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Abstract

This paper aims at proposing a relaxation scheme that allows to obtain stable approximations
for a system of partial differential equations which governs the evolution of the void fraction and
the mean velocity in the particle phase of two-phase flows. This system involves the divergence
of a particle kinetic tensor, which is provided by a Lagrangian code and whose components
are not smooth. The simulation algorithm is based on the combined use of upwinding and
relaxation techniques. The main properties of the method are given, together with the Finite
Volume Godunov scheme and this approach is compared to an analogous one that was developed
earlier. Some measured rates of convergence in L1-norm are provided, for a particular choice of
the kinetic tensor. To complete the picture, we present some numerical results obtained when
non-smooth external data are provided to the system.

1 Introduction

In the present paper, we are interested in the numerical solution of a system of partial differential
equations arising from a hybrid modelling of polydispersed turbulent two-phase flows [10, 25, 26].
The general framework of the hybrid modelling is recalled in Appendix C, which explains in
particular a coupling of Eulerian and Lagrangian descriptions introduced for the modelling of
the dispersed phase of gas-particle two-phase flows. The main difficulty of such a coupling
consists in the treatment of non-smooth data provided by the Lagrangian part of the model in the
divergence operator in the partial differential equations.

In d space dimensions, we denote by x the space variable, t the time, ρ(t,x) the mean particle
density, u(t,x), U(t,x) ∈ Rd the instantaneous and the mean particle velocities, RL(t,x) ∈ Rd⊗d

the particle kinetic tensor, which can also be written as RLij =
〈
u′iu
′
j

〉L
with i, j = 1, ..., d and

u′(t,x) = u(t,x)−U(t,x) the fluctuation of the particle velocity. The following system, which
is deduced from the Lagrangian stochastic model (Appendix C), describes the time evolution of
the first-order mean particle quantities:{

∂tρ+ ∂xj (ρUj) = 0, t > 0, x ∈ Rd,
∂t(ρUi) + ∂xj

(ρUiUj) + ∂xj
(ρRLij) = ρgi + ρ

〈
ULr,i/τ

U
p ,
〉
,

(1)

where the superscript “L” refers to variables computed using a Lagrangian description which,
therefore, represent external non-smooth data. The right-hand side terms in the second equation
in (1) describe the gravity and the drag forces, where UL

r stands for the local relative velocity
of the fluid and the dispersed phases, and τUp is the particle velocity relaxation time scale (the
time necessary for a particle to adjust to the fluid velocity).
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Obviously, due to ensemble averaging, these equations are not closed since the correlations of
the fluctuating particle velocities RLij(t,x) appear explicitly. From analogous situations arising
with Reynolds averaging in single phase flow, these stresses have an important influence on the
nature of the convective subset. This fact suggests that they should be handled with great care.
It is also important to emphasize that RLij(t,x) is not smooth since it contains the statistical
error that may be a cause of instabilities. Furthermore, we know that treating this convective
term as a source term is not allowed (see [6] for a similar situation). The need to overcome
these difficulties has led us to search for a method which would be stable during unsteady
simulations with non-smooth external data.

In order to compute stable approximations of solutions of (1), a first approach has been
proposed in [10, 26, 27]. This approach, which will be referred to as A1, relies on the combined
use of relaxation-type techniques [1, 4, 5, 9, 12, 13, 28, 35, 36, 38] and upwinding schemes
[14, 19, 22, 23, 29, 30] and was first introduced in [25] in order to predict single-phase turbulent
flows [32]. In the latter approach, an extended hyperbolic system was introduced in a natural
way, following what is done for previous associated Eulerian models (see [2, 3, 6, 21]). Though
they contain non-conservative contributions, which are active in genuinely non linear fields, these
“relaxation” models enable to obtain stable results. However, they involve a priori approximate
jump conditions that may inhibit the convergence to the correct shock solutions of original system
(1). This has motivated a new approach relying on a hyperbolic relaxation model, where all
fields are linearly degenerate and, therefore, jump conditions are uniquely defined. This second
approach introduced in this work will be referred to as A2. Both approaches A1 and A2 will be
presented and compared in terms of convergence, stability and accuracy.

Before beginning to discuss our new approach of simulation, it is worth noting that we com-
pute approximate solutions of (1) using a splitting strategy, where we treat first the corresponding
homogeneous system: {

∂tρ+ ∂xj
(ρUj) = 0, t > 0, x ∈ Rd,

∂t(ρUi) + ∂xj (ρUiUj) + ∂xj (ρRLij) = 0,
(2)

and then account for source terms through the second step:{
∂tρ = 0,

∂t(ρUi) = ρgi + ρ
〈
ULr,i/τ

U
p

〉
.

(3)

The paper is organized as follows. We give first the main guidelines of the relaxation pro-
cedure in the one-dimensional space. This will be detailed in section 2. The numerical scheme
will be given in section 3. Section 4 will be devoted to the assessment of the numerical approach
and to the comparison with the previous approach (A1) [10, 26, 27], while focusing on analytical
solutions in the particular case ρRL = π(ρ) that refers to the barotropic Euler equations for
gas dynamics. A quantitative analysis of the L1 error norm will also be given. Some results given
in appendices will complete the whole approach. Appendix B will focus on the energy control
through both approaches (A1) and (A2) whatever R is. The last appendix will provide some
two-dimensional numerical results of coupling in realistic situations, where the kinetic tensor RLij
is provided at each time step by an external computation using a Lagrangian description.

2 Relaxation approach

2.1 Guidelines

We are looking for a method that would ensure stable unsteady approximations of the solution
to system (2) in one space dimension:{

∂tρ+ ∂x(ρU) = 0, t > 0, x ∈ R,
∂t(ρU) + ∂x(ρU2 + ρRL) = 0.

(4)
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It is necessary to recall first that, since the kinetic tensor RL(t,x) is non-smooth external
data which, in practical coupled computations with the Lagrangian code, is not a
function of variables (ρ, ρU), we are formally interested in finding “discontinuous” solutions
of the problem. This may happen even if RL(t, x) = cst > 0. These properties have led us to
focus on Riemann solvers, these being particularly well suited for the simulation of problems
with discontinuous solutions.

In this approach, we suggest that an Eulerian transport equation for the stresses be solved
along with the above-mentioned mean particle quantities. The only purpose of the particle stress
equation is to lead to a system of equations with a complete and meaningful description of the
physical wave properties. The stress field will in fact be provided by the Lagrangian part of
the overall model at each time step, but by keeping a (redundant) transport equation for the
stresses, we will mimic the correct wave propagation within the Eulerian part, and thus will help
to stabilize numerical approximations of the density and of the particle velocity.

To approximate the solutions of Eqs. (1) in the one-dimensional space, we introduce an
augmented state vector W (t, x) = (ρ, ρU, ρR)

t
and a generalized relaxation system:

∂tρ+ ∂x(ρU) = 0,

∂t(ρU) + ∂x(ρU2 + ρR) = 0, t > 0, x ∈ R,
∂t(ρR) +A(W,∂xW ) = ρ(RL −R)/τRp .

(5)

In order to guarantee the consistency of the new system with the original one at the discrete
level, a relaxation time scale τRp is introduced, and when this parameter is set formally to zero,
the new system is consistent with the initial one.

Furthermore, we want to find an appropriate form of the operator A(W,∂xW ), which de-
scribes the evolution of the fluctuating particle velocities, so that some important physical prop-
erties were respected. More precisely, we enforce the following features:

• (C1) we wish to define a hyperbolic system of equations. Hyperbolicity is one clue that
the physical reality is correctly modelled and moreover it guarantees some inner stability
of the solutions. For this reason, it seems crucial to preserve the property of hyperbolicity,
which characterizes the original system.

• (C2) we intend to have a system characterized by linearly degenerated (LD) fields.
This feature avoids imposing approximate jump conditions. Actually, we note that in
the conservative system (2), jump relations are defined in a unique way. This essentially
differs from the strategy introduced in [25, 26, 27], where the relaxation system is chosen
to be close to the physics and hence contains non-conservative terms active in genuinely
non-linear (GNL) fields.

• (C3) the system should preserve the positivity of the density distribution :

ρ(x, t) ≥ 0.

This property is expected in order to yield a physically meaningful solution.

• (C4) The relaxation system should be close enough to (A1) (introduced in [26, 27] and
recalled below in sec. 2.2) that represents a relevant physical choice.

In the general case, the realizability of the kinetic tensor might also be required, which means
that the associated quadratic form remains positive:

niRijnj ≥ 0 ∀ni, nj(i, j = 1, ..., d). (6)

In the one-dimensional case it amounts to ensure R(t, x) > 0 for all t > 0, x ∈ R. Actually, the
relaxation approach will guarantee this property at the discrete level, at each time step, in all
cells.
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2.2 System construction

A preliminary study has revealed that conservative forms of the third equation in relaxation
system (5) are not acceptable because they generally result in degenerate hyperbolic systems
(eigenvectors no longer span the whole space). Thus, as the most appropriate and the simplest
candidate for the larger system in one space dimension, we suggest the following:

∂tρ+ ∂x(ρU) = 0,

∂t(ρU) + ∂x(ρU2) + ∂x(ρR) = 0, t > 0, x ∈ R
∂t(ρR) + U∂x(ρR) + Ψ∂xU = ρ(RL −R)/τRp ,

(7)

where τRp denotes some small relaxation time scale. Here, the choice of the evolution operator
is reduced to the choice of the function:

Ψ(ρ,R) > 0, (8)

which influences considerably the characteristics of the whole system. In the remainder of this
section, we are interested mainly by the properties of the homogeneous system corresponding to
(7): 

∂tρ+ ∂x(ρU) = 0,

∂t(ρU) + ∂x(ρU2) + ∂x(ρR) = 0, t > 0, x ∈ R
∂t(ρR) + U∂x(ρR) + Ψ∂xU = 0.

