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Abstract

We present in this paper some algorithms dedicated to the compu-
tation of numerical approximations of a class of two-fluid two-phase flow
models. Governing equations for the statistical void fraction, partial mass,
momentum, energy are presented first, and meaningful closure laws are
given. Then we may give the main properties of the class of two-fluid mod-
els. The whole algorithm that relies on the fractional step method and
complies with the entropy inequality is presented afterwards. Emphasis
is given on the computation of pressure-velocity-temperature relaxation
source terms. Conditions pertaining to the existence and uniqueness of
discrete solutions of the relaxation step are given. While focusing on some
one-dimensional test cases, the true rates of convergence may be obtained
within the evolution step and the relaxation step. Eventually, some two-
dimensional numerical simulations of a heated wall are shown and are
briefly discussed. Some advantages and weaknesses of algorithms are also
discussed.

Keywords:
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1 Introduction

Two distinct types of models are used in order to compute liquid-gas or water-
vapour two-phase flows in industrial codes: the homogeneous approach and
the two-fluid approach. Within the framework of nuclear safety codes[16] ,
the homogeneous approach is generally adopted for codes dedicated to compo-
nents such as reactor cores and steam generators (THYC, FLICA and GENEPI
codes in France), whereas the two-fluid approach is prefered in system codes
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(CATHARE or RELAP codes for instance) and also in 3D commercial codes
(CFX, Star-CD, Fluent) and inhouse codes (NEPTUNE-CFD). The two-fluid
approach is assumed to be more general, and it is also expected to predict more
accurately flows for which the phasic desequilibrium plays a crucial role (see
[9, 25, 26]).

Now, two distinct two-fluid approaches may be considered. The first one,
which is the most standard one, relies on an instantaneous pressure equilibrium
between both phases. The second one no longer assumes this hypothesis, which
means that the seven unknowns corresponding to the statistical fraction of liq-
uid, the two mean velocities, the two mean temperatures and the two mean
pressures are evaluated by searching approximations of solutions of a coupled
set of seven partial differential equations (PDE). These equations correspond to
the mass balance, the momentum balance and the energy balance within each
phase, and is supplemented by the governing equation for the statistical liquid
fraction.

This paper is devoted to the simulation of water-gas flow models belonging
to the second class. Though this approach was introduced approximately thirty
years ago (see [33]), few workers have been investigating this class until the
late 90’s. Within the framework of gas-particle flows, and more precisely when
studying Deflagration to Detonation Transition, these models gained a consid-
erable interest within a small community. Among other studies, one should at
least point out the contributions [4, 28, 5, 27, 32] which are concerned with the
modeling aspects. Fewer papers tackle the problem of water-gas or water-vapour
flows, among which we must quote [33, 34] and more recently the article [12] ,
that examines a medium of small oscillating bubbles in a liquid medium, and
also provides a general formalism in order to derive meaningful governing equa-
tions. A classification of closure laws related to the interface pressure PI and
the interface velocity VI was proposed in [8, 11] , which provides a general
framework relying on two main ingredients:

• (H1) the interface velocity VI , which governs the evolution of the sta-
tistical void fraction, should be such that the field associated with the
eigenvalue λ = VI were linearly degenerate;

• (H2) a physically relevant entropy inequality should control smooth solu-
tions.

Based on these two keystones, it has been shown in [8, 11] that one may re-
trieve the well-known Baer-Nunziato model, that corresponds to the particular
choice PI = Pl, VI = Ug, among other possibilities (where Pl and Ug respec-
tively refer to the liquid pressure and the gas velocity). We emphasize that this
approach was recently extended to the framework of two-phase flow in porous
media [19, 13] . The same procedure provides some way to tackle the modeling
of three-phase flows[18] . It also gives a relevant approach for the modeling of
dense granular flows[10] . These extensions confirm the relevance of the whole
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modeling approach. However, one must be aware that at least two difficulties
are hidden in these sets of PDE.

First, the convective part of the system of PDE is hyperbolic with no con-
straining condition on the physical states, but it contains two (or three, de-
pending on the closure law for VI) linearly degenerate fields. A straightforward
consequence is that the asymptotic rate of convergence of so-called first-order
(respectively second-order) Riemann solvers is 1/2 (respectively 2/3). This has
recently motivated great efforts in order to build accurate enough Riemann
solvers for the Baer-Nunziato system (see at least [1, 2, 7, 31, 35, 36] ). Sec-
ond, the system contains stiff source terms which are linked with the pressure-
velocity-temperature relaxation effects. These require specific algorithms, and
the main part of the present paper is actually dedicated to this work. This is
basically motivated by the fact that few available articles discuss these tricky
problems. In the sequel, the two-fluid two-pressure model accounts for velocity,
pressure and temperature relaxation, each one being associated with a non-zero
time scale. Actually, most of the papers in the literature focus on some specific
situations. Dealing with the velocity relaxation effects is not really challenging,
and a lot of schemes have been proposed in order to cope with it. On the con-
trary, there are few articles dealing with the numerical treatment of the pressure
relaxation. In the case of instantaneous relaxation (i.e. with “zero time scales”)
one can refer to [34] (which deals with instantaneous velocity and pressure
relaxation) or [21] (which only deals with instantaneous pressurerelaxation)
among others. For non-zero pressure relaxation time scales, a scheme has been
proposed in [11], with an important drawback : the total energy of the mix-
ture is not conserved by the scheme. Moreover, most of the references in the
literature are based on models where the temperature relaxation source terms
are neglected, and consequently there are no numerical schemes accounting for
them.

Hence the paper is organized as follows. We first recall the set of PDEs that
governs the two-fluid model, and recall its main properties. Next we present
approximate Riemann solvers and algorithms used to compute approximations
of solutions of the coupled ODEs arising when taking relaxation effects into
account. The most difficult task dwells in the building of suitable algorithms in
the pressure relaxation step. Of course this difficulty vanishes when the pres-
sure relaxation time scale is set to zero, but in that case convergence difficulties
-with respect to the mesh size- may be expected (see [21, 17, 10]) when focusing
on unsteady computations. The first section of numerical results focuses on the
practical estimation of the rate of convergence when looking for approximate
solutions of the convective subset. The second section gives emphasis on the
approximation of velocity-pressure-temperature relaxation effects. The last sec-
tion is devoted to the two-dimensional simulation of the flow close to a heated
wall.
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2 Governing equations and main properties of
the two-fluid model

2.1 The two-fluid model

Throughout the paper, indexes l, g refer to the liquid and gas phases; the sta-
tistical void fractions of gas and liquid are noted classically αg and αl, which
should agree with:

αl + αg = 1

The mean pressures, mean velocities and mean densities of the two phases are
denoted Pφ, Uφ and ρφ respectively, for φ = l, g. The total energy within each
phase is:

Eφ = ρφeφ(Pφ, ρφ) + ρφ
U2
φ

2
, φ = g, l (1)

Internal energy functions eφ are provided by users.

