David Harvey
email: d.harvey@unsw.edu.au

Joris Van Der Hoeven

Grégoire Lecerf
email: lecerf@lix.polytechnique.fr

Fast Polynomial Multiplication over 𝔽 2 60

Keywords: F.2.1 [Analysis of algorithms and problem complexity]: Numerical Algorithms and ProblemsComputations in nite elds, G.4 [Mathematical software]: Algorithm design and analysis Algorithms, Theory Finite elds, Polynomial multiplication, Mathemagix

Can post-SchönhageStrassen multiplication algorithms be competitive in practice for large input sizes? So far, the GMP library still outperforms all implementations of the recent, asymptotically more ecient algorithms for integer multiplication by Fürer, DeKururSahaSaptharishi, and ourselves. In this paper, we show how central ideas of our recent asymptotically fast algorithms turn out to be of practical interest for multiplication of polynomials over nite fields of characteristic two. Our Mathemagix implementation is based on the automatic generation of assembly codelets. It outperforms existing implementations in large degree, especially for polynomial matrix multiplication over nite elds.

INTRODUCTION

Let F 2 k denote the nite eld with 2 k elements. In this article we are interested in multiplying polynomials in

F 2 k[x]
. This is a very basic and classical problem in complexity theory, with major applications to number theory, cryptography and error correcting codes.

Preprint version January 30, 2016

Motivation

Let M 2 k(n) denote the bit complexity of multiplying two polynomials of degree <n in F 2 k [x]. Until recently, the best asymptotic bound for this complexity was M 2 k(n) = O(k n log(k n) log log(k n)), using a triadic version [START_REF] Schönhage | Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2[END_REF] of the classical SchönhageStrassen algorithm [START_REF] Schönhage | Schnelle Multiplikation groÿer Zahlen[END_REF].

In [START_REF] Harvey | Faster polynomial multiplication over nite elds[END_REF], we improved this bound to M 2 k(n) = O(k n log(k n) 8 log (kn)), where log x = min fi 2 Nj log i log x 6 1g: The factor 8 log (kn) increases so slowly that it is impossible to observe the asymptotic behavior of our algorithm in practice. Despite this, the present paper demonstrates that some of the new techniques introduced in [START_REF] Harvey | Even faster integer multiplication[END_REF][START_REF] Harvey | Faster polynomial multiplication over nite elds[END_REF] can indeed lead to more ecient implementations.

One of the main reasons behind the observed acceleration is that [START_REF] Harvey | Faster polynomial multiplication over nite elds[END_REF] contains a natural analogue for the three primes FFT approach to multiplying integers [START_REF] Pollard | The fast Fourier transform in a nite eld[END_REF]. For a single multiplication, this kind of algorithm is more or less as ecient as the SchönhageStrassen algorithm: the FFTs involve more expensive arithmetic, but the inner products are faster. On recent architectures, the three primes approach for integer multiplication generally has performance superior to that of SchönhageStrassen due to its cache eciency [START_REF] Van Der Hoeven | Modular SIMD arithmetic in Mathemagix[END_REF].

The compactness of the transformed representations also makes the three primes approach very useful for linear algebra. Accordingly, the implementation described in this paper is very ecient for matrix products over F 2 k[x]. This is benecial for many applications such as half gcds, polynomial factorization, geometric error correcting codes, polynomial system solving, etc.

Related work and our contributions

Nowadays the SchönhageStrassen algorithm is widely used in practice for multiplying large integers [START_REF] Granlund | the GNU multiple precision arithmetic library[END_REF] and polynomials [START_REF] Brent | Faster multiplication in GF(2)[END_REF][START_REF] Hart | FLINT: Fast Library for Number Theory[END_REF]. For integers, it was the asymptotically fastest known until Fürer's algorithm [START_REF] Fürer | Faster integer multiplication[END_REF][START_REF] Fürer | Faster integer multiplication[END_REF] with cost n log n K log n , for input bit sizes n, where K > 1 is some constant (an optimized version [START_REF] Harvey | Even faster integer multiplication[END_REF] yields the explicit value K =16). However, no-one has yet demonstrated a practical implementation for sizes supported by current technology. The implementation of the modular variant proposed in [START_REF] De | Fast integer multiplication using modular arithmetic[END_REF] has even been discussed in detail in [START_REF] Lüders | Implementation of the DKSS algorithm for multiplication of large numbers[END_REF]: their conclusion is that the break-even point seems to be beyond astronomical sizes.

In [START_REF] Harvey | Even faster integer multiplication[END_REF][START_REF] Harvey | Faster polynomial multiplication over nite elds[END_REF] we developed a unied alternative strategy for both integers and polynomials. Roughly speaking, products are performed via discrete Fourier transforms (DFTs) that are split into smaller ones. Small transforms then reduce to smaller products. When these smaller products are still large enough, the algorithm is used recursively. Since the input size decreases logarithmically between recursive calls, there is of course just one such recursive call in practice. Our implementation was guided by these ideas, but, in the end, only a few ingredients were retained. In fact, we do not recurse at all; we handle the smaller subproducts directly over F 2 60 with the Karatsuba algorithm.

