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1. Introduction

Let us remind the notations and basic assumptions used in Lepski (2013b).
Let

(X ,X, ν
)

be σ-finite space and let (Ω,A, P) be a complete probability space. Let Xi, i ≥ 1,
be a the collection of X -valued independent random variables defined on (Ω,A, P) and having the
densities fi with respect to measure ν. Furthermore, Pf , f = (f1, f2, . . .), denotes the probability
law of (X1, X2, . . .) and Ef is mathematical expectation with respect to Pf .

Let G : H×X → R be a given mapping, where H is a set. Put ∀n ∈ N∗

ξh(n) = n−1
n∑

i=1

[
G

(
h, Xi

)− EfG(h, Xi)
]
, h ∈ H. (1.1)

We will say that ξh(n), h ∈ H, is a generalized empirical process. Note that if h : X → R and
G(h, x) = h(x), h ∈ H, x ∈ X , then ξh(n) is the standard empirical process parameterized by H.
We assume that for some m ≥ 1

H = H1 × · · · × Hm, (1.2)

where Hj , j = 1,m, be given sets. We will use the following notations. For any given k = 0,m put

Hk
1 = H1 × · · · × Hk, Hm

k+1 = Hk+1 × · · · × Hm,

with the agreement that H0
1 = ∅, Hm

m+1 = ∅. The elements of Hk
1 and Hm

k+1 will be denoted by h(k)

and h(k) respectively. Moreover we suppose that for some p ≥ 1

(X , ν) =
(X1 × · · · × Xp, ν1 × · · · × νp

)
, (1.3)

where (Xl, νl) l = 1, p, are of measurable spaces and ν is the product measure. It will be also
assumed that Hm = X1.

Recall also that all consideration in Lepski (2013b) have been done under the following assump-
tion. Put for any h(k) ∈ Hk

1

G∞
(
h(k)) = sup

h(k)∈Hm
k+1

sup
x∈X

|G(h, x)|,
1
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and let G∞ : Hk
1 → R+ be any mapping satisfying

G∞
(
h(k)) ≤ G∞

(
h(k)), ∀h(k) ∈ Hk

1. (1.4)

Let {Hj(n) ⊂ Hj , n ≥ 1} , j = 1, k, be a sequence of sets and denote Hk
1(n) = H1(n) × · · ·Hk(n).

Set for any n ≥ 1
Gn = inf

h(k)∈Hk
1(n)

G∞
(
h(k)), Gn = sup

h(k)∈Hk
1(n)

G∞
(
h(k)).

For any n ≥ 1, j = 1, k and any hj ∈ Hj(n) define

Gj,n(hj) = sup
h1∈H1(n),...,hj−1∈Hj−1(n),hj+1∈Hj+1(n),...,hk∈Hk(n)

G∞
(
h(k)), Gj,n = inf

hj∈Hj(n)
Gj,n(hj).

Noting that
∣∣ ln (t1)− ln (t2)

∣∣ is a metric on R+\{0}, we equip Hk
1(n) with the following semi-metric.

For any n ≥ 1 and any ĥ(k), h̄(k) ∈ Hk
1(n) set

%(k)
n

(
ĥ(k), h̄(k)

)
= max

j=1,k

∣∣∣ln
{
Gj,n(ĥj)

}− ln
{
Gj,n(h̄j)

}∣∣∣ ,

where ĥj , h̄j , j = 1, k, are the coordinates of ĥ(k) and h̄(k) respectively.

Assumption 1. (i) 0 < Gn ≤ Gn < ∞ for any n ≥ 1 and for any j = 1, k

G∞
(
h(k)

)

Gn

≥ Gj,n(hj)
Gj,n

, ∀h(k) = (h1, . . . , hk) ∈ Hk
1(n), ∀n ≥ 1;

(ii) There exist functions Lj : R+ → R+, Dj : R+ → R+, j = 0, k + 1, . . . , m, satisfying Lj

non-decreasing and bounded on each bounded interval, Dj ∈ C1
(
R

)
, D(0) = 0, and such that

∥∥∥G(h, ·)−G(h, ·)
∥∥∥∞ ≤

{
G∞

(
h(k)

)
∨G∞

(
h

(k)
)}

D0

{
%(k)

n

(
h(k), h

(k)
)}

+
m∑

j=k+1

Lj

{
G∞

(
h(k)

)
∨G∞

(
h

(k)
)}

Dj

(
%j

(
hj , h

′
j

))
,

for any h, h ∈ Hk
1(n)× Hm

k+1 and n ≥ 1.

At last the following condition has been also exploited in the previous considerations.

Assumption 2. For any m ∈ N∗ there exists n[m] ∈ {m,m + 1, . . . , 2m} such that
⋃

n∈{m,m+1,...,2m}
H̃k

1(n) ⊆ Hk
1

(
n[m]

)
.

2. Partially totally bounded case

We begin this section with the following definition used in the sequel. Let T be a set equipped with
a semi-metric d and let n ∈ N∗ be fixed.

Definition 1. We say that {Ti ⊂ T, i ∈ I} is n-totally bounded cover of T if

• T = ∪i∈ITi and I is countable;
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• Ti is totally bounded for any i ∈ I;

• card
(
{k ∈ I : Ti ∩ Tk 6= ∅}

)
≤ n for any i ∈ I.

Let us illustrate the above definition by some examples.
Let T = Rd, d ≥ 1. Then any countable partition of Rd consisted of bounded sets forms 1-totally

bounded cover of Rd. Note, however, that the partitions will not be suitable choice for particular
problems studied later. We will be mostly interested in n-totally bounded covers satisfying the
following separation property: there exists r > 0 such that for all i,k ∈ I satisfying Ti ∩ Tk = ∅

inf
t1∈Ti,t2∈Tk

d(t1, t2) ≥ r. (2.1)

Let us return to Rd that we equip with the metric generated by the supremum norm. Denote by
Br(t), t ∈ Rd, r > 0, the closed ball in this metric with the radius r and the center t. For given r > 0
consider the collection

{
B r

2
(ri), i ∈ Zd

}
, where we understand ri as coordinate-wise multiplication.

It is easy to check that this collection is 3d-totally bounded cover of Rd satisfying (2.1).
We would like to emphasize that n-totally bounded covers satisfying the separation property

can be often constructed when T is a homogenous metric space endowed with the Borel measure
obeying doubling condition. Some useful results for this construction can be found in the recent
paper Coulhon et al. (2011), where such spaces were scrutinized.