(9)

Since the convective part of the model is not in conservative form, we define a non-conservative
variable Z = (ρ, U, ρR)t. Then, for smooth solutions, system (9) can be rewritten in the following
condensed form:

∂tZ +A(Z)∂xZ = 0, t > 0, x ∈ R, (10)

with the system matrix

A(Z) =

U ρ 0
0 U ϑ
0 Ψ U

,

where ϑ(x, t) = 1/ρ(x, t) is the specific volume.

Property 1. For all Z in the phase space Ω = {(ρ, U, ρR)t ∈ R3 such that ρ > 0}, system
(10) admits three real distinct eigenvalues:

λ1 = U − c
λ2 = U
λ3 = U + c

(11)

with ρc2 = Ψ > 0. The corresponding right eigenvectors are given by:

~r1 =

 ρ
−c
ρc2

 ~r2 =

1
0
0

 ~r3 =

 ρ
c
ρc2

 (12)

and span R3. Thus, the system (10) is hyperbolic on Ω (unless vacuum occurs in the solution).

A natural choice for Ψ arising from Rij model in one-dimensional space was given in [27]:
Ψ = 3ρR. This is referred to as approach (A1).
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Property 2.

(A1): If we assume that Ψ = 3ρR, then system (9) admits two GNL fields and one LD field;

(A2): If we assume that Ψ = a2
0ϑ with constant a0 ∈ R∗+, then system (9) admits three LD

fields.

In fact, for calculated eigenvalues λk and eigenvectors ~rk (k = 1, 2, 3) of A(Z) and for any
function Ψ(ρ,R) > 0 we have:

∂λ1

∂Z
· ~r1 =

∂(U − c)
∂Z

· ~r1 = −ρ ∂c
∂ρ
− c− ρc2 ∂c

∂(ρR)
= −∂λ3

∂Z
· ~r3,

∂λ2

∂Z
· ~r2 =

∂U

∂Z
· ~r2 = 0, ⇒ 2− field is LD.

(13)

• If we take Ψ = 3ρR then c2 = Ψ/ρ = 3R and the 1 and the 3 fields are GNL, because

∂λ1

∂Z
· ~r1 = −∂λ3

∂Z
· ~r3 = −2c = 6= 0.

• It is also easily seen that for all function Ψ = Ψ(ρ) = a2
0ϑ with constant a0 the following

equality is verified for c =
√
Ψ/ρ = a0ϑ:

∂λ1

∂Z
· ~r1 = −∂λ3

∂Z
· ~r3 = 0.

This means that all the fields in this case are LD.

In order to ensure the link with the expression in (A1), in (A2) we fix a0 =
√

3R0ρ2
0 (see Ap-

pendix A (part II)).

Remark 1. The form of the function Ψ of the approach (A1) is “natural”, but it requires
introducing approximate jump conditions (see [26], [27]). The choice of Ψ associated with (A2)
ensures the uniqueness of the jump conditions and results in the relaxation system that corre-
sponds exactly to the system introduced for the simulation of barotropic Euler equations, when
ρRL = π(ρ). When restricting to (A2) and though equation (9.3) is slightly different from the
formulations presented for instance in [4] and [9] for barotropic Euler equations (see Appendix A
too), relaxation systems are equivalent for smooth solutions and the underlying idea is the same.

Remark 2. System (7) ensures the positivity of the density function. It follows from the
mass continuity equation that when ∀x, ρ(t = 0, x) = ρ0 > 0, the density values may never
become negative in [0, T ] as soon as U, ∂xU ∈ L∞(Rx × [0, T ]).

Remark 3. Some energy estimates for relaxation systems corresponding to (A1) and (A2)
are given in Appendix B , in a one-dimensional framework (and in [18, 16] in a 2D framework).
These should not be confused with entropy estimates for barotropic Euler equations for instance,
such as those provided in [4], [35] and [9] among others.

In the remainder of this paper we will focus on the presentation of the approach
(A2). A comparison of results obtained with both (A1) and (A2) will be provided
and discussed in section 4.

2.3 Analytical solution of the Riemann problem

Before going further on, we recall that the one dimensional Riemann problem corresponds to
the initial value problem associated with the hyperbolic system (9) and discontinuous initial
conditions:  ρ

U
ρR

 =

 ρl
Ul

(ρR)l

 for x ≤ 0 and

 ρ
U
ρR

 =

 ρr
Ur

(ρR)r

 for x > 0. (14)
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In the remainder of the paper, we will use the following shortened notations:

U lr =
Ul + Ur

2
, [U ]rl = (Ur − Ul), [ρR]rl = (ρR)r − (ρR)l, (15)

r1 =


max

−[U ]rl ±
√

([U ]rl )
2

+ 8ϑl[ρR]rl

4ϑl

 , if ([U ]rl )
2

+ 8ϑl[ρR]rl ≥ 0

0, otherwise

(16)

r2 =


max

−[U ]rl ±
√

([U ]rl )
2 − 8ϑr[ρR]rl

4ϑr

 , if ([U ]rl )
2 − 8ϑr[ρR]rl ≥ 0

0, otherwise

(17)

Property 3 (Existence and Uniqueness of the solution of the Riemann problem
for (A2)). Assume that initial conditions are physically relevant (ρl,r > 0 and Rl,r > 0).
Assume moreover that a0 > amin0 = max(r1, r2, 0) ≥ 0 with constant a0 and r1, r2 given by (16),
(17). Then the Riemann problem associated with the homogeneous part of (7) that is (9), initial
conditions (14) and Ψ = a2

0ϑ, admits a unique solution (t, x) 7→ Zexact (x/t;Zl, Zr), composed
of four constant states Zl, Z1, Z2, Zr separated by three LD waves. Z1 and Z2 are given by the
following analytical expressions:

ϑ1 = ϑl +
Ur − Ul

2a0
− (ρR)r − (ρR)l

2a2
0

ϑ2 = ϑr +
Ur − Ul

2a0
+

(ρR)r − (ρR)l
2a2

0

(18)

U1 = U2 =
Ul + Ur

2
− (ρR)r − (ρR)l

2a0
(19)

(ρR)1 = (ρR)2 =
(ρR)l + (ρR)r

2
− a0(Ur − Ul)

2
. (20)

A straightforward consequence is that ϑ1, ϑ2 > 0 and the waves are ordered (λ1 < λ2 < λ3).

A proof of this result can be found in [9] for instance, with a slightly different form of the
relaxation system. The proof is obtained by construction and we recall it below. Let us consider
only the solutions of the class of self-similar functions (x, t) 7→ Z(x/t), composed of constant
states separated by three contact discontinuities (fig. 1):

0
-
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λl,r1 λl,r2

λl,r3

Zl

Z1

Z2

Zr

Figure 1: Sketch of the solution of the one-dimensional Riemann problem when λl,r2 > 0.

Here, λl,r1 = Ul − a0ϑl, λ
l,r
2 = U1 = U2 = U lr − [ρR]rl /2a0, λl,r3 = Ur + a0ϑr.
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Associated with each k-wave we have two k-Riemann Invariants, IkR (k = 1, 2, 3), which satisfy:

∂IkR
∂Z
· ~rk = 0.

These k-Riemann Invariants remain constant through the k-contact discontinuity. For the
present 1-D problem, Riemann Invariants are given by the following expressions:

I1
R =

{
U − c, ρR+ a2

0ϑ
}

I2
R = {U, ρR}
I3
R =

{
U + c, ρR+ a2

0ϑ
} (21)

Then, the structure of the solution of the Riemann problem can be written as:

1-wave {
Ul − cl = U1 − c1
(ρR)l + a2

0ϑl = (ρR)1 + a2
0ϑ1

(22)

2-wave {
U1 = U2

(ρR)1 = (ρR)2

(23)

3-wave {
U2 + c2 = Ur + cr

(ρR)2 + a2
0ϑ2 = (ρR)r + a2

0ϑr
(24)

We check at once that formulae (18), (19), (20) are the unique solutions of (22), (23), (24).
Eventually, the constructed analytical solution to the Riemann problem associated with (9) and
initial conditions (14) can be sketched as:

(x, t) 7→ Zexact (x/t;Zl, Zr) . (25)

For a0 large enough, the positivity of ϑ1, ϑ2 is ensured for all initial conditions (ρ, U, ρR)l,r. At
the same time, we would like to avoid a0 being too large in order to preserve the accuracy of the
scheme. Hence, we aim at determining an appropriate value of a0. Using notations (15), we can
rewrite the wave ordering condition λ1 < λ2 < λ3 as follows:

Ul − a0ϑl < U lr −
1

2a0
[ρR]rl < Ur + a0ϑr. (26)

After some simple transformations, this leads us to the next system of square inequalities :{
2ϑla

2
0 + [U ]rl a0 − [ρR]rl > 0,

2ϑra
2
0 + [U ]rl a0 + [ρR]rl > 0,

(27)

and we can see that imposing ϑ1, ϑ2 > 0 in (18) leads to the same constraints. The solution of
(27) provides us with ”natural“ conditions to choose a physically relevant lower bound for a0.

Remark 4. When ρRL = π(ρ) with π given, a further evaluation of a lower bound of the
parameter a0 needed in (A2) will be recalled in Appendix A, relying on Whitham’s condition.
This condition guarantees some dissipation in the entropy balance equation (see [9]). In the
general case, where ρRL = ρRL(t, x), this condition cannot be directly applied (see Appendix A).