For polynomials over finite fields, one key ingredient of [START_REF] Harvey | Faster polynomial multiplication over nite elds[END_REF] is the construction of suitable nite elds: we need the cardinality of their multiplicative groups to have sufciently many small prime factors. A remarkable example is F 2 60, outlined at the end of [START_REF] Harvey | Faster polynomial multiplication over nite elds[END_REF], for which we have: [START_REF] Gao | Additive fast Fourier transforms over nite elds[END_REF] 31 41 61 151 331 1321: Section 3 contains our rst contribution: a detailed optimized implementation of DFTs over F 2 60. We propose several original tricks to make it highly competitive on processors featuring carry-less products. For DFTs of small prime sizes we appeal to seminal techniques due to Rader [START_REF] Rader | Discrete Fourier transforms when the number of data samples is prime[END_REF] and Winograd [START_REF] Winograd | On computing the discrete Fourier transform[END_REF]. Then the prime-factor algorithm , also called GoodThomas [START_REF] Good | The interaction algorithm and practical Fourier analysis[END_REF][START_REF] Thomas | Using a computer to solve problems in physics[END_REF], is used in medium sizes, while the CooleyTukey algorithm [START_REF] Cooley | An algorithm for the machine calculation of complex Fourier series[END_REF] serves for large sizes.

2 60 ¡ 1 = 3 2 5 2 7 11
In Section 4, we focus on other nite elds F 2 k. When k is a divisor of 60, we design ecient embeddings into F 2 60, and compare to the use of Kronecker segmentation and padding. For values of k up to 59, we propose a new algorithm to reduce computations to F 2 60, in the vein of the three prime FFT technique. This constitutes our second contribution.

The practical performance of our implementation is reported in Section 5. We compare to the optimized reference library gf2x, developed by Brent, Gaudry, Thomé and Zimmermann [START_REF] Brent | Faster multiplication in GF(2)[END_REF], which assembles Karatsuba, ToomCook and the triadic SchönhageStrassen algorithms with automatically tuned thresholds. The high performance of our implementation is of course a major outcome of this paper.

For detailed references on asymptotically fast algorithms to univariate polynomials over F 2 k and some applications, we refer the reader to [START_REF] Brent | Faster multiplication in GF(2)[END_REF][START_REF] Harvey | Even faster integer multiplication[END_REF][START_REF] Harvey | Faster polynomial multiplication over nite elds[END_REF]. The present article does not formally rely on [START_REF] Harvey | Faster polynomial multiplication over nite elds[END_REF]. In the next section we recall and slightly adapt classical results, and present our implementation framework. Our use of codelets for small and moderate sizes of DFT is customary in other high performance software, such as FFTW3 and SPIRAL [START_REF] Frigo | The design and implementation of FFTW3[END_REF][START_REF] Meng | High performance implementation of the TFT[END_REF].

PRELIMINARIES

This section gathers classical building blocks used by our DFT algorithm. We also describe our implementation framework. If a and b are elements of a Euclidean domain, then a quo b and a rem b respectively represent the related quotient and remainder in the division of a by b, so that a = (a quo b) b + (a rem b) holds.

Discrete Fourier transforms

Let n 1 ; :::; n d be positive integers, let v = (n 1 ; :::; n d), n = n 1 n d , and i 2 f0; :::; n ¡ 1g. The v-expansion of i is the sequence of integers i 0 ; :::; i d¡1 such that 0 6 i j < n j +1 and

i = i d¡1 + i d¡2 n d + i d¡3 n d¡1 n d + + i 0 n 2 n d :
The v-mirror , written [i] v , of i relative to v, is the integer dened by the following reverse expansion:

[i] v = i 0 + i 1 n 1 + + i d¡2 n 1 n d¡2 + i d¡1 n 1 n d¡1 :
Let K be a commutative eld, and let ! 2 K be a primitive n-th root of unity, which means that ! n = 1, and ! j = / 1 for all j 2 f1; :::; n ¡ 1g. The discrete Fourier transform (with respect to !) of an n-tuple (a 0 ; :::; a n¡1) 2 K n is the ntuple (a ^0; :::; a ^n¡1) 2 K n given by a ^i = P j =0

n¡1 ! ij a j . In other words we have a ^i = A(! i), where A(x) = P j =0 n¡1 a j x j . For eciency reasons, in this article, we compute the a ^i in the v-mirror order, where v corresponds to a certain ordering of the prime factors of n, counted with multiplicities, that will be optimized later. We shall use the following notation: Proof. Let ; ; be the successive values of the vector a at the end of steps 1, 2, and 3. We have

DFT !;v (a) = (a
j +im2 = P k=0 m1¡1 a j +km2 ! km2[i]v 1 , j +im2 = j +im2 ! [i]v 1 j ,
and

j +im2 = P l=0 m2¡1 l+im2 ! lm1[j]v 2 . It follows that j +im2 = P l=0 m2¡1 P k=0 m1¡1 a l+km2 ! km2[i]v 1 ! [i]v 1 l ! lm1[j]v 2 = P l=0 m2¡1 P k=0 m1¡1 a l+km2 ! (km2+l)[i]v 1 +lm1[j]v 2 . The conclusion follows from [j + i m 2] v = [i] v1 + m 1 [j] v2 , which implies (l + k m 2) [i] v1 + l m 1 [j] v2 [j + i m 2] v (l + k m 2) mod n.
Notice that the order of the output depends on v, but not on h. If the input vector is stored in a contiguous segment of memory, then the rst step of Algorithm 1 may be seen as an m 1 m 2 matrix transposition, followed by m 2 in-place DFTs of size m 1 on contiguous data. Then the transposition is inverted. The constants ! [i]v 1 j in step 2 are often called twiddle factors. Transpositions aect the performance of the strided DFTs when input sizes do not t in the last level cache memory of the processor.

For better locality, the multiplications by twiddle factors in step 2 are actually merged into step 3, and all the necessary primitive roots and xed multiplicands (including the twiddle factors) are pre-computed once, and cached in memory. We nally notice that the inverse DFT can be computed straightforwardly by inverting Algorithm 1.