We finish the discussion about n-totally bounded covers with the following notation: for any
t ∈ T put

T(t) =
⋃

i∈I: Ti3t

⋃

k∈I: Ti∩Tk 6=∅
Tk.

2.1. Assumptions and main result

Throughout this section we will assume that the representation (1.3) holds and the elements of
Xl, l = 1, p, will be denoted by xl .

Assumption 3. (i) Let (1.2) and (1.3) hold with X1 = Hm and for some n ∈ N∗ there exists a
collection

{
Hm,i, i ∈ I

}
being the n-totally bounded cover of Hm satisfying for some N,R < ∞

EHm,i,%m(ς) ≤ N
[
log2

{
R/ς

}]
+

, ∀i ∈ I, ∀ς > 0.

(ii) For any ς > 0

EHj ,%j (ς) ≤ N
[
log2

{
R/ς

}]
+

, ∀j = k + 1,m− 1.

Usually one can construct many n-totally bounded covers satisfying Assumption 3 (i). The con-
dition below restricts this choice and relates it to properties of the mapping G(·, ·) describing
generalized empirical process.

Assumption 4. For any n ≥ 1 and any h = (h1, . . . , hm) ∈ H(n)

sup
x∈X : x1 /∈Hm(hm)

|G(h, x)| ≤ n−1G∞
(
h(k)).

We would like to emphasize that in order to satisfy Assumption 4 in particular examples, the
n-totally bounded cover

{
Hm,i, i ∈ I

}
should usually possess the separation property. Indeed, one

of the typical examples, where Assumption 4 is fulfilled, is the following: there exist γ > 0 such
that for G(x, h) = 0 for any x ∈ X , h ∈ H, satisfying ρm(x1, hm) ≥ γ.
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Result. For any i = 1, n we denote Xi =
(
X1,i, . . . , Xp,i

)
,

f1,i(x1) =
∫

X2×···×Xp

fi(x1, . . . , xp)
p∏

l=2

νl

(
dxl

)
.

and if X = X1 (p = 1) then we put X1,i = Xi and f1,i = fi.
Put for any n ≥ 1, v > 0 and any hm ∈ Hm

Ln,v(hm) = − ln
([

n−1
n∑

i=1

∫

Hm(hm)
f1,i(x)ν1

(
dx

)] ∨ n−v
)

.

Note that obviously 0 ≤ Ln,v(hm) ≤ v ln (n), ∀hm ∈ Hm. Put for any h ∈ H

P̃ (h) = P
(
h(k)) + Ln,v

(
hm

)
+ 2 ln {1 + |ln (Fn2,r(h))|};

M̃q(h) = Mq
(
h(k)) + Ln,v

(
hm

)
+ 2 ln {1 + |ln (Fn2,r(h))|}.

Define for any h ∈ H, r ∈ N, z ≥ 0 and q > 0

Ṽ(v,z)
r (n, h) = λ1

√
G∞

(
h(k)

)(
Fn2,r(h)n−1

)(
P̃

(
h
)
+ z

)
+ λ2G∞

(
h(k))(n−1 lnβ (n)

)(
P̃

(
h
)
+ z

)
;

Ũ (v,z,q)
r (n, h) = λ1

√
G∞

(
h(k)

)(
Fn2,r(h)n−1

)(
M̃q(h) + z

)
+ λ2G∞

(
h(k))(n−1 lnβ (n)

)(
M̃q(h) + z

)
.

Theorem 1. Let Assumptions 1, 3 and 4 hold. If n1 6= n2 suppose additionally that Assumption
2 holds. Then for any r ∈ N, v ≥ 1, z ≥ 1 and q ≥ 1

Pf



sup

n∈Ñ

sup
h∈H̃(n)

[∣∣ξh(n)
∣∣− Ṽ(v,z)

r (n, h)
]
≥ 0



 ≤ n5

{
4838e−z + 4n1

2−v
}
;

Ef



sup

n∈Ñ

sup
h∈H̃(n)

[∣∣ξh(n)
∣∣− Ũ (v,z,q)

r (n, h)
]




q

+

≤ 2n5cq

[√
(n1)−1Fn2Gn ∨

(
(n1)−1 lnβ (n2)Gn

)]q

e−z

+2q+2n5(Gn)q n1
2−v.

Although the assertions of the theorem are true whenever v ≥ 1 the presented results are obvi-
ously reasonable only if v > 2. For example (as we will see later) the typical choice of this parameter
for the ”moment bound” is v = q + 2.

In spite of the fact that upper functions presented in Theorem 1 are found explicitly their
expressions are quite cumbersome. In particular, it is unclear how to compute the function Ln,v(·).
Of course, since Ln,v(hm) ≤ v ln (n), ∀hm ∈ Hm, one can replace it by v ln (n) in the definition of
P̃ (·) and M̃q(·), but the corresponding upper functions are not always sufficiently tight.

Our goal now is to simplify the expressions for upper functions given in Theorem 1. Surprisingly,
that if n is fixed, i.e. n1 = n2, it can be done without any additional assumption.

Set for any v > 0 and h ∈ H

P̂v
(
h(k)) = P

(
h(k)) + 2v

∣∣∣ln
(
2G∞

(
h(k)))∣∣∣ , M̂q,v

(
h(k)) = Mq

(
h(k)) + 2v

∣∣∣ln
(
2G∞

(
h(k)))∣∣∣ ,

and let F̂n2(h) = max[Fn2(h),n2
−1].
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Corollary 1. Let the assumptions of Theorem 1 hold. If n1 6= n2 suppose additionally that Xi,1, i ≥
1, are identically distributed.
Then, the results of Theorem 1 remain valid if one replaces Ṽ(v,z)

r (n, h) and Ũ (v,z,q)
r (n, h) by

V̂(v,z)(n, h) = λ1

√
G∞

(
h(k)

)(
F̂n2(h)n−1

)(
P̂v

(
h(k)

)
+ 2(v + 1)

∣∣ ln {
F̂n2(h)

}∣∣ + z
)

+λ2G∞
(
h(k))(n−1 lnβ (n)

)(
P̂v

(
h(k)) + 2(v + 1)

∣∣ ln {
F̂n2(h)

}∣∣ + z
)
;

Û (v,z,q)(n, h) = λ1

√
G∞

(
h(k)

)(
F̂n2(h)n−1

)(
M̂q,v

(
h(k)

)
+ 2(v + 1)

∣∣ ln {
F̂n2(h)

}∣∣ + z
)

+λ2G∞
(
h(k))(n−1 lnβ (n)

)(
M̂q,v

(
h(k)) + 2(v + 1)

∣∣ ln {
F̂n2(h)

}∣∣ + z
)
.

