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Abstract

We present herein a method for the numerical coupling of one and two-dimensional Euler

isentropic models through a thin interface. The basic approach is connected with recent

works by E. Godlewski, A.Y. Leroux and P.A. Raviart. It requires introducing an interface

model, and solving the associated Riemann problem at the interface between codes. Numerical

results confirm both the stability and the fair accuracy of the admissible non-conservative

approach, which is also compared with an admissible conservative approach and a reference

two-dimensional solution. The extension to the full Euler set of equations is also briefly

discussed.

1 Introduction

The problem of the coupling of distinct models described by sets of PDE is a topic which has
become of growing interest over the past few years. Actually, it may first occur in the framework
of the modelling of two-phase flow in porous media. In that case, one has to face conservation
laws with discontinuous flux functions, and one of the main difficulties consists in proving the
existence and uniqueness of a physically relevant solution. One may for instance refer to [6] , [7],
[24] and references therein. It also naturally arises when focusing on industrial projects where
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computational facilities require the use of different models in order to describe parts of a whole
concept. This happens for instance when one aims at computing the flow around a whole plane,
or alternatively the flow in a gas turbine engine (decomposed in combustion chamber and turbine
section, see [23], [21], [22] for instance). It also immediately occurs when turning to the predictive
computations of the flow in the primary coolant circuit of a pressurized water reactor, in a nuclear
power plant (see [10]). In the latter case, one sometimes needs to account for the flow in the reactor,
in pipes and in the steam generator. Actually, one may apply for a 1D code to deal with the pipe,
and a 3D code to predict the flow in the reactor. In addition, the 1D code may include schemes
which provide approximations of a six-equation two-fluid model, whereas the 3D code deals with
an homogeneous two phase flow model such as HEM (homogeneous equilibrium model) or HRM
(homogeneous relaxation model). The problem of the coupling in such a situation is obviously a
tedious and ambitious topic, and it also suggests as a prerequisite that one knows how to couple
simpler situations such as the following for instance :

(i) the coupling of two distinct models in a one dimensional framework ;

(ii) the coupling of the homogeneous equilibrium model in a 1D pipe and a three dimensional
medium.

We will focus in this paper on the problem (ii). We refer for instance to [4], [2], and [20], which try
to address the first problem (i) while focusing on HEM and HRM models, and also mention [3],
[5] that tackle the coupling of Euler equations with distinct equations of state in each code. We
insist that we only want to provide suitable information to be exchanged through the interface,
and a (of course stable) numerical way to implement it. Both codes on each side should not be
modified by the new procedure, except that boundary conditions may be different from what they
were before coupling.

Quite recently, a few authors have suggested some new ideas to couple subsets of PDE. A first
approach has been suggested by A.Y. Leroux and co-authors (see [17] for instance). It has been
essentially applied to cope with the shallow water equations with topography. The main idea in
the latter approach is to include a stationary constraint in the set of PDE with an augmented
state variable, and then to solve the exact Riemann problem at the ”stationary” interface. The
resulting scheme has been proved to be an efficient way to cope with steady state situations ([12]).
We emphasize that we will apply for similar ideas in our approach. A second way to tackle with
this problem has emerged recently too, and is detailed in [13], [15] in a specific situation. In fact, it
may be seen as an extension of ideas in the paper [1], which is roughly grounded on the following
idea: initial conditions are used twice to compute two different fluxes at the interface between cells
; the first one is obtained solving the exact Riemann problem with the left set of PDE, whereas
the second one corresponds to the right set of PDE. We refer for instance to [4] for more details.

The present paper is organized as follows. We first briefly recall in section 2 the basic sets of
equations on each side of the interface between codes. In the beginning of section 3, we exhibit
a natural constraint which obviously arises. We then detail a natural interface model and two
distinct interface models which may be used to exchange information through the interface for
unsteady predictions. The associated left and right fluxes will be detailed. Section 4 is devoted
to the presentation of schemes that will be used, and of numerical results. Computational results
involving shock waves with great inhomogeneities of transverse velocities between both medium
will be discussed, and this will be achieved on the basis of the L1 norm of the error. Actually,
results obtained when computing unsteady solutions traveling from a 2D tank to the 1D pipe will
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be compared with those obtained while using the 2D code over the whole domain. The comparison
will include :
(a) the effect of mesh refinement;
(b) the sensitivity with respect to the EOS;
(c) the influence of the location of the interface between codes on numerical results;
(d) the influence of the interface model.
For further details, the reader is referred to [20]. The extension of these ideas to the framework of
non-isentropic Euler equations is also briefly examined in an appendix.

This work is a contribution to the NEPTUNE joint project, and is part of recent investigations
which aim at improving the numerical interfacial coupling of two-phase flow codes (see [18], [19],
[20] among others).
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2 Models

2.1 Codes to be coupled

For the sake of simplicity we consider the isentropic Euler model. We want to couple the one-
dimensional isentropic Euler system to the two-dimensional isentropic Euler system through a thin
interface. Without loss of generality we consider that the interface is along the y-axis.

On the left side of the interface we consider the one-dimensional isentropic Euler system (1D): ù

∂W1

∂t
+

∂F (W1)

∂x
= 0 (1)

with:
{

W1 = (ρ, ρu)
F (W1) = (ρu, ρu2 + P (ρ))

where u, ρ and P respectively stand for the velocity, the density and the pressure, with P ′(ρ) > 0.
These variables only depend on the time t and the space dimension x, W1 = W1(x, t).

On the right side of the interface we consider the two-dimensional isentropic Euler system (2D):

∂W2

∂t
+

∂G1(W2)

∂x
+

∂G2(W2)

∂y
= 0 (2)

with:






W2 = (ρ, ρu, ρv)
G1(W2) = (ρu, ρu2 + P (ρ), ρuv)
G2(W2) = (ρv, ρuv, ρv2 + P (ρ))

Here u denotes the component of the velocity along the x-axis and v the component of the velocity
along the y-axis. Here all the variables depend on time t and on two space variables x and y,
W2 = W2(x, y, t).

