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Coupling two and one-dimensional unsteady Euler equations through a thin interface

Introduction

The problem of the coupling of distinct models described by sets of PDE is a topic which has become of growing interest over the past few years. Actually, it may first occur in the framework of the modelling of two-phase flow in porous media. In that case, one has to face conservation laws with discontinuous flux functions, and one of the main difficulties consists in proving the existence and uniqueness of a physically relevant solution. One may for instance refer to [START_REF] Bachmann | Analysis of a scalar conservation law with a flux function with discontinuous coefficients[END_REF] , [START_REF] Bachmann | Existence and uniqueness of entropy solution of scalar conservation law with a flux function involving discontinuous coefficients[END_REF], [START_REF] Seguin | Analysis and approximation of a scalar conservation law with a flux function with discontinuous coefficients[END_REF] and references therein. It also naturally arises when focusing on industrial projects where computational facilities require the use of different models in order to describe parts of a whole concept. This happens for instance when one aims at computing the flow around a whole plane, or alternatively the flow in a gas turbine engine (decomposed in combustion chamber and turbine section, see [START_REF] Schluter | Multi-code simulations: a generalized coupling approach[END_REF], [START_REF] Schluter | Consistent boundary conditions for integrated rans/les simulations: Les inflow conditions[END_REF], [START_REF] Schluter | Consistent boundary conditions for integrated rans/les simulations: Les outflow conditions[END_REF] for instance). It also immediately occurs when turning to the predictive computations of the flow in the primary coolant circuit of a pressurized water reactor, in a nuclear power plant (see [START_REF] Fournier | Calculation of local flow conditions in the lower core of a pwr with code saturne[END_REF]). In the latter case, one sometimes needs to account for the flow in the reactor, in pipes and in the steam generator. Actually, one may apply for a 1D code to deal with the pipe, and a 3D code to predict the flow in the reactor. In addition, the 1D code may include schemes which provide approximations of a six-equation two-fluid model, whereas the 3D code deals with an homogeneous two phase flow model such as HEM (homogeneous equilibrium model) or HRM (homogeneous relaxation model). The problem of the coupling in such a situation is obviously a tedious and ambitious topic, and it also suggests as a prerequisite that one knows how to couple simpler situations such as the following for instance :

(i) the coupling of two distinct models in a one dimensional framework ;

(ii) the coupling of the homogeneous equilibrium model in a 1D pipe and a three dimensional medium.

We will focus in this paper on the problem (ii). We refer for instance to [START_REF]Homogeneous models with phase transition: coupling by finite volume methods[END_REF], [START_REF] Ambroso | Coupling of homogeneous models for two-phase flows[END_REF], and [START_REF] Hurisse | [END_REF], which try to address the first problem (i) while focusing on HEM and HRM models, and also mention [START_REF]Coupling of multiphase flow models[END_REF], [START_REF] Ambroso | Couplage de deux systèmes de la dynamique des gaz[END_REF] that tackle the coupling of Euler equations with distinct equations of state in each code. We insist that we only want to provide suitable information to be exchanged through the interface, and a (of course stable) numerical way to implement it. Both codes on each side should not be modified by the new procedure, except that boundary conditions may be different from what they were before coupling.

Quite recently, a few authors have suggested some new ideas to couple subsets of PDE. A first approach has been suggested by A.Y. Leroux and co-authors (see [START_REF] Greenberg | A well balanced scheme for the numerical processing of source terms in hyperbolic equation[END_REF] for instance). It has been essentially applied to cope with the shallow water equations with topography. The main idea in the latter approach is to include a stationary constraint in the set of PDE with an augmented state variable, and then to solve the exact Riemann problem at the "stationary" interface. The resulting scheme has been proved to be an efficient way to cope with steady state situations ( [START_REF]Some approximate Godunov schemes to compute shallow water equations with topography[END_REF]).

We emphasize that we will apply for similar ideas in our approach. A second way to tackle with this problem has emerged recently too, and is detailed in [START_REF] Godlewski | The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: 1.the scalar case[END_REF], [START_REF] Godlewski | The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: 2.the case of systems[END_REF] in a specific situation. In fact, it may be seen as an extension of ideas in the paper [START_REF] Abgrall | Computation of compressible multifluids[END_REF], which is roughly grounded on the following idea: initial conditions are used twice to compute two different fluxes at the interface between cells ; the first one is obtained solving the exact Riemann problem with the left set of PDE, whereas the second one corresponds to the right set of PDE. We refer for instance to [START_REF]Homogeneous models with phase transition: coupling by finite volume methods[END_REF] for more details.

The present paper is organized as follows. We first briefly recall in section 2 the basic sets of equations on each side of the interface between codes. In the beginning of section 3, we exhibit a natural constraint which obviously arises. We then detail a natural interface model and two distinct interface models which may be used to exchange information through the interface for unsteady predictions. The associated left and right fluxes will be detailed. Section 4 is devoted to the presentation of schemes that will be used, and of numerical results. Computational results involving shock waves with great inhomogeneities of transverse velocities between both medium will be discussed, and this will be achieved on the basis of the L 1 norm of the error. Actually, results obtained when computing unsteady solutions traveling from a 2D tank to the 1D pipe will be compared with those obtained while using the 2D code over the whole domain. The comparison will include : (a) the effect of mesh refinement; (b) the sensitivity with respect to the EOS; (c) the influence of the location of the interface between codes on numerical results; (d) the influence of the interface model. For further details, the reader is referred to [START_REF] Hurisse | [END_REF]. The extension of these ideas to the framework of non-isentropic Euler equations is also briefly examined in an appendix.