We would like to emphasize that we do not require that Xi, i ≥ 1, would be identically dis-
tributed. In particular, coming back to the generalized empirical process considered in Example 2,
Section 1.1 in Lepski (2013b), where Xi = (Yi, εi), the design points Yi, i ≥ 1, are often supposed
to be uniformly distributed on some bounded domain of Rd. As to the noise variables εi, i ≥ 1, the
restriction that they are identically distributed cannot be justified in general.

2.2. Law of logarithm

Our goal here is to use the first assertion of Corollary 1 in order to establish the result referred
later to the law of logarithm. Namely we show that for some Υ > 0

lim sup
n→∞

sup
h(k)∈H

k
1(n,a)

√
n ηh(k)(n)√

G∞
(
h(k)

)[
ln

{
G∞

(
h(k)

)} ∨ ln ln (n)
] ≤ Υ Pf − a.s. (2.2)

As previously we will first provide with the non-asymptotical version of (2.2).
As before we suppose that

c ≤ Gn ≤ Gn ≤ cnb, ∀n ≥ 1; (2.3)

sup
n≥1

sup
h∈H̃(n)

sup
i≥1
Ef

∣∣G(h, Xi)
∣∣ =: F < ∞ (2.4)

and impose additionally the following condition. For some a > 0

L(k)(z) ≤ a ln (z), ∀z ≥ 2. (2.5)

Theorem 2. Let Assumptions 1, 2, 3 and 4 be fulfilled. Suppose also that (2.3), (2.4) and (2.5)
hold and assume that Xi,1, i ≥ 1, are identically distributed.

Then there exits Υ > 0 such that for any j ≥ 3 and any a > 4

Pf





sup
n≥j

sup
h(k)∈H

k
1(n,a)

√
n ηh(k)(n)√

G∞
(
h(k)

)[
ln

{
G∞

(
h(k)

)} ∨ ln ln (n)
] ≥ Υ




≤ 4840n5

ln (j)
.

Some remarks are in order. The explicit expression of the constant Υ is available and the gen-
eralization. Also, (2.2) is an obvious consequence of Theorem 2. At last, we note that in view of

5



(2.3) the factor
[
ln

{
G∞

(
h(k)

)}∨ ln ln (n)
]

can be replaced by ln(n) which is, up to a constant, its
upper estimate. The corresponding result is, of course, rougher than one presented in the theorem,
but its derivation does not require Xi,1, i ≥ 1, to be identically distributed. This result is deduced
directly from Theorem 1. Its proof is almost the same as the proof of Theorem 2 and based on the
trivial bound Ln,v(hm) ≤ v ln (n), ∀hm ∈ Hm.

3. Application to localized processes

Let
(
Xl, µl, ρl

)
, l = 1, d + 1, d ∈ N, be the collection of measurable metric spaces. Throughout this

section we will suppose that (1.3) holds with p = 2,

X = X1 ×X2,
(X1, ν1

)
=

(
X1 × · · · × Xd, µ1 × · · · × µd

)
=:

(
Xd

1, µ
(d)), (X2, ν2

)
=

(
Xd+1, µd+1

)
,

xj denotes the element of Xj , j = 1, d + 1, and x(d) will denotes the element of Xd
1. We equip the

space Xd
1 with the semi-metric ρ(d) = maxl=1,d ρl.

Problem formulation This section is devoted to the application of Theorem 1 [Lepski (2013b)]
and Theorem 1 in the following case:

• Hd
1 := H1 × · · · × Hd = (0, 1]× · · · × (0, 1] = (0, 1]d, (i.e. k = d);

• Hd+2
d+1 = Hd+1 ×Hd+2 := Z × X̄d

1 , i.e. m = d + 2, where X̄d
1 := X̄1× · · · × X̄d be a given subset

of Xd
1 and (Z, d) is a given metric space.

• The function G(·, ·) obeys some structural assumption described below and for any h :=(
r, z, x̄(d)

) ∈ (0, 1]d ×Z × X̄d
1 the function G(h, ·) ”decrease rapidly ” outside of the set

{
x1 ∈

X1 : ρ1
(
x1, x̄1

) ≤ r1

}
× · · · ×

{
xd ∈ Xd : ρd

(
xd, x̄d

) ≤ rd

}
× Xd+1.

Let K : Rd → R be a given function,
(
γ1, . . . , γd

) ∈ Rd
+ be given vector and set for any r ∈ (0, 1]d

Kr(·) = V −1
r K (·/r1, . . . , ·/rd) , Vr =

d∏

l=1

rγl
l .

where, as previously, for u, v ∈ Rd the notation u/v denotes the coordinate-wise division. Let

G(h, x) = g
(
z, x

)
Kr

(
~ρ
(
x(d), x̄(d))) , h =

(
r, z, x̄(d)

)
∈ (0, 1]d ×Z × X̄d

1 =: H, (3.1)

where g : Z × X → R is a given function those properties will be described later and

~ρ
(
x(d), x̄(d)) =

(
ρ1

(
x1, x̄1

)
, . . . , ρd

(
xd, x̄d

))
.

The corresponding generalized empirical process is given by

ξh(n) = n−1
n∑

i=1

[
g
(
z, Xi

)
Kr

(
~ρ
(

[Xi]
(d) , x̄(d)

))
− Ef

{
g
(
z, Xi

)
Kr

(
~ρ
(

[Xi]
(d) , x̄(d)

))} ]
.

We will seek upper functions for the random field ζr
(
n, x̄(d)) := sup

z∈Z

∣∣ξr,z,x̄(d)(n)
∣∣ in two cases: X̄d

1 =

Xd
1 and X̄d

1 =
{
x̄(d)

}
for a fixed x̄(d) ∈ Xd

1.
6



To realize this program we will apply Theorem 1 [Lepski (2013b)] and Theorem 1 to ξh(n), h =(
r, z, x̄(d)

)
. It is worth mentioning that corresponding upper functions can be used for constructing

of estimation procedures in different areas of mathematical statistics: M -estimation with locally
polynomial fitting (non-parametric regression), kernel density estimation and many others.