In addition to the CooleyTukey algorithm we shall also use the method attributed to Good and Thomas [START_REF] Good | The interaction algorithm and practical Fourier analysis[END_REF][START_REF] Thomas | Using a computer to solve problems in physics[END_REF], and that saves all the multiplications by the twiddle factors. First it requires the n i to be pairwise coprime, and second, input and output data must be re-indexed. The rest is identical to Algorithm 1see [START_REF] Duhamel | Fast Fourier transforms: A tutorial review and a state of the art[END_REF], for instance, for complete formulas. With F 2 60, the condition on the n i fails only when two n i are 3 or 5. In such a case, it is sucient to replace v by a new vector where the two occurrences of 3 (resp. of 5) are replaced by 9 (resp. by 25), and to modify the re-indexing accordingly. In sizes 9 and 25, we build codelets upon the CooleyTukey formulas. A specic codelet for n = (3 5) 2 might further improve performance, but we did not implement this yet. We hardcoded the re-indexing into codelets, and we restrict to using the GoodThomas algorithm up to sizes that t into the cache memory. We shall discuss later the relative performance between these two DFT algoritms.

Rader reduction

When the recurrence of the CooleyTukey algorithm ends with a DFT of prime size n, then we may use Rader's algorithm [START_REF] Rader | Discrete Fourier transforms when the number of data samples is prime[END_REF] to reduce such a DFT to a cyclic polynomial product by a xed multiplicand.

In fact, let = n ¡ 1, let be a generator of the multiplicative group of Z / n Z, and let be its modular inverse. We let

B(x) = P i=0 ¡1 a i rem n x i and W (x) = P i=0 ¡1 ! i rem n x i , and we compute C(x) = B(x) W (x) rem (x ¡ 1). The coecient c i of x i in C(x) equals P j =1 n¡1 a j ! (i j) rem n . Consequently we have DFT !;n (a) = (P j =0 n¡1 a j ; a 0 + c (1)¡1 ; :::; a 0 + c ()¡1);
where is the permutation of f1; :::; g dened by

(i rem) = i.
In this way, the DFT of a reduces to one cyclic product of size , by the xed multiplicand W .

Remark 2. Bluestein reduction [START_REF] Bluestein | A linear ltering approach to the computation of discrete Fourier transform[END_REF] allows for the conversion of DFTs into cyclic products even when n is not prime. In [START_REF] Harvey | Faster polynomial multiplication over nite elds[END_REF], this is crucially used for controlling the size n of recursive DFTs. This suggests that Bluestein reduction might be useful in practice for DFTs of small composite orders, say n 6 50. For DFTs over F 2 60, this turns out to be wrong: so far, the strategies to be described in Section 3 are more ecient.

Implementation framework

Throughout this article, we consider a platform equipped with an Intel(R) Core(TM) i7-4770 CPU at 3.40 GHz and 8 GB of 1600 MHz DDR3 memory, which features AVX2 and CLMUL technologies (family number 6 and model number 0x3C). The platform runs the Jessie GNU Debian operating system with a 64 bit Linux kernel version 3.14. Care has been taken to avoid CPU throttling and Turbo Boost issues while measuring timings. We compiled with GCC [15] version 4.9.2.

In order to eciently and easily benet from AVX and CLMUL instruction sets, we decided to implement the lowest level of our DFTs directly in assembly code. In fact there is no standard way to take full advantage of these technologies within languages such as C and C++, where current SIMD types are not even bona de. It is true that programming via intrinsics [26] is a reasonable compromise, but there remain a certain number of technical pitfalls such as memory alignment, register allocation, and instruction latency management.

For our convenience we developed dynamic compilation features (also known as just in time compilation) from scratch, dedicated to high performance computing within Mathemagix (http://www.mathemagix.org). It is only used to tune assembly code for DFTs of orders a few thousands. Our implementation in the Runtime library partially supports the x86, SSE, and AVX instruction sets for the amd64 application binary interface missing instructions can be added easily. This of course suits most personal computers and computation clusters.

The eciency of an SSE or AVX instruction is not easy to determine. It depends on the types of its arguments, and is usually measured in terms of latency and throughput. In ideal conditions, the latency is the number of CPU clock cycles needed to make the result of an instruction available to another instruction; the reciprocal throughput , sometimes called issue latency , is the (fractional) number of cycles needed to actually perform the computationfor brevity, we drop reciprocal. For detailed denitions we refer the reader to [26], and also to [START_REF] Fog | Instruction tables. Lists of instruction latencies, throughputs and micro-operation breakdowns for Intel[END_REF] for useful additional comments.

In this article, we shall only use AVX-128 instructions, and 128-bit registers are denoted xmm0,..., xmm15 (our code is thus compatible with the previous generation of processors). A 128-bit register may be seen as a vector of two 64-bit integers, that are said to be packed in it. We provide unfamiliar readers with typical examples for our aforementioned processor, with cost estimates, and using the Intel syntax, where the destination is the rst argument of instructions: This high latency constitutes an important issue when optimizing the assembly code. This will be discussed later.

vmovq

DFTs OVER 𝔽 2 60

In order to perform DFTs eciently, we are interested in nite elds F 2 k such that 2 k ¡ 1 admits many small prime factors. This is typically the case [START_REF] Harvey | Faster polynomial multiplication over nite elds[END_REF] when k admits many small prime factors itself. Our favorite example is k = 60, also because 60 is only slightly smaller than the bit size 64 of registers on modern architectures.

Using the eight smallest prime divisors of 2 60 ¡ 1 allows us to perform DFTs up to size 3 2 5 2 7 11 13 31 41 61 = 17461919475, which is suciently large for most of the applications. We thus begin with building DFTs in size 3, 5, 7, 11, 13, 31, 41, 61, and then combine them using the GoodThomas and CooleyTukey algorithms.

Basic arithmetic in 𝔽 2 60

The other key advantage of k = 60 is the following dening polynomial P (z) = (z 61 ¡ 1) / (z ¡ 1) 2 F 2 [z]. Elements of F 2 60 will thus be seen as polynomials in F 2 [z] modulo P .