This work is a contribution to the NEPTUNE joint project, and is part of recent investigations which aim at improving the numerical interfacial coupling of two-phase flow codes (see [START_REF] Hérard | Naive schemes to compute isentropic flows between free and porous medium, internal EDF[END_REF], [START_REF] Hérard | A few schemes to compute hyperbolic systems with source terms[END_REF], [START_REF] Hurisse | [END_REF] among others).

2 Models

Codes to be coupled

For the sake of simplicity we consider the isentropic Euler model. We want to couple the onedimensional isentropic Euler system to the two-dimensional isentropic Euler system through a thin interface. Without loss of generality we consider that the interface is along the y-axis.

On the left side of the interface we consider the one-dimensional isentropic Euler system (1D): ù

∂W 1 ∂t + ∂F (W 1 ) ∂x = 0 (1) 
with:

W 1 = (ρ, ρu) F (W 1 ) = (ρu, ρu 2 + P (ρ))
where u, ρ and P respectively stand for the velocity, the density and the pressure, with P (ρ) > 0. These variables only depend on the time t and the space dimension x, W 1 = W 1 (x, t).

On the right side of the interface we consider the two-dimensional isentropic Euler system (2D):

∂W 2 ∂t + ∂G 1 (W 2 ) ∂x + ∂G 2 (W 2 ) ∂y = 0 (2) 
with:

   W 2 = (ρ, ρu, ρv) G 1 (W 2 ) = (ρu, ρu 2 + P (ρ), ρuv) G 2 (W 2 ) = (ρv, ρuv, ρv 2 + P (ρ))
Here u denotes the component of the velocity along the x-axis and v the component of the velocity along the y-axis. Here all the variables depend on time t and on two space variables x and y, W 2 = W 2 (x, y, t).

The one-dimensional model

We recall herein some well-known properties of the conservative system (1). This will be useful in section 4.

Eigenstructure

In terms of the variable Y = (ρ, u), and setting c 2 = P (ρ), [START_REF] Abgrall | Computation of compressible multifluids[END_REF] writes in non-conservative form:

∂Y ∂t + A(Y ) ∂Y ∂x = 0
where the 2 × 2 convection matrix A is:

A(Y ) = u ρ c 2 ρ u
The eigenvalues and the right eigenvectors of the matrix A are:

λ 1 = u -c, r 1 = (ρ, -c) λ 2 = u + c, r 2 = (ρ, c)
Thus, until vacuum occurs, eigenvalues are real and distinct ; the system is unconditionally hyperbolic since the two eigenvectors span the plane R 2 . Moreover both fields are genuinely non-linear.

Entropy pair

One may easily check that an entropy pair (η(W 1 ), F η (W 1 )) is:

η(W 1 ) = ρu 2 2 + ρψ(ρ) F η (W 1 ) = (η(W 1 ) + P (ρ))u with ψ(ρ) = ρ 0 P (a)
a 2 da. Moreover η is strictly convex with respect to W 1 . Hence the Riemann problem associated with (1) has a unique entropy consistent solution composed of constant states separated by shocks and rarefaction waves, with no vacuum occurrence, provided that the initial data agrees with the condition:

u R -u L < g(ρ L ) + g(ρ R )
where: g (ρ) = c(ρ) ρ -see [START_REF] Smoller | Shock waves and reaction diffusion equations[END_REF] and [14] -.

Solution for the Riemann problem

We describe herein the main features of the solution of the Riemann problem.

We set (u L , ρ L ) and (u R , ρ R ) the left and right state for the Riemann problem associated with system (1). The right and left pressure for initial state are respectively P R = P (ρ R ) and P L = P (ρ L ). We set (u * , ρ * ) to be the intermediate state between the two waves and we set P * = P (ρ * ).

• Trough the 1-wave, we get: u * -u L = h L (P L , P * ) If P L < P * , the 1-wave is a shock wave:

h L (P L , P * ) = - (P * -P L )(ρ * -ρ L ) ρ L ρ *
otherwise the 1-wave is a rarefaction wave:

h L (P L , P * ) = g(ρ L ) -g(ρ * )
• Trough the 2-wave, we get:

u * -u R = h R (P R , P * )
If P R < P * , the 2-wave is a shock wave:

h R (P R , P * ) = (P * -P R )(ρ * -ρ R ) ρ R ρ *
otherwise the 2-wave this is a rarefaction wave:

h R (P R , P * ) = g(ρ * ) -g(ρ R )

The two-dimensional model

We can write the system (2) in a non-conservative form using the variable Z = (ρ, u, v):

∂Z ∂t + B x (Z) ∂Z ∂x + B y (Z) ∂Z ∂y = 0
with the following 3 × 3 matrix B x and B y :

B x (Z) =   u ρ 0 c 2 ρ u 0 0 0 u   B y (Z) =   v 0 ρ 0 v 0 c 2 ρ 0 v   For any (w 1 , w 2 ) ∈ R 2 -{(0, 0)} with w 2 1 + w 2 2 = 1, we set C(Z, w) = w 1 B x (Z) + w 2 B y (Z).
The system (2) is hyperbolic if for any (w 1 , w 2 ) and for any Z ∈ Ω, the matrix C(Z, w) has three real eigenvalues and three independent eigenvectors. It is easy to verify that the eigenvalues of C(Z, w) are real:

λ 1 = (w 1 u + w 2 v) λ 2 = (w 1 u + w 2 v) -c w 2 1 + w 2 2 λ 2 = (w 1 u + w 2 v) + c w 2 1 + w 2 2
The corresponding eigenvectors are clearly independent until vacuum occurs:

r 1 = (0, w 2 , w 1 )
r 2 = (ρ, w1c √ w 2 1 +w 2 2 , w2c √ w 2 1 +w 2 2 ) r 3 = (ρ, -w1c √ w 2 1 +w 2 2 , -w2c √ w 2 1 +w 2 2 )
3 The interface model

Obviously, a two-dimensional code (based on a two-dimensional system) applied on a "one-dimensional" domain does not behave as a one-dimensional code (based on a one-dimensional system) on the same domain. Nonetheless we want to look for a condition for a 2D code to behave as a 1D code.