Moreover, we apply Theorem 2 [Lepski (2013b)] for establishing a non-asymptotical version of the
law of iterated logarithm for ζr

(
x̄(d), n

)
in the case where X̄d

1 =
{
x̄(d)

}
. We also apply Theorem 2 for

deriving a non-asymptotical version of the law of logarithm for ‖ζr(n)‖∞ := supx̄(d)∈Xd
1

∣∣∣ζr
(
x̄(d), n

)∣∣∣.
Our study here generalizes in several directions the existing results Einmahl and Mason (2000),
Giné and Guillou (2002), Einmahl and Mason (2005), Dony et al. (2006), Dony et Einmahl (2009).

3.1. Assumptions and notations

Assumption 5. (i) ‖K‖∞ < ∞ and for some L1 > 0

|K(t)−K(s)| ≤ L1|t− s|
1 + |t| ∧ |s| , ∀t, s ∈ Rd,

where | · | denotes supremum norm on Rd.

(ii) ‖g‖∞ := sup
z∈Z, x∈X

∣∣g(
z, x

)∣∣ < ∞, and for some α ∈ (0, 1], Lα > 0,

sup
x∈X

∣∣g(
z, x

)− g
(
z′, x

)∣∣ ≤ Lα
[
d(z, z′)

]α
, ∀z, z′ ∈ Z;

The conditions (i) and (ii) are quite standards. In particular (i) holds if K is compactly supported
and lipschitz continuous. If g

(
z, ·) = ḡ(·), for any z ∈ Z, then (ii) is verified for any bounded ḡ.

Let 0 < r
(min)
l (n) ≤ r

(max)
l (n) ≤ 1, l = 1, d, n ≥ 1, be given decreasing sequences and let

H(n) = R(n)×Z × X̄d
1 , R(n) =

d∏

l=1

[
r
(min)
l (2n), r(max)

l (n)
]
;

H̃(n) = R̃(n)×Z × X̄d
1 , R̃(n) =

d∏

l=1

[
r
(min)
l (n), r(max)

l (n)
]
.

We note that H̃(n) ⊆ H(n) for any n ≥ 1 since r
(min)
l (·), r(max)

l (·), l = 1, d, are decreasing, and
obviously H̃(n) ⊆ H(m) for any n ∈ {m, . . . ,2m} and any m ≥ 1.

Remark 1. Assumption 2 is fulfilled with n[m] = m.

Lemma 1. Suppose that Assumption 5 is fulfilled and let X̄d
1 ⊆ Xd

1 be an arbitrary subset. Then,
for arbitrary sequences 0 < r

(min)
l (n) ≤ r

(max)
l (n) ≤ 1, l = 1, d, n ≥ 1, Assumption 1 holds with

%(d)
n

(
r, r′

)
= max

l=1,d

∣∣γl ln
(
rl/r′l

)∣∣, %d+1 =
[
d
]α

, %d+2 = max
l=1,d

ρl;

D0(z) = exp {dz} − 1 + (L1/‖K‖∞)
(

exp
{
γ−1z

}
− 1

)
, γ = min

l=1,l
γl;

Dd+1(z) =
(
Lα/‖g‖∞

)
z, Dd+2(z) = L1

(‖g‖∞‖K‖2
∞

)−1
z, Ld+1(z) = z, Ld+2(z) = z2.

Additionally, if X̄d
1 consists of a single point x̄(d) ∈ Xd

1 then Ld+2 ≡ 0.
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The proof of the lemma is postponed to Appendix. We remark that %d+1 is a semi-metric, since
α ∈ (0, 1], and the semi-metric %

(d)
n is independent on n. In view of latter remark all quantities

involved in Assumption 1 are independent on the choice of r
(min)
l (·), r(max)

l (·), l = 1, d,. We want to
emphasize nevertheless that the assertion of the lemma is true for an arbitrary but a priory chosen
r
(min)
j (·), r(max)

l (·), l = 1, d.
Thus, Lemma 1 guarantees the verification of Assumption 1, that makes possible the application

of Theorem 1 [Lepski (2013b)] and Theorem 1. Hence, we have to match the notations of these
theorems to the notations used in the present section.

Since k = d and Hk
1 = (0, 1]d we have h(k) = r and, therefore, in view of Assumption 5

G∞(r) := sup
(z,x̄(d))∈Z×X̄d

1

sup
x∈Xd+1

1

∣∣∣G
({

r, z, x̄(d)
}
, x

)∣∣∣ ≤ V −1
r ‖g‖∞‖K‖∞ =: G∞(r).

Gn := inf
r∈R(n)

G∞(r) = V −1
r(max)(n)

‖g‖∞‖K‖∞, ∀n ≥ 1.

We remark that the function G∞(·) is independent of the choice of X̄d
1. Define

f
(d)
i

(
x(d)) =

∫

Xd+1

fi(x)µd+1

(
dxd+1

)
, i ≥ 1,

and let 3 ≤ n1 ≤ n2 ≤ 2n1 be fixed. Set for any
(
r, x̄(d)

)
∈ (0, 1]d × X̄d

1

Fn2

(
r, x̄(d)

)
=





‖g‖∞(n2)−1 ∑n2
i=1

∫
Xd

1

∣∣∣Kr

(
~ρ
(
x(d), x̄(d)

))∣∣∣ f (d)
i

(
x(d)

)
µ(d)(dx(d)), n1 = n2;

‖g‖∞ sup
i=1,n2

∫

Xd
1

∣∣∣Kr

(
~ρ
(
x(d), x̄(d)))∣∣∣ f (d)

i

(
x(d))µ(d)(dx(d)), n1 6= n2,

and note that in view of Assumption 5 (ii)

Fn2(h) ≤ Fn2

(
r, x̄(d)

)
, ∀h ∈ (0, 1]d ×Z × X̄d

1.

We remark that the function Fn2(·, ·) is independent of the choice of Z. Put also

Fn2 := sup
n∈Ñ

sup(
r,x̄d

)
∈R(n)×X̄d

1

Fn2

(
r, x̄d)

< ∞,

where, remind, Ñ = {n1, . . . ,n2}. Finally for any r ∈ N set Fn2,r(·, ·) = max [Fn2(·, ·), e−r].

3.2. Pointwise results

Here we will consider the case, where X̄d
1 =

{
x̄(d)

}
and x̄(d) is a fixed element of Xd

1. Note that in

view of Lemma 1 Ld+1(z) = z and Ld+2 ≡ 0 that implies L(k) ≡ 0.
We are going to apply Theorem 1 from [Lepski (2013b)] and, therefore, we will need the following

assumption from Lepski (2013b).