Remark 5. The positivity of the kinetic tensor in the intermediate states is not preserved for
any initial condition (ρ, U, ρR)l,r. However, it is crucial to emphasize that at each time step the
local values of R = RL are restored, thus the realizability is ensured owing to the instantaneous
relaxation step.
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Remark 6. In the approach (A1) developed in [27], the positivity of the kinetic tensor is
required to ensure the hyperbolicity property for the corresponding relaxation system and, at the
same time, is preserved by the very construction of this system.

3 Numerical approximation

Following the relaxation technique described in section 2, we approximate the solutions of an
initial value problem associated with original system (4) by those of extended system (7) with
Ψ = a2

0ϑ. For simplicity of the notations, both problems can be rewritten in a condensed form:{
∂tWφ + ∂xFφ(Wφ, R

L) = 0, t > 0, x ∈ R,
Wφ(0, x) = Wφ,0(x) and RL(0, x) = RL0 (x).

(28)

for (4) with Wφ = (ρ, ρU)t, Fφ(Wφ, R
L) = (ρU, ρU2 + ρRL)t, and{

∂tW + ∂xF (W ) +G(W )∂xW = S(W,RL), t > 0, x ∈ R,
W (0, x) = W0(x).

(29)

for (7), where W = (ρ, ρU, ρR)t, W ∈ Ω is the unknown vector with the corresponding physical
“fluxes” and the source term S(W,RL):

F (W ) =

 ρU
ρU2 + ρR
ρUR

 , G(W )∂xW =

 0
0

(a2
0ϑ− ρR)∂xU

 , S(W,RL) =

 0
0

ρ(RL −R)/τRp

 .

(30)
We consider a uniform grid given by cell centers xi = ih, i ∈ Z. Each cell is an interval
Ci = [xi−1/2, xi+1/2] of length h, where the points xi+1/2 = xi+h/2 are called cell interfaces. The
time is discretized with the time step (∆t)n such that tn+1 = tn+(∆t)n, n ∈ N are intermediate
times. We assume the values of the approximate solution at time tn, x ∈ R 7→ W∆(x, tn) ∈ Ω,
to be constant in each cell Ci, i ∈ Z, and denote them by Wn

i :

W∆(x, tn) = Wn
i , ∀x ∈ Ci, i ∈ Z, n ∈ N. (31)

Besides, using the initial condition W0(x) at t = 0, we define the sequence (W 0
i )i∈Z as the average

of function W0(x) over the cell i (i ∈ Z):

W 0
i =

1

h

∫ xi+1/2

xi−1/2

W0(x)dx, ∀i ∈ Z. (32)

At t = 0, W∆(x, t0) is set at equilibrium which means that (ρR)0
i = (ρRL)0

i , i ∈ Z.

At each time step, the global algorithm which provides the approximations W∆(., tn+1) from
W∆(., tn) can be written as follows:

• Initialization (at tn): As initial condition we take Wn
i = (ρni , ρ

n
i U

n
i , ρ

n
i R

L,n
i )t;

• Evolution step (tn → tn+1,−): approximation of the solution of the homogeneous system
corresponding to (29) at tn+1,− = tn + ∆tn with a Finite Volume scheme described in
sec.3.1. This step computes the values Wn+1,−

i from Wn
i (i ∈ Z);

• Relaxation step (tn+1,− → tn+1): accounts for the source term S(W,RL) by solving
the differential equation ∂tW = S(W,RL) at tn+1 = tn + ∆tn with the initial condition

8



Wn+1,−
i obtained at the previous stage. It traduces the return of the system to equilibrium

assuming an instantaneous relaxation (τRp → 0) and gives the values Wn+1
i , i ∈ Z:

ρn+1
i = ρn+1,−

i

(ρU)n+1
i = (ρU)n+1,−

i

(ρR)n+1
i = ρn+1

i (RL)n+1
i ⇔ Rn+1

i = (RL)n+1
i .

(33)

Finally, we retrieve Wn+1
φ,i = (ρn+1

i , (ρU)n+1
i )t, i ∈ Z, n ≥ 0 that is an approximation of the

solution to (28).

3.1 Evolution step: Godunov scheme and interface Riemann solver

The computations inside this step are made in terms of the conservative state vector W =
(ρ, ρU, ρR)t. Therefore, we approximate solutions of the following Cauchy problem{

∂tW + ∂xF (W ) +G(W )∂xW = 0, t ∈ [0, (∆t)n], x ∈ R
W (x, 0) = W∆(x, tn).

(34)

Following properties 1, 2, this system is hyperbolic and admits three LD fields. Thus, the
solution of the associated Riemann problem is uniquely defined. Since x 7→W∆(x, tn) is piecewise
constant, the solution to system (34) is obtained by solving the Riemann problem at each cell
interface xi+1/2, i ∈ Z. To be consistent, the time step (∆t)n, n ∈ N should be limited in such
a way that the waves emanating from an interface do not interact with waves created at the
adjacent interfaces during the time step. This leads to the CFL condition:

(∆t)n

h
max
W

(|λk(W )|, k = 1, 2, 3) ≤ CFL < 1

2
, n ∈ N. (35)

More precisely, for (x, t) ∈ [xi, xi+1]×]0,∆t] we have

W∆(x, t) = W exact

(
x− xi+1/2

t
;Wn

i ,W
n
i+1

)
, i ∈ Z. (36)

where (x, t) 7→W exact (x/t;Wl,Wr) is the self-similar solution of the Riemann problem
∂tW + ∂xF (W ) +G(W )∂xW = 0,

W (x, 0) =

{
Wl if x < 0,

Wr if x > 0.

(37)

given by property 3. Then, we can write

W exact
(
x/t;Wn

i ,W
n
i+1

)
=


Wn
i , if x

t ≤ λ1,i+1/2,
Wn

1,i+1/2, if λ1,i+1/2 <
x
t < λ2,i+1/2,

Wn
2,i+1/2, if λ2,i+1/2 <

x
t < λ3,i+1/2,

Wn
i+1, if x

t ≥ λ3,i+1/2,

(38)

where Wn
i , Wn

i+1 are averaged cell values and Wn
1,i+1/2,W

n
2,i+1/2 are intermediate states in the

solution of the Riemann problem at the interface i+ 1/2 (Fig. 2).
In the following, we use this exact solutionW∆(x, t) to construct the approximationWn+1,−

i , i ∈
Z with a Godunov finite volume scheme:

h
(
Wn+1,−
i −Wn

i

)
+ ∆tn

(
Fn,God
i+ 1

2

−Fn,God
i− 1

2

)
+ ∆tnHni = 0, i ∈ Z, n ≥ 0, (39)

where Fn,God
i+ 1

2

= F(Wn
i ,W

n
i+1) is the exact Godunov flux through the interface i+ 1/2:

Fn,God
i+ 1

2

= F
(
W exact

(
0;Wn

i ,W
n
i+1

))
, (40)
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Figure 2: Sketch of a part of the grid

and Hni is an approximation of the non-conservative contribution. If we denote for the sake of
simplicity W ∗i+1/2 = W exact

(
0;Wn

i ,W
n
i+1

)
, i ∈ Z, the term Hni is given by:

Hni =

 0
0

1
2

(
(a2

0ϑ)∗
i− 1

2

+ (a2
0ϑ)∗

i+ 1
2

− (ρR)∗
i− 1

2

− (ρR)∗
i+ 1

2

)(
U∗
i+ 1

2

− U∗
i− 1

2

)
 , (41)

where the locally constant values (a2
0)ni+1/2 are computed at each tn, n ∈ N at each cell interface

i+1/2, i ∈ Z according to the wave ordering condition and, when possible, Whitham’s condition
(see Appendix A for further details).

The present algorithm gives us the piecewise constant values Z∆(x, tn+1,−) that are approx-
imations averaged on each cell Ci, i ∈ Z.

Remark 7 (Positivity of cell values of the density). Assume that |λmax|∆t/h < 1/2 and
that the parameter a0 guarantees the positivity of the density in the intermediate states defined
by (18): ϑ1,i+1/2, ϑ2,i+1/2 > 0, i ∈ Z. Then the evolution step (39) preserves the positivity of

the cell values of the density and the whole algorithm computes ρn+1
i ≥ 0 (since the relaxation

step (33) preserves cell densities).

The proof being classical is not recalled here.

4 Numerical results

In order to verify the approach (A2) we consider in the first subsections below some test cases
where :

ρRL = π(ρ), (42)

and thus, analytical solutions are known. Some theoretical results for (A2) (seen as a “true”
relaxation technique for the barotropic Euler equations) can be found in this case in [4, 9] for
instance and references called therein. Such a closure ρRL = π(ρ) allows to measure the error
of approximation and to verify the convergence towards the correct solution in practice. By
the way, we will compare results obtained with both (A2) and (A1). The numerical scheme
for approach (A1) has been proposed in [27] and is not recalled here. It relies on a different
“relaxation“ system (see section 2.2) and on the use of the VFRoe-ncv scheme [8]. In order to
emphasize the main differences between (A1) and (A2) we present numerical tests on shock tubes
for the most difficult configurations, such as vacuum occurrence, strong shocks and rarefaction
waves including sonic points.

In the second part, some results obtained with specific analytic kinetic tensor RL will be
presented.
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4.1 Algorithm verification

In this part of the paper, we will assume the following “closure” relation:

ρRL = π(ρ) = S0ρ
γ (43)

with constant entropy S0 = 105 and γ = 3. This value of γ corresponds to the underlying
isentropic case arising in [27], [6]. Thus

RL,ni = S0 (ρni )
γ−1

within each cell i, and we can compute the exact solution of the one-dimensional Riemann
problem associated with the homogeneous analogue of (1) in all cases.