A necessary condition: NSC

Let us first define a test problem resumed on the figure [START_REF] Abgrall | Computation of compressible multifluids[END_REF]. A pipe (x < 0) is connected to a tank (x > 0) at x = 0 (see figure [START_REF] Abgrall | Computation of compressible multifluids[END_REF]). Suppose that the domain (x < 0) is discretized by a raw of rectangular cells with volume ∆x × h. We note φ God the value of the field φ given by a Godunov method and the subscripts H i , B i , D i and G i denote respectively the upper, lower, right and left side of the cell i.

Focusing on the transverse component of the momentum, ρv, we write a Godunov [START_REF] Godunov | A difference method for numerical calculation of discontinous equations of hydrodynamics[END_REF] scheme in the domain x < 0 as:

h∆x((ρv) n+1 i -(ρv) n i ) +∆t∆x (ρv 2 + P ) God Hi -(ρv 2 + P ) God Bi +h∆t (ρuv) God Di -(ρuv) God Gi = 0 (3) 
Let us set, for all cells in the domain x < 0, v n i = 0. Using wall condition [START_REF] Buffard | A sequel to a rough Godunov scheme[END_REF] as a boundary condition, defining --→ N Hi ( --→ N Bi respectively) as the unit outward normal vector on the top wall (bottom wall respectively), the pressure on the boundary of the left domain writes:

P God Hi = P God (W n i , Ŵ n Hi , --→ N Hi ) P God Bi = P God (W n i , Ŵ n Bi , --→ N Bi )
where Ŵ n Hi = Ŵ n Bi = Ŵ n i = (ρ n i , (ρu) n i , -(ρv) n i ) stands for the mirror state of W n i . Then the above initial condition on the velocity implies that for all cells in the domain x < 0:

P God Hi = P n i = P God Bi v God Hi = v God Bi = v God Gi = 0 and if we are in the domain x < -∆x v God Di = 0
So that if we assume that vacuum does not appear (ρ n i > 0) in these cells, the preceding equation (3) provides v n+1 i = 0 for all cells except for the cell i 0 (see figure [START_REF] Abgrall | Computation of compressible multifluids[END_REF] ) which has its right side on the interface x = 0. Indeed nothing ensures that v God Di0 = 0 for this particular cell.

This gives us a necessary and sufficient condition (NSC) for a scheme to fit to pure one-dimensional simulation in the left domain.

Definition:

We will say that the coupling boundary conditions will be admissible if the ρv component of the flux at the interface x = 0 -is null, that means:

(NSC) : (ρuv) -= 0 2D "1D" PIPE TANK Interface i I 0 0 x 0 h y x x=0 x=-x ∆ ∆ Figure 1: The test problem
We now investigate some possible interface models to couple the one-dimensional domain x < 0 to the two-dimensional domain x > 0. Interface models are introduced to allow the computation of Godunov fluxes through the vertical interface x = 0 ± . In practice, we recall that they are only used to compute (ρuv)(x/t = 0 -) and (ρuv)(x/t = 0 + ), as sketched in figure [START_REF] Ambroso | Coupling of homogeneous models for two-phase flows[END_REF].

In the left domain we consider the system (1) extended with the variable v and one aim of an admissible interface model is to maintain v = 0 in this domain by fullfilling the (NSC). An admissible interface model must also give the model (1) on the left of the interface and the projection on the normal of the model (2) on the right. 

1D EULER ISENTROPIC ISENTROPIC EULER 2D MODEL INTERFACE F(x=0 ) F(x=0 ) God God + -
∂ρ ∂t + ∂ρu ∂x = 0 ( 4 
)
∂ρu ∂t + ∂ρu 2 + P ∂x = 0 (5) ∂ρv ∂t + ∂ρuv ∂x = 0 (6) 
We briefly recall now the structure of the Riemann problem associated with (( 4)-( 6)) at the interface x = 0 with left state,

W L 2 = (ρ L , ρ L u L , ρ L v L = 0) and right state, W R 2 = (ρ R , ρ R u R , ρ R v R ) to determine the Godunov flux at x = 0 ± .
In terms of the variable Y = (ρ, u, v) , the eigenvalues and the right eigenvectors of the system (4)-( 6) are:

λ 1 = u -c, r 1 = (ρ, -c, 0) λ 2 = u, r 2 = (0, 0 , 1) 
λ 3 = u + c, r 3 = (ρ, c, 0)
The subsystem ((4),( 5)) has been briefly described above. We set u * and ρ * the intermediate states for u and ρ between the two waves λ 1 and λ 3 as described below for the system (1). We set v * 1 (respectively v * 2 ) the intermediate state for v between λ 1 and λ 2 (respectively between λ 2 and λ 3 ) (see figure [START_REF]Coupling of multiphase flow models[END_REF])

Focusing on the variable v, we observe that through the first and third waves [v] = 0 and that v is a Riemann invariant of the first and third field. Hence the solution for v is, v * 1 = v L and v * 2 = v R , and so:

v(x/t; W L 2 , W R 2 ) =    v L = 0, if x/t < u * v R , if x/t > u *
We assume from now that the 2-wave does not coincide with x/t = 0. As a consequence the ρv-component of the Godunov flux at x/t = 0 is:

(ρuv)(x/t = 0; W L 2 , W R 2 ) =    (ρu)(x/t = 0)v L = 0, if u * > 0 (ρu)(x/t = 0)v R , if u * < 0
Of course, in general v R = 0, so that F God (x = 0 -) is not always null if u * < 0. Thus this interface model does not respect the (NSC), which results in the fact that v will not remain zero in the

λ= λ= λ= U-C U+C ρ * U ρ v v v L R * 2 L u u u * ρ R L R v u ρ * * * 1 t
x It must thus be rejected if one aims at computing the solutions in the 1D computational domain with a 2D algorithm and a raw of cells.