2.2 The one-dimensional model

We recall herein some well-known properties of the conservative system (1). This will be useful in
section 4.

2.2.1 Eigenstructure

In terms of the variable Y = (ρ, u), and setting c2 = P ′(ρ), (1) writes in non-conservative form:

∂Y

∂t
+ A(Y )

∂Y

∂x
= 0

where the 2 × 2 convection matrix A is:

A(Y ) =

(

u ρ
c2

ρ
u

)
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The eigenvalues and the right eigenvectors of the matrix A are:

λ1 = u − c, r>1 = (ρ,−c)

λ2 = u + c, r>2 = (ρ, c)

Thus, until vacuum occurs, eigenvalues are real and distinct ; the system is unconditionally hyper-
bolic since the two eigenvectors span the plane R

2. Moreover both fields are genuinely non-linear.

2.2.2 Entropy pair

One may easily check that an entropy pair (η(W1), Fη(W1)) is:

η(W1) = ρu2

2 + ρψ(ρ)
Fη(W1) = (η(W1) + P (ρ))u

with ψ(ρ) =
∫ ρ

0
P (a)
a2 da. Moreover η is strictly convex with respect to W1. Hence the Riemann

problem associated with (1) has a unique entropy consistent solution composed of constant states
separated by shocks and rarefaction waves, with no vacuum occurrence, provided that the initial
data agrees with the condition:

uR − uL < g(ρL) + g(ρR)

where: g′(ρ) = c(ρ)
ρ

-see [25] and [14] -.

2.2.3 Solution for the Riemann problem

We describe herein the main features of the solution of the Riemann problem.

We set (uL, ρL) and (uR, ρR) the left and right state for the Riemann problem associated with
system (1). The right and left pressure for initial state are respectively PR = P (ρR) and PL =
P (ρL). We set (u∗, ρ∗) to be the intermediate state between the two waves and we set P ∗ = P (ρ∗).

• Trough the 1-wave, we get:
u∗ − uL = hL(PL, P ∗)

If PL < P ∗, the 1-wave is a shock wave:

hL(PL, P ∗) = −
√

(P ∗ − PL)(ρ∗ − ρL)

ρLρ∗

otherwise the 1-wave is a rarefaction wave:

hL(PL, P ∗) = g(ρL) − g(ρ∗)

• Trough the 2-wave, we get:
u∗ − uR = hR(PR, P ∗)

If PR < P ∗, the 2-wave is a shock wave:

hR(PR, P ∗) =

√

(P ∗ − PR)(ρ∗ − ρR)

ρRρ∗

otherwise the 2-wave this is a rarefaction wave:

hR(PR, P ∗) = g(ρ∗) − g(ρR)
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2.3 The two-dimensional model

We can write the system (2) in a non-conservative form using the variable Z> = (ρ, u, v):

∂Z

∂t
+ Bx(Z)

∂Z

∂x
+ By(Z)

∂Z

∂y
= 0

with the following 3 × 3 matrix Bx and By:

Bx(Z) =





u ρ 0
c2

ρ
u 0

0 0 u





By(Z) =





v 0 ρ
0 v 0
c2

ρ
0 v





For any (w1, w2) ∈ R
2 − {(0, 0)} with w2

1 + w2
2 = 1, we set C(Z,w) = w1Bx(Z) + w2By(Z). The

system (2) is hyperbolic if for any (w1, w2) and for any Z ∈ Ω, the matrix C(Z,w) has three real
eigenvalues and three independent eigenvectors. It is easy to verify that the eigenvalues of C(Z,w)
are real:

λ1 = (w1u + w2v)

λ2 = (w1u + w2v) − c
√

w2
1 + w2

2

λ2 = (w1u + w2v) + c
√

w2
1 + w2

2

The corresponding eigenvectors are clearly independent until vacuum occurs:

r>1 = (0, w2, w1)

r>2 = (ρ, w1c√
w2

1
+w2

2

, w2c√
w2

1
+w2

2

)

r>3 = (ρ,− w1c√
w2

1
+w2

2

,− w2c√
w2

1
+w2

2

)
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3 The interface model

Obviously, a two-dimensional code (based on a two-dimensional system) applied on a ”one-dimensional”
domain does not behave as a one-dimensional code (based on a one-dimensional system) on the
same domain. Nonetheless we want to look for a condition for a 2D code to behave as a 1D code.

3.1 A necessary condition: NSC

Let us first define a test problem resumed on the figure (1). A pipe (x < 0) is connected to a tank
(x > 0) at x = 0 (see figure (1)). Suppose that the domain (x < 0) is discretized by a raw of
rectangular cells with volume ∆x × h. We note φGod the value of the field φ given by a Godunov
method and the subscripts Hi, Bi, Di and Gi denote respectively the upper, lower, right and left
side of the cell i.

Focusing on the transverse component of the momentum, ρv, we write a Godunov [16] scheme in
the domain x < 0 as:

h∆x((ρv)n+1
i − (ρv)n

i )

+∆t∆x
[

(ρv2 + P )God
Hi

− (ρv2 + P )God
Bi

]

+h∆t
[

(ρuv)God
Di

− (ρuv)God
Gi

]

= 0

(3)

Let us set, for all cells in the domain x < 0, vn
i = 0. Using wall condition [8] as a boundary

condition, defining
−−→
NHi

(
−−→
NBi

respectively) as the unit outward normal vector on the top wall
(bottom wall respectively), the pressure on the boundary of the left domain writes:

PGod
Hi

= PGod(Wn
i , Ŵn

Hi
,
−−→
NHi

)

PGod
Bi

= PGod(Wn
i , Ŵn

Bi
,
−−→
NBi

)

where Ŵn
Hi

= Ŵn
Bi

= Ŵn
i = (ρn

i , (ρu)n
i ,−(ρv)n

i ) stands for the mirror state of Wn
i .