Assumption 6. Suppose that (1.2) holds and there exist N,R < ∞ such that for any ς > 0 and
any j = k + 1, m

EHj ,%j (ς) ≤ N
[
log2

{
R/ς

}]
+

,

where, as previously, EHj ,%j denotes the entropy of Hj measured in %j.
8



We will suppose that Assumption 6 holds with k = d,m = d + 1 and (Hd+1, %d+1) = (Z, [d]α).
It is equivalent obviously to assume that Assumption 6 holds with (Hd+1, %d+1) = (Z, d) and with
the constants Ñ = αN and R̃ = R1/α.

Let β and CN,R,m,k be the constants defined in Theorem 1 [Lepski (2013b)]. Set for any r ∈ (0, 1]d

and q > 0

P (r) = (36dδ−2
∗ + 6) ln

(
1 +

d∑

l=1

γl ln

{
2r

(max)
l (n)

rl

})
+ 18CN,R,d+1,d;

Mq(r) =
(
72dδ−2

∗ + 2.5q + 1.5
) d∑

l=1

γl ln

(
2r

(max)
l (n)

rl

)
+ 36CN,R,d+1,d.

and define for r ∈ N and u > 0

V(u)
r

(
n, r, x̄d)

= λ1

√[
Fn2,r

(
r, x̄d

)
(nVr)−1

][
P (r) + 2 ln

{
1 +

∣∣ln {
Fn2,r

(
r, x̄d

)}∣∣} + u
]

+λ2

[
(nVr)−1 lnβ (n)

][
P (r) + 2 ln

{
1 +

∣∣∣ln
{
Fn2,r

(
r, x̄d)}∣∣∣

}
+ u

]
;

U (u,q)
r

(
n, r, x̄d)

= λ1

√[
Fn2,r

(
r, x̄d

)
(nVr)−1

][
Mq(r) + 2 ln

{
1 +

∣∣ln {
Fn2,r

(
r, x̄d

)}∣∣} + u
]

+λ2

[
(nVr)−1 lnβ (n)

][
Mq(r) + 2 ln

{
1 +

∣∣∣ln
{
Fn2,r

(
r, x̄d)}∣∣∣

}
+ u

]
,

where λ1 =
√‖g‖∞‖K‖∞λ1, λ2 = ‖g‖∞‖K‖∞λ2 and λ1, λ2 are defined in Theorem 1 [Lepski

(2013b)].
The result below is the direct consequence of Theorem 1 [Lepski (2013b)] and Lemma 1. We

remark that defined above quantities are functions of r and n since x̄d is fixed. Since they do not
depend on the variable z, these quantities will be automatically upper functions for

ζr
(
n, x̄(d)) := sup

z∈Z

∣∣∣ξr,z,x̄(d)

(
x̄(d))∣∣∣.

Theorem 3. Let Assumption 5 be fulfilled and suppose that Assumption 6 holds with k = d,m =
d + 1 and (Hd+1, %d+1) = (Z, [d]α).

Then for any given decreasing sequences 0 < r
(min)
l (n) ≤ r

(max)
l (n) ≤ 1, l = 1, d, n ≥ 1, any

x̄d ∈ X̄d
1 any r ∈ N, b > 1 u ≥ 1 and q ≥ 1

Pf



sup

n∈Ñ

sup
r∈R̃(n)

[
ζr

(
n, x̄(d))− V(u)

r

(
n, r, x̄d)] ≥ 0



 ≤ 2419 e−u;

Ef



sup

n∈Ñ

sup
r∈R̃(n)

[
ζr

(
n, x̄(d))− U (u,q)

r

(
n, r, x̄d)]





q

+

≤ c′q

[√
Fn2

n1Vr(max)(n1)

∨
(

lnβ (n2)
Vr(max)(n1)n1

)]q

e−u,

where c′q = 2(7q/2)+53q+4Γ(q + 1)
(
CD,b max

[√‖g‖∞‖K‖∞, ‖g‖∞‖K‖∞
])q

.

The explicit expression for CD,b can be also found in Theorem 1 [Lepski (2013b)]. In the case
considered here it is completely determined by (γ1, . . . γd), L1, Lα and b.

As well as the assertions of Theorem 1 [Lepski (2013b)] the latter theorem is proved without any
assumption imposed on the densities fi, i = 1, n. The choice of r

(min)
l (n), r(max)

l (n), l = 1, d, n ≥ 1,

9



is also assumption free. Additionally, Assumption 6 can be replaced by weaker condition, see [Lepski
(2013b)].

Note also that if g
(
z, ·) = ḡ(·), for any z ∈ Z, then Assumption 6 is not needed anymore and,

moreover, Assumption 5 (ii) is verified for an arbitrary bounded ḡ. Hence, in this case the assertions
of Theorem 3 are established under very mild Assumption 5 (i) imposed on the function K.

Remark 2. We note that the discussed in Introduction so-called price to pay for uniformity dis-
appears if r = r(max). Indeed, P

(
r(max)

)
and Mq

(
r(max)

)
are absolute constants. This property

is crucial, in particular, for constructing statistical procedures used in the estimation of functions
possessing inhomogeneous smoothness, see Lepski et al. (1997), Kerkyacharian et al. (2001).

Some additional assumptions and their consequences To apply Theorem 3 to specific
problems one needs to find an efficient upper bound for the quantity Fn2(·, ·). Below we provide
with sufficient condition allowing to solve this problem under general consideration and we will not
be tending here to the maximal generality. We impose some additional restrictions on the densities
fi, i = 1, n, and on the measures µl of ρl-balls in the spaces Xl, l = 1, d. Moreover, we should precise
the behavior of the function K at infinity. Then, we will use these assumptions for establishing of
the law of iterated logarithm.

Introduce the following notations. For any t ∈ Rd
+ define

Ǩ(t) = sup
|u|/∈Πt

|K(u)|, Πt = [0, t1]× · · · × [0, td].

For any l = 1, d, xl ∈ Xl and r > 0 set Bl

(
r, xl

)
=

{
y ∈ Xl : ρl

(
y, xl

) ≤ r
}
.

Assumption 7. There exists L2 > 0 such that

sup
t∈Rd

+

[( d∏

l=1

t1+γl
l

)
Ǩ(t)

]
≤ L2; (3.2)

For any l = 1, d and any xl ∈ Xl one has Xl = ∪r>0
(
Bl

(
r, xl

))
and there exist L(l) > 0

µl

(
Bl

(
r, xl

)) ≤ L(l)rγl , ∀r > 0; (3.3)

Moreover,
sup
i≥1

sup
x(d)∈Xd

1

f
(d)
i

(
x(d)) =: f∞ < ∞. (3.4)

The condition (3.2) is obviously fulfilled if K is compactly supported on [0, 1]d. It is also satisfied
in the case of Gaussian or Laplace kernel.