A non conservative admissible interface model

Following [START_REF] Greenberg | A well balanced scheme for the numerical processing of source terms in hyperbolic equation[END_REF] we introduce here a new variable which distinguishes the two domains and does not depend on time t,

z(x, y, t) =    0 if x < 0 1 if x > 0
We now consider the following interface model:

∂z ∂t = 0 (7) ∂ρ ∂t + ∂ρu ∂x = 0 (8) ∂ρu ∂t + ∂ρu 2 + P ∂x = 0 (9) ∂v ∂t + zu ∂v ∂x = 0 ( 10 
)
with initial condition v(x, y, t = 0) = 0 for all x < 0. We note that (10) enables to retrieve

∂v ∂t = 0
on the left hand side and ∂v ∂t + u ∂v ∂x = 0 on the right hand side -which (thanks to (8)), is equivalent to (6)-.

Using the set of variables Y = (z, ρ, u, v) the eigenvalues and the right eigenvectors of the system ( 7)-( 10) are:

λ 1 = 0, r 1 = (1, 0, 0, 0) λ 2 = u -c, r 2 = (0, ρ, -c, 0) λ 3 = u + c, r 3 = (0, ρ, c, 0) λ 4 = zu, r 4 = (0, 0, 0, 1)
The fields 1 and 4 are linearly degenerated while the fields 2 and 3 are genuinely non-linear.

Moreover we can write the Rankine-Hugoniot relations for a shock with non-zero speed σ :

           -σ[z] = 0 -σ[ρ] + [ρu] = 0 -σ[ρu] + [ρu 2 + P ] = 0 -σ[v] = 0 if σ < 0 -σ[ρv] + [ρuv] = 0 if σ > 0
For σ = 0, one has [ρu] = [ρu 2 + P ] = 0, and z may jump. However, Rankine-Hugoniot conditions on the tranverse component are undefined . In that case, the 1-field would coincide with a genuinely non linear field.

The Rankine-Hugoniot relations imply that in a shock [z] = 0 if and only if σ = 0, that is in the 2-shock, 3-shock and 4-waves. For σ > 0, the above system provides the equation :

ρ(u -σ)[v] = 0 (11) 
Thus, if σ > 0, [v] = 0 in the 2-shock or 3-shock waves since σ = ρu/ρ. If we focus on the 4-wave (contact wave) propagating in the region x > 0, we retrieve the trivial solution σ = u which provides no constraint for v. On the other side, if σ < 0, the relation -σ[v] = 0 also implies that [v] = 0.

The subset ((8),( 9)) involves u and ρ and is the classical one dimensional isentropic Euler model which gives the solution (u * , ρ * ) (see figure (3) and section 2.2.3). The Riemann invariants of the system are:

IR 1 = {ρ, u, v} IR 2 = {z, v, u + g(ρ)} IR 3 = {z, v, u -g(ρ)} IR 4 = {z, ρ, u}
Since the first field is linearly degenerated and since z is preserved through the 2-wave, the 3-wave and the 4-wave:

z(x, y, t) = z R = 1 if x > 0 z L = 0 if x < 0
Since v is preserved through the 1-wave, the 2-wave and the 3-wave:

v(x/t = 0 -) = v L = 0 v(x/t = 0 + ) = v -= v L if λ 4 > 0 v R if λ 4 ≤ 0
We emphasize that the 4-contact wave cannot travel to the left domain because z(x < 0, y, t) = 0. This leads to the numerical flux on the ρv-component :

• if u * > 0 : (ρuv)(x/t = 0 -) = 0 (ρuv)(x/t = 0 + ) = 0 • if u * < 0 : (ρuv)(x/t = 0 -) = 0 (ρuv)(x/t = 0 + ) = (ρu)(x/t = 0)v R
Since (ρuv)(x/t = 0 -) is always null, this model respects the (NSC).

Remark. An important point to be quoted is that we obtain the same discrete fluxes using the Godlewski-Raviart method [START_REF] Godlewski | The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: 1.the scalar case[END_REF], [START_REF] Godlewski | The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: 2.the case of systems[END_REF] with fluxes:

f L =   ρu ρu 2 + P 0   and f R =   ρu ρu 2 + P ρuv   Remark.
We check now the continuity of (ρuv)(x/t = 0 ± ) with respect to u * at u * = 0. This is important for the stability of cases which involve states at rest around the interface. Of course, we always have (ρuv)(x/t = 0 -) = 0 whatever u * is. Hence:

lim u * →0 - (ρuv)(x/t = 0 -) = 0 = lim u * →0 + (ρuv)(x/t = 0 -)
We focus now on (ρuv)(x/t = 0 + ). First of all, we have:

lim u * →0 + (ρuv)(x/t = 0 + ) = 0
We eventually want to prove that lim u * →0 -(ρuv)(x/t = 0 + ) = 0. For that purpose we need to introduce a new variable q and its governing equation:

∂ρq ∂t + ∂ρuq ∂x = 0
The eigenvalue associated with this new linearly degenerated field is λ 5 = u which, unlike λ 4 = zu, can be negative. This will enable to find the limit of (ρuv)(x/t = 0 + ) when u * tends towards 0 -. This new variable q and its governing equation do not change the structure of the solution for z, ρ, u and v. Since u only varies through the 2-wave and the 3-wave, and since λ 5 = u * , we have:

lim λ5→0 - u(x/t = 0) = lim λ5→0 - u(x/t = 0 -) = lim λ5→0 - u * = 0 hence, lim u * →0 - (ρuv)(x/t = 0 + ) = 0

A conservative admissible model at the interface

We still use:

z = 0 if x < 0 1 if x > 0
We consider the conservative interface model:

∂z ∂t = 0 ( 12 
)
∂ρ ∂t + ∂ρu ∂x = 0 ( 13 
)
∂ρu ∂t + ∂ρu 2 + P ∂x = 0 ( 14 
)
∂ρv ∂t + ∂zρuv ∂x = 0 (15) 
In the right region (x/t > 0) one recovers the projection of the model (2). For (x/t < 0), ( 14) reads ∂ρv ∂t = 0, and can be integrated, which provides ρv(x < 0, t > 0) = 0 since v(x < 0, t = 0) = 0.