Then the above initial condition on the velocity implies that for all cells in the domain x < 0:

PGod
Hi

= Pn
i = PGod

Bi

vGod
Hi

= vGod
Bi

= vGod
Gi

= 0

and if we are in the domain x < −∆x
vGod

Di
= 0

So that if we assume that vacuum does not appear (ρn
i > 0) in these cells, the preceding equation

(3) provides vn+1
i = 0 for all cells except for the cell i0 (see figure (1) ) which has its right side on

the interface x = 0. Indeed nothing ensures that vGod
Di0

= 0 for this particular cell.

This gives us a necessary and sufficient condition (NSC) for a scheme to fit to pure one-dimensional
simulation in the left domain.
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Definition:
We will say that the coupling boundary conditions will be admissible if the ρv component of the
flux at the interface x = 0− is null, that means:

(NSC) : (ρuv)− = 0

2D"1D"

PIPE

TANK

Interface

i I
00

x

0
h

y

x
x=0x=− x

∆

∆

Figure 1: The test problem

We now investigate some possible interface models to couple the one-dimensional domain x < 0
to the two-dimensional domain x > 0. Interface models are introduced to allow the computation
of Godunov fluxes through the vertical interface x = 0±. In practice, we recall that they are only
used to compute (ρuv)(x/t = 0−) and (ρuv)(x/t = 0+), as sketched in figure (2).

In the left domain we consider the system (1) extended with the variable v and one aim of an ad-
missible interface model is to maintain v = 0 in this domain by fullfilling the (NSC). An admissible
interface model must also give the model (1) on the left of the interface and the projection on the
normal of the model (2) on the right.

1D

EULER

ISENTROPIC ISENTROPIC

EULER

2D

MODEL

INTERFACE

F(x=0 )F(x=0 )
God God +−

Figure 2: The interface model

We successively consider :

• A natural model at the interface

• A non conservative admissible interface model
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• A conservative admissible interface model

3.2 A natural model at the interface

An a priori obvious candidate as an interface model immediately arises considering the projection
on a vertical interface of the model (2):

∂ρ

∂t
+

∂ρu

∂x
= 0 (4)

∂ρu

∂t
+

∂ρu2 + P

∂x
= 0 (5)

∂ρv

∂t
+

∂ρuv

∂x
= 0 (6)

We briefly recall now the structure of the Riemann problem associated with ((4)-(6)) at the interface
x = 0 with left state,

WL
2 = (ρL, ρLuL, ρLvL = 0)>

and right state,
WR

2 = (ρR, ρRuR, ρRvR)>

to determine the Godunov flux at x = 0±.

In terms of the variable Y = (ρ, u, v)>, the eigenvalues and the right eigenvectors of the system
(4)-(6) are:

λ1 = u − c, r>1 = (ρ,−c, 0)

λ2 = u, r>2 = (0, 0, 1)

λ3 = u + c, r>3 = (ρ, c, 0)

The subsystem ((4),(5)) has been briefly described above. We set u∗ and ρ∗ the intermediate states
for u and ρ between the two waves λ1 and λ3 as described below for the system (1). We set v∗

1

(respectively v∗
2) the intermediate state for v between λ1 and λ2 (respectively between λ2 and λ3)

(see figure (3))

Focusing on the variable v, we observe that through the first and third waves [v] = 0 and that v is
a Riemann invariant of the first and third field. Hence the solution for v is, v∗

1 = vL and v∗
2 = vR,

and so:

v(x/t;WL
2 ,WR

2 ) =







vL = 0, if x/t < u∗

vR, if x/t > u∗

We assume from now that the 2-wave does not coincide with x/t = 0. As a consequence the
ρv-component of the Godunov flux at x/t = 0 is:

(ρuv)(x/t = 0;WL
2 ,WR

2 ) =







(ρu)(x/t = 0)vL = 0, if u∗ > 0

(ρu)(x/t = 0)vR, if u∗ < 0

Of course, in general vR 6= 0, so that FGod(x = 0−) is not always null if u∗ < 0. Thus this interface
model does not respect the (NSC), which results in the fact that v will not remain zero in the
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λ= λ=

λ=

U−C

U+C

ρ*

U

ρ

v

v

v
L

R

*
2

Lu

u

u

*

ρ
RL

R

v

u

ρ*

*

*
1

t

x

Figure 3: Intermediate states for u, ρ and v

one-dimensional domain.

It must thus be rejected if one aims at computing the solutions in the 1D computational domain
with a 2D algorithm and a raw of cells.

3.3 A non conservative admissible interface model

Following [17] we introduce here a new variable which distinguishes the two domains and does not
depend on time t,

z(x, y, t) =







0 if x < 0

1 if x > 0

We now consider the following interface model:

∂z

∂t
= 0 (7)

∂ρ

∂t
+

∂ρu

∂x
= 0 (8)

∂ρu

∂t
+

∂ρu2 + P

∂x
= 0 (9)

∂v

∂t
+ zu

∂v

∂x
= 0 (10)

with initial condition v(x, y, t = 0) = 0 for all x < 0. We note that (10) enables to retrieve

∂v

∂t
= 0

on the left hand side and
∂v

∂t
+ u

∂v

∂x
= 0

on the right hand side -which (thanks to (8)), is equivalent to (6)-.
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Using the set of variables Y > = (z, ρ, u, v) the eigenvalues and the right eigenvectors of the system
(7)-(10) are:

λ1 = 0, r>1 = (1, 0, 0, 0)

λ2 = u − c, r>2 = (0, ρ,−c, 0)

λ3 = u + c, r>3 = (0, ρ, c, 0)

λ4 = zu, r>4 = (0, 0, 0, 1)

The fields 1 and 4 are linearly degenerated while the fields 2 and 3 are genuinely non-linear.