The so-called conservative variable W will be defined as:

W = (αl, αlρl, αlρlUl, αlEl, αgρg, αgρgUg, αgEg)

Moreover, PI(W ) and VI(W ) respectively denote in this paper the interfacial
pressure and velocity, and will precised afterwards. These interface terms VI
and PI will be such that:

• jump conditions are well defined within each isolated field;

• a physically relevant entropy inequality holds for smooth solutions of (2).

Given these notations, the governing set of equations for first-order moments
may be written as follows in a multi-dimensional framework:

∂t (αl) + VI∇αl = S1,l

∂t (αlρl) +∇.(αlρlUl) = S2,l

∂t (αlρlUl) +∇.(αlρlUl ⊗ Ul + αlPlI)− PI∇(αl) = S3,l

∂t (αlEl) +∇.(αlUl(El + Pl)) + PI∂t (αl) = S4,l

∂t (αgρg) +∇.(αgρgUg) = −S2,l

∂t (αgρgUg) +∇.(αgρgUg ⊗ Ug + αgPgI)− PI∇(αg) = −S3,l

∂t (αgEg) +∇.(αgUg(Eg + Pg)) + PI∂t (αg) = −S4,l

(2)

where right-hand side terms Sk,l(W ) represent the source terms (for k = 2, 3, 4),
which enable to account for mass transfer, momentum and energy transfer
through the interface between the two phases. The term S1,l will also be in-
troduced later on. External sources might be included but are not considered
herein. A derivation of the first governing equation of the statistical liquid frac-
tion αl can be found in[20] . Standard viscous contributions may be included,
which of course comply with the entropy inequality that will be detailed in the
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next subsection. Relevant boundary conditions and initial conditions should
also be prescribed.

From now on, partial masses will be noted mφ = αφρφ, and we introduce
specific entropies sφ in agreement with the constraint:

(cφ)2∂Pφ
(sφ) + ∂ρφ

(sφ) = 0

and temperatures Tφ as follows:

1/Tφ = ∂Pφ
(sφ) /∂Pφ

(eφ)

2.2 Closure laws for interfacial transfer terms

The interfacial transfer contributions have been studied in [4, 5, 17, 10, 28, 29],
and a summary can be found in appendix A. These terms are thus defined as:

S1,l = (τ2)−1 αlαg

|Pl|+|Pg| (Pl − Pg)

S2,l
def
= Γ = (τ1)−1 1

T−1
g |gg|+T−1

l |gl|
mlmg

ml+mg
(T−1
g gg − T−1

l gl)

S3,l = D + (Ul + Ug)Γ/2
S4,l = (τ4)−1 mlCV,lmgCV,g

mlCV,l+mgCV,g
(Tg − Tl) + (Ul + Ug)D/2 + (UlUg)Γ/2

(3)

where free enthalpies gφ are defined as:

gφ =
(
eφ +

Pφ
ρφ

)
− Tφsφ

The drag term D is modeled according to:

D = (τ3)−1 mlmg

ml +mg
(Ug − Ul)

These closure laws involve -positive- time scales which are noted τk (for k =
1, .., 4). We recall that:

CV,φ = ∂Tφ
(eφ)|ρφ

, for φ = l, g.

Since we focus in this paper on gas-liquid flows, we will no longer consider
mass transfer contributions S2,l in the sequel.

2.3 Closure laws for (PI , VI)

Actually, a keystone in the approach is a relevant definition of the couple
(PI , VI). We recall that the enforcement of a relevant entropy inequality (H2)
has a straightforward consequence, which is that PI may be written in terms of
VI and W in a unique way (see equations (27),(28),(29) in Appendix A). The
same holds when tackling three-phase flows, as emphasized in [18]. Now, the
second requirement (H1) implies that the field associated with λ = VI should
be linearly degenerate. As shown in [8, 11], few expressions guarantee this
behaviour. Among these, one must point out the following two:
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• The mixture velocity closure, that is: VI = Um
def
= (mlUl +mgUg)/(ml +

mg), and its corresponding value PI = µPl + (1 − µ)Pg, setting µ =
1

1+mlTl/mgTg
. Thus it corresponds in the asymptotic regime Tl = Tg to

(mgPl + mlPg)/(mg + ml), which means that the interface pressure is
mainly driven by the pressure of the vanishing phase Pg when mg tends
to 0;

• The so-called Baer-Nunziato closure, which corresponds to the choice VI =
Ug, and consequently PI = Pl, owing to closure laws (27),(28),(29); this
model is well suited for two-phase flows where the gas phase is dilute
(αg << 1).

Actually, an extended framework including the latter two formulations may
be exhibited (see [20]), but it is far beyond the scope of the present work.

From now on, we will restrict our attention to the latter couple (PI , VI) =
(Pl, Ug).

2.4 Main properties of the two-fluid model

We may now recall in brief the main properties of system (2) using the previ-
ous closure laws. We emphasize that these are valid the for the above defined
closure laws. The reader is refered to the references [8, 11] (see also [18, 19])
that contain all proofs, comments and details. We recall first that the system
(2) is invariant under frame rotation, and we provide three important properties
below.

• Property 1: (Hyperbolicity and structure of waves)
In a one-dimensional framework, the set of equations (2) is hyperbolic; it
admits seven real eigenvalues:

λ1,2 = Ug, λ3 = Ug−cg, λ4 = Ug+cg, λ5 = Ul, λ6 = Ul−cl, λ7 = Ul+cl

and associated righteigenvectors span the whole space R7, unless |Ul −
Ug|/cl = 1. Fields associated with eigenvalues λ1,2,5 are linearly degener-
ate. Other fields are genuinely non linear.

• Property 2: (Jump conditions in a one-dimensional framework)
Within each isolated field associated with λk, unique jump conditions hold.
Apart from the field associated with the eigenvalue λ = Ug, αl is uniform
and thus these jump conditions correspond to single phase jump relations,
that is:

−σ[ρφ]RL + [ρφUφ]RL = 0;
−σ[ρφUφ]RL + [ρφU2

φ + Pφ]RL = 0;
−σ[Eφ]RL + [Uφ(Eφ + Pφ)]RL = 0,

(4)

where σ denotes the speed of the shock wave, and L,R subscripts refer to
the left-right states on each side of this travelling shock wave.
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• Property 3: (Entropy inequality)
Define the entropy η(W ) = mlsl + mgsg and the entropy flux fη(W ) =
mlslUl +mgsgUg; then smooth solutions W of (2) are such that:

0 ≤ ∂t (η(W )) +∇.(fη(W )). (5)

Obviously, the LD structure of the 1, 2-field is crucial in order to obtain
unique jump conditions. Otherwise the computation of shock solutions would
be meaningless, since multiple shock solutions may be obtained using various
-stable- solvers (see for examples [17]) . This point is not clearly adressed in
the literature, though of major importance. The entropy inequality enables
to select admissible shock waves, and may also be used to build schemes for
the computation of convective effects. Obviously, an alternative formulation of
jump conditions in genuinely non linear fields that is probably more convenient
may be:

σ = [ρφUφ]RL/[ρφ]
R
L ;

(ρφ)L(ρφ)R([Uφ]RL)2 = [ρφ]RL [Pφ]RL ;
2([eφ])RL + (Pφ)L + (Pφ)R)[(ρφ)−1]RL = 0,

(6)

We now provide the whole algorithm that is used in order to obtain approx-
imate solutions of system (2).