One thus clearly retrieves the onedimensional model v(x < 0, t > 0) = 0 for positive densities (vacuum occurence is beyond the scope of our approach).

In terms of the non-conservative variables Y = (z, ρ, u, ρv), the eigenvalues an eigenvectors of the jacobian matrix associated to the system ( 12)-( 15) are:

λ 1 = 0, r 1 = (z, 0, 0, -ρv) λ 2 = u -c, r 2 = (0, ρ, -c, -ρvcz (u-c)-uz ) λ 3 = u + c, r 3 = (0, ρ, c, ρvcz (u+c)-uz ) λ 4 = zu, r 4 = (0, 0, 0, 1)
The first and fourth fields are linearly degenerated while the second and third fields are genuinely non-linear. Jump conditions are uniquely defined.

An important point to be quoted is that the subset of equations ( 13)-( 14) does not depend on z or v. Thus the solution of a Riemann problem for ( 12)-( 15) will give for the pair (ρ, u) the same solution as the Riemann problem for the sole equations ( 13)-( 14) when considering the same initial condition for ρ and u (see section 2.2.3). Hence, we focus now on the transverse component of the flux.

We first consider the Rankine-Hugoniot relation through the first wave. We have:

[ρuzv] = 0 and [ρu] = 0 which implies:

[zv] = 0 [START_REF] Godunov | A difference method for numerical calculation of discontinous equations of hydrodynamics[END_REF] (unless (ρu)(x = 0, t > 0) = 0 , which does not modify the conclusions). The only Riemann problems that are relevant for our purpose are those for which right and left states comply with:

z L = 0 and z R = 1 andv L = 0
With this initial condition, [START_REF]Some approximate Godunov schemes to compute shallow water equations with topography[END_REF] enables to retrieve z(x < 0, t > 0) = 0 and z(x > 0, t > 0) = 1.

Assuming that no resonnance phenomenon occurs, the equation ( 16) implies that the transverse velocity at x/t = 0 + is:

v + = 0
Hence the transverse flux at x/t = 0 + for such Riemann problems is:

(ρuzv) + = (ρuv) + = 0 (17) 
We may retrieve this simply considering :[ρuzv] = 0, which gives (ρuzv) + -(ρuzv) -= 0 or (ρuzv) + = (ρuv) + = 0. We do not need to assume that v -= 0 to obtain the relation [START_REF] Greenberg | A well balanced scheme for the numerical processing of source terms in hyperbolic equation[END_REF].

Since z -= 0, we have no information on the "transverse flux" (ρuv) at x/t = 0 -when focusing on the first wave. We can only conclude that (ρuzv) -= 0. In order to revover relevant information, we need to consider the half plane x/t < 0. The only waves which can develop in the domain x/t < 0 are the two genuinely non-linear waves associated with λ 2 and λ 3 . Since z(x/t < 0) = 0, the equation ( 15) reads:

∂ρv ∂t = 0, ∀(x/t) < 0
Hence, if we assume that the left transverse velocity in the initial condition of the Riemann problem is v L = 0, and thus that ρ L v L = 0, we obtain (ρv) -= 0. We can conclude that the transverse flux at x/t = 0 -is:

(ρuv) -= 0 (18) 
This conservative interface model thus respects the (NSC) condition in the frame of a Riemann problem with correct initial condition v L = 0.

Numerical schemes and results

All methods described herein rely on the Finite Volume method (see [START_REF] Eymard | Finite Volume Methods[END_REF]). Instead of using the exact Godunov scheme, we apply herein for the approximate Godunov scheme VFRoe-ncv introduced in [START_REF] Buffard | A sequel to a rough Godunov scheme[END_REF], using the non conservative variable Y = (ρ, u, v). We restrict here to the so-called "firstorder" scheme. Wall boundary conditions are accounted for by using the standard mirror approach.

( [START_REF] Buffard | A sequel to a rough Godunov scheme[END_REF] and [START_REF] Godlewski | Numerical analysis for hyperbolic systems of conservation laws[END_REF]).

4.1 The computational domain

The coarse mesh

The above method will be tested on a domain composed of a pipe connected to the middle of the left side (x = 0) of a squared tank. The pipe is 2 unit long and h 0 = 2 21 unit high; the sides of the tank are 2 unit long. The initial mesh (see fig: 

Initial conditions and EOS parameters

We consider herein a Riemann problem derived from the shock tube experiment. As initial conditions, we set ρu and ρv equal to zero on the whole domain and for the density we set: ρ(x, y; t = 0) = ρ l if y > x -0.15 ρ r else.

These initial conditions seem to be the worst configuration to test the coupling methods. Actually, we intend to maximize (ρuv) + , in order to track possible deficiencies. The most tedious situation appears when the fluid flows from the tank into the pipe with "high" flux component in the y direction.