For multiplying a and b in F 2 60, we perform the product a ~b ~of the preimage polynomials, so that the preimage c ~of c = a b may be obtained as follows c ~= ((a ~b ~) rem (z 61 ¡ 1)) rem P :

The remainder by z 61 ¡ 1 may be performed eciently by using bit shifts and bitwise xor. The nal division by P corresponds to a single conditional subtraction of P .

In order to decrease the reduction cost, we allow an even more redundant representation satisfying the minimal requirement that data sizes are 664 bits. In input xmm0 contains the 128-bit packed polynomial, and its 64-bit reduction is stored in its low half in output. Let us mention from here that our implementation does not yet fully exploit vector instructions of the SIMD unit. In fact we only use the 64-bit low half of the 128-bit registers, except for DFTs of small orders as explained in the next paragraphs.

DFTs of small prime orders

In size n = 3, it is classical that a DFT needs only one product and one reduction: DFT !;(3) (a) = (a 0 + a 1 + a 2 ; a 0 + (a 1 + a 2) ! + a 2 ; a 0 + a 1 + (a 1 + a 2) !). This strategy generalizes to larger n as follows, via the Rader reduction of Section 2.2, that involves a product of the form

C(x) = X i=0 ¡1 b i x i ! X i=0 ¡1 w i x i ! rem (x ¡ 1): (1)
The coecient c i of degree i of C satises:

c i = X (k+l) rem =i k<l (b k + b l) (w k + w l) + X k=0 ¡1 b k w k : (2)
This amounts to + (¡ 1) / 2 products, 2 sums (even less if the w k + w l are pre-computed), and reductions. We handcrafted these formulas in registers for n = 3; 5; 7. Products are computed by vpclmulqdq. They are not reduced immediately. Instead we perform bitwise arithmetic on 128-bit registers, so that reductions to 64-bit integers are postponed to the end. The following For n > 11, these computations do not t into the 16 registers, and using auxiliary memory introduces unwanted overhead. This is why we prefer to use the method described in the next subsection.

DFTs of larger prime orders

For larger DFTs we still use the Rader reduction (1) but it is worth using Karatsuba's method instead of formula [START_REF] Bluestein | A linear ltering approach to the computation of discrete Fourier transform[END_REF]. Let = quo 2, and let = 1 if is odd and 0 otherwise. We decompose

B(x) = B 0 (x) + x B 1 (x) + b ¡1 x ¡1 , and W (x) = W 0 (x) + x W 1 (x) + w ¡1 x ¡1 , where B 0 ; B 1 ; W 0 ; W 1 have degrees 6 ¡ 1. Then B(x) W (x) may be computed as C 0 (x) + x C 1 (x) + x 2 C 2 (x) + (b ¡1 W (x) + w ¡1 B(x)), where C 0 (x) = B 0 (x) W 0 (x), C 2 (x) = B 1 (x) W 1 (x), and C 1 (x) = (B 0 (x) + B 1 (x)) (W 0 (x) + W 1 (x)) ¡ C 0 (x) ¡ C 2 (x) are obtained by the Karatsuba algorithm.
If is odd, then during the recursive calls for C 0 ; C 1 ; C 2 , we collect b i w i , for 0 6 i < 2 . Then we compute b ¡1 w ¡1 , so that the needed b ¡1 w i + w ¡1 b i are obtained as

(b ¡1 + b i) (w ¡1 + w i) ¡ b ¡1 w ¡1 ¡ b i w i .
During the recursive calls, reductions of products are discarded, and sums are performed over 128 bits. The total number of reductions at the end thus equals . We use these formulas for n = 11; 13; 31; 41; 61. For n = 5; 7 this approach leads to fewer products than with the previous method, but the number of sums and moves is higher, as reported in the following table: For readability only the two most signicant gures are reported in column cycles. The measurements typically vary by up to about 10%. It might be possible to further improve these timings by polishing register allocation, decreasing temporary memory, reducing latency effects, or even by trying other strategies [START_REF] Ballet | On the tensor rank of multiplication in any extension of F 2[END_REF][START_REF] Bodrato | Towards optimal Toom-Cook multiplication for univariate and multivariate polynomials in characteristic 2 and 0[END_REF].

n

DFTs of composite orders

As long as the input data and the pre-computed constants t into the level 3 cache of the processor (in our case, 8 MB), we may simply unfold Algorithm 1: we do not transposecopy data in step 1, but rather implement DFT codelets of small prime orders, with suitable input and output strides. For instance, in size n = 3 5, we perform ve in-place DFTs of order 3 with stride 5, namely on (a 0 ; a 5 ; a 10); (a 1 ; a 6 ; a 11); :::; (a 4 ; a 9 ; a 14), then we multiply by those twiddle factors not equal to 1, and nally, we do three in-place DFTs of size 5 and stride 1. In order to minimize the eect of the latency of vpclmulqdq, carry-less products by twiddle factors and reductions may be organized in groups of 8, so that the result of each product is available when arriving at its corresponding reduction instructions. More precisely, Up to sizes n < 10 000 made from primes 641, we generated executable codes for the CooleyTukey algorithm, and measured timings for all the possible orderings v. This revealed that increasing orders, namely n 1 6 n 2 6 6 n d , yield the best performances. In size n = 3 5 7 11 = 1155, one transform takes 44 000 CPU cycles, among which 9 000 are spent in multiplications by twiddle factors. We implemented the GoodThomas algorithm in the same way as for CooleyTukey, and concluded that it is always faster when data t into the cache memory. When n = 1155, this leads to only 38000 cycles for one transform, for which carryless products contribute 40%.