3 Numerical algorithm

3.1 Fractional step method

We use a fractional step method that complies with the entropy inequality (5);
a first ”evolution” step accounts for all convective effects, while the second
”relaxation” step takes source terms into account.

• Evolution step
This step computes approximate solutions of the hyperbolic homogeneous
system:

∂t (αl) + VI∇αl = 0
∂t (αlρl) +∇.(αlρlUl) = 0
∂t (αlρlUl) +∇.(αlρlUl ⊗ Ul + αlPlI)− PI∇(αl) = 0
∂t (αlEl) +∇.(αlUl(El + Pl)) + PI∂t (αl) = 0
∂t (αgρg) +∇.(αgρgUg) = 0
∂t (αgρgUg) +∇.(αgρgUg ⊗ Ug + αgPgI)− PI∇(αg) = 0
∂t (αgEg) +∇.(αgUg(Eg + Pg)) + PI∂t (αg) = 0

(7)

through the time interval [tn, tn+∆t], with given initial valuesWn, using a
Finite Volume scheme to be defined. This provides a set of approximations
W̃ .
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• Relaxation step
Given discrete cell values of W̃ , we compute approximations of the coupled
set of ODEs corresponding to relaxation terms, that is:

∂t (αl) = S1,l

∂t (αlρl) = 0
∂t (αlρlUl) = S3,l

∂t (αlEl) + PI∂t (αl) = S4,l

∂t (αgρg + αlρl) = 0
∂t (αgρgUg + αlρlUl) = 0
∂t (αgEg + αlEl) = 0

(8)

3.2 Computing the evolution step

Many solvers have been proposed in the literature for such a purpose. Among
those we may at least cite recent schemes based on approximate Riemann
solvers, such as those detailed in [31, 35, 36], but also algorithms that are pre-
sented in the papers [1, 2, 7], which are grounded on the use of relaxation tech-
niques. Approximate solutions in the evolution step may also be obtained using
either the non-conservative form of Rusanov scheme, or the non-conservative
form of the approximate Godunov scheme VFRoe-ncv [6]; we refer to [11, 10]
for such a description. Obviously, the ultimate scheme has not been proposed
yet. As it has been emphasized before, one must be aware here that the ap-
proximation of shock solutions makes sense for system (7), though the system
has no conservative form, since first-order non-conservative products are only
active in linearly degenerate fields. A straightforward consequence is that we
expect schemes to converge towards the correct solution when the mesh is re-
fined (see [17] for instance which examines this specific point while considering
various choices of the closure law for VI).

We will only recall here the non-conservative form of Rusanov scheme, for
our system which may be written in a formal way:

∂t (W ) +∇.(F(W )) +H(W )∇α = 0 (9)

If ∆t and vol(Ωi) respectively denote the time step and the volume of cell Ωi,
and if V (i) stands for the set of nodes j neighbouring cell i, the scheme computes
cell values Wn+1

i in terms of Wn
j following:

vol(Ωi)(Wn+1
i −Wn

i )+∆tΣj∈V (i)(fRusanovij (Wn
i ,W

n
j , nij)Sij)+∆tTi = 0 (10)

where the normal flux through the interface between cells i andj, with surface
Sij and outward normal vector nij pointing from cell i towards cell j, is:

fRusanovij (Wn
i ,W

n
j , nij) = ((F(Wn

i ) + F(Wn
j )).nij − rij(Wn

j −Wn
i ))/2 (11)

The scalar rij is equal to max(Rni , R
n
j ), where Rnk is the spectral radius of the

whole convection matrix associated with (9) and estimated at Wn
k . The non
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conservative term Ti is:

Ti = H(Wn
i )Σj∈V (i)αijnijSij (12)

while setting: αij = (αi + αj)/2. An advantage of this scheme is that:

Property 4:
Scheme (10) preserves positive values of partial masses mφ and void fractions
αφ, provided that the following CFL-like condition holds on the time step ∆t:

∆tΣj∈V (i)(rijSij) < 2vol(Ωi) (13)

The proof is classical but is briefly recalled. Setting ψ = mφ, the cell scheme
(10) enables to rewrite :

vol(Ωi)ψn+1
i = ψni (vol(Ωi)−∆tΣj∈V (i)(rijSij)/2)+∆tΣj∈V (i)(coefψ)nij(ψ

n
j )Sij)

(14)
where all coefficients (coefψ)nij are positive. Thus ψn+1

i is a convex combination
of ψni and neighbouring values ψnj if (13) holds. A similar calculation for ψ = αφ
enables to finish the proof.

A drawback is that the scheme is less accurate than many approximate Rie-
mann solvers. Nonetheless, as recalled in the last section, it enables to obtain
convergent approximations when the mesh size diminishes (see [17, 13, 30] also
for similar convergence studies).

We detail afterwards the relaxation step, with special focus on the pressure
relaxation step which is rather tricky. The relaxation step is in fact split into
three substeps through which one accounts for drag effects (velocity relaxation
step), heat exchange (temperature relaxation step) and pressure relaxation ef-
fects respectively.

3.3 Computing the velocity relaxation step

This step accounts for drag terms only; it computes approximate values Zn,∗ of
solutions of the system: 

∂t (αl) = 0
∂t (ml) = 0
∂t (mlUl) = D
∂t (αlEl) = (Ul + Ug)D/2
∂t (mg +ml) = 0
∂t (mgUg +mlUl) = 0
∂t (αgEg + αlEl) = 0

(15)
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through the following update:

αn,∗l = α̃l
mn,∗
φ = m̃φ for φ = l, g

Un,∗l = Ũl + (Ũg − Ũl)
mn,∗

g (1−e(−∆t/τn
3 ))

mn,∗
l +mn,∗

g

Un,∗g = Ũg − (Ũg − Ũl)
mn,∗

l (1−e(−∆t/τn
3 ))

mn,∗
l +mn,∗

g

(mlel)n,∗ = m̃lẽl +
mn,∗

l mn,∗
g

mn,∗
l +mn,∗

g

(Ũl−Ũg)2

2 (1− e(−2∆t/τn
3 ))

(mgeg)n,∗ = m̃g ẽg

(16)

Proposition 1:
The void fraction and the partial masses remain unchanged through this velocity
relaxation step (16), and the total mean momentum and the mean total energy
are also preserved. It may be easily checked that internal energies remain posi-
tive through this step.

The proof is obvious considering formula (16) and is left to the reader.