The condition (3.3) can be easily checked if Xl, l = 1, d are doubling metric spaces. In particular,
if Xl = R and µl, l = 1, d, are the Lebesgue measures than (3.3) holds with L(l) = 1, γl = 1, l = 1, d.
If Xl = Rdl , l = 1, d, then (3.3) holds with γl = dl and the constants L(l) depending on the choice
of the distances ρl.

As to condition (3.4) we remark that the boundedness of the entire density fi is not required.
For example, under independence structure, i.e. fi(x) = f

(d)
i

(
x(d)

)
pi

(
xd+1

)
, the densities pi may be

unbounded.

10



Lemma 2. The following bound holds under Assumption 7:

sup
n2≥1

sup
r∈(0,1]d

sup
x̄(d)∈Xd

1

Fn2

(
r, x̄(d)

)
≤ 2df∞‖g‖∞L2

d∏

l=1

2γlL(l).

The proof of lemma is postponed to Appendix. Our goal now is to deduce the law of iterated
logarithm for ζr

(
n, x̄(d)

)
from Theorem 2, Lepski (2013b). Set for any n ∈ N∗ and a > 0

Ra(n) =
{
r ∈ (0, 1]d : Vr ≥ n−1(lnn)a

}
.

and choose h(max) = (1, . . . , 1) and h(min) = (1/n, . . . , 1/n).

Remark 3. 10. Note that Ra(n) ⊂ [n−1, 1]d =: R̃(n) for any n ≥ 3 and any a > 0 and, therefore,
the assertion of Lemma 1 holds.

20. We have Gn = ‖K‖∞‖g‖∞, Gn = ‖K‖∞‖g‖∞n−d for any n ≥ 1 and, therefore, (2.3) is
verified with c = ‖K‖∞‖g‖∞ and b = d.

30. Lemma 2 implies that the condition (2.4) holds with F ≤ 2df∞‖g‖∞L2
∏d

l=1 2γlL(l).

40. In view of Lemma 1 Ld+1(z) = z and Ld+2 ≡ 0, that implies L(k) ≡ 0. Hence, the condition
(1.13) in Lepski (2013b) is fulfilled for any a > 0.

Thus, all assumptions of Theorem 2, Lepski (2013b), are checked and we come to the following
statement.

Theorem 4. Let Assumptions 5 and 7 be fulfilled and suppose that Assumption 6 holds with
k = d, m = d + 1 and (Hd+1, %d+1) = (Z, [d]α). Then there exists Υ > 0 such that for any x̄d ∈ X̄d

1

and any a > 2

Pf



sup

n≥j
sup

r: n−1(ln n)a≤Vr≤1

[√
nVr ζr

(
n, x̄(d)

)
√

ln
(
1 + ln (n)

)
]
≥ Υ



 ≤ 2419

ln(j)
.

Remark 4. The inspection of the proof of Theorem 2, Lepski (2013b), together with Lemma 2
allows us to assert that the statement of Theorem 4 is uniform over the set of bounded densities.

More precisely, for any f > 0 there exists Υ(f) such that

sup
f∈Ff

Pf



sup

n≥j
sup

r: n−1(ln n)a≤Vr≤1

[√
nVr ζr

(
n, x̄(d)

)
√

ln
(
1 + ln (n)

)
]
≥ Υ(f)



 ≤ 2419

ln(j)
, (3.5)

where Ff =
{
(fi, i ≥ 1) : f∞ ≤ f

}
. As before the explicit expression of Υ(·) is available.

The following consequence of Theorem 4 is straightforward.

lim sup
n→∞

sup
r: n−1(ln n)a≤Vr≤1

[√
nVr ζr

(
n, x̄(d)

)
√

ln
(
1 + ln (n)

)
]
≤ Υ Pf − a.s. (3.6)

Theorem 4 generalizes the existing results, see for example Dony et Einmahl (2009), in the following
directions.

11



1. Structural assumption. The structural condition (3.1) is imposed in cited papers but with
additional restriction: either g(z, x) ≡ const (”density case”) or g(z, x) = ḡ(x) (”regression
case”). It excludes, for instance, the problems appearing in robust estimation. We note that
Assumption 5 (ii) is fulfilled here if ḡ is bounded function and Assumption 6 is not needed
anymore, since ḡ is independent of z.

2. Anisotropy. All known to the author results treat the case where Xl = R, l = 1, d, and
R(n) =

{
(r1, . . . , rd) ∈ (0, 1]d : rl = r, ∀l = 1, d, r ∈

[
r(min)(n), r(max)(n)

]}
(isotropic case).

We remark that (3.3) is automatically fulfilled with γl = 1, L(l) = 1, l = 1, d, and Vr = rd. Note
also that we consider independent but not necessarily identically distributed random variables.
This is important, in particular, for various estimation problems arising in nonparametric
regression model.

3. Kernel. We do not suppose that the function K is compactly supported. For instance, one
can use the gaussian or laplace kernel. It allows, for instaince, to consider the problems where
Xd

1 is not linear space. In particular, it can be some manifold satisfying doubling condition.
4. Non-asymptotic nature. The existing results are presented as in (3.6). Note, however, that

the random field ζr
(
n, x̄d

)
appears in various areas of nonparametric estimation (density

estimation, regression). As the consequence a.s. convergence has no much sense since there is
no a unique probability measure (see, also Remark 4).

3.3. Sup-norm results

Here we consider X̄d
1 = Xd

1. We assume that there exists {Xi, i ∈ I} which is n-totally bounded
cover of

(
Xd

1, ρ
(d)

)
satisfying Assumption 3 (i) and possessing the separation property.

Assumption 8. There exists t > 0 such that for any i,k ∈ I satisfying Xi ∩Xk = ∅

inf
x(d)∈Xi

inf
y(d)∈Xk

ρ(d)
(
x(d), y(d)

)
> t.

Also we suppose that Assumption 3 (ii) holds with k = d,m = d+1 and (Hd+1, %d+1) = (Z, [d]α).
We remark that in the considered case this assumption coincides with Assumption 6.