For each size m < 10 000, we then deduced the smallest DFT size n > m, together with the best ordering, leading to the fastest calculation via the GoodThomas algorithm. The graph in Figure 1 represents the number of CPU cycles in terms of m obtained in this way. Thanks to the variety of prime orders, the staircase eect is softer than with the classical FFT.

For sizes n larger than a few thousands, using internal DFTs of prime size with large strides is of course a bad idea in terms of memory management. The classical technique, going back to [START_REF] Gentleman | Fast Fourier transforms: For fun and prot[END_REF], and now known as the 4-step or 6-step FFT in the literature, consists in decomposing n into m 1 m 2 such that m 1 and m 2 are of order of magnitude n p . In the context of Algorithm 1, with v = (n 1 ; :::; n d), and n = n 1 n d , we need to determine h 2 f1; :::; dg such that m 1 = n 1 n h and m 2 = n h+1 n d are the closest to n p . As previously mentioned, for large values of m 1 ; m 2 , step 1 of Algorithm 1 decomposes into the transposition of a m 1 m 2 matrix (in column representation), followed by m 2 in-place DFTs of size m 1 on contiguous data. Then the transposition is performed backward. In the classical case of the FFT, m 1 and m 2 are powers of two that satisfy m 1 = m 2 or m 1 = 2 m 2 , and ecient cache-friendly and cache-oblivious solutions are known to transpose such m 2 m 2 matrices in-place with AVX2 instructions. Unfortunately, we were not able to do so in our present situation. Consequently we simply transpose rows in groups of 4 into a xed temporary buer of size 4 m 2 . Then we may perform 4 DFTs of size m 2 on contiguous data, and nally transpose backward. The threshold for our 4-step DFTs has been estimated in the neighborhood of 7000.

OTHER GROUND FIELDS

Usually, fast polynomial multiplication over F 2 is used as the basic building block for other fast polynomial arithmetic over nite elds in characteristic two. It is natural to ask whether we may use our fast multiplication over F 2 60 as the basic building block. Above all, this requires an ecient way to reduce multiplications in F 2 k [x] with k = / 60 to multiplications in F 2 60[x]. The optimal algorithms vary greatly with k. In this section, we discuss various possible strategies. Timings are reported for some of them in the next section. In the following paragraphs, a; b 2 F 2 k[x] represent the two polynomials of degrees <d to be multiplied, and

P k 2 F 2 [z] is the dening polynomial of F 2 k over F 2 .

Lifting and Kronecker segmentation

Case when k = 1. In order to multiply two packed polynomials in F 2 [x], we use standard Kronecker segmentation and cut the input polynomials into slices of 30 bits. More precisely, we set m = dd / 30e, A(y; x) = P In terms of the input size, this method admits a constant overhead factor of roughly 2. In fact, when considering algorithms with asymptotically softly linear cost, comparing relative input sizes gives a relevant approximation of the relative costs. General strategies. It is well known that one can handle any value of k by reduction to the case k =1. Basically, F 2 k is seen as F 2 [z] / (P k (z)), and a product in

F 2 k[x] is lifted to one product in degree <d in F 2 [z][x],
with coecients of degrees <k in z, followed by 2 d ¡ 1 divisions by P k (z). Then, the Kronecker substitution [START_REF] Zur Gathen | Modern computer algebra[END_REF]Chapter 8] reduces the computation of one such product in

F 2 [z][x], said in bi- degree <(k; d), to one product in F 2 [x] in degree <(2 k ¡ 1) d.
In total, we obtain a general strategy to reduce one product in degree <d in 1)) bit operations. Roughly speaking, this approach increases input bit sizes by a factor at most 4 in general, but only 3 when k = 2.

F 2 k to one product in F 2 60[x] in degree 6d((2 k ¡ 1) d) / 30e, plus O(d M 2 k(
Instead of Kronecker substitution, we may alternatively use classical evaluation/interpolation schemes [START_REF] Van Der Hoeven | Newton's method and FFT trading[END_REF]Section 2]. Informally speaking, a multiplication in F 2 k [x] in degree <d is still regarded as a multiplication of a ~and b ĩn F 2 [z][x] of bi-degrees <(k; d), but we specialize the variable z at suciently many points in a suitable ring A, then perform products in A[x] of degrees <d, and nally we interpolate the coecients of a ~b ~.

The classical Karatsuba transform is such a scheme. For instance, if k = 2 then (z) = 0 + 1 z is sent to (0 ; 0 + 1 ; 1), which corresponds to the projective evaluation at (0; 1; 1). The size overhead of this reduction is 3, but its advantage to the preceding general strategy is the splitting of the initial product into smaller independent products. The Karatsuba transform can be iterated, and even ToomCook transforms of [START_REF] Bodrato | Towards optimal Toom-Cook multiplication for univariate and multivariate polynomials in characteristic 2 and 0[END_REF] might be used to handle small values of k.

Another standard evaluation scheme concerns the case when k is suciently large. Each coecient (z) of a ~; b ĩs evaluated via one DFT of size n > d(2 k ¡ 1) / 30e applied to the Kronecker segmentation of (z) into slices of 30 bits seen in F 2 60[y]. Then we perform n products in F 2 60[x] in degree <d, and interpolate the output coecients by means of inverse DFTs. Asymptotically, the size overhead is again 4.

The rest of this section is devoted to other reduction strategies involving a size growth less than 4 in various particular cases.

Field embedding

Case when k j 60: When k > 2 and k j 60, which corresponds to k = 2; 3; 4; 5; 6; 10; 12; 15; 20; 30, we may embed F 2 k into F 2 60, by regarding F 2 60 as a eld extension of F 2 k. The input polynomials are now cut into slices of degrees <m with m = b(60 / k + 1) / 2c. The overhead of this method is asymptotically 60 / (m k) 6 2. If k = 4; 12; 20, then 60 / k is odd, m = (60 / k + 1) / 2, and the overhead is <2. In particular it is only 3/2 for k = 20.