Moreover we can write the Rankine-Hugoniot relations for a shock with non-zero speed σ :






















−σ[z] = 0
−σ[ρ] + [ρu] = 0
−σ[ρu] + [ρu2 + P ] = 0
{

−σ[v] = 0 if σ < 0
−σ[ρv] + [ρuv] = 0 if σ > 0

For σ = 0, one has [ρu] = [ρu2 + P ] = 0, and z may jump. However, Rankine-Hugoniot conditions
on the tranverse component are undefined . In that case, the 1-field would coincide with a gen-
uinely non linear field.

The Rankine-Hugoniot relations imply that in a shock [z] = 0 if and only if σ 6= 0, that is in the
2-shock, 3-shock and 4-waves. For σ > 0, the above system provides the equation :

ρ(u − σ)[v] = 0 (11)

Thus, if σ > 0, [v] = 0 in the 2-shock or 3-shock waves since σ 6= ρu/ρ. If we focus on the 4-wave
(contact wave) propagating in the region x > 0, we retrieve the trivial solution σ = u which pro-
vides no constraint for v. On the other side, if σ < 0, the relation −σ[v] = 0 also implies that
[v] = 0.

The subset ((8),(9)) involves u and ρ and is the classical one dimensional isentropic Euler model
which gives the solution (u∗, ρ∗) (see figure (3) and section 2.2.3). The Riemann invariants of the
system are:

IR1 = {ρ, u, v}

IR2 = {z, v, u + g(ρ)}

IR3 = {z, v, u − g(ρ)}

IR4 = {z, ρ, u}

Since the first field is linearly degenerated and since z is preserved through the 2-wave, the 3-wave
and the 4-wave:

z(x, y, t) =

{

zR = 1 if x > 0
zL = 0 if x < 0

Since v is preserved through the 1-wave, the 2-wave and the 3-wave:

v(x/t = 0−) = vL = 0

11



v(x/t = 0+) =

{

v− = vL if λ4 > 0
vR if λ4 ≤ 0

We emphasize that the 4-contact wave cannot travel to the left domain because z(x < 0, y, t) = 0.
This leads to the numerical flux on the ρv-component :

• if u∗ > 0 :

(ρuv)(x/t = 0−) = 0

(ρuv)(x/t = 0+) = 0

• if u∗ < 0 :

(ρuv)(x/t = 0−) = 0

(ρuv)(x/t = 0+) = (ρu)(x/t = 0)vR

Since (ρuv)(x/t = 0−) is always null, this model respects the (NSC).

Remark. An important point to be quoted is that we obtain the same discrete fluxes using the
Godlewski-Raviart method [13],[15] with fluxes:

fL =





ρu
ρu2 + P

0



 and fR =





ρu
ρu2 + P

ρuv





Remark. We check now the continuity of (ρuv)(x/t = 0±) with respect to u∗ at u∗ = 0. This is
important for the stability of cases which involve states at rest around the interface. Of course, we
always have (ρuv)(x/t = 0−) = 0 whatever u∗ is. Hence:

lim
u∗→0−

(ρuv)(x/t = 0−) = 0 = lim
u∗→0+

(ρuv)(x/t = 0−)

We focus now on (ρuv)(x/t = 0+). First of all, we have:

lim
u∗→0+

(ρuv)(x/t = 0+) = 0

We eventually want to prove that limu∗→0−(ρuv)(x/t = 0+) = 0. For that purpose we need to
introduce a new variable q and its governing equation:

∂ρq

∂t
+

∂ρuq

∂x
= 0

The eigenvalue associated with this new linearly degenerated field is λ5 = u which, unlike λ4 = zu,
can be negative. This will enable to find the limit of (ρuv)(x/t = 0+) when u∗ tends towards 0−.
This new variable q and its governing equation do not change the structure of the solution for z,
ρ, u and v. Since u only varies through the 2-wave and the 3-wave, and since λ5 = u∗, we have:

lim
λ5→0−

u(x/t = 0) = lim
λ5→0−

u(x/t = 0−) = lim
λ5→0−

u∗ = 0

hence,
lim

u∗→0−

(ρuv)(x/t = 0+) = 0

12



3.4 A conservative admissible model at the interface

We still use:

z =

{

0 if x < 0
1 if x > 0

We consider the conservative interface model:

∂z

∂t
= 0 (12)

∂ρ

∂t
+

∂ρu

∂x
= 0 (13)

∂ρu

∂t
+

∂ρu2 + P

∂x
= 0 (14)

∂ρv

∂t
+

∂zρuv

∂x
= 0 (15)

In the right region (x/t > 0) one recovers the projection of the model (2). For (x/t < 0), (14) reads
∂ρv

∂t
= 0, and can be integrated, which provides ρv(x < 0, t > 0) = 0 since v(x < 0, t = 0) = 0.

One thus clearly retrieves the onedimensional model v(x < 0, t > 0) = 0 for positive densities
(vacuum occurence is beyond the scope of our approach).

In terms of the non-conservative variables Y > = (z, ρ, u, ρv), the eigenvalues an eigenvectors of the
jacobian matrix associated to the system (12)-(15) are:

λ1 = 0, r>1 = (z, 0, 0,−ρv)

λ2 = u − c, r>2 = (0, ρ,−c, −ρvcz
(u−c)−uz

)

λ3 = u + c, r>3 = (0, ρ, c, ρvcz
(u+c)−uz

)

λ4 = zu, r>4 = (0, 0, 0, 1)

The first and fourth fields are linearly degenerated while the second and third fields are genuinely
non-linear. Jump conditions are uniquely defined.

An important point to be quoted is that the subset of equations (13)-(14) does not depend on z
or v. Thus the solution of a Riemann problem for (12)-(15) will give for the pair (ρ, u) the same
solution as the Riemann problem for the sole equations (13)-(14) when considering the same initial
condition for ρ and u (see section 2.2.3). Hence, we focus now on the transverse component of the
flux.