3.4 Computing the temperature relaxation step

Once again, both the void fraction and the partial masses remain steady through
this step which computes approximations of solutions of system:

∂t (αl) = 0
∂t (ml) = 0
∂t (mlUl) = 0
∂t (αlEl) = (τ4)−1 mlCV,lmgCV,g

mlCV,l+mgCV,g
(Tg − Tl)

∂t (mg +ml) = 0
∂t (mgUg +mlUl) = 0
∂t (αgEg + αlEl) = 0

(17)

We detail here the temperature relaxation scheme that updates internal
energies according to the rule:

αn,∗∗l = αn,∗l
mn,∗∗
φ = mn,∗

φ for φ = l, g

mn,∗∗
φ Un,∗∗φ = mn,∗

φ Un,∗φ for φ = l, g

mn,∗
l (en,∗∗l − en,∗l ) = ∆t

θn,∗ (Tg(en,∗∗g , ρn,∗g )− Tl(e
n,∗∗
l , ρn,∗l ))

mn,∗
g (en,∗∗g − en,∗g ) +mn,∗

l (en,∗∗l − en,∗l ) = 0

(18)

where θn,∗ = (τ4)n,∗(
mlCV,l+mgCV,g

mlCV,lmgCV,g
)n,∗.

Remark 1:
This implicit algorithm guarantees the exact conservation of the total energy of
the mixture.
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This step requires solving a non-linear system of two unknowns (en,∗∗g , en,∗∗l ),
and we may give the following result:

Proposition 2:
We assume that, for φ = l, g, the equations of state comply with:

∂eφ
(Tφ)|ρφ

> 0 and : limeφ→0+Tφ(eφ, ρφ) = 0.

Then system (18) admits a unique solution (en,∗∗g , en,∗∗l ), without any constraint
on the time step ∆t. Moreover, en,∗∗g and en,∗∗l respectively lie within intervals

[0, m
n,∗
g en,∗

g +mn,∗
l en,∗

l

mn,∗
g

] and [0, m
n,∗
g en,∗

g +mn,∗
l en,∗

l

mn,∗
l

].

Proof:
We set: X = en,∗∗l . Eliminating en,∗∗g from the last equation in (18), we need to
find X solution of the following equation:

q(X)
def
= mn,∗

l (X−en,∗l )− ∆t
θn,∗

(
Tg(en,∗g −

mn,∗
l (X − en,∗l )

mn,∗
g

, ρn,∗g )− Tl(X, ρ
n,∗
l )

)
= 0

Since :

q′(X) = mn,∗
l

(
1 +

∆t
θn,∗

(
1

mn,∗
g

∂eg (Tg)|ρg
+

1
mn,∗
l

∂el
(Tl)|ρl

)
)
> 0

we know that q(X) is increasing. Taking into account that:

limX→0+q(X) = −mn,∗
l en,∗l − ∆t

θn,∗
Tg(en,∗g +

mn,∗
l en,∗l
mn,∗
g

, ρn,∗g ) < 0

and:

limX→(en,∗
l +mn,∗

g en,∗
g /mn,∗

l )−q(X) = mn,∗
g en,∗g +

∆t
θn,∗

Tl(e
n,∗
l +

mn,∗
g en,∗g
mn,∗
l

, ρn,∗l ) > 0

we may conclude the proof of proposition 1: the equation q(X) = 0 admits a
unique solution within the range [0, en,∗l + mn,∗

g en,∗g /mn,∗
l ], and en,∗∗g may be

deduced from:
en,∗∗g = en,∗g −mn,∗

l (X − en,∗l )/mn,∗
g .

The proof provides a practical way to compute solutions of system (18), that
is actually used in the code. We emphasize that other -simpler- algorithms may
be exhibited (see appendix B for instance); however, practical computations
seem to show that the non-linear temperature relaxation scheme described here
provides better results (see [24] and section IV).

We turn now to the most difficult part which corresponds to the pressure
relaxation step.
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3.5 Computing the pressure relaxation step

The pressure relaxation step computes approximations of solutions of the ODEs:
∂t (αl) = S1,l

∂t (mφ) = 0 for φ = l, g
∂t (mφUφ) = 0 for φ = l, g
∂t (mlel) + Pl∂t (αl) = 0
∂t (αgEg + αlEl) = 0

(19)

Two distinct schemes have been proposed in [22] in order to obtain approximate
solutions of (19).

The first one is a semi-implicit scheme, that is such that the existence and
uniqueness of the discrete solution is ensured, whatever the equations of state
would be. This first algorithm is described in [22]. We focus here on the second
one which is totally implicit with respect to the unknown (Pl, Pg, αl). It must
be emphasized that both schemes guarantee positive values of void fractions αφ
and a perfect balance of total energies.

The implicit pressure-relaxation scheme calculates (Pl, Pg, αl)n,∗∗∗, solution
of the following step:

αn,∗∗∗l − αn,∗∗l = ∆t
τn,∗∗
2

αn,∗∗∗l αn,∗∗∗g (Pn,∗∗∗l − Pn,∗∗∗g )/(|Pn,∗∗l |+ |Pn,∗∗g |)
mn,∗∗∗
φ = mn,∗∗

φ for φ = l, g

mn,∗∗∗
φ Un,∗∗∗φ = mn,∗∗

φ Un,∗∗φ for φ = l, g

mn,∗∗
l (en,∗∗∗l − en,∗∗l ) + Pn,∗∗∗l (αn,∗∗∗l − αn,∗∗l ) = 0

mn,∗∗
g (en,∗∗∗g − en,∗∗g ) +mn,∗∗

l (en,∗∗∗l − en,∗∗l ) = 0
(20)

using notations: en,∗∗∗φ = eφ(P
n,∗∗∗
φ , ρn,∗∗∗φ ), and ρn,∗∗∗φ = mn,∗∗∗

φ /αn,∗∗∗φ . Condi-
tions that guarantee the existence and uniqueness of the solution (Pl, Pg, αl)n,∗∗∗

are given below.

Property 5:
Assume that both equations of state (EOS) for gas and liquid phase are perfect
gas EOS, which means that: ρφeφ(Pφ, ρφ) = Pφ/(γφ− 1) for φ = g, l, with γφ >
1. Then the scheme (20) admits a unique relevant solution Pn,∗∗∗l , Pn,∗∗∗g , αn,∗∗∗l ,
such that Pn,∗∗∗l > 0, Pn,∗∗∗g > 0 and αn,∗∗∗l lies in [0, 1] .

Proof: the proof is the same as the one detailed in [10]. Actually, pressure
solutions can be expressed in terms of the main scalar unknown X = 1−αn,∗∗∗l

:

{
Pn,∗∗∗l (X) = (γl − 1)(mlel)n,∗∗/(1−X + (γl − 1)(αn,∗∗g −X))
Pn,∗∗∗g (X) = (γg − 1)((mgeg)n,∗∗ + (αn,∗∗g −X)Pn,∗∗∗l (X))/X (21)

12



where the solution X ∈ [0, αm] is the unique solution of the equation :

H(X)
def
= X(1−X)(Pn,∗∗∗g (X)− Pn,∗∗∗l (X))− θ

∆t
(X − αn,∗∗g ) = 0 (22)

with αm = (1 + (γl − 1)αn,∗∗g )/γl.