Initial conditions refer to different 1D Riemann problems. The computational domain consists
of a one-dimensional tube placed in [−0.5, 0.5] with a membrane in the middle, which separates
two different fluid states at the beginning of the computation (t = 0). All meshes used to solve
these Riemann problems are regular. The time step is in agreement with the CFL condition and
the CFL number is equal to 1/2. For a qualitative study, we present profiles for the density, the
velocity, the pressure and the flow rate. From a quantitative point of view, numerical convergence
curves, at a given time, are represented by plotting the logarithm of the L1-norm of the error as
a function of the logarithm of the mesh size. We recall that the expected rate of convergence for
the isentropic one-dimensional Euler equations is equal to 1, due to the fact that the system only
involves two GNL fields. The grids that have been used contain between N = 102 and N = 105

cells.

In order to stabilize the numerical approximations at each tn, n ∈ N and at each cell interface
i+ 1/2, i ∈ Z, we impose the (locally constant) values (a0)ni+1/2 to satisfy the condition:

(a0)ni+1/2 ≥ max((a0)λ,ni+1/2, (a0)W,ni+1/2),

where aλ0 and aW0 are defined in Appendix A for all n ∈ N, i ∈ Z.

4.1.1 Supersonic shock tube

We study first a supersonic case, using the following initial conditions:

ρl = 1, ρr = 0.35, (44)

Ul = 100, Ur = 290. (45)

The exact solution is composed of a supersonic 1 - rarefaction wave and a right going 2 - shock
wave, Fig. 4. From the Fig. 5 we may conclude that approximations obtained with the two
schemes converge towards the correct solution with the same rate of convergence (which is about
0.85 and compares well with rates given in [7, 11]). Moreover, both methods provide almost the
same accuracy for a given mesh size. In this case, the 1-rarefaction wave contains a sonic point.
The VFRoe-ncv scheme used in approach (A1) requires an entropy correction at sonic points
[24]; otherwise a wrong shock wave develops. On the other hand, the relaxation scheme (A2)
exhibits the correct behaviour in the rarefaction wave without any entropy correction.

4.1.2 Symmetrical double shock wave

This case is interesting in order to compare the stability of both schemes around a wall boundary,
when the normal component of the velocity of the fluid close to the boundary is positive. We
consider the initial conditions:

ρl = ρr = 1, (46)
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Ul = −Ur = 103. (47)

The exact solution is composed of a 1 - shock wave and a 2 - shock wave. The numerical rate of
convergence for both the density and the velocity is approximately 1 for both methods, which
is in agreement with results obtained in [7] (see Fig. 6, 7). Moreover, the accuracy for the two
schemes is almost the same for a given mesh size. Eventually, we emphasize that the relaxation
approach (A2) exhibits a better stability since (A1) induces tiny - stable - oscillations near the
shocks (that do not inhibit the convergence). Actually, this characterizes problems with a very
high initial kinetic energy, even when the CFL number is such that waves do not interact. It has
been shown that approximations obtained with a CFL number equal to 0.9 are also convergent in
that case for (A2). In fact, the limit of stability of approach (A2) in the present configuration is
reached for Ul = −Ur = 104, where stable approximations are still available, but tiny oscillations
appear (Fig. 8). On the other hand, approach (A1) is no longer suitable to tackle such a problem.

Remark 8. This test case is essential since it provides some numerical evidence that both
approximate solutions provided by methods (A1) and (A2) converge to the correct shock solutions
of original system (4). This result was not obvious for the relaxation system corresponding to
approach (A2), but it was even less expected for (A1), where approximate jump conditions have
been introduced in the “relaxation” system.

4.1.3 Symmetrical double rarefaction wave

We now examine a symmetrical double rarefaction wave. This one is the counterpart of the
previous test, when the inlet normal component of the velocity is negative. Initial conditions are
the following:

ρl = ρr = 1, (48)

Ul = −Ur = −100. (49)

Two symmetric rarefaction waves develop when Ur is positive. We have plotted the approx-
imations of the solution in Fig. 10. The error obviously vanishes as the mesh size tends towards
zero and the numerical rates of convergence are still close to 0.85 (Fig. 11).

4.1.4 Symmetrical double rarefaction wave with vacuum occurrence

Here, we study a more complex case where the speeds of rarefaction waves are so large that
it leads to a vacuum occurrence in the solution. Before going further on, we recall that for
isentropic Euler equations with a perfect gas equation of state, a vacuum may occur only when

Ur − Ul >
2

γ − 1
(cφ,r + cφ,l) , (50)

where cφ is the celerity associated with system (4) when ρRL = π(ρ) = S0ρ
γ . Assuming the

initial conditions:
ρl = ρr = 1, (51)

Ul = −Ur < 0, (52)

cφ,l = cφ,r =

√
S0γρ

γ−1
r ,

we conclude that the vacuum may occur when

Ur
cφ,r

>
2

γ − 1
. (53)

If we take Ul = −Ur = −1000, relation (53) is satisfied. The exact solution is composed of
two symmetric rarefaction waves. The intermediate state exhibits a vacuum zone where the
velocity is not defined but the flow rate and the density are zero. When focusing on (ρ,Q), both
approximations obtained with (A1), (A2) converge towards the correct solution with vanishing h.
A glance at profiles in Fig. 12 enables to check that both schemes give almost the same accuracy.
Numerical rates of convergence in Fig. 13 are close to 0.7 (see also [7], [11], [20]).
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4.1.5 Supersonic rarefaction wave

This case is somewhat equivalent to a dam break with shallow-water equations. One initial
condition (on the right) is such that the density is very small:

ρl = 1, ρr = 10−7, (54)

Ul = 0, Ur = Ul +
2cφ,l
γ − 1

(
1− cφ,r

cφ,l

)
. (55)

Here, a supersonic 1 - rarefaction wave is followed by a “ghost” 2 - shock wave. Once more, we
check that approximations converge towards the correct solution when the mesh is refined (Fig.
14). The rate of convergence is slightly higher than in the previous test case (about 0.82, Fig.
15). This suggests that the true vacuum zone actually pollutes the approximations. We note a
small loss of monotonicity at the end of the rarefaction wave. Actually, this drawback vanishes
with a mesh refinement, and therefore, the positivity of cell values of the density is preserved.
As mentionned before, an important issue here is that the relaxation scheme (A2) does not need
any entropy correction.

4.2 Numerical results for (A2) with a noisy kinetic tensor

We focus now on some numerical test cases when a noisy kinetic tensor is plugged in the system
of equations (4). For that purpose, we apply a noise to the values of RL, which refer to the
isentropic case studied in section 4.1, at each time step in the cells that belong to the region
x ∈ [−0.25, 0.25] as follows:

RL,ni = S0(ρni )γ−1(1 + rms(0.5− rand(0, 1))), i ∈ Z, n ∈ N,

where rms stands for the noise intensity and rand (random numbers generator) allows to manage
the noise amplitude.

We choose the initial conditions of a subsonic shock tube problem:

ρl = 1, ρr = 0.24, (56)

Ul = −10, Ur = −282. (57)

We fix the final time T , such that the boundary of the domain is not yet attained by the
travelling waves. In order to estimate the stability of numerical approximations in such a case,
we analyse their evolution when the mesh is refined: N = 102, 103, 104, 5 × 104, 105 cells. The
comparison displayed in Fig. 3 shows that the noise is not diminishing when the mesh is refined,
and that approximations do not converge towards some smooth solution. Moreover, we note
that the L1 norm of the difference between the approximations with rms = 0.1 and rms = 0
tends to be constant when h tends to zero [17].
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Figure 3: Subsonic shock tube: density and velocity approximations

Conclusion

We have introduced in this paper a new approach (A2) in order to tackle approximations of
solutions to (1) in the one-dimensional case. This method is quite similar to (A1) introduced
in [10, 26, 27] but it no longer requires the definition of approximate jump conditions since
the relaxation system admits only linearly degenerated fields. The approach (A2) has been
validated by computing exact solutions in a specific case, where RL = RL(ρ), and associated
errors. Numerical results have also been compared with those provided by approach (A1). On
the whole, we would like to note that:

• both methods (A1) and (A2) guarantee a correct convergence of approximations, even when
shocks arise in the solution. This was foreseen to happen, due to the conservative form of
the schemes associated with (A1) and (A2) for the basic two conservative equations in (1);

• both methods can handle vacuum occurrence. This is crucial for practical hybrid compu-
tations.

We also emphasize that approach (A1), which relies on the approximate Godunov solver
VFRoe-ncv, requires an entropy correction at sonic points in rarefaction waves, whereas ap-
proach (A2) does not. Moreover, (A2) may handle stronger shock waves.

The reference [17] shows several numerical experiments which have been achieved while plugging
noisy kinetic tensor in the governing set of partial differential equations (4). A sample result
can be found in sec. 4.2. One may conclude from [17] that approaches (A1), (A2) enable stable
computations, which means that a mesh refinement is always possible, whatever the noise level.
Moreover, for a given noise, the difference between approximations obtained with or without
noise varies linearly with respect to the noise intensity and disturbances due to the noisy region
are smoothed by the numerical scheme and tend to disappear out of this region (see [17]).