Let, as previously, 0 < r
(min)
l (n) ≤ r

(max)
l (n) ≤ 1, l = 1, d, n ≥ 1, be given decreasing sequences,

H(n) = R(n)×Z ×Xd
1 , R(n) =

d∏

l=1

[
r
(min)
l (2n), r(max)

l (n)
]
;

H̃(n) = R̃(n)×Z ×Xd
1 , R̃(n) =

d∏

l=1

[
r
(min)
l (n), r(max)

l (n)
]
.

Our last condition relates the choice of the vector r(max)(n), n ≥ 1 and the kernel K with the
parameter t appearing in Assumption 8. Let us assume that for any n ≥ 1

sup
r∈R(n)

sup
|u|/∈(0,t]d

|K(u/r)| ≤ ‖K‖∞n−1. (3.7)

Note that (3.7) holds if K is compactly supported on [−t, t]d and r(max)(n) ∈ (0, t)d for any n ≥ 1.

Lemma 3. Assumption 8 and (3.7) imply Assumption 4.
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The proof of lemma is given in Appendix. Set for any r ∈ (0, 1]d and v > 0

M̂q,v(r) =
(
[72d + 108N ]δ−2

∗ + 2.5q + 2v + 1.5
)
ln

(
2V −1

r

)
+ C,

where we have put C = 72Nδ−2∗ |log2 (‖g‖∞‖K‖∞)|+ 36CN,R,d+1,d.

Let 3 ≤ n1 ≤ n2 ≤ 2n1 be fixed. Set F̂n2

(
r, x̄(d)

)
= max

[
Fn2

(
r, x̄(d)

)
,n2

−1
]

and define

Û (v,z,q)(n, r, x̄(d)) = λ1

√[
F̂n2

(
r, x̄(d)

)
(nVr)−1

][
M̂q,v(r) + 2(v + 1)

∣∣∣ ln
{
F̂n2

(
r, x̄(d)

) }∣∣∣ + z
]

+λ2

[
(nVr)−1 lnβ (n)

][
M̂q,v(r) + 2(v + 1)

∣∣∣ ln
{
F̂n2

(
r, x̄(d)

) }∣∣∣ + z
]
.

Theorem 5 below is the direct consequence of Lemma 1, Lemma 3 and Corollary 1. Remind that
ζr

(
n, x̄(d)) := sup

xd+1∈Xd+1

∣∣∣ξr,z,x̄(d)

(
x̄(d))∣∣∣ and Ñ = {n1, . . . ,n2}.

Theorem 5. Let Assumption 5 be verified and suppose that Assumption 3 (ii) holds with k =
d + 1,m = d + 2 and (Hd+1, %d+1) = (Z, [d]α). Suppose also that Assumption 3 (i) is fulfilled with
(Hd+2, %d+2) =

(
Xd

1, ρ
(d)

)
and Hd+2,i = Xi, i ∈ I, satisfying Assumption 8. Assume that (3.7) holds

as well and if n1 6= n2 let
(
Xi

)d
, i ≥ 1, be identically distributed.

Then for any given decreasing sequences 0 < r
(min)
l (n) ≤ r

(max)
l (n) ≤ 1, l = 1, d, n ≥ 1, any

b > 1, q ≥ 1, v ≥ 1 and z ≥ 1

Pf

{
sup
n∈Ñ

sup
(r,x̄(d))∈R̃(n)×Xd

1

[
ζr

(
n, x̄(d))− Û (v,z,q)(n, r, x̄(d))] ≥ 0

}
≤ n5

{
4838e−z + 2n1

2−v
}
;

Ef

{
sup
n∈Ñ

sup
(r,x̄(d))∈R̃(n)×Xd

1

[
ζr

(
n, x̄(d))− Û (v,z,q)(n, r, x̄(d))]

}q

+

≤ 2n5c′q




√√√√ F̂n2

n1Vr(max)(n1)

∨
(

lnβ (n2)
Vr(max)(n1)n1

)


q

e−z + 2q+1n5
(
Vr(min)(n1)

)−q
n1

2−v.

Remind that F̂n2 = sup
n∈Ñ

sup
(r,x̄(d))∈R̃(n)×Xd

1

F̂n2

(
r, x̄(d)

)
and the expression for the constant c′q can

be found in Theorem 3. We also note that the first assertion of the theorem remains valid if one
replaces the quantity M̂q,v(r) by the smaller quantity

(
[36d + 54N ]δ−2∗ + 2v + 6

)
ln

(
2V −1

r

)
+ C/2.

But the corresponding upper function will differ from Û (v,z,q) only by numerical constant.
We also remark that F̂n2 ≤ 2df∞‖g‖∞L2

∏d
l=1 2γlL(l) for any n2 ≥ 3 under Assumption 7 in view

of Lemma 2. Moreover, if Vr(min)(n) ≥ n−p for some p > 0 then M̂q,v(r) can be bound from above by(
[72d + 108N ]δ−2∗ + 2.5q + 2v + 1.5

)
p ln (2n) which is independent on r. Hence, if both restrictions

are fulfilled the upper function Û (v,z,q) in Theorem 5 takes rather simple form, namely

λ1(q)

√
ln(n) + z

nVr
+

λ2(q)
[
lnβ+1 (n) + z

]

nVr
,

where the constant λ1(q) and λ2(q) can be easily computed.
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Law of logarithm In this paragraph we will additionally suppose that Assumption 7 holds.
Then, we remark first that statements 10 − 30 of Remark 3 hold. Next, we note that Ld+1(z) = z
and Ld+2(z) = z2 in view of Lemma 1 that implies L(k)(z) = ln(z) for any z ≥ 1. Hence, the
condition (2.5) is fulfilled with a = 1.

Thus, all assumptions of Theorem 2 are checked and, taking into account that in our case

ηh(k)(n) =
∥∥ζr(n)

∥∥
∞ := sup

x̄(d)∈Xd
1

ζr
(
n, x̄(d)),

we come to the following statement.

Theorem 6. Let assumptions of Theorem 5 be fulfilled and suppose additionally that that Assump-
tion 7 holds. Then there exists Υ such that for any a > 4

Pf

{
sup
n≥j

sup
r: n−1(ln n)a≤Vr≤1

√
nVr

∥∥ζr(n)
∥∥
∞√

ln
(
V −1

r

)
∨ ln ln (n)

≥ Υ

}
≤ 4840n5

ln (j)
.