For some applications, it may be useful to apply for a real EOS for the liquid
phase. Thus we turn to the case where the liquid EOS complies with standard
constraints : ∂Pl

(el)|ρl
(Pl, ρl) > 0, and 0 ≤ Pl. We have the following result:

Proposition 3:
Assume that the EOS of the gas phase is a perfect gas EOS: ρgeg(Pg, ρg) =
Pg/(γg − 1). Define αM the smallest value x ∈ [0, 1] solution of the equation
A(x) = 0 where :

A(x)
def
= (ml)n,∗∗∂Pl

(el)|ρl
(pl(x), ρl(x))− x+ (αg)n,∗∗

where: ρl(x) = (ml)n,∗∗/(1− x), and pl(x) is solution of:

(ml)n,∗∗el(pl(x), ρl(x)) + pl(x)(αn,∗∗g − x) = (mlel)n,∗∗

Then the scheme (20) admits a relevant solution (Pn,∗∗∗l , Pn,∗∗∗g , αn,∗∗∗l ) such
that (1− αn,∗∗∗l ) ∈ [0, αM ].

Proof: the main lines of the proof are given below. We still look for x
solution of the equation:

h(x)
def
= x(1− x)(pg(x)− pl(x))−

θ

∆t
(x− αn,∗∗g ) = 0 (23)

where : 
ρl(x) = (ml)n,∗∗/(1− x)
(ml)n,∗∗el(pl(x), ρl(x)) + pl(x)(αn,∗∗g − x) = (mlel)n,∗∗

pg(x) = (γg − 1)((mgeg)n,∗∗ + (αn,∗∗g − x)pl(x))/x
(24)

Using the implicit definition of pl(x) in the second equation of (24), a straight-
forward derivation shows that:

A(x)p′l(x) =
(
(ρlcl)2∂Pl

(el)|ρl

)
(pl(x), ρl(x)) > 0

Starting with the definition of A(x) above, we note that :

A(0) = (ml)n,∗∗∂Pl
(el)|ρl

(pl(0), ρl(0)) + (αg)n,∗∗ > 0

and:
limx→1−A(x) = −1 + (αg)n,∗∗ < 0

13



Thus the equation A(x) = 0 admits at least one solution in [0, 1]. Using the
definition of αM , we know that A(αM ) = 0; thus :

αM − (αg)n,∗∗ = (ml)n,∗∗∂Pl
(el)|ρl

(pl(αM ), ρl(αM )) > 0

Moreover, we have:

h(x) = − θ

∆t
(x− αn,∗∗g ) + (γg − 1)(mgeg)n,∗∗(1− x)+

(1− x)pl(x)
(
(γg − 1)(αn,∗∗g − x)− x)

)
Thus: h(0) = αn,∗∗g

θ
∆t+(γg−1)(mgeg)n,∗∗+αn,∗∗g (γg−1)pl(0) > 0. The function

pl(x) is increasing within the interval [0, αM ], with limx→α−M
pl(x) = +∞; hence,

we get that :
lim

x→α−M

h(x) = −∞

We may eventually conclude that the equation h(x) = 0 admits a solution in
the interval [0, αM ].

Remark 2: the implicit scheme (20) is exactly the same as the one intro-
duced for dense granular gas-particle flows in [10]. In that case, the counterpart
of property 5 was obtained considering stiffened gas EOS within each phase (gas
phase and particle phase). It must be also emphasized that we retrieve that
αM = αm when a perfect gas EOS is applied for the liquid phase.

Remark 3: the algorithm that was proposed in [11] in order to compute
approximations of the pressure relaxation substep (19) does not ensure the exact
conservation of the total energy of the mixture, which explains why we do not
consider it herein.

4 Numerical results

In the first subsection, we focus on the computation of the evolution step involv-
ing all convective terms. Next we turn to the verification of the relaxation step.
In each case, we examine rates of convergence in terms of the mesh size, with
special emphasis on unsteady computations. The last subsection is devoted to
the computation of a two-dimensional unsteady case in a square domain con-
taining a heated wall boundary.

In this section, the following unities are used : m for distances, kg/m3 for
densities, m/s for velocities, Pa (Pascal) for pressures, K (Kelvin) for temper-
atures, s for times and J/s/m2 for heating fluxes.

4.1 Verification of the evolution step

We use for this test case perfect gas EOS within each phase, setting γg = 1.4
and γl = 1.1. We show below a very simple Riemann problem associated with
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(7), considering the initial data WL,WR given in table 1. The solution contains

Left state (WL) Intermediate state (Wint) Right state (WR)
αl 0.95 0.05 0.05
ρl 1.0 0.9659 0.9659
Uxl -10.0 83.3542 83.3542
Pl 105 95258.2695 95258.2695
ρg 0.1 1.0 0.95
Uxg -15 -15 -34.0783
Pg 105 99782.7935 92867.1544

Table 1: : Initial condition for the first Riemann problem and intermediate
states.

many ghost waves, and intermediate states only differ through waves associated
with the Ug contact wave and to the Ug+cg GNL wave. The latter wave behaves
as a shock wave in this case, in agreement with the entropy inequality (5). The
intermediate state Wint lies between the contact wave and the gas GNL wave
Ug + cg. The CFL is set to 1/2, and five meshes with 50 up to 500000 regular
cells are used. We plot first on Figure 1 void fractions, densities, velocities and
pressures, focusing on the mesh containing 500000 cells. Then we give in Figure
2 the L1 norm of the error. An asymptotic rate 1/2 is expected for this scheme,
owing to the occurence of the contact wave Ug. More precisely, for this partic-
ular case, we expect the rate of convergence of variables αl, ρl, Pl, Ul, Pg, ρg to
be close to 1/2, whereas we expect order 1 for the gas velocity Ug (since it is
preserved through the gas contact wave). Numerical results for fine meshes are
in agreement with that. Nonetheless, due to the small variation of Pg through
λ = Ug (see table 1), the rate of convergence seems to be a bit higher than 1/2;
a better agreement is observed for the second test case, which has the same
structure, but involves a stronger jump of Pg through the gas contact wave.
These results are in agreement with those of [13, 30].

The second test case is another Riemann problem taken from [13], where
initial conditions are given in table 2. This Riemann problem also contains a
contact wave associated with Ug, and a right-going gas shock wave. As in the
previous test case, the contact wave is smeared on coarse meshes, as expected,
while the approximate solution around the gas shock wave is correct. We re-
trieve here the order 1/2 for ρl, Pl, Ul, Pg, ρg and order 1 for Ug. The exact
solution and the numerical approximation for the finest mesh (100000 cells) are
plotted on Figure 3, and we give in Figure 4 the L1 norm of the error.