We first consider the Rankine-Hugoniot relation through the first wave. We have:

[ρuzv] = 0 and [ρu] = 0

which implies:
[zv] = 0 (16)

(unless (ρu)(x = 0, t > 0) = 0 , which does not modify the conclusions). The only Riemann
problems that are relevant for our purpose are those for which right and left states comply with:

zL = 0 and zR = 1 andvL = 0
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With this initial condition, (12) enables to retrieve z(x < 0, t > 0) = 0 and z(x > 0, t > 0) = 1.
Assuming that no resonnance phenomenon occurs, the equation (16) implies that the transverse
velocity at x/t = 0+ is:

v+ = 0

Hence the transverse flux at x/t = 0+ for such Riemann problems is:

(ρuzv)+ = (ρuv)+ = 0 (17)

We may retrieve this simply considering :[ρuzv] = 0, which gives (ρuzv)+ − (ρuzv)− = 0 or
(ρuzv)+ = (ρuv)+ = 0. We do not need to assume that v− = 0 to obtain the relation (17).

Since z− = 0, we have no information on the ”transverse flux” (ρuv) at x/t = 0− when focusing on
the first wave. We can only conclude that (ρuzv)− = 0. In order to revover relevant information,
we need to consider the half plane x/t < 0. The only waves which can develop in the domain
x/t < 0 are the two genuinely non-linear waves associated with λ2 and λ3. Since z(x/t < 0) = 0,
the equation (15) reads:

∂ρv

∂t
= 0, ∀(x/t) < 0

Hence, if we assume that the left transverse velocity in the initial condition of the Riemann problem
is vL = 0, and thus that ρLvL = 0, we obtain (ρv)− = 0. We can conclude that the transverse flux
at x/t = 0− is:

(ρuv)− = 0 (18)

This conservative interface model thus respects the (NSC) condition in the frame of a Riemann
problem with correct initial condition vL = 0.
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4 Numerical schemes and results

All methods described herein rely on the Finite Volume method (see [9]). Instead of using the exact
Godunov scheme, we apply herein for the approximate Godunov scheme VFRoe-ncv introduced
in [8], using the non conservative variable Y > = (ρ, u, v). We restrict here to the so-called ”first-
order” scheme. Wall boundary conditions are accounted for by using the standard mirror approach.
([8] and [14]).

4.1 The computational domain

4.1.1 The coarse mesh

The above method will be tested on a domain composed of a pipe connected to the middle of the
left side (x = 0) of a squared tank. The pipe is 2 unit long and h0 = 2

21 unit high; the sides of
the tank are 2 unit long. The initial mesh (see fig:(4)) contains 21 × 21 regular square cells in the
tank and 21 cells in the pipe. Hence all the cells of this initial mesh are squares of the same size
h0 = 2

21 .
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Figure 4: The coarse mesh

4.1.2 Position of the interface

Two different positions for the interface xinterf = {0,−5h0}, where h0 is the diameter of the pipe,
are used to define the boundary between one- and two-dimensional domains on the initial mesh
(see fig:(5)). That is, the domain on the left of x = xinterf is the one-dimensional domain and the
domain on the right is the two-dimensional domain.

4.1.3 Mesh refinement

We use three levels of refinement. The cells of the two-dimensional domain are respectively cut into
2, 4 and 8 in each direction. The one-dimensional domain cells are respectively cut into 2, 4 and 8
in the x direction (see fig:(5)). The last cell on the right side of the one-dimensional domain thus
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has 4, 5, 7 and 11 edges, depending on the mesh level refinement. The finest grid approximately
contains 30000 nodes.
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Figure 5: Example of mesh for xinterf = −5h0 and for the first level of refinement

4.2 Initial conditions and EOS parameters

We consider herein a Riemann problem derived from the shock tube experiment. As initial condi-
tions, we set ρu and ρv equal to zero on the whole domain and for the density we set:

ρ(x, y; t = 0) =

{

ρl if y > x − 0.15
ρr else.

These initial conditions seem to be the worst configuration to test the coupling methods. Actually,
we intend to maximize (ρuv)+, in order to track possible deficiencies. The most tedious situation
appears when the fluid flows from the tank into the pipe with ”high” flux component in the y
direction.

The EOS for the pressure is the stiffened gas law in isentropic form:

P = s0ρ
γ − P∞ and c2 =

γ

ρ
(P + P∞)

These EOS allow us to simulate perfect gas with the parameters:

P∞ = 0, γ = 1.4 and s0 = 106

and to approach water behavior using

P∞ = 109, γ = 2.34 and s0 = 95.51.

For gas simulation we have chosen ρr = 0.5 and ρl = 1; for water simulation we have chosen
ρr = 800 and ρl = 1000. The figures (6),(7),(8) and (9) show the numerical solution computed for
the gas parameters at t = 2e−4 on the second level mesh with interface at xinterf = −5h0 with
our interface model. With these initial conditions a shock wave travels to the left upper corner of
the tank, hitting the interface edges, and a rarefaction wave moves to the right lower corner of the
tank (the results of figures (6),(7),(8) and (9) show the solution computed when the shock wave
reaches the left upper corner).
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Figure 6: density map

Figure 7: ρu x-momentum map
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Figure 8: ρv y-momentum map
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Figure 9: ρv profile along the line y = 0
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4.3 Numerical fluxes

For both one- and two-dimensional codes we recall that we use the approximate Godunov solver
VFRoe-ncv [8] to compute fluxes on each interface between two cells.

We use two different strategies to compute fluxes on both sides of the interface between the 1D code
and the 2D code. We recall that (ρ∗, u∗) represent the approximate value on the interface in the
solution of the linearized Riemann problem associated with (4), (5). For all schemes, numerical
fluxes (ρ∗u∗, ρ∗(u∗)2 + P (ρ∗)) are of course identical at the coupling interface. Thus the only
discrepancies depend on the flux on the (ρv) component.

• The first strategy consists in applying the non-conservative interface model described in the
section 3.3, with the VFRoe-ncv scheme, using the variable Y > = (z, ρ, u, v). It is refered to
in the following as the non-conservative model.