Let Q be an irreducible factor of P in F 2 k[x], of degree 60/k. Elements of F 2 60 can thus be represented by poly-

nomials of degrees <60 / k in F 2 k[y], modulo Q, via the following isomorphism : F 2 [z; y]/(P k (z); Q (z; y)) ! F 2 [z]/(P (z));
where Q (z; y) represents the canonical preimage of Q in F 2 [z; y]. Let f (z; y) be a polynomial of bi-degree <(k; m) representing an element of F 2 k[y], obtained as a slice of a or b. The image (f) can be obtained as f ((z); (y)). Consequently, if we pre-compute (z j y i) for all j < k and i < m, then deducing (f) requires 59 sums in F 2 [z] / (P (z)).

The number of sums may be decreased by using larger look-up tables. Let b 0 ; :::; b 59 represent the basis z j y i for j < k and i < m, whatever the order is. Then all the f(P j =0 5 6i+j b 6i+ j)j (6i ; :::; 6i+5) 2 F 2 6 g for 0 6 i < 10 can be stored in 10 look-up tables of size 64, which allows (f) to be computed using 9 sums. Of course the cost for reordering and packing bits of elements of F 2 k[y] must be taken into account, and sizes of look-up tables must be carefully adjusted in terms of k. The details are omitted. Conversely, let g 2 F 2 [z] / (P (z)). We wish to compute ¡1 (g). As for direct images of , we may pre-compute ¡1 (z i) for all i < 60 and reduce the computation of ¡1 (g) to 59 sums in F[z; y] / (P k (z); Q (z; y)). Larger look-up tables can again help to reduce the number of sums.

Let us mention that the use of look-up tables cannot benet from SIMD technologies. On the current platform this is not yet a problem: fully vectorized arithmetic in F 2 60[z ; y] / (P k (z); Q (z; y)) would also require SIMD versions of carry-less multiplication which are not available at present.

Case when gcd(60; k) > 2. We may combine the previous strategies when k is not coprime with 60. Let t = gcd(60; k). We rewrite elements of F 2 k [x] into polynomials in F 2 t[y][x] of bi-degrees <(k / t; d), and then use the Kro-necker substitution to reduce to one product in F 2 t [x] in degree (2 k / t ¡ 1) d. For example, when 60 j k, elements of F 2 k may be represented by polynomials in F 2 60[y]. We are thus led to multiplying polynomials in F 2 60[y][x] in bidegree <(k /60; d), which yields an overhead of 2. Another favorable case is when 20 j k, yielding an overhead of 3.

Double-lifting

When k 6 30, we may of course directly lift products in F 2 k [x] to products in F 2 [z][x] of output degree in z at most 58. The latter products may thus be computed as products in F 2 60[x]. This strategy has an overhead of 60/k, so it outperforms the general strategies for k > 16.

For 31 6 k 6 59, we lift products to F 2 [z][x] and multiply in (F 2 [z] / (P (z)))[x] and (F 2 [z] / (P (z + 1))) [x]. We then perform Chinese remaindering to deduce the product modulo P (z) P (z + 1).

Multiplying A and B in (F[z] / (P (z + 1)))[x] may be obtained as (A(z + 1; x) B(z + 1; x) rem P (z))(z + 1). In this way all relies on the same DFT routines over F 2 60. If (z) 2 F 2 [z] has degree <l, with l a power of 2, we decompose (z) = 0 (z) + z l/2 1 (z) with 0 and 1 of degrees <l / 2, then (z + 1) is obtained eciently by the following induction:

(z + 1) = 0 (z + 1) + (z + 1) l/2 1 (z + 1)

(3) = 0 (z + 1) + 1 (z + 1) + z l/2 1 (z + 1):

Chinese remaindering can also be done efficiently. Let U (z) = z 2 + 1 be the inverse of P (z + 1) modulo P (z). Residues 0 (z) mod P (z) and 1 (z) mod P (z + 1) then lift into 1 (z) + (U (z) (0 (z) ¡ 1 (z)) rem P (z)) P (z + 1) modulo P (z) P (z + 1). Since deg i 6 58, this formula involves only one carry-less product. Asymptotically, the overhead of this method is 2 < 120/k < 4.

On our platform, formula (3) may be implemented in degree <64 as follows. Assume that xmm0 contains 101010...

The Crandall-Fagin reduction

For lucky 60 < k < 2 30 such that (x k+1 ¡ 1) / (x ¡ 1) is irreducible over F 2 , multiplication in F 2 k reduces to cyclic multiplication over F 2 of length k + 1. Using our adaptation [START_REF] Harvey | Faster polynomial multiplication over nite elds[END_REF] of CrandallFagin's algorithm [START_REF] Crandall | Discrete weighted transforms and large-integer arithmetic[END_REF], multiplying two polynomials of degrees <d in F 2 k[x] therefore reduces to one product in (F 2 60[y] / (y m ¡ 1))[x] in degree <d, where m is the rst integer such that d(k + 1) / me 6 30. The asymptotic overhead of this method is 2. This strategy generalizes to the case when P k divides x k+r ¡ 1, with r k.

For various k > 60, the polynomial (x k+1 ¡ 1) / (x ¡ 1) factors into r irreducible polynomials of degree k / r. In that case, we may use the previous strategy to reduce r log products in F 2 k/r [x] to multiplications in F 2 60[x], using r dierent dening polynomials of F 2 k/r. Asymptotically, the overhead reaches again 2, although working with dierent dening polynomials of F 2 k/r probably involves another non trivial overhead in practice. Again, the strategy generalizes to the case when (x k+1 ¡ 1) / (x ¡ 1) admits r irreducible factors of degree k /r ¡ with k /r.