The third test case of this section is fully described in [35] (see. table 1 p.
499). Initial condition have been gathered in table 3. It involves two perfect
gas EOS such that: γg = γl = 1.4. Similar test cases can also be found in [3].
Numerical results can be found on Figure 14 using meshes with 50, 500 and
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Left state (WL) Intermediate state (Wint) Right state (WR)
αl 0.95 0.05 0.05
ρl 1.0 0.9561 0.9561
Uxl 10.0 -84.3587 -84.3587
Pl 105 95185.1407 95185.1407
ρg 0.1 0.15 0.1
Uxg 15 15 -357.2995
Pg 104 95044.7777 53462.6875

Table 2: : Initial condition for the second Riemann problem and intermediate
states.

5000 cells. The solution involves 6 waves, with a left-going gas rarefaction
wave, a right-going gas shock wave, a left-going liquid shock wave and a right-
going liquid rarefaction wave. The gas and liquid contact waves have opposite
signs. Intermediate states can be found in [35]. Here again, the two contact
waves approximations are obviously rather poor on coarse meshes. Nonetheless,
approximate values of intermediate states are relevant on the mesh with 500
cells.

Left state (WL) Right state (WR)
αl 0.2 0.7
ρl 0.2 1.0
Uxl 0 0
Pl 0.3 1.0
ρg 1.0 1.0
Uxg 0 0
Pg 1.0 1.0

Table 3: : Initial condition for the first Riemann problem described in [35] (table
1, p. 499).

4.2 Verification of the relaxation step

4.2.1 Velocity relaxation substep

Two different series of verification test cases have been considered in [24] for
the velocity relaxation step. The first one refers to a constant time scale τ3.
In that case, the scheme (16) is perfect, since it computes the exact value at
time tn+1. The second series involves time scales τ3 which vary as d/|Ug − Ul|.
In that case, analytic solutions allow computing the true error occuring in the
velocity relaxation step. Several examples can be found in [24], which confirm
that a first-order rate of convergence is achieved.
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4.2.2 Temperature relaxation substep

We present below some tests corresponding to constant time scales τ4, when
computing approximate solutions of (17) with the scheme (18). We consider
perfect gas EOS with the parameters:

CV,l = 4154.3 J/kg/K and CV,g = 1500.9 J/kg/K.

Figure 5 shows the convergence rate when τ4 = 10−5, using the following initial
condition of table 4.

αl ρl Uxl Uyl Uzl Tl ρg Uxg Uyg Uzg Tg
0.5 998.3227 1 1 1 3.7008 0.5578 1 1.1 1.2 360.2211

Table 4: : Initial condition for the temperature relaxation test case

The linear scheme [24] recalled in appendix B is optimal in the case of
constant time scales τ4 with constant parameters CV,φ, unlike the non-linear
scheme (18); actually, round-off errors are found for the linear scheme in that
case. We note that the rate of convergence for scheme (18) is close to 1, as
expected.

4.2.3 Pressure relaxation substep

Eventually, we provide an example of measured convergence rates in the pres-
sure relaxation step. This one is crucial, and should be handled with great
care. Otherwise, both the present model (where the relaxation time scale τ2 is
non-zero) and standard two-fluid models (corresponding to τ2 = 0) may be con-
fused, if inadequate “rough” schemes are used to provide approximate solutions
of (19). The initial conditions of the test case are given in table 5. Figure 6
and Figure 7 show the behaviour of the scheme (20) and the comparison with
another half-implicit scheme introduced in [22] and recalled in [24], focusing
on void fractions and pressures within each phase at time t = 10−5. The L1

norm of the error has been plotted as a function of the time step, focusing on
an analytic test case described in [22] for γl = 2, γg = 3 and τ2 = 10−6. In
all cases examined in the latter reference, the implicit scheme provides the best
approximations, whatever the time step and the pressure relaxation time scale
τ2 are.

αl ρl Uxl Uyl Uzl Pl ρg Uxg Uyg Uzg Pg
0.15 1000 0 0 0 2 106 10 1 1.1 1.2 1 105

Table 5: : Initial condition for the pressure relaxation test case

17



Remark 4: In reference [10], mesh refinement effects were examined when
τ2 = ε << 1 and when τ2 = 0 respectively, using coarse and very fine one-
dimensional meshes (with up to 106 cells). This enables to retrieve the fact that
the initial-value problem associated with τ2 = 0 is ill-posed: spurious oscillations
arise when the mesh size is sufficiently small, and this is particularly spectacu-
lar for void fraction profiles, since the algorithm guarantees bounded variations
owing to properties 4 and 5 (see [21] and [17] also for a similar study).

4.3 Two-dimensional numerical results

We consider now the two-dimensional unsteady computation of a heated wall in
an almost square domain, where the wall contains a small cavity in the middle
of the lower part (see Figure 8). The computational domain contains 311× 103

regular cells, and the CFL number is set to 1/2. Homogeneous Neumann-type
boundary conditions have been used on the left, right and upper boundaries.
The relaxation time scales are constant in this experiment, and are defined in
table 6.

τ2 τ3 τ4
10−9 10−4 10−5

Table 6: : Values of time scales in the 2D experiment.

Uniform initial conditions are such that the fluid is at rest at the beginning
of the computation, which means that:

ρl(x, y, 0) = 765, 7 and ρg(x, y, 0) = 76, 6

Pl(x, y, 0) = Pg(x, y, 0) = 166, 3× 105

Uxl (x, y, 0) = Uxg (x, y, 0) = Uyl (x, y, 0) = Uyg (x, y, 0) = 0.

These initial conditions have been defined by enforcing a velocity, temperature
and pressure equilibrium; they roughly correspond to those of the flow in the
core of a pressurized water reactor in a nuclear power plant if the fluid is at rest.
The liquid phase statistical fraction has been set to 0.95, and we use perfect gas
EOS within each phase, setting: γg = 1.4 and γl = 1.038. The normal heat flux
is uniform along the wall direction, and its steady value is: HF = 106. The
final time of the computation is T5 = 1.5× 10−2, and the average time step at
the end of the computation is approximately equal to ∆t = 3.× 10−6.

Figure 9 shows the liquid pressure isolines at time T1 = 3.46 × 10−3. An
almost spherical wave propagates, starting from the small squared lower cavity,
and interacts with the plane waves issuing from the horizontal wall boundary.
The two peaks that can be observed in the cavity corners are not associated
with numerical issues. They are due to the fact that the two corresponding cells
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receive heat fluxes from two faces, whereas all other cells have at most one face
that is heated. On the contrary the two cells at the exit corners of the cavity do
not receive any heat flux. Actually these cells do not have a face on the heated
wall, they only touch the wall through one of their vertices. Consequently, when
added to the bluff body effect, it can explain why the pressure does not increase
in these cells as in the other “wall cells”. At the end of the computation, the
acoustic fast waves have moved out of the computational domain, as may be
observed on Figure 12.