– if u∗ > 0 :

(ρuv)− = 0

(ρuv)+ = 0

– if u∗ < 0 :

(ρuv)− = 0

(ρuv)+ = (ρu)∗vR

• A second interface scheme is used. This scheme naturally issues from the admissible con-
servative model which agrees with the (NSC) described in section 3.4. Actually this scheme
simply enforces the continuity on the ρv−component of the flux that is:

(ρuv)+ = (ρuv)− = 0

The two other components of the flux are the same as the flux obtained with either the non-
conservative model or the conservative model.

4.4 Numerical results

As a reference we compute the solution of the two-dimensional model on the whole domain with
the finest mesh refinement in the tank and in the whole pipe.

The domain can be cut in three sudomains on which errors will be computed separately:

• the tank, x > 0.

• the two-dimensional part of the pipe, 0 > x > xinterf if xinterf < 0.

• the one-dimensional part of the pipe, xinterf > x.
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Because of the different volumes of the different domains, we will use a normalized L1-norm of the
error e1 at time tn = T :

e1(T ) = ‖(u − uref )(T )‖L1
=

∑

i |un
i − (uref )n

i ||Ωi|
∑

i |Ωi|

Note that (uref )n
i does not stand for the exact solution, but for the approximation obtained while

using the two dimensional scheme on the finest mesh on the whole computational domain, within
cell i and at time tn.

Remark. The approximate solutions of the component ρv computed with the two interface schemes
have null values for the one-dimensional pipe so that the error calculated on this domain is the
L1-norm of the solution of reference. It is obviously the same for the two schemes.

The form of the L1-norm of the error of the computed solution at the time T on a mesh of size h
can be, in a classical manner, expressed as:

e1(h, T ) = C(T ) × hα

where the coefficient C is increasing with respect to T . The coefficient α is the rate of convergence
of the scheme. We use first order schemes for which α ∈ [12 , 1]. Actually, when restricting to the
linearly degenerated fields, we get α = 1

2 ; turning to the genuinely non-linear fields, we have:
α = 1, and thus if both fields are present in the simulation, α lies in ]12 , 1[ (see for instance [11]
and [9]).

The figures below represent the ρv−error with respect to log
(

(

h0

2K

)2
)

(with K = {0, 1, 2, 3} the

level of refinement) for the two solutions: the non-conservative model is denoted by circles and the
conservative model is denoted by squares.
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4.4.1 Interface xinterf = 0

We focus here on the water simulation. (Similar results have been obtained using gas EOS, asso-
ciated results are given in appendix B). The interface between codes has been placed exactly at
the junction between the 1D pipe and the 2D tank. The CFL is fixed to 0.95.
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Figure 10: ρv−error wrt. log
(
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)

in the 2D Tank

4.4.2 Interface xinterf = −5h0

We use the same initial conditions, but the interface between codes is now located at x = −5h0.
We still use the same CFL time stepping limitation.
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in the 2D Tank
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in the 2D pipe

4.4.3 Some qualitative results in the pipe direction

We present herein the values of the field ρv(x, y = 0) (on the line y = 0), focusing on the finest
mesh(h = h0/8). The squares denote the solution computed with the conservative model, the cir-
cles denote the solution for the non-conservative model and the line denotes the reference solution.

For gas simulations, it appears that the L1 norm of the error is approximately the same for both
conservative and non-conservative approaches. Nonetheless, the error is much higher close to the
coupling interface when applying for the conservative model, whereas the non-conservative model
results are indeed close to those provided by the reference 2D code (see figure (13)). Actually the
relative error in the cell close to the right exit of the pipe is about six times larger when using the
conservative model. This is true whereever the interface between the two codes lies (see figure (15)).
We insist that this still holds true when turning to water simulations, though the discrepancies
become smaller (see figures (16), (18)).

From an engineering point of view, it is almost impossible to distinguish any ”spurious” reflected
wave in the 2D tank.

22



-0.2 0 0.2 0.4 0.6
X    (Y=0)

0

100

200

300

400

500

Figure 13: ρv(x, y = 0) for gas parameters and xinterf = 0
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Figure 14: ρv(x, y = 0) for gas parameters and xinterf = −5h0 (first view)
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Figure 15: ρv(x, y = 0) for gas parameters and xinterf = −5h0 (second view)
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Figure 16: ρv(x, y = 0) for water parameters and xinterf = 0
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Figure 17: ρv(x, y = 0) for water parameters and xinterf = −5h0 (first view)
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Figure 18: ρv(x, y = 0) for water parameters and xinterf = −5h0 (second view)
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4.4.4 Convergence rate

For each interface scheme, we compute two evaluations of the convergence rate. For that purpose,
we use the solutions computed on the two finest meshes and on the two coarsest meshes respectively:

α = Log(
e1(h, T )

e1(h/2, T )
)/Log(2)

where the choice h = h0 (respectively h = h0/4) provides an approximation of α on the coarse
(respectively fine) meshes. Results are given in the following tables.

Convergence rate for the interface xinterf = 0:

Non-conservative model Conservative scheme

fine coarse fine coarse

Tank 2D 0.151 0.694 0.126 0.691

Convergence rate for the interface xinterf = −5h0:

Non-conservative model Conservative scheme

fine coarse fine coarse

Tank 2D 0.113 0.558 0.113 0.558

For the latter case xinterf = −5h0, we note that the errors are identical, and therefore the approx-
imations of rates of convergence. Actually, (small) discrepancies between computational results
only occur in the 2D part of the pipe. This is confirmed when computing similar approximations
of rates of convergence within the part of the pipe on the right side of the coupling interface (see
below).

Non-conservative model Conservative scheme

finest mesh coarsest mesh finest mesh coarsest mesh

Pipe 2D 601.69 2367.56 612.72 2367.56

4.4.5 Comments

In the 1D part of the pipe, the approximation of v is implicitly set to 0, whereas a meaningful
approximation of v arises from the part of the pipe which is simulated with a 2D code. Thus, there
exists a structural part of the global error which is due to the 1D part of the pipe, independently of
the coupling interface and its associated fluxes. This error will in any case be transmitted through
the coupling interface. Thus, one expects to retrieve that the L1 norm of the error computed in
the 2D computational domain cannot tend to 0, when the mesh size tends to 0 -unless the coupling
interface is moved towards the left end of the pipe-.