Eventually, we note that the present relaxation approach has been extended to a two-dimensional
framework. This work is presented roughly in [18] and in detail in [15, 16]. A two-dimensional
coupled simulation in a realistic configuration is presented in Appendix C.
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Figure 6: Symmetric double shock: comparison of density and velocity solutions
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Figure 7: L1 convergence curves for symmetric double shock: density (left), velocity (right). Coarser
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Figure 10: Symmetric double rarefaction: comparison of density and velocity solutions
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Figure 11: L1 convergence curves for symmetric double rarefaction: density (left), velocity (right).
Coarser mesh: 100 cells; finer mesh: 100000 cells
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Figure 12: Symmetric double rarefaction with vacuum occurence: comparison of density and flow
rate solutions
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Figure 13: L1 convergence curves for symmetric double rarefaction with vacuum: density (left),
flow rate (right). Coarser mesh: 100 cells; finer mesh: 100000 cells
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Figure 14: 1-supersonic rarefaction wave: comparison of density and velocity solutions
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Figure 15: L1 convergence curve for 1-supersonic rarefaction wave: density (left), velocity (right).
Coarser mesh: 100 cells; finer mesh: 100000 cells
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Appendix A. a0 parameter evaluation

We consider two constant states Zl, Zr that refer to the Riemann problem (9), (14) with Ψ = a2
0ϑ

and such that: Rl,r > 0 and ρl,r > 0. To find a suitable value of a0 associated with this problem
(that is the value that allows to find a compromise between the stability and the accuracy of
numerical approximations) the following two conditions are imposed:

• Wave ordering condition

As it has been shown in sec. 2.3, the wave ordering condition

λ1(Z) < λ2(Z) < λ3(Z) (58)

ensures the positivity of ϑ1, ϑ2 and is used to get a lower bound for a0. With shortened
notations

xlr =
xl + xr

2
, [x]rl = (xr − xl), (59)

condition (58) leads us to the next system of inequalities:{
2ϑla

2
0 + [U ]rl a0 − [ρR]rl > 0

2ϑra
2
0 + [U ]rl a0 + [ρR]rl > 0

(60)

with discriminants expressed by

∆1 = ([U ]rl )
2

+ 8ϑl[ρR]rl

∆2 = ([U ]rl )
2 − 8ϑr[ρR]rl .

(61)

Then, if ∆1 ≥ 0 we have

(a0)1,2 =
−[U ]rl ±

√
∆1

4ϑl
.

When ∆2 ≥ 0, we find

(a0)3,4 =
−[U ]rl ±

√
∆2

4ϑr
.

Finally, the whole algorithm for computing a0 under the wave ordering condition can be
summarized as follows.

Algorithm:

We take an initial value for the parameter ε:

ε = (3R0)
1/2

ρ0 with R0 = Rlr, ρ0 = ρlr

If ∆1 ≥ 0 and ∆2 ≥ 0 then a0 = max {ε, (a0)i} , i = 1, 2, 3, 4.

If ∆1 ≥ 0 and ∆2 < 0 then a0 = max {ε, (a0)i} , i = 1, 2.

If ∆1 < 0 and ∆2 ≥ 0 then a0 = max {ε, (a0)i} , i = 3, 4.

If ∆1 < 0 and ∆2 < 0 then a0 = ε.

Let us denote the lower bound obtained for a0 at this stage by aλ0 .

• Whitham’s condition

– Following for instance [9], in order to obtain stable approximations of the barotropic
Euler equations {

∂tρ+ ∂x(ρU) = 0, t > 0, x ∈ R,
∂t(ρU) + ∂x(ρU2) + ∂xp(τ) = 0,

(62)
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where ρ is the density, U is the velocity, τ(t, x) = 1/ρ(t, x) is the specific volume, and
p is the pressure law, one may introduce a relaxation system of the form (λ > 0):

∂tρ+ ∂x(ρU) = 0, t > 0, x ∈ R,
∂t(ρU) + ∂x(ρU2) + ∂xπ = 0,

∂t(ρT ) + ∂x(ρT U) = λρ(τ − T ),

(63)

with the so-called relaxed pressure:

π(T , τ) = p(T ) + a2
0(T − τ),

which is expected to tend to p(τ) when T → τ . Setting ε(τ): ε(τ) = −p′(τ) and
restricting to smooth solutions, the governing equation of the relaxation entropy

ρΣ =
ρU2

2
+ ρε(T ) + ρ

π2 − p2(T )

2a2
0

,

is given by (see [9]):

∂t(ρΣ) + ∂x(ρΣU + πU) = −λρ(a2
0 + p′(T ))(T − τ)2. (64)

Thus, the relaxation entropy is dissipated by the relaxation procedure if

a2
0 > −p′(T ), for all realisable (τ, U, T ). (65)

At the discrete level, the explicit numerical algorithm corresponding to formulation
(63) only requires at each time t = tn the knowledge of{

T n = τn = 1/ρn,

πn = p(T n) = p(τn) = pn.
(66)

Hence, the explicit form of the function p(T ) is not compulsory, only the cell val-
ues pn are needed. However, condition (65) requires an estimation of p′(T ), which
is unknown if p(T ) is unknown. Thus, if p(T ) is unknown, this entropy dissipation
principle cannot be used in practice to compute a lower bound for a2

0.

– In our framework, the correspondence can be made between the present system (62)
and equations (4) setting p(τ,RL) = RL/τ , but a lower bound of a2

0 cannot be ob-
tained on the basis of (64), (65), which no longer make sense.

Thus, in order to ensure the numerical stability of the method at a discrete level,
we introduce a local estimate:

∆p

∆τ
=

∆l,r(R
L/τ)

∆l,r(τ)
,

where “l“ and “r“ refers to the left and right discrete states respectively, by assuming
that locally p = ρRL behaves as Kl,rτ

−3 with

Kl,r =
1

2

(
τ2
l R

L
l + τ2

rR
L
r

)
.

Then, the local counterpart of Whitham’s condition is given by the inequality:

a2
0 > Kl,r

(
τ−2
l + (τlτr)

−1 + τ−2
r

)
(τlτr)

−1
,

and the associated lower bound for a0 is denoted by: aW0 = Kl,r

(
τ−2
l + (τlτr)

−1 + τ−2
r

)
(τlτr)

−1
.

22



– If we assume a particular expression in Eqs.(4): ρRL = π(ρ) with π ∈ C∞(]0,+∞[),
such that π′(ρ) > 0 for all ρ > 0, in order to prevent the relaxation system (7) (with
Ψ = a2

0ϑ) from instabilities, we need to comply with Whitham’s condition (see for
instance [4, 5]):

a0ϑ > cφ. (67)

where cφ is the celerity corresponding to original system (4). In this particular case,
we can calculate the speed of acoustic waves:

c2φ = π′(ρ).

For the isentropic Euler equations with γ = 3 (which besides corresponds to the
approach A1), we have an explicit formula:

ρR = S0ρ
3 with S0 =

R0

ρ2
0

. (68)

Then,

cφ =
√

3R0

(
ρ

ρ0

)
(69)

and, taking ρ = max(ρl, ρr), Whitham’s condition can be formulated as follows:

a0 >
√

3R0

(
ρ2

ρ0

)
, (70)

with a lower bound aW0 =
√

3R0ρ
2/ρ0.

Finally, we take a0 = max(aλ0 , a
W
0 ).

Appendix B. Energy control in the relaxation systems (A1/A2)

In order to give an estimate of the mean kinetic energy, which is caracterising the initial system
of equations (4), we study the evolution of the “total” energy in the relaxation system. We focus
on smooth solutions in this appendix.

Let us denote by

E(x, t) =
1

2

(
ρU2

)
(x, t) ≥ 0 and E(t) =

∫
Ω

E(x, t)dx ≥ 0 (71)

the kinetic energy of the drift (the mean motion), by

K(x, t) =
1

2
(ρR) (x, t) ≥ 0 and K(t) =

∫
Ω

K(x, t)dx ≥ 0 (72)

the energy of fluctuating particle motion, and by

E(x, t) = E(x, t) +K(x, t) =
1

2

(
ρU2

)
(x, t) +

1

2
(ρR) (x, t) ≥ 0, (73)

Σ(t) =

∫
Ω

E(x, t)dx = E(t) + K(t) ≥ 0 (74)

the “total” particle energy.
Approach (A1). We study the homogeneous relaxation system corresponding to the ap-

proach (A1):
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∂ρ

∂t
+

∂

∂x
(ρU) = 0

∂

∂t
(ρU) +

∂

∂x
(ρU2) +

∂

∂x
(ρR) = 0

∂

∂t
(ρR) +

∂

∂x
(ρUR) + 2ρR

∂U

∂x
= 0

(75)

on the closed domain Ω × [0, T ] with realizable initial conditions and homogeneous Dirichlet
boundary conditions on U : U(x, t)|∂Ω = 0.

From (75.1), (75.2) we obtain an equation for the mean energy evolution:

∂

∂t

(
1

2
ρU2

)
+

∂

∂x

(
U · 1

2
ρU2

)
+ U

∂

∂x
(ρR) = 0 (76)

or
∂E

∂t
+

∂

∂x
(UE) +

∂

∂x
(2KU)− 2K

∂U

∂x
= 0 (77)

In the same manner, from (75.3) we develop an equation for the evolution of K(x, t):

∂K

∂t
+

∂

∂x
(UK) + 2K

∂U

∂x
= 0 (78)

Finally, we get an equation for the “total” energy variation:

∂E
∂t

+
∂

∂x
(UE) +

∂

∂x
(2UK) = 0. (79)

From this equation, owing to the homogeneous Dirichlet boundary conditions on U it follows
that

∂

∂t

∫
Ω

Edx = 0. (80)

Thus, during the evolution step the total energy is conserved:

Σ
(
tn+1,−) = Σ (tn) (81)

that can be rewritten in the form:

E
(
tn+1,−)+ K

(
tn+1,−) = E (tn) + K (tn) . (82)

If we assume that:

• K (x, tn) ≥ 0 is ensured by initial conditions,

• ∀t ∈
[
tn, tn+1

]
, K (xΓ− , tn) ≥ 0 on Γ− = {x ∈ ∂Ω | U(x, t).n < 0} , where n denotes the

outward normal,

• ∀t ∈
[
tn, tn+1

]
, U(x, t) and

∂U

∂x
(x, t) ∈ L∞

(
Ω×

[
tn, tn+1

])
,

then on Ω×
[
tn, tn+1,−] K(x, t) solution of (78) remains positive. Thus:

K(tn+1,−) =

∫
Ω

K(x, tn+1,−)dx ≥ 0, (83)

where K(x, tn+1,−) is solution of (78).