Density profiles for both liquid and gas phases have been plotted along the
vertical y-direction (see Figure 10 and Figure 11), starting from the small cav-
ity (−0.25 < y < 0) and up to the top of the computational domain, at three
distinct times T1 = 3.461 × 10−3 (dotted line), T2 = 6.92 × 10−3 (dashed line)
and T5 = 1.5× 10−2 (plain line). The decrease of the density due to the sudden
heating flux in the small cavity can be retrieved.

The computational results that are shown on the Figure 13 enable to observe
the relative difference between gas and liquid velocities (bottom left). It can be
noticed that the norm of the relative velocity is important near the wall, at the
exit of the cavity and at the fast wave fronts. At these locations, convection
effects are significant and overcome velocity relaxation effect.The increase of the
pressures near the wall eject the fluids out of the cavity.

Pressure profiles along the same axis x = 2 can be found on Figure 12. Ac-
tually, discrepancies between liquid and gas pressures are very low compared
with the amplitude of pressure waves, we found that the relative difference
|Pg−Pl|/(Pg+Pl) was less than 10−12. This was actually more or less expected
since the time step, which is governed by the CFL condition, is equal on the
selected mesh to 2.8 10−6. It thus remains large compared to τ2. It also seems
worth mentionning that almost similar results have been obtained while chang-
ing the pressure relaxation time step within the range τ2 ∈ [10−9, 10−6], keeping
other relaxation time steps unchanged and using the same mesh.

Obviously, results are still sensitive to mesh refinement, and finer meshes
may be used in a 2D framework in order to increase the accuracy. Nonetheless,
one must be aware that the 3D counterpart of the present 2D mesh would con-
tain more than 150 millions of cells, which is of course far beyond what one can
afford in an industrial situation.

Conclusion

We have detailed in this paper a fractional step method that is used in order to
compute approximations of a two-fluid model for gas-liquid flows, and we have
given some measured rates of convergence within each step. Actually, the most
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difficult steps correspond to:

• (i) the computation of stable and accurate enough approximations of the
homogeneous convective part,

• (ii) the approximation of solutions of the coupled set of ODEs which govern
temperature and pressure relaxation effects.

The first item is well-known and many workers have been working hard in that
direction; some interesting convective solvers are thus available, nonetheless all
are penalized by rather weak convergence rates, owing to the occurence of the
two distinct LD waves associated with Ug and Ul, which is in addition combined
with the velocity relaxation effects due to drag; thus important mesh refinements
are mandatory in order to obtain almost converged approximations, and this
also motivates the design of even more accurate Riemann solvers.

On the contrary, up to the authors, little attention has been paid to the
stable and accurate numerical approximation of relaxation effects. This is an
annoying point since the pressure relaxation step is a key feature in the approx-
imation of the whole set of PDEs. Authors feel convinced that an increased
effort in that direction is also necessary.

Numerical experiments that are similar to the two-dimensional case de-
scribed in the last section have been performed, while accouting for mass trans-
fer at the interface. In that case of course, the relaxation procedure includes
another substep in order to discretize Γ contributions (see [23]).
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5 Appendix A: Entropy-consistent interfacial clo-
sure laws

A general form of the governing equations of the mean quantities in the two-
fluid model can be written as follows in the viscous case, in a one-dimensional
framework:

∂t (αφ) + VI(W )∂x (αφ) = φφ(W )
∂t (αφρφ) + ∂x (αφρφUφ) = Γφ(W )
∂t (αφρφUφ) + ∂x

(
αφρφU

2
φ

)
+ ∂x (αφPφ)− PI(W )∂x (αφ) + ∂x

(
αφF

visc
φ

)
= Dφ(W ) + Γφ(W )U int

∂t (αφEφ) + ∂x (αφUφ(Eφ + Pφ)) + PI(W )∂t (αφ) + ∂x

(
αφF

visc
φ Uφ

)
= ψφ(W ) + U intDφ(W ) + Γφ(W )Hint

(25)
where F viscφ = κφ∂x (Uφ) is the viscous flux, and Γφ(W ), Dφ(W ) and ψφ(W )
take interfacial mass transfer, drag effects and interfacial heat transfer into ac-
count. The contribution φφ(W ) arising in the governing equation of the statis-
tical void fraction αφ is due to the statistical averaging ([20]) of the topological
equation ([9]). Obviously, we must enforce the following:∑
φ=l,g

Γφ(W ) = 0 ;
∑
φ=l,g

ψφ(W ) = 0 ;
∑
φ=l,g

Dφ(W ) = 0 ;
∑
φ=l,g

φφ(W ) = 0 .

(26)
since these represent interfacial transfer terms. We have noted: U int = (Ul +
Ug)/2 and Hint = UlUg/2 ; these enable to account for mass and momentum
transfer terms in the governing equations of mean velocities and mean total
energies. We now postulate that some convex combination for VI(W ) in terms
of Ul, Ug has been prescribed, that is:

VI(W ) = ξ(W )Ul + (1− ξ(W ))Ug . (27)

where ξ(W ) lies in [0, 1]. We recall for instance that physically relevant func-
tions ξ(W ) have been proposed in [8, 11]. We wish now to determine admissible
forms of interfacial transfer terms Γl(W ), φl(W ), ψl(W ), Dl(W ) and PI(W ).

We recall that temperatures are given by: 1/Tφ = ∂Pφ
(sφ) /∂Pφ

(eφ), and
also that chemical potentials read: µφ = eφ + Pφ/ρφ − Tφsφ. We rewrite the
interfacial pressure PI(W ) as a convex combination of both pressures Pl, Pg,
that is:

PI(W ) = µ(W )Pl + (1− µ(W ))Pg (28)

and get the following result:

Proposition:
We define:

η(W ) =
∑
φ=l,g

mφsφ and: fη(W ) =
∑
φ=l,g

mφUφsφ
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In the non-viscous limit case κφ = 0, smooth solutions W of (25) comply with
the following entropy equation:

∂t (η(W )) + ∂x (fη(W )) = Γl(W )(µg(W )/Tg − µl(W )/Tl)
+Dl(W )(Ug − Ul)(1/(2Tg) + 1/(2Tl))

+ψl(W )(Tg − Tl)/(TgTl)+
+φl(W )(Pl − Pg)(1/(2Tg) + 1/(2Tl))

when:
µ(W ) = ((1− ξ(W )))/Tl/((1− ξ(W )))/Tl + ξ(W )/Tg) (29)

Since all quantities: Tg − Tl, Ug − Ul, Pg − Pl, µg − µl are independent, the
following entropy-consistent closure laws simply arise:

Γl(W ) = KΓ(W )(µg(W )/Tg − µl(W )/Tl)
Dl(W ) = KU (W )(Ug − Ul)
ψl(W ) = KT (W )(Tg − Tl)
φl(W ) = KP (W )(Pl − Pg)

where KΓ(W ),KU (W ),KT (W ),KP (W ) denote positive coefficient functions.
These may be rewritten as follows:

KU (W ) = mlmg/(ml +mg)/τU (W ),

KT (W ) = mlmgCl−v/(ml +mg)/τT (W ),

and hence agree with the classical two-fluid literature [25]. A relevant choice for
KP that preserves positive values of void fractions is:

KP (W ) = αlαg/(|Pl|+ |Pg|)/τP (W ).