• Impact of the coupling technique
As it has already been mentionned, the computational approximations provided by the non
conservative model are in better agreement with the true 2D reference results. If one looks at
the right side of the coupling interface, a glitch appears when applying for the conservative
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model, and the amplitude of discrepancies will clearly inhibit the computation of chemical
species which are essentially driven by the velocity field. This drawback remains almost
unchanged when the mesh is refined. Such a drawback does not occur when using the non
conservative model.

• Influence of the mesh size
For coarse meshes, the above estimated rates of convergence α for water simulations seem
to lie in [1/2, 1], whereever the coupling interface lies. However, for finer meshes which
necessarily provide more reliable information, the estimated rates are much lower and close
to 0.1 for water simulations. If one turns to gas simulations (see appendix B), this gets worse
since it appears that estimated rates of convergence are even lower, when focusing on the
finer meshes for instance (the estimation of α is around 0.02). All these values thus confirm
that the error in the 2D tank does not go to zero when the mesh is refined.

• Influence of the coupling interface location
For a given mesh size, one may push the coupling interface to the left side. Doing so, the
-meaningful- cell values of v in the 2D part of the pipe (that is on the right side of the
coupling interface) naturally tend to vanish. Hence, the approximations provided by both
coupling techniques can hardly be distinguished, at least when one focuses on the L1 norm
of the error in the 2D tank ; one can nonetheless note slight differences when computing the
L1 norm of the error in the 2D part of the pipe. These results are still in favour of the non
conservative coupling technique, and one can retrieve this from a qualitative point of view
on figure (18).

• Influence of the EOS
Though we feel much more concerned by water simulations, it appears that gas simulations
enable to retrieve the same patterns. The main difference is probably due to the fact that
inertia effects are less important, which makes the computational results closer to those of
the 2D reference solution, for a given mesh size, and a given location of the coupling interface
(see the first comment above).
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5 Conclusion

We thus would like to point out that :

(a) the non conservative coupling method proposed herein provides satisfactory results, at least
from an engineering point of view ; the conservative coupling technique which agrees with the con-
dition (NSC) generates a bigger pollution around the interface between codes. From an academic
point of view, the main advantage of the current framework is that one can examine precisely the
amount of error resulting from the ”rough” approximation assumed in the 1D code;

(b) the sensitivity to the location of the interface between codes has been examined, which of course
confirms a priori results. It urges to compute the end of the pipe connected with the 2D/3D tank
with a 2D/3D code;

(c) in this particular case of the coupling of a one dimensional code with a two-dimensional code
with the same ”father” model, the discrete version of our non conservative interface model is sim-
ilar to the one which would result from the application of ideas from [15] ;

(d) the influence of the EOS does not seem to be significant. However, estimated rates of conver-
gence show that the remark (b) is even more crucial for water simulations ;

(e) the inclusion of finite relaxation time scales, and behind this the coupling of HEM and HRM
models for instance, may be achieved using similar ideas ([20], [4], [2]). Different numerical strate-
gies to account for these have been partially investigated in [19], which show that the problem of
coupling in the steady and unsteady cases should be distinguished;

(f) a similar companion work on the full Euler equations (that is the coupling of the one-dimensional
and two-dimensional Euler equations including the total energy governing equations) even confirms
that the main drawback of the admissible conservative model has more annoying consequences,
since the pollution around the interface may lead to a blow-up of the code, which is due to the
occurence of negative discrete values of the density (see appendix C and [20]). On the other
hand, the admissible non-conservative approach provides satisfactory results which are close to the
reference solution.
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framework of the NEPTUNE project. Computational facilities were provided by EDF. It has ben-
efited from fruitful discussions with Annalisa Ambroso (CEA), Thierry Gallouet (Université Aix
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7 Appendix A : A comparison of three distinct interface

models

This appendix is devoted to the comparison of results that have been obtained when using :

(a) the natural conservative interface model which does not fulfill the (NSC) condition;

(b) the non-conservative interface model which fulfills the (NSC) condition;

(c) the conservative interface model which fulfills the (NSC) condition.

All computations have been performed using the same mesh with the finest mesh in the tank. The
coupling interface is located at x = 0. The crosses correspond to the reference solution computed
on a full 2D mesh including the pipe. Schemes associated with strategies (b) and (c) have been
detailed in section 4.3. The scheme corresponding to the natural strategy (a) reads:

• if u∗ > 0 : (ρuv)+ = (ρuv)− = 0

• if u∗ < 0 : (ρuv)+ = (ρuv)− = (ρu)∗vR

We obviously check that strategies (a) and (b) provide similar results in the 2D tank, which was
expected since (ρuv)+ is the same for both schemes when u∗ < 0. Of course cell values for ρv
within the pipe are non zero when using (a) whereas cell values obtained with (b) and (c) are
null. The error on the first cell in the tank region is almost six times greater when using the
conservative approach which fulfills the (NSC) condition, that is (c). The latter does not seem
suitable, especially if one aims at computing chemical species.
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Figure 19: ρv(x, y = 0) for gas parameters and xinterf = 0. stars (a) ; circles (b) ; squares (c) ;
crosses (reference 2D solution)
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8 Appendix B : Error results for the gas simulation
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8.0.7 Interface xinterf = −5h0
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9 Appendix C : Coupling two and one-dimensional Euler

models

In the following we explain how the methods proposed for the Euler system in isentropic form can
be applied to the complete Euler system. A numerical test will reinforce the preference for the
non-conservative method which respect to the (NSC).