The EOS for the pressure is the stiffened gas law in isentropic form:

P = s 0 ρ γ -P ∞ and c 2 = γ ρ (P + P ∞ )
These EOS allow us to simulate perfect gas with the parameters:

P ∞ = 0, γ = 1.4 and s 0 = 10 6
and to approach water behavior using P ∞ = 10 9 , γ = 2.34 and s 0 = 95.51.

For gas simulation we have chosen ρ r = 0.5 and ρ l = 1; for water simulation we have chosen ρ r = 800 and ρ l = 1000. The figures ( 6),( 7),( 8) and ( 9) show the numerical solution computed for the gas parameters at t = 2e -4 on the second level mesh with interface at x interf = -5h 0 with our interface model. With these initial conditions a shock wave travels to the left upper corner of the tank, hitting the interface edges, and a rarefaction wave moves to the right lower corner of the tank (the results of figures ( 6),( 7),( 8) and ( 9) show the solution computed when the shock wave reaches the left upper corner). 

Numerical fluxes

For both one-and two-dimensional codes we recall that we use the approximate Godunov solver VFRoe-ncv [START_REF] Buffard | A sequel to a rough Godunov scheme[END_REF] to compute fluxes on each interface between two cells.

We use two different strategies to compute fluxes on both sides of the interface between the 1D code and the 2D code. We recall that (ρ * , u * ) represent the approximate value on the interface in the solution of the linearized Riemann problem associated with (4), [START_REF] Ambroso | Couplage de deux systèmes de la dynamique des gaz[END_REF]. For all schemes, numerical fluxes (ρ * u * , ρ * (u * ) 2 + P (ρ * )) are of course identical at the coupling interface. Thus the only discrepancies depend on the flux on the (ρv) component.

• The first strategy consists in applying the non-conservative interface model described in the section 3.3, with the VFRoe-ncv scheme, using the variable Y = (z, ρ, u, v). It is refered to in the following as the non-conservative model.

if u * > 0 :

(ρuv) -= 0

(ρuv) + = 0 -if u * < 0 : (ρuv) -= 0 (ρuv) + = (ρu) * v R
• A second interface scheme is used. This scheme naturally issues from the admissible conservative model which agrees with the (NSC) described in section 3.4. Actually this scheme simply enforces the continuity on the ρv-component of the flux that is:

(ρuv) + = (ρuv) -= 0
The two other components of the flux are the same as the flux obtained with either the nonconservative model or the conservative model.

Numerical results

As a reference we compute the solution of the two-dimensional model on the whole domain with the finest mesh refinement in the tank and in the whole pipe.

The domain can be cut in three sudomains on which errors will be computed separately:

• the tank, x > 0.

• the two-dimensional part of the pipe, 0 > x > x interf if x interf < 0.

• the one-dimensional part of the pipe, x interf > x.

Because of the different volumes of the different domains, we will use a normalized L 1 -norm of the error e 1 at time t n = T :

e 1 (T ) = (u -u ref )(T ) L1 = i |u n i -(u ref ) n i ||Ω i | i |Ω i | Note that (u ref ) n
i does not stand for the exact solution, but for the approximation obtained while using the two dimensional scheme on the finest mesh on the whole computational domain, within cell i and at time t n .

Remark. The approximate solutions of the component ρv computed with the two interface schemes have null values for the one-dimensional pipe so that the error calculated on this domain is the L 1 -norm of the solution of reference. It is obviously the same for the two schemes.

The form of the L 1 -norm of the error of the computed solution at the time T on a mesh of size h can be, in a classical manner, expressed as:

e 1 (h, T ) = C(T ) × h α
where the coefficient C is increasing with respect to T . The coefficient α is the rate of convergence of the scheme. We use first order schemes for which α ∈ [ 1 2 , 1]. Actually, when restricting to the linearly degenerated fields, we get α = 1 2 ; turning to the genuinely non-linear fields, we have: α = 1, and thus if both fields are present in the simulation, α lies in ] 1 2 , 1[ (see for instance [START_REF] Gallouët | Some recent Finite Volume schemes to compute Euler equations using real gas EOS[END_REF] and [START_REF] Eymard | Finite Volume Methods[END_REF]).

The figures below represent the ρv-error with respect to log h0 2 K 2 (with K = {0, 1, 2, 3} the level of refinement) for the two solutions: the non-conservative model is denoted by circles and the conservative model is denoted by squares.

Interface x interf = 0

We focus here on the water simulation. (Similar results have been obtained using gas EOS, associated results are given in appendix B). The interface between codes has been placed exactly at the junction between the 1D pipe and the 2D tank. The CFL is fixed to 0.95. We use the same initial conditions, but the interface between codes is now located at x = -5h 0 . We still use the same CFL time stepping limitation. 

Some qualitative results in the pipe direction

We present herein the values of the field ρv(x, y = 0) (on the line y = 0), focusing on the finest mesh(h = h 0 /8). The squares denote the solution computed with the conservative model, the circles denote the solution for the non-conservative model and the line denotes the reference solution.

For gas simulations, it appears that the L 1 norm of the error is approximately the same for both conservative and non-conservative approaches. Nonetheless, the error is much higher close to the coupling interface when applying for the conservative model, whereas the non-conservative model results are indeed close to those provided by the reference 2D code (see figure [START_REF] Godlewski | The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: 1.the scalar case[END_REF]). Actually the relative error in the cell close to the right exit of the pipe is about six times larger when using the conservative model. This is true whereever the interface between the two codes lies (see figure [START_REF] Godlewski | The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: 2.the case of systems[END_REF]). We insist that this still holds true when turning to water simulations, though the discrepancies become smaller (see figures [START_REF] Godunov | A difference method for numerical calculation of discontinous equations of hydrodynamics[END_REF], [START_REF] Hérard | Naive schemes to compute isentropic flows between free and porous medium, internal EDF[END_REF]).