Thus KU (W ),KT (W ),KP (W ) have been replaced by their associated relax-
ation time scales: τU , τT and τP .

The closure law ((29)) is exactly the one that has been introduced in [8, 11].
All closure laws presented above may be used for a broader class of two-fluid
models ([20]).

22



6 Appendix B: Half-implicit temperature relax-
ation scheme

Starting from the system of equations (17), the half implicit temperature scheme
is obtained by solving the linearized system:

∂t (αl) = 0
∂t (αlρl) = 0
∂t (αlρlUl) = 0
∂t (αlEl) = Cm
∂t (αgρg) = 0
∂t (αgρgUg) = 0
∂t (αgEg) = −Cm

(30)

with

Cm = (τ4(0))−1 mlCV,l(0)mgCV,g(0)
mlCV,l(0) +mgCV,g(0)

(Tg − Tl).

This system corresponds to the system (17) in which the parameters τ4 and
CV,φ have been frozen a initial time. The solutions for the volume fraction, the
densities and the velocities are obvious (they are the same than those for the
system (17)).

We now turn to the energy equations. The first step consists in a prediction
of the relative temperature TR = Tg − Tl. By combining the energy equations
of (30) and by replacing CV,φ(t) = ∂eφ/∂Tφ by CV,φ(0), which has been frozen
in (30)), it can be shown that the equation on the relative temperature TR is:

∂t (TR) = − TR
τ4(0)

. (31)

This equation can be exactly integrated in TR(t) = TR(0)e−t/τ4(0). This predic-
tion is then used to integrate exactly the linearized liquid energy equation:

ml(el(t)− el(0)) =
mlCV,l(0)mgCV,g(0)
mlCV,l(0) +mgCV,g(0)

TR(0)(1− e−t/τ4(0)), (32)

and the gas internal energy is obtained according to the conservation of the
total energy of the mixture:

mg(eg(t)− eg(0)) = −ml(el(t)− el(0)). (33)

Obviously, if the time scale τ4 is constant and if the fluids are ruled by perfect
gas EOS with constant parameters, the systems (30) and (17) coincide, and
consequently the solutions above are exact for the system (17).

Starting from given values Zn,∗ at time tn, the scheme compute approximate
solutions at time tn,∗∗ = tn + ∆t. They are the exact solution of the system
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(30) at time t = ∆t with the initial condition Zn,∗. It thus reads:

αn,∗∗l = αn,∗l ,
mn,∗∗
l = mn,∗

l ,
mn,∗∗
g = mn,∗

g ,
Un,∗∗l = Un,∗l ,
Un,∗∗g = Un,∗g ,

mn,∗∗
l en,∗∗l = mn,∗

l en,∗l +
mlC

n,∗
V,l mgC

n,∗
V,g

mlC
n,∗
V,l +mgC

n,∗
V,g

(Tn,∗g − Tn,∗l )(1− e−∆t/τn,∗
4 ),

mn,∗∗
g en,∗∗g = mn,∗

g en,∗g +mn,∗
l en,∗l −mn,∗∗

l en,∗∗l .
(34)

This scheme obviously preserves the total energy of the mixture.
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Figure 1: Approximate solution of the first Riemann problem obtained with
500000 cells and the exact solution (ex.) at time t = 1.4 10−4. Top left: liquid
fraction, top right: pressures, bottom left: densities, bottom right: velocities.
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Figure 2: L1 norm of the error for the first Riemann problem. Plain lines:
gas, dotted lines: liquid. Liquid mass fraction (crosses), velocities (squares),
pressures (triangles), densities (circles). Meshes contain 500000, 250000, 50000,
5000, 500 and 50 regular cells.
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Figure 3: Approximate solution of the second Riemann problem obtained with
100000 cells and the exact solution (ex.) at time t = 1.4 10−4. Top left: liquid
fraction, top right: pressures, bottom left: densities, bottom right: velocities.
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Figure 4: L1 norm of the error for the second Riemann problem. Plain lines:
liquid, dotted lines: gas. Liquid mass fraction (crosses), velocities (squares),
pressures (triangles), densities (circles). Meshes contain 100000, 50000, 5000,
500 and 50 regular cells.
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Figure 5: Temperature relaxation substep: error at time T = 10−5 as a function
of ∆t/τ4 = {1, 10−1, 10−2, 10−4, 10−6}. Liquid temperature (straight line), gas
temperature (dotted line). Linear scheme (circles) versus non-linear scheme
(squares).
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Figure 6: Pressure relaxation substep: measured L1 norm of the er-
ror for the void fraction at time T = 10−5 as a function of ∆t/τ2 =
{10, 1, 10−1, 10−2, 10−3}. Implicit scheme (20) (circles) versus half-implicit
scheme (squares).
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Figure 7: Pressure relaxation substep: measured L1 norm of the error for the
liquid pressure (straight line) and the gas pressure (dotted line) at time T =
10−5 as a function of ∆t/τ2 = {10, 1, 10−1, 10−2, 10−3}. Implicit scheme (20)
(circles) versus half-implicit scheme (squares).

34



4 m

4 m

�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������

��
��
��

��
��
��

�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������

0.25 m

Figure 8: Heated wall: sketch of the computational domain
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Figure 9: Heated wall: contours of the liquid pressure PL in the computational
domain at time T = T1.
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Figure 10: Heated wall: y-profile of the liquid density ρl at three distinct times
T = T1 (dotted line), T2 (dashed line), T5 (plain line), at: x = 2. The small
cavity in the wall boundary corresponds to −0.25 < y < 0.
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Figure 11: Heated wall: y-profile of the gas density ρg at three distinct times
T = T1 (dotted line), T2 (dashed line), T5 (plain line), at: x = 2. The small
cavity in the wall boundary corresponds to −0.25 < y < 0.
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Figure 12: Heated wall: y-profiles of gas and liquid pressures Pg, Pl at three
distinct times T = T1 (dotted line), T2 (dashed line), T5 (plain line), at: x = 2.
The small cavity in the wall boundary corresponds to −0.25 < y < 0.
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Figure 13: Heated wall: y-profiles at x = 2 for the liquid void fraction (top left),
pressures (top right), velocities in the y-direction (bottom left) and densities
(bottom right) at time T = T1. Liquid phase: plain line, gas phase: dashed
line.
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Figure 14: Approximate solution of the first Riemann problem described in [35]
(table 1, p. 499) for 50, 500 and 5000 cells.
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