TIMINGS

Our polynomial products are implemented in the Justinline library of Mathemagix. The source code is freely available from revision 10434 of our SVN server (http:// gforge.inria.fr/projects/mmx/). Sources for DFTs over F 2 60 are in the file dft_f2_60_amd64_avx_clmul.mmx. Those for our polynomial products in F 2 k [x] are in polynomial_f2k_amd64_avx_clmul.mmx. Let us recall here that Mathemagix functions can also be easily exported to C++ [START_REF] Van Der Hoeven | Interfacing Mathemagix with C++[END_REF].

We use version 1.1 of the gf2x library, tuned to our platform during installation. The top level function, named gf2x_mul, multiplies packed polynomials in F 2 [x], and makes use of the carry-less product instruction. Triadic variants of the SchönhageStrassen algorithm start to be used from degree 64 6485. gf2x can be used from versions > 5.5 of the NTL library [START_REF] Shoup | NTL: A Library for doing Number Theory[END_REF], that uses Kronecker substitution to multiply in F 2 k[x]. Consequently, we do not need to compare to NTL. We also compare to FLINT 2.5.2, tuned according to 13 of the documentation.

𝔽 2 [x] and 𝔽 2 60[x]

Table 1 displays timings for multiplying polynomials of degrees <d in F 2 60[x]. The row us concerns the natural product via DFTs, the other row is the running time of gf2x_mul used to multiply polynomials in F 2 [x] built from Kronecker substitution.

In Table 2, we report on timings for multiplying polynomials of degrees <d in F 2 [x]. The row us concerns our DFT based implementation via Kronecker segmentation, as recalled in Section 4.1. The row gf2x is the running time for the direct call to gf2x_mul. The row FLINT concerns the performance of the function nmod_poly_mul, which reduces to products in Z[x] via Kronecker substitution. Since the packed representation is not implemented, we could not obtain timings until the end. This comparison is not intended to be fair, but rather to show unfamiliar readers why dedicated algorithms for F 2 [x] may be worth it.

In both cases, our DFT based products turn out to be more efficient than the triadic version of the Schön-hageStrassen of gf2x, for large degrees. One major advantage of the DFT based approach concerns linear algebra. Instead of multiplying r r matrices over F 2 60[x]

𝔽 4 [x] and 𝔽 2 59[x]

Table 4 displays timings for multiplying polynomials of degrees <d in F 2 59[x]. The row us concerns the doublelifting strategy of Section 4.3. The next row is the running time of gf2x_mul used to multiply polynomials in F 2 [x] built from Kronecker substitution. As expected, timings for gf2x are similar to those of Table 1, and the overhead with respect to F 2 60 is close to 2. Overall, our implementation is about twice as fast than via gf2x.

Table 5 finally concerns our implementation of the strategy from Section 4.2 for products in degree <d in F 4 [x]. As expected, timings are similar to those of Table 2 when input sizes are the same. We compare to the sole time needed by gf2x_mul used as follows: we rewrite the product in F 4 [x] into a product in F 2 [x][y] / (y 2 + y + 1), which then reduces to 3 products in F 2 [x] in degrees 6d / 2 thanks to Karatsuba's formula.

CONCLUSION

We are pleased to observe that key ideas from [START_REF] Harvey | Even faster integer multiplication[END_REF][START_REF] Harvey | Faster polynomial multiplication over nite elds[END_REF] turn out to be of practical interest even for polynomials in F 2 k[x] of medium sizes. Besides SchönhageStrassen-type algorithms, other strategies such as the additive Fourier transform have been developed for F 2 k[x] [START_REF] Gao | Additive fast Fourier transforms over nite elds[END_REF][START_REF] Lin | Novel polynomial basis and its application to Reed-Solomon erasure codes[END_REF], and it would be worth experimenting them carefully in practice.

Let us mention a few plans for future improvements. First, vectorizing our code should lead to a signicant speed-up. However, in our implementation of multiplication in F 2 [x], we noticed that about the third of the time is spent in carry-less products. Since vpclmulqdq does not admit a genuine vectorized counterpart over 256-bit registers, we cannot hope for a speed-up of two by fully exploiting the AVX-256 mode. Then, the graph from Figure 1 can probably be further smoothed by adapting the truncated Fourier transform algorithm [START_REF] Van Der Hoeven | The truncated Fourier transform and applications[END_REF]. We are also investigating further accelerations of DFTs of prime orders in Section 3.3. For instance, for n = 7 and = 6, we might exploit the factorization z 6 ¡ 1 = (z + 1) 2 (z 2 + z + 1) 2 in order to compute cyclic products using Chinese remaindering. In the run, we nally expect the approach in this paper to be generalizable to nite elds of higher characteristic 3; 5; 7; 11; :::

 If a ~; b ~2 F 2 [z] have degrees <64, then c ~= a ~b ~may be reduced in-place by z 64 ¡ z 3 , using the following macro, where xmm1 denotes any auxiliary register, and xmm0 represents a register different from xmm1 that contains c ~: vpunpckhqdq xmm1, xmm0, xmm0 vpsllq xmm1, xmm1, 3 vpxor xmm0, xmm0, xmm1

Figure 1 .