From an engineering point of view, it is almost impossible to distinguish any "spurious" reflected wave in the 2D tank. 

Convergence rate

For each interface scheme, we compute two evaluations of the convergence rate. For that purpose, we use the solutions computed on the two finest meshes and on the two coarsest meshes respectively:

α = Log( e 1 (h, T ) e 1 (h/2, T ) )/Log(2)
where the choice h = h 0 (respectively h = h 0 /4) provides an approximation of α on the coarse (respectively fine) meshes. Results are given in the following tables.

Convergence rate for the interface x interf = 0: For the latter case x interf = -5h 0 , we note that the errors are identical, and therefore the approximations of rates of convergence. Actually, (small) discrepancies between computational results only occur in the 2D part of the pipe. This is confirmed when computing similar approximations of rates of convergence within the part of the pipe on the right side of the coupling interface (see below). 

Non-

Non

Comments

In the 1D part of the pipe, the approximation of v is implicitly set to 0, whereas a meaningful approximation of v arises from the part of the pipe which is simulated with a 2D code. Thus, there exists a structural part of the global error which is due to the 1D part of the pipe, independently of the coupling interface and its associated fluxes. This error will in any case be transmitted through the coupling interface. Thus, one expects to retrieve that the L 1 norm of the error computed in the 2D computational domain cannot tend to 0, when the mesh size tends to 0 -unless the coupling interface is moved towards the left end of the pipe-.

• Impact of the coupling technique

As it has already been mentionned, the computational approximations provided by the non conservative model are in better agreement with the true 2D reference results. If one looks at the right side of the coupling interface, a glitch appears when applying for the conservative model, and the amplitude of discrepancies will clearly inhibit the computation of chemical species which are essentially driven by the velocity field. This drawback remains almost unchanged when the mesh is refined. Such a drawback does not occur when using the non conservative model.

• Influence of the mesh size For coarse meshes, the above estimated rates of convergence α for water simulations seem to lie in [1/2, 1], whereever the coupling interface lies. However, for finer meshes which necessarily provide more reliable information, the estimated rates are much lower and close to 0.1 for water simulations. If one turns to gas simulations (see appendix B), this gets worse since it appears that estimated rates of convergence are even lower, when focusing on the finer meshes for instance (the estimation of α is around 0.02). All these values thus confirm that the error in the 2D tank does not go to zero when the mesh is refined.

• Influence of the coupling interface location For a given mesh size, one may push the coupling interface to the left side. Doing so, the -meaningful-cell values of v in the 2D part of the pipe (that is on the right side of the coupling interface) naturally tend to vanish. Hence, the approximations provided by both coupling techniques can hardly be distinguished, at least when one focuses on the L 1 norm of the error in the 2D tank ; one can nonetheless note slight differences when computing the L 1 norm of the error in the 2D part of the pipe. These results are still in favour of the non conservative coupling technique, and one can retrieve this from a qualitative point of view on figure [START_REF] Hérard | Naive schemes to compute isentropic flows between free and porous medium, internal EDF[END_REF].

• Influence of the EOS Though we feel much more concerned by water simulations, it appears that gas simulations enable to retrieve the same patterns. The main difference is probably due to the fact that inertia effects are less important, which makes the computational results closer to those of the 2D reference solution, for a given mesh size, and a given location of the coupling interface (see the first comment above).

Conclusion

We thus would like to point out that :

(a) the non conservative coupling method proposed herein provides satisfactory results, at least from an engineering point of view ; the conservative coupling technique which agrees with the condition (NSC) generates a bigger pollution around the interface between codes. From an academic point of view, the main advantage of the current framework is that one can examine precisely the amount of error resulting from the "rough" approximation assumed in the 1D code;

(b) the sensitivity to the location of the interface between codes has been examined, which of course confirms a priori results. It urges to compute the end of the pipe connected with the 2D/3D tank with a 2D/3D code;

(c) in this particular case of the coupling of a one dimensional code with a two-dimensional code with the same "father" model, the discrete version of our non conservative interface model is similar to the one which would result from the application of ideas from [START_REF] Godlewski | The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: 2.the case of systems[END_REF] ;

(d) the influence of the EOS does not seem to be significant. However, estimated rates of convergence show that the remark (b) is even more crucial for water simulations ;

(e) the inclusion of finite relaxation time scales, and behind this the coupling of HEM and HRM models for instance, may be achieved using similar ideas ( [START_REF] Hurisse | [END_REF], [START_REF]Homogeneous models with phase transition: coupling by finite volume methods[END_REF], [START_REF] Ambroso | Coupling of homogeneous models for two-phase flows[END_REF]). Different numerical strategies to account for these have been partially investigated in [START_REF] Hérard | A few schemes to compute hyperbolic systems with source terms[END_REF], which show that the problem of coupling in the steady and unsteady cases should be distinguished;

(f) a similar companion work on the full Euler equations (that is the coupling of the one-dimensional and two-dimensional Euler equations including the total energy governing equations) even confirms that the main drawback of the admissible conservative model has more annoying consequences, since the pollution around the interface may lead to a blow-up of the code, which is due to the occurence of negative discrete values of the density (see appendix C and [START_REF] Hurisse | [END_REF]). On the other hand, the admissible non-conservative approach provides satisfactory results which are close to the reference solution.

Appendix A : A comparison of three distinct interface models

This appendix is devoted to the comparison of results that have been obtained when using :

(a) the natural conservative interface model which does not fulfill the (NSC) condition;

(b) the non-conservative interface model which fulfills the (NSC) condition;

(c) the conservative interface model which fulfills the (NSC) condition.