We have also:
E(tn+1) = E(tn+1,−) (84)
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since E = E(ρ, U), and ρn+1 = ρn+1,−, Un+1 = Un+1,−.

Finally, since (E(tn) + K(tn)) is bounded we obtain from (82) the following estimate of the
energy E(tn+1):

0 ≤ E(tn+1) = E(tn) + K(tn)−K(tn+1,−) ≤ E(tn) + K(tn). (85)

Thus E(tn+1) = E(ρn+1, Un+1) is bounded.

Approach (A2). Now, we apply the same reasoning to obtain the estimate for the mean
kinetic energy for the relaxation system corresponding to approach (A2):

∂ρ

∂t
+

∂

∂x
(ρU) = 0

∂

∂t
(ρU) +

∂

∂x
(ρU2 + ρR) = 0

∂

∂t
(ρR) +

∂

∂x
(ρUR) +

(
a2

0ϑ− ρR
) ∂U
∂x

= 0

(86)

Keeping the notations (71) - (74), we have the same equation for the mean kinetic energy
evolution:

∂E

∂t
+

∂

∂x
(UE) +

∂

∂x
(2KU)− 2K

∂U

∂x
= 0 (87)

The counterpart of (78) for the evolution of the fluctuating motion energy K(x, t) is:

∂K

∂t
+

∂

∂x
(UK) + 2K

∂U

∂x
+

1

2

(
a2

0ϑ− 3ρR
) ∂U
∂x

= 0. (88)

But here, we can not obtain a conservative equation for the “total” energy evolution. Actually,
the sum of the last two equations results in a non-conservative equation:

∂E
∂t

+
∂

∂x
(UE) +

∂

∂x
(2UK) +

1

2

(
a2

0ϑ− 3ρR
) ∂U
∂x

= 0. (89)

For this reason, we introduce a slightly modified definition of the total energy, which is now
called E ′:

E ′ = E + ρg(ω) = E +K + ρg(ω), (90)

where
ω(ρ,R) = a2

0ϑ− 3ρR. (91)

We note that ω may be viewed as a “small parameter” that measures the drift between (A1)
and (A2).

For any solution (ρ,R) of the system (86), the function g(ω) complies with:

∂(ρg)

∂t
+

∂

∂x
(ρUg)− 4a2

0g
′(ω)

∂U

∂x
= 0. (92)

Moreover, we have:
∂E
∂t

+
∂

∂x
(UE) +

∂

∂x
(2UK) +

ω

2

∂U

∂x
= 0, (93)

The sum of these two gives us the equation for the “total” energy E ′ evolution:

∂

∂t
(E + ρg) +

∂

∂x
(U(E + ρg)) +

∂

∂x
(2UK) +

(ω
2
− 4a2

0g
′(ω)

) ∂U
∂x

= 0. (94)

If we choose

g(ω) =
ω2

16a2
0

≥ 0, (95)
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we can rewrite equations for E,K and (ρg) as follows:

∂E

∂t
+

∂

∂x
(UE) +

∂

∂x
(2KU)− 2K

∂U

∂x
= 0

∂K

∂t
+

∂

∂x
(UK) + 2K

∂U

∂x
+
ω

2

∂U

∂x
= 0

∂(ρg)

∂t
+

∂

∂x
(Uρg)− ω

2

∂U

∂x
= 0

(96)

Hence, equation (94) for the energy E ′ evolution is conservative:

∂E ′

∂t
+

∂

∂x
(UE ′) +

∂

∂x
(2UK) = 0. (97)

Thus, the total energy E ′ is conserved during the evolution step:

Σ′(t) =

∫
Ω

E ′(x, t)dx, Σ′
(
tn+1,−) = Σ′ (tn) , (98)

still using homogeneous Dirichlet boundary conditions for U(x, t). This is equivalent to:

E
(
tn+1,−)+ K

(
tn+1,−)+

∫
Ω

(ρg)(x, tn+1,−)dx = E (tn) + K (tn) +

∫
Ω

(ρg)(x, tn)dx, (99)

or:

0 ≤ E
(
tn+1

)
= E

(
tn+1,−) = E (tn)+K (tn)+

∫
Ω

(ρg)(x, tn)dx−K
(
tn+1,−)−∫

Ω

(ρg)(x, tn+1,−)dx.

(100)
Hence:

0 ≤ E
(
tn+1

)
≤ E (tn) + K (tn) +

∫
Ω

(ρg)(x, tn)dx−K
(
tn+1,−) (101)

since (ρg)(x, t) ≥ 0.

Appendix C. On hybrid modelling of dispersed turbulent
two-phase flows

Poly-dispersed two-phase flows consisting of a turbulent carrier phase (a liquid or a gas) and
dispersed particles (solid particles, droplets or bubbles) are complex processes which are very
important in many industrial situations. Therefore, an accurate prediction of these flows is
required for engineering purposes. Furthermore, for the modelling and numerical simulation of
a poly-dispersed two-phase flow, the two phases (fluid and particles phase) have to be treated
in a coupled way.

However, the two most popular approaches (Eulerian and Lagrangian) for two-phase flow
modelling have disadvantages which limit their capacities. Hybrid methods try to gather the
advantages of the Eulerian approach (expected values free from statistical error and low calcu-
lation costs) with those of the Lagrangian approach (polydispersity and non-linear local source
terms are treated without approximations) [31, 32]. At the moment, most hybrid methods use
only one description (Eulerian or Lagrangian) for each phase. The idea of the hybrid method
introduced in [10] is to use a mixed Eulerian/Lagrangian formulation for the dispersed phase
while the properties of fluid remain calculated with the Eulerian approach. By treating some
statistical quantities (such as the mean particle velocity and the local particle concentration)
in an Eulerian manner (i.e. as mean fields defined on a fixed grid), the overall system is less
sensitive to errors introduced by statistical noise. This, in turn, will eventually allow for com-
putations using a smaller number of computational particles, thus leading to faster calculations.
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Therefore, in this new hybrid method the two approaches are coupled in a fully consistent man-
ner while keeping the high level of physical information provided by the Lagrangian description.
The incompressible fluid phase is described by Reynolds Averaged Navier-Stokes (RANS) equa-
tions which are solved by an Eulerian Finite Volume solver (that is not detailed here). Then,
the fluid-related mean fields (i.e. mean pressure 〈P 〉 (or its gradient), mean fluid velocity 〈Uf 〉,
Reynolds stress tensor R = {Rij}di,j=1,with d− space dimensions and the dissipation rate of the
turbulent kinetic energy 〈ε〉 ) are provided to the particle-phase model. The flows we are dealing
with are considered to be dilute enough in particles not to consider the turbulence modulation.
The dispersed (particle) phase is modelled by a coupled Eulerian/Lagrangian description. The
Lagrangian part of the model is given by stochastic differential equations (SDEs), which are
solved by resorting to particle/mesh Monte-Carlo methods [34]. The Eulerian part of the parti-
cle model is given by a system of partial differential equations for mean quantities which present
an important convective part. These equations describe the time evolution of the first order
moments of the particle volume fraction and the instantaneous particle velocity and are deduced
from Lagrangian stochastic description ([31], chap.6.7). Thus, both systems are consistent by
construction.

In order to guarantee the coupling of methods for the particle description we have to choose
the averaging and interpolation procedures, that is how information is exchanged from the mesh
to the stochastic particles (interpolation of Eulerian mean fields at particle positions) and from
the stochastic particles to the mesh (how mean fields are extracted). Moreover, such a coupling
introduces noisy quantities (computed by the stochastic equations) in the Eulerian part of the
model.

An example of the particle phase simulation using hybrid method

In this appendix we present a two-dimensional case of turbulent two-phase wall jet, where solid
particles are involved in the turbulent air flow, which is characterized by the non-homogeneous
anisotropic stationary turbulence. Only the particle hybrid (Eulerian/Lagrangian) model is
solved, whereas the fluid mean fields are provided by a preliminary single-phase computation
and are taken as frozen fields. We consider heavy enough particles in a such a way that the
gravity and the drag forces are predominant in a two-dimensional framework, and we intend to
compare the first order particle moments computed using the present hybrid model (these will be
referred to as Eulerian coupled approximations) with those provided by a stand alone Lagrangian
computation (“pure” Lagrangian) for the particle phase in the same flow configurations.

Mean-field/PDF hybrid model and experimental setup

We consider a rectangular domain of dimensions Lx× Ly. A sketch of the geometry is given in
Fig.16, where AE is a wall boundary. Air at ambient temperature and atmospheric pressure is
injected both in AB and BC regions. Solid particles are injected in AB region of diameter d and
after some time leave the domain by outlets CD and DE. A stationary turbulent two-phase flow
is eventually obtained.

• The Lagrangian stochastic description of the dispersed phase is given by the Simple Langevin
Model (SLM) [31]:

dxp,i = Up,idt,

dUp,i =
Us,i − Up,i

τp
dt, i = 1, 2, t > 0,

dUs,i = − 1

ρf

∂ 〈P 〉
∂xi

dt− Us,i − 〈Uf,i〉
TL

dt+
√
C0 〈ε〉dWt,i,

(102)

where xp(t) the particle position, Up(t) the particle velocity, Us(t) the fluid velocity seen
at the particle position and W(t) the vector of independent Wiener processes, all variables
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Figure 16: Computational domain, definition of the geometry of a wall jet of diameter d.