 1 Figure 1. Timings for DFT over F 2 60, in CPU cycles.if rdi contains the current address to entries in a, and rsi the current address to the twiddle factors, then 8 entry-wise products are performed as follows:vmovq xmm0, [rdi+8*0] vmovq xmm1, [rdi+8*1] ... vmovq xmm7, [rdi+8*7] vpclmulqdq xmm0, xmm0, [rsi+8*0], 0 vpclmulqdq xmm1, xmm1, [rsi+8*1], 0 ... vpclmulqdq xmm7, xmm7, [rsi+8*7], 0Then the contents of xmm0,...,xmm7 are reduced in sequence modulo z 64 ¡ z 3 , and finally the results are stored into memory.Up to sizes n < 10 000 made from primes 641, we generated executable codes for the CooleyTukey algorithm, and measured timings for all the possible orderings v. This revealed that increasing orders, namely n 1 6 n 2 6 6 n d , yield the best performances. In size n = 3 5 7 11 = 1155, one transform takes 44 000 CPU cycles, among which 9 000 are spent in multiplications by twiddle factors. We implemented the GoodThomas algorithm in the same way as for CooleyTukey, and concluded that it is always faster when data t into the cache memory. When n = 1155, this leads to only 38000 cycles for one transform, for which carryless products contribute 40%.For each size m < 10 000, we then deduced the smallest DFT size n > m, together with the best ordering, leading to the fastest calculation via the GoodThomas algorithm. The graph in Figure1represents the number of CPU cycles in terms of m obtained in this way. Thanks to the variety of prime orders, the staircase eect is softer than with the classical FFT.For sizes n larger than a few thousands, using internal DFTs of prime size with large strides is of course a bad idea in terms of memory management. The classical technique, going back to[START_REF] Gentleman | Fast Fourier transforms: For fun and prot[END_REF], and now known as the 4-step or 6-step FFT in the literature, consists in decomposing n into m 1 m 2 such that m 1 and m 2 are of order of magnitude n p . In the context of Algorithm 1, with v = (n 1 ; :::; n d), and n = n 1 n d , we need to determine h 2 f1; :::; dg such that m 1 = n 1 n h and m 2 = n h+1 n d are the closest to n p . As previously mentioned, for large values of m 1 ; m 2 , step 1 of Algorithm 1 decomposes into the transposition of a m 1 m 2 matrix (in column representation), followed by m 2 in-

29 b

 29 30i+ j x j y i , so that a(x) = A(x 30 ; x) and b(x) = B(x 30 ; x). The product c = a b then satises c(x) = C(x 30 ; x), where C = A B. We are thus led to multiply A by B in F 260[x] by reinterpreting y as the generator of F 2 60.

Algorithm 1 (In-place CooleyTukey algorithm)

 ;v1 and DFT ! m 1 ;v2 , where m 1 = n 1 n h and m 2 = n h+1 n d .

	^[0]v ; :::; a ^[n¡1]v):
	Let 1 6 h < d, and let us split v = (n 1 ; :::; n d) into v 1 = (n 1 ; :::; n h) and v 2 = (n h+1 ; :::; n d). We recall the CooleyTukey
	algorithm [5] in the present setting: it decomposes DFT !;v
	into DFT ! m 2 Input. v = (n 1 ; :::; n d), h 2 f1; :::; d ¡ 1g, an n-th primitive root of unity !, and a = (a 0 ; :::; a n¡1) 2 K n . Output. DFT !;v (a), stored in a.
	1. For j 2 f0; :::; m 2 ¡ 1g do Let b = (a j ; a j +m2 ; :::; a j +(m1¡1)m2)
	Compute c = DFT ! m 2 ;v1 (b)
	Replace a j +im2 by c i for all i 2 f0; :::; m 1 ¡ 1g 2. For i 2 f0; :::; m 1 ¡ 1g and j 2 f0; :::; m 2 ¡ 1g do Replace a j +im2 by a j +im2 ! [i]v 1 j
	3. For i 2 f0; :::; m 1 ¡ 1g do Let b = (a im2 ; a im2+1 ; :::; a im2+m2¡1)
	Compute c = DFT ! m 1 ;v2 (b)
	Replace a j +im2 by c j for all j 2 f0; :::; m 2 ¡ 1g
	Proposition 1. Algorithm 1 is correct.

 table counts instructions of each type. Precomputed constants are mostly read from memory and not stored in registers. The last column cycles contains the number of CPU clock cycles, measured with the CPU instruction rdtsc, when running the DFT code in-place on contiguous data already present in the level 1 cache memory.

	n	clmul	shift	xor	move	cycles
	3	1	2	7	6	19
	5	10	8	22	10	37
	7	21	12	45	14	58

Table 1 .

 1 Products in degree <d in F 2 60[x], in milliseconds.

	us	13	28	52	140	290	640
	gf2x	79	160	400	800	1600	3500
	log 2 / d 64	16	17	18	19	20	21
	us	29	70	170	300	730	1300
	gf2x	39	89	190	490	900	2100
	flint	840	2200	4400	11000	:::	

Table 2 .

 2 Products in degree <d in F 2 [x], in milliseconds.

Table 3 .

 3 Products of r r matrices over F 2 [x], in degree <64 216 , in milliseconds.

	log 2 d	16	17	18	19	20	21
	us	28	58	110	290	600	1300
	gf2x	76	160	400	790	1600	3400

Table 4 .

 4 Products in degree <d in F 2 59[x], in milliseconds.

	log 2 / d 32	16	17	18	19	20	21
	us	30	73	170	310	750	1400
	gf2x	54	120	270	570	1500	2700

Table 5 .

 5 Products in degree <d in F 2 2[x], in milliseconds.in time O(r 3 M 2 60(d)), we compute the 3 r 2 DFTs and 2 d products of r r matrices overF 2 60, in time O(r 2 M 2 60(d) + r 3 d). Matrix multiplication over F 2 k[x] is reduced to matrix multiplication over F 2 60[x] using similar techniques as in Section 4. Timings for matrices over F 2 [x], reported in Table3, conrm the practical gain.