All computations have been performed using the same mesh with the finest mesh in the tank. The coupling interface is located at x = 0. The crosses correspond to the reference solution computed on a full 2D mesh including the pipe. Schemes associated with strategies (b) and (c) have been detailed in section 4.3. The scheme corresponding to the natural strategy (a) reads:

• if u * > 0 : (ρuv) + = (ρuv) -= 0 • if u * < 0 : (ρuv) + = (ρuv) -= (ρu) * v R
We obviously check that strategies (a) and (b) provide similar results in the 2D tank, which was expected since (ρuv) + is the same for both schemes when u * < 0. Of course cell values for ρv within the pipe are non zero when using (a) whereas cell values obtained with (b) and (c) are null. The error on the first cell in the tank region is almost six times greater when using the conservative approach which fulfills the (NSC) condition, that is (c). The latter does not seem suitable, especially if one aims at computing chemical species. In the following we explain how the methods proposed for the Euler system in isentropic form can be applied to the complete Euler system. A numerical test will reinforce the preference for the non-conservative method which respect to the (NSC).

Models to be coupled

Without loss of generality we assume that the interface of coupling is placed along the y-axis at x = 0. On the left side of the interface we consider the one-dimensional Euler system:

∂ρ ∂t + ∂(ρu) ∂x = 0 (19) ∂(ρu) ∂t + ∂(ρu 2 + P ) ∂x = 0 (20) ∂E 1 ∂t + ∂(u(E 1 + P )) ∂x = 0 (21) 
with,

E 1 = ρe 1 (P, ρ) + ρ u 2 2
On the right side of the interface we consider the two-dimensional Euler system, the projection of which along the x-axis is (while neglecting transverse derivatives):

∂ρ ∂t + ∂(ρu) ∂x = 0 (22) ∂(ρu) ∂t + ∂(ρu 2 + P ) ∂x = 0 (23) ∂E 2 ∂t + ∂(u(E 2 + P )) ∂x = 0 (24) ∂(ρv) ∂t + ∂(ρuv) ∂x = 0 (25) 
with,

E 2 = ρe 2 (P, ρ) + ρ( u 2 2 + v 2 
2 )

In the following we will consider that the two models have the same equation of state, that is : e 1 (P, ρ) = e 2 (P, ρ) = e(P, ρ), ∀(P, ρ)

Rewriting the two-dimensional Euler system

We note that the total energy E 2 can be expressed as:

E 2 = E 1 + ρ v 2 2 
The set of equations ( 22)-( 25) is equivalent to the set of equations ( 26)-(29), either for regular solutions or for discontinuities:

∂ρ ∂t + ∂(ρu) ∂x = 0 (26) ∂(ρu) ∂t + ∂(ρu 2 + P ) ∂x = 0 (27) ∂E 1 ∂t + ∂(u(E 1 + P )) ∂x = 0 (28) ∂(ρv) ∂t + ∂(ρuv) ∂x = 0 (29) 
An important point to be quoted is that the subset of equations ( 26)-( 28) does not depend on v. It is the same set of equations than ( 19)- [START_REF] Schluter | Consistent boundary conditions for integrated rans/les simulations: Les inflow conditions[END_REF]. We can then apply the methods of flux coupling proposed for the isentropic Euler model.

An interface model for flux coupling

The (NSC) condition keeps its importance in the present case. Hence an interface model is admissible if and only if it respects this condition. We propose herein two models. The definition of the variable z remains unchanged.

A non-conservative admissible interface model

We now consider the following interface model: This system can not be written in conservative form owing to the non-conservative product zu ∂v ∂x .

∂z ∂t = 0 ( 
In fact the solution of the Riemann problem is classical for (30)-(33) (unless some resonance phenomena occurs), but we have to propose a way to solve (34). This is achieved using the same idea as developed in the isentropic case. Finally, the numerical fluxes are:

F -=      (ρu) * (ρu 2 + P ) * (u(E 1 + P )) * 0      , F + = F -+        0 0 (ρu) * 2 (v + ) 2 (ρu) * v +       
where v + is the solution for the variable v at x/t = 0 + and Y * stands for the exact solution Y (x/t = 0). Obviously the coupling method respects the (NSC) condition and is not conservative.

A conservative admissible interface model

We introduce now a conservative interface model that respects the (NSC) condition. This model is exactly the counterpart of the conservative model proposed for the isentropic case. The governing equations are: Hence the left and right fluxes are:

∂z ∂t = 0 ( 
F -= F + =      (ρu) * (ρu 2 + P ) * (u(E 1 + P )) * 0     
Thus this model fulfils the (NSC) condition and since F -= F + this coupling method is also conservative in terms of total energy.

Numerical results

We use the above methods to simulate the Euler model with perfect gas EOS, that is:

(γ -1)ρe(P, ρ) = P

The test case configuration is the same as the one described for the isentropic Euler systems. We choose to present the results obtained for the gas simulation, that is γ = 1.4. The initial conditions are:

ρ(x, y; t = 0) = 0.5 if y > x -0.15 1.0 else. P (x, y; t = 0) = 10 4 if y > x -0.15 10 5 else.

u(x, y; t = 0) = v(x, y; t = 0) = 0.0

The interface is located in x = 0 (i.e. at the connection between the pipe and the tank). All interfacial fluxes are computed using a VFRoe-ncv scheme with the variable (ρ, u, P, v) and the time steps are computed in order to comply with the constraint: CF L = 1/2.

The density ρ and the transverse momentum ρv are plotted on the line y = 0 (with respect to x). The so-called two-dimensional reference solution is the computation obtained using the two-dimensional Euler model on the whole domain with the mesh refined in all directions. The results which are displayed result from the finest mesh. For the conservative admissible model the overshoot of the transverse velocity makes the computation stop (the density in at least one cell becomes negative). Results are plotted at the last time step before this blow-up occurs. 
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