(random processes) being defined on the same probability space [33]. The particle relax-
ation time scale τp is a function of the particle inertia and represents the time necessary for
a particle to adjust to fluid velocities, TL stands for the fluid integral timescale. The fluid
mean fields k, 〈ε〉 , 〈Uf 〉 , 〈P 〉 are external data computed in advance with k− ε model and
then used as a frozen field. Following Monte-Carlo algorithm, particle related statistics
can be obtained from equations (102) for a given averaging operator. In practice, at each

cell j ∈ Z of the mesh (with the cell center xj) containing N
[j]
p particles at the time t, the

following approximation is used to compute the particle volumetric fraction αp:

αp(t,xj) =

∑N [j]
p

n=1 υ
(n)

Vj
, (103)

where υ(n) is the volume occupied by a particle and Vj - the volume of the cell j, j ∈ Z. For
other mean particle quantities, we obtain the numerical approximations as mean averages:

〈Hp〉 (t,xj) w 〈Hp〉Np
(t,xj) =

∑N [j]
p

n=1H
(n)
p (t)

N
[j]
p

. (104)

• The Eulerian part of the hybrid model describes the time evolution of the first order
statistical moments: the mean particle density, ρp = αpρ

0
p with constant ρ0, and the

instantaneous mean particle velocity, 〈Up〉, whose governing equations are{
∂tρp + ∂xj

(ρp 〈Up,j〉) = 0, t > 0, x ∈ R2,

∂t(ρp 〈Up,i〉) + ∂xj
(ρp 〈Up,i〉 〈Up,j〉) + ∂xj

(ρpR
L
p,ij) = ρpgi + ρp

〈
ULr,i/τ

U
p

〉
,

(105)

where τUp = τLp is the particle velocity relaxation time scale and UL
r = (Us − Up)

L is
the local relative velocity. The subscript “p” is used to emphasize the particle related
variables, whereas the superscript “L” now refers to variables computed using Lagrangian
description (102). For instance, the particle related kinetic tensor Rp,ij =

〈
u′iu
′
j

〉
(i, j =

1, 2) is computed using (104) and provided to the Eulerian particle model (105). In both
Eulerian and Lagrangian descriptions, Reynolds decomposition takes place, thus u′p(t,x) =
Up(t,x) − 〈Up(t,x)〉. Right-hand side terms in the second equation of (105) describe
the gravity and the drag forces. It is important to note that equations (105) have been
actually deduced from system (102) ([31], chap.6.7). Thus, both Eulerian and Lagrangian
descriptions are consistent by construction.

A two-dimensional relaxation scheme

As it was emphasized above, the coupling of descriptions (102), (105) introduces non-smooth
quantities in the Eulerian part of the model (105), that can result in instabilities during numer-
ical simulations. The present section aims at introducing a two-dimensional relaxation scheme
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for simulation of system (105) that could enable stable approximations in a number of limit situ-
ations. From now on, we omit the subscripts “p” and denote by ρ the mean particle density and
by Ui = 〈Up,i〉 , i = 1, 2 the mean particle velocity. Hence, for given non-smooth values of the La-
grangian kinetic tensor RLij = 〈u′p,iu′p,j〉L, ∀i, j ∈ Z, we want to compute stable approximations
of solutions of: {

∂tρ+ ∂xj
(ρUj) = 0, t > 0, x ∈ R2,

∂t(ρUi) + ∂xj
(ρUiUj) + ∂xj

(ρRLij) = ρgi + ρ 〈Ur,i/τp〉L .
(106)

By construction, RLij , i, j = 1, 2 complies with the realisability condition:

xiR
L
ijxj ≥ 0 ∀xi, xj (i, j = 1, 2). (107)

On the basis of [3, 27], getting rid of physical source terms (ρgi + ρ 〈Ur,i/τp〉L), i = 1, 2, the
following relaxation system naturally arises:

∂tρ+ ∂xj (ρUj) = 0, t > 0, x ∈ R2,

∂t(ρUi) + ∂xj (ρUiUj) + ∂xj (ρRij) = 0,

∂t(ρRij) + ∂xk
(ρUkRij) + ρ(Rik∂xk

Uj +Rjk∂xk
Ui) = ρ(RLij −Rij)/τRp .

(108)

This system is invariant under frame rotation. If we consider the reference frame (n, τ), where
n = (nx, ny), τ = (−ny, nx), such that n2

x + n2
y = 1, we may introduce: Un = U.n, Uτ = U.τ ,

Rnn = nt.R.n, Rnτ = nt.R.τ = τ tR.n = Rτn, Rττ = τ t.R.τ . While neglecting transverse
variations, the homogeneous system corresponding to (108) written in terms of the new variable
Z2D = (ρ, Un, Uτ , ρRnn, ρRnτ , S)

t
with S =

(
(ρRnn)(ρRττ )− (ρRnτ )2

)
/ρ4 takes the following

form for smooth solutions:

∂tZ2D +An(Z2D)∂nZ2D = 0, (109)

with system marix

An(Z2D) =


Un ρ 0 0 0 0
0 Un 0 ϑ 0 0
0 0 Un 0 ϑ 0
0 Ψnn 0 Un 0 0
0 2ρRnτ Φnτ 0 Un 0
0 0 0 0 0 Un

 ,

where: Ψnn = 3ρRnn, Φnτ = ρRnn, (110)

and Z2D = Z2D(t, xn). This method associated with the choice (110) is approach (A1) intro-
duced in [27] and defined in the one-dimensional framework in sec. 2.2 of the present paper.

Then, by denoting ϑ(x, t) = 1/ρ(x, t) and choosing constant (Rnn)0 ∈ R∗+, we may introduce
in a two-dimensional framework approach (A2) as corresponding to the choice:

Ψnn = 3ρ2
0(Rnn)0ϑ, Φnτ = ρ2

0(Rnn)0ϑ. (111)

We note that the relaxation system corresponding to system (109) together with choice (111)
is hyperbolic and only admits LD fields. A more detailed presentation can be found in [15, 16]
and [18].

Numerical simulation

In present computations we use the following dimensions: Lx = 1.0 m,Ly = 0.2 m, d =
0.05 m. The fluid is characterized by the density ρf = 2.1 kg/m3, the dynamical viscosity
µf = 1.85 × 10−5 Pa.s and C0 = 2.1. The normal components of the inlet gas velocity are:
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1.5 m/s in region AB and 1.0 m/s in BC. The dispersed phase is described by the particle
density ρp = 2000 kg/m3 and the diameter dp = 10−5 m. The computations are performed on
a uniform mesh with Nx×Ny = 200× 40 cells and ∆t = 10−3 s. At the beginning of each time
step, particles are injected in the domain with the fluid velocity. For a particle (n) injected in
the cell [i] of the domain, we assume the following initial conditions:

U(n)
p = 〈Uf 〉[i] , U(n)

s = 〈Uf 〉[i] +

√
2

3
k[i]ζ, (112)

where ζ = (ζx, ζy) is a vector of independent N (0, 1) random variables. For such a configuration,
τp is equal approximately 6× 10−4 s. When the stationary state is reached, the total number of
particles present in the domain at each time t varies around Np = 3.2× 105.

Finally, we are interested by the first order particle statistics only, more precisely, by the
particle volume fraction αp and the mean particle flow rate (αpρ0 〈Up〉). We compare the results
computed by the Eulerian part (105) of the hybrid model, where the kinetic tensor is provided by
system (102), with those obtained with a “stand-alone” Lagrangian computation using “pure“
PDF description (102). The profiles of the solution corresponding to the cross-stream sections
x = 0d, 5d, 10d, 15d are shown in Fig. 17 - 19.
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Figure 17: Particle volume fraction. Numerical simulation of hybrid model (102), (105) with Np =
8 × 104 particles on the mesh of 200 × 40 cells with ∆t = 10−3s. Comparison with the results of
the stand-alone Lagrangian computation.
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Figure 18: Mean particle flow rate in the longitudinal direction. Numerical simulation of hybrid
model (102), (105) with Np = 8 × 104 particles on the mesh of 200 × 40 cells with ∆t = 10−3s.
Comparison with the results of the stand-alone Lagrangian computation.
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Figure 19: Mean particle flow rate in the transversal direction. Numerical simulation of hybrid
model (102), (105) with Np = 8 × 104 particles on the mesh of 200 × 40 cells with ∆t = 10−3s.
Comparison with the results of the stand-alone Lagrangian computation.
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Reply 3 on detailed comments from the report on ”A relaxation scheme for hybrid modeling
of gas-particle flows ” by Dorogan, Herard, Minier for a publication in ”Computers and Fluids”

• Main comments. Most of remarks made by the reviewer have been taken into account
and helped us to improve the paper on the whole. Yet, we would like to emphasize that
the system we are studying in the context of hybrid modelling is system (4), where tensor
RL(t,x) is, except for the 1D case, not spheric at all and its independent com-
ponents are not functions of (ρ, ρU). Thus, the system of barotropic Euler equations
is a particular “test system” for (4), where the correct convergence of approximations can
be verified (to our knowledge, no detailed evaluation of the L1 norm of errors is available
in the “relaxation“ litterature, even for barotropic Euler equations). It is also important to
point out that there is no correspondence that could be made between the relaxation
techniques for barotropic Euler equations and ’relaxation’ system (A1), the latter being
deduced from Rij model of turbulent flows. However, the relaxation system associated
with system (4) and choice (A2) (that is in fact deduced from (A1) in order to eliminate
genuinely non-linear fields, see introduction and constraint (C4) on p.3) does correspond
in the one-dimensional case to the relaxation system introduced for the simulation of
the barotropic Euler equations, when ρRL = π(ρ). No further correspondence can be
made in a two-dimensional framework. In order to avoid any kind of confusion in the
one-dimensional case, some precisions and references have been added in remark 1,
sec. 2.2. In fact, the paper does not pretend to introduce a new relaxation technique for
the simulation of barotropic Euler equations (for instance, in the title it is “A relaxation
scheme for hybrid modelling of gas-particle flows“ and not ”A new relaxation scheme
...“). We recall that one of its main objectives consists in the comparison of approaches (A1)
and (A2) in terms of stability and convergence towards the correct solutions, especially for
shocks, when RL has a particular form. This has been emphasized in the text and in the
conclusion. As underlined in the previous answer to the reviewer, it was not quite obvious
that (A1) would provide convergent approximations. Moreover, the main purpose of the
work is to build numerical techniques in order to compute stable approximate solutions of
hybrid models. It seems that both (A1) and (A2) enable such computations.