9.1 Models to be coupled

Without loss of generality we assume that the interface of coupling is placed along the y-axis at
x = 0. On the left side of the interface we consider the one-dimensional Euler system:

∂ρ

∂t
+

∂(ρu)

∂x
= 0 (19)

∂(ρu)

∂t
+

∂(ρu2 + P )

∂x
= 0 (20)

∂E1

∂t
+

∂(u(E1 + P ))

∂x
= 0 (21)

with,

E1 = ρe1(P, ρ) + ρ
u2

2

On the right side of the interface we consider the two-dimensional Euler system, the projection of
which along the x-axis is (while neglecting transverse derivatives):

∂ρ

∂t
+

∂(ρu)

∂x
= 0 (22)

∂(ρu)

∂t
+

∂(ρu2 + P )

∂x
= 0 (23)

∂E2

∂t
+

∂(u(E2 + P ))

∂x
= 0 (24)

∂(ρv)

∂t
+

∂(ρuv)

∂x
= 0 (25)

with,

E2 = ρe2(P, ρ) + ρ(
u2

2
+

v2

2
)

In the following we will consider that the two models have the same equation of state, that is :

e1(P, ρ) = e2(P, ρ) = e(P, ρ), ∀(P, ρ)

9.2 Rewriting the two-dimensional Euler system

We note that the total energy E2 can be expressed as:

E2 = E1 + ρ
v2

2
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The set of equations (22)-(25) is equivalent to the set of equations (26)-(29), either for regular
solutions or for discontinuities:

∂ρ

∂t
+

∂(ρu)

∂x
= 0 (26)

∂(ρu)

∂t
+

∂(ρu2 + P )

∂x
= 0 (27)

∂E1

∂t
+

∂(u(E1 + P ))

∂x
= 0 (28)

∂(ρv)

∂t
+

∂(ρuv)

∂x
= 0 (29)

An important point to be quoted is that the subset of equations (26)-(28) does not depend on v.
It is the same set of equations than (19)-(21). We can then apply the methods of flux coupling
proposed for the isentropic Euler model.

9.3 An interface model for flux coupling

The (NSC) condition keeps its importance in the present case. Hence an interface model is admis-
sible if and only if it respects this condition. We propose herein two models. The definition of the
variable z remains unchanged.

9.3.1 A non-conservative admissible interface model

We now consider the following interface model:

∂z

∂t
= 0 (30)

∂ρ

∂t
+

∂(ρu)

∂x
= 0 (31)

∂(ρu)

∂t
+

∂(ρu2 + P )

∂x
= 0 (32)

∂E1

∂t
+

∂(u(E1 + P ))

∂x
= 0 (33)

∂v

∂t
+ zu

∂v

∂x
= 0 (34)

This system can not be written in conservative form owing to the non-conservative product zu
∂v

∂x
.

In fact the solution of the Riemann problem is classical for (30)-(33) (unless some resonance
phenomena occurs), but we have to propose a way to solve (34). This is achieved using the same
idea as developed in the isentropic case. Finally, the numerical fluxes are:

F− =











(ρu)∗

(ρu2 + P )∗

(u(E1 + P ))∗

0











, F+ = F− +















0

0
(ρu)∗

2 (v+)2

(ρu)∗v+















where v+ is the solution for the variable v at x/t = 0+ and Y ∗ stands for the exact solution
Y (x/t = 0). Obviously the coupling method respects the (NSC) condition and is not conservative.
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9.3.2 A conservative admissible interface model

We introduce now a conservative interface model that respects the (NSC) condition. This model is
exactly the counterpart of the conservative model proposed for the isentropic case. The governing
equations are:

∂z

∂t
= 0 (35)

∂ρ

∂t
+

∂(ρu)

∂x
= 0 (36)

∂(ρu)

∂t
+

∂(ρu2 + P )

∂x
= 0 (37)

∂E1

∂t
+

∂(u(E1 + P ))

∂x
= 0 (38)

∂(ρv)

∂t
+

∂(zuρv)

∂x
= 0 (39)

Hence the left and right fluxes are:

F− = F+ =











(ρu)∗

(ρu2 + P )∗

(u(E1 + P ))∗

0











Thus this model fulfils the (NSC) condition and since F− = F+ this coupling method is also
conservative in terms of total energy.

9.4 Numerical results

We use the above methods to simulate the Euler model with perfect gas EOS, that is:

(γ − 1)ρe(P, ρ) = P

The test case configuration is the same as the one described for the isentropic Euler systems. We
choose to present the results obtained for the gas simulation, that is γ = 1.4. The initial conditions
are:

ρ(x, y; t = 0) =

{

0.5 if y > x − 0.15

1.0 else.

P (x, y; t = 0) =

{

104 if y > x − 0.15

105 else.

u(x, y; t = 0) = v(x, y; t = 0) = 0.0

The interface is located in x = 0 (i.e. at the connection between the pipe and the tank). All
interfacial fluxes are computed using a VFRoe-ncv scheme with the variable (ρ, u, P, v)> and the
time steps are computed in order to comply with the constraint: CFL = 1/2.

The density ρ and the transverse momentum ρv are plotted on the line y = 0 (with respect
to x). The so-called two-dimensional reference solution is the computation obtained using the
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two-dimensional Euler model on the whole domain with the mesh refined in all directions. The
results which are displayed result from the finest mesh. For the conservative admissible model the
overshoot of the transverse velocity makes the computation stop (the density in at least one cell
becomes negative). Results are plotted at the last time step before this blow-up occurs.

Moreover, when compared with the conservative admissible model (represented by squares on
figures), we observe that results obtained with the non-conservative admissible model (represented
by circles on figures) are much closer to the 2D reference solution (represented by crosses on figure)
near the coupling interface.
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Figure 23: Solution for the transverse momentum ρv on the line y=0. Crosses stand for the two-
dimensional reference solution, stars stand for the natural interface model (which does not respect
the (NSC)), circles stand for the non conservative admissible interface model and squares stand
for the conservative admissible interface model.
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Figure 24: Solution for the density on the line y=0. Crosses stand for the two-dimensional reference
solution, stars stand for the natural interface model (which does not respect the (NSC)), circles
stand for the non conservative admissible interface model and squares stand for the conservative
admissible interface model.
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