proof is almost obvious when focusing on a single field connected with eigenvalue λ k where k = 4 to 11. Turning then to the 1, 2, 3-field, the main guidelines are almost the same as in [START_REF] Ët | Numerical modelling of two phase flows using the two-fluid two-pressure approach[END_REF] (see [START_REF] Érard | A three-phase flow model[END_REF]). The whole enables to introduce a fractional step approach in agreement with the overall entropy inequality, which is again the counterpart of the one described in [START_REF] Ët | Numerical modelling of two phase flows using the two-fluid two-pressure approach[END_REF]. Owing to the entropy structure, one may even use the pressure relaxation step as a tool to compute the single pressure models detailed in [START_REF] Valette | Annular dispersed flow calculations with a two-phase three field model[END_REF] on coarse meshes, as may be done in the two-phase framework ( see [START_REF] Hurisse | A relaxation method to compute two-fluid models[END_REF] for instance). The connection with the early scheme introduced in [START_REF] Coquel | A numerical method using upwind schemes for the resolution of two phase flows[END_REF] is obvious. In order to compute convective terms, one may apply the approximate Godunov scheme ( [START_REF] Buffard | A sequel to a rough Godunov scheme. Application to real gas flows[END_REF]) with the variable Z t = (α 2 , α 3 , s 1 , s 2 , s 3 , U 1 , U 2 , U 3 , P 1 , P 2 , P 3 ). Some suitable forms of mass transfer terms can be found in [START_REF] Érard | A three-phase flow model[END_REF]. We eventually provide some computational results. We assume that the perfect gas law holds within each phase: ρ k e k = (γ k -1)P k , setting γ 1 = 7/5, γ 2 = 1.05 and γ 3 = 1.01. In this example, phase 1 refers to the gas phase, and the other two correspond to two distinct liquids. Setting Y t = (α 2 , α 3 , U 1 , τ 1 , P 1 , U 2 , τ 2 , P 2 , U 3 , τ 3 , P 3 ), initial 
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 1 Figure 1. Void fractions α 2 , α 3
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 2 Figure 2. Partial masses m 1 , m 2 , m 3
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 3 Figure 3. Pressures P 1 , P 2 , P 3 conditions are: Y L = (0.4, 0.5, 10 2 , 1, 10 5 , 10 2 , 1, 10 5 , 10 2 , 1, 10 5 ) and Y R = (0.5, 0.4, 10 2 , 8, 10 5 , 10 2 , 8, 10 5 , 10 2 , 8, 10 5 ) for the first case (fig.(1-3)), while we choose for the second test: Y L = (0.4, 0.5, 0, 1, 10 5 , 0, 1, 10 5 , 0, 1, 10 5 ) and Y R = (0.5, 0.4, 0, 8, 10 5 , 0, 8, 10 5 , 0, 8, 10 5 ).
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 456 Figure 4. Velocities U 1 , U 2 , U 3