• Main modifications in sections 1-4. For the seak of clarity, we have brought many
modifications in section 2 that presents a relaxation technique for the simulation of the
hybrid model (4). For instance, new properties 1, 2, 3 correspond to former propositions
1, 2, 3 respectively, where property 3, as underlined on p. 6, is associated with Theorem
3 in [9]. Though we have kept some ’well known’ results (concerning, for example, the
solution of the associated Riemann problem and the properties of the relaxation system),
in order to allow a fluent reading of the paper submitted for publication in Computers and
Fluids, we have nonetheless added references to papers dealing with relaxation techniques,
where these developments have been achieved before, for instance [4, 9]. Section 3 is very
short and only provides the basics of the algorithm for approach (A2), which is compulsory
for those who want to use the method. For verification cases present in section 4, where
ρRL = π(ρ), approach (A2) coincides with ”classical“ relaxation techniques for barotropic
Euler equations as this has been underlined in the text (in Remark 1, p. 5 and in the
beginning of sec. 4).

• Main modifications in appendices. Former appendix B on a0 parameter evaluation is
referred to as Appendix A in the current version and contains some estimates for a lower
bound of a0 in the general case ρRL 6= π(ρ) that underline the difficulty, with additional
reference to [9]. Former appendix C (now, B) on energy control in relaxation systems has
changed a little in order to take into account remarks of the reviewer. In fact, it contains
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some continuous energy estimations, unlike in [4, 9], where emphasis is put on discrete ap-
proximations. Former appendix D containing the proof of the positivity of the cell density
has been withdrawn since the proof is indeed classical. The sample result with noisy data
present in former appendix E has been moved at the end of section 4, that now contains two
parts: 4.1. Algorithm verification and 4.2. Numerical results for (A2) with noisy kinetic
tensor.

• Extension to the 2D framework. Concerning a two-dimensional extension of the
method, we have now merged former appendices A and F in appendix C and have refor-
mulated some points in order to clarify the presentation of hybrid methods, following the
proposition made by the reviewer. Moreover, we have added in appendix C the two-
dimensional relaxation systems corresponding to approaches (A1) and (A2), where
(A1) is coming from Rij model as before and (A2) is again inspired from (A1). However,
it does not seem possible to add the details of 2D algorithm in the appendix,
a whole paper would be needed for this. For instance, report [16] in english will
be included in PhD thesis of K. Dorogan [15] to appear in 2012. We note also that the
proceedings [18] are already available on http://www.springerlink.com/.

1. Some minor remarks. In appendix C, the reviewer is still non convinced with the as-
sumption of (homogeneous) Dirichlet boundary condition in an hyperbolic setting, what is
Γ− in this 1D case, moreover if the value of U(x, t) on the boundary ∂Ω has been assumed
to satisfy homogeneous Dirichlet conditions. The energy control assumes that the solutions
are smooth, equation (77) is obtained from the non conservative equations for smooth so-
lutions, what for W∆? Is there some dissipation principle?

In fact, appendix B (former appendix C) contains some continuous energy estimations,
unlike in [4, 9], where emphasis is put on discrete approximations (for more details, see
for instance Appendix A, part II). To our knowledge, no dissipation principle is available
for system (4). The homogeneous Dirichlet boundary conditions are imposed in order to
ensure that U.n|∂Ω = 0. In this case, Γ− is a null set.

2. Section 1. In the plan, the authors write about the energy control ’whatever RL’ is: indeed
the energy control is studied for the homogenous part of a system where RL is not involved.

This was in fact a mistake that has been corrected in the present version to ’whatever R is’.

3. Section 2. In (4), the authors emphasize that RL is a non smooth external data which is
not a function of the conservative variables (ρ, ρU): is this data a function of x, t? of other
varying quantities? at this level, there is some lack of information, the only example given
afterwards is ρRL = π(ρ), and in appendix E, some noise is added. Then, can (4) really
be written in conservative form with Fφ(Wφ) if RL is indeed a non smooth external data
which is not a function of the conservative variables Wφ = (ρ, ρU)T ?

In fact, RLij , ∀i, j is a function of (x, t) as emphasized on page 1 line 9. In the present
version of the paper, it is also underlined further (see p. 3, line 1) as “It is necessary to
recall first that, since kinetic tensor RL(t,x) is non-smooth external data which, in
practical coupled computations with the Lagrangian code, is not a function of
variables (ρ, ρU), we are formally interested in finding “discontinuous” solutions of the
problem“.
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Then, in section 3, it is in fact an error in writting Fφ(Wφ) in formula (31) and below.
Instead, it must be Fφ(Wφ, R

L), and it has been modified accordingly (see eqs. (31) - (33)).

4. Section 2. page 3, line 3, ’smooth solution on a coarse mesh’: we are still at the PDE level,
before any approximation, why is any mesh mentioned? This remark should be clarified.

This expression has been removed and the idea has been reformulated as follows: ”...we are
formally interested in finding “discontinuous” solutions of the problem. This may happen
even if RL(t, x) = cst > 0.“

5. Section 2. page 3, in (C4), there is a reference to (A1) which is not yet defined: this should
be made more precise by introducing some term such as ’below’, or ’in next section’, or ’in
Proposition 2’...

The remark has been taken into account as follows: (C4) The relaxation system should be
close enough to (A1) (introduced in [26, 27] and recalled below in sec. 2.2) that represents
a relevant physical choice.

6. Section 2. page 4, around (9), unify notation A(Z), A(Z).

This has been modified.

7. Section 2. Proposition 2 should be written in a more rigorous way: there should not be a
reference to [23], moreover, (A1) and (A2) should be defined as assumptions on Ψ, in the
present manuscript, they are whole assertions. There might be a reference to system (7),
and the sentence ’in order to ensure...’ should also be put after the proposition. Then the
sentence in Proposition 2 could be something like : ’Assuming Ψ is given by (A1), system
(7) admits two genuinely non linear fields and...’, and ’Assuming Ψ is given by (A2), sys-
tem (7) admits three linearly degenerate fields...’ or any sentence where the assumptions
and the conclusions are clearly set.

Proposition 2 has changed to property and has been reformulated following the remarks
made by the reviewer:

A natural choice for Ψ arising from Rij model in one-dimensional space was given in [27]:
Ψ = 3ρR. This is referred to as approach (A1).

Property 2.

(A1): If we assume that Ψ = 3ρR, then system (9) admits two GNL fields and one LD
field;

(A2): If we assume that Ψ = a2
0ϑ with constant a0 ∈ R∗+, then system (9) admits three

LD fields.

Expression ”In order to ensure the link with the expression in (A1), in (A2) we fix
a0 =

√
3R0ρ2

0 (see Appendix A (part II)“ has been put after the ”proof“.

8. Section 2. Remark 2: ∂xU ∈ L∞(Rx × [0, T ]) excludes discontinuous U , what if U is
discontinuous?

If U is discontinuous, the solution of the associated Riemann problem is necessary to con-
clude.
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9. Section 2. At the beginning of Section 2.3, the Riemann problem is defined for the homo-
geneous part of system (7) which is in conservative form while (13) is solved in nonconser-
vative variable Z = (ρ, U, ρR)T , as in Proposition 3. Then in section 3.1, the scheme is
written in conservative variable W = (ρ, ρU, ρR)T , refering to Proposition 3. That might
be clarified a little.

We introduce variable Z to simplify some calculations presented in section 2. Then, in
section 3.1 the scheme is written in conservative variable W .

10. Section 2. page 6, in Proposition 3 and in Figure 1, the eigenvalues λk are not constant,
even if each is a k-Riemann invariant, they depend on the data Zl, Zr, thus if λk is a
specific notation, it should be introduced somewhere, at least in the proof. A similar remark
holds for Figure 2 where it should be λk,i+1/2.

This has been corrected following the remark of the reviewer (see fig. 1, 2).

11. Section 3. Why do the authors introduce a notation φ in (31)?

In section 3, the subscript φ has been introduced in order to make the difference between
the solution Wφ = (ρ, ρU)t of original system (4) (φ like ’physical’), and the solution
W = (ρ, ρU, ρR)t of extended system (7), where this subscript is intentionally omitted.

12. Section 3. If remark 7 needs a proof, it is more a proposition than a simple remark.

Since this remark presents a well-known result, we prefer to keep it further as a simple
remark rather than a proposition. The former proof has been removed.

13. Conclusion. (A1) and (A2) are now referred to as ’schemes’, again, this is not correctly
written.

This has been modified, the word ’scheme’ has been replaced by ’approach’ or ’method’.

14. Many articles ’the’ or ’a’ are still missing, for instance, in proposition 1, it should be
the ’homogeneous system corresponding to’...), there are many other examples; also write
Whitham’s condition.

The paper has been reread on the whole, we have taken into account all the remarks
made by the reviewer and many other corrections have been made.

37