The uniform version over the set of bounded densities, similar to (3.5), holds as well.
The immediate consequence of the latter theorem is so-called ”uniform-in-bandwidth consis-

tency”:

lim sup
n→∞

sup
r: n−1(ln n)a≤Vr≤1

√
nVr

∥∥ζr(n)
∥∥
∞√

ln
(
V −1

r

)
∨ ln ln (n)

≤ Υ Pf − a.s (3.8)

The assertion of Theorem 6 and its corollary (3.8) generalizes in several directions the existing
results Einmahl and Mason (2000), Giné and Guillou (2002), Einmahl and Mason (2005), Dony et
al. (2006) (see, the discussion after Theorem 4).

We would like to conclude this section with the following remark. If K is compactly supported
and g

(
z, ·) = ḡ(·) for any z ∈ Z, where ḡ is a bounded function, then all results of this section

remain true under Assumptions 3 (i), 5 (i), 8, (3.3) and (3.4).

4. Proof of Theorems 1–2 and Corollary 1

4.1. Proof of Theorem 1

10. We start the proof with establishing some simple facts used in the sequel.
For any i ∈ I let n(i) ∈ N∗ and π̃j(i) ∈ I, j = 1, . . . , n(i), be the pairwise disjoint collection which

is determined by the condition: Hm,i ∩Hm,k = ∅, ∀k /∈
{
π̃1(i), . . . , π̃n(i)(i)

}
. First we have

1 ≤ n(i) ≤ n, ∀i ∈ I,

and we always put π̃n(i)(i) = i. It yields, in particular, that we can construct another collection of
indices π(i) :=

{
πj(i) ∈ I, j = 1, n

}
given by

πj(i) =

{
π̃j(i), 1 ≤ j ≤ n(i);

i, n(i) + 1 ≤ j ≤ n.

14



Note also that for any 1 ≤ j ≤ n

card
(
{i ∈ I : πj(i) = p}

)
≤ n, ∀p ∈ I. (4.1)

Indeed, if card
(
{i ∈ I : πj(i) = p}

)
≥ n + 1 for some p ∈ I, then

card
(
{i ∈ I : Hm,p ∩Hm,i 6= ∅}

)
≥ n + 1,

that contradicts to the definition of a n-totally bounded cover. For any i ∈ I define

Hm(i) =
⋃

k∈I: Hm,k∩Hm,i 6=∅

⋃

j∈I: Hm,j∩Hm,k 6=∅
Hm,j =

n⋃

l=1

n⋃

j=1

H
m,πj

(
πl(i)

).

First we note that the definition of the set Hm(·) implies the following inclusion: for any i ∈ I

Hm(hm) ⊆ Hm(i), ∀hm ∈ Hm,i. (4.2)

Next, taking into account that
∑

q∈I 1Hm,q(hm) ≤ n for any hm ∈ Hm in view of the definition of a
n-totally bounded cover, we obtain in view of (4.1)

∑

i∈I

1Hm(i)(hm) ≤
∑

i∈I

n∑

j=1

n∑

l=1

1H
m,πj

(
πl(i)

)(hm) =
n∑

j=1

n∑

l=1

∑

p∈I

∑

i:πl(i)=p

1Hm,πj(p)
(hm)

≤ n
n∑

j=1

n∑

l=1

∑

p∈I

1Hm,πj(p)
(hm) =

n∑

j=1

n∑

l=1

∑

q∈I

∑

p:πj(p)=q

1Hm,q(hm)

≤ n2
n∑

j=1

n∑

l=1

∑

q∈I

1Hm,q(hm) ≤ n5, ∀hm ∈ Hm. (4.3)

Define finally for any i ∈ I

fi := n1
−1

n2∑

i=1

∫

Hm(i)
f1,i(x)ν1

(
dx

)

and let I1 = {i ∈ I : fi ≥ (n1)−v} and I2 = I \ I1.

20. Let us fix i ∈ I1 and for any n ≥ 1 define Hi(n) := H̃k
1(n)× Hm−1

k+1 ×Hm,i, i ∈ I. The idea is
to apply Theorem 1, Lepski (2013b), to {Hi(n), n ≥ 1} that is possible in view of Assumptions 3
(i) and 2. To do it we first note that the definition of I1 together with (4.2) implies for any n ∈ Ñ

Ln,v
(
hm

) ≥ ln
(
1
/
fi
)
, ∀hm ∈ Hm,i.

It yields for any n ∈ Ñ and any h ∈ Hi(n)

Ṽ(v,z)
r (n, h) ≥ V(u)

r (n, h), Ũ (v,z,q)
r (n, h) ≥ U (u,q)

r (n, h),

where u = ln (1/fi) + z. We deduce from Theorem 1, Lepski (2013b), for any i ∈ I1

Pf

{
sup
n∈Ñ

sup
h∈Hi(n)

[∣∣ξh(n)
∣∣− Ṽ(v,z)

r (n, h)
]
≥ 0

}
≤ 2419 fi e−z; (4.4)

Ef

{
sup
n∈Ñ

sup
h∈Hi(n)

[∣∣ξh(n)
∣∣− Ũ (v,z,q)

r (n, h)
]}q

+

≤ fi Λq
(
n1,n2

)
e−z, (4.5)
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where we have put Λq
(
n1,n2

)
= cq

[√
(n1)−1Fn2Gn ∨

(
(n1)−1 lnβ (n2)Gn

)]q
.

We have in view of (4.3), taking into account that n2 ≤ 2n1,

∑

i∈I

fi = (n1)−1
n2∑

i=1

∫
f1,i(x)

[ ∑

i∈I

1Hm(i)(x)
]
ν1

(
dx

) ≤ 2n5. (4.6)

Putting H̃(1)(n) =
⋃

i∈I1 Hi(n), n ≥ 1, we obtain from (4.4), (4.5) and (4.6)

Pf



sup

n∈Ñ

sup
h∈H̃(1)(n)

[∣∣ξh(n)
∣∣− Ṽ(v,z)

r (n, h)
]
≥ 0



 ≤ 4838 n5 e−z; (4.7)

Ef



sup

n∈Ñ

sup
h∈H̃(1)(n)

[∣∣ξh(n)
∣∣− Ũ (v,z,q)

r (n, h)
]




q

+

≤ 2Λq
(
n1,n2

)
n5 e−z. (4.8)

To get (4.8) we have used obvious equality: [supα Q(α)]q+ = supα [Q(α)]q+.

30. Fix i ∈ I2 and note that in view of Assumption 4 for any n ≥ 1, any h ∈ Hi(n) and i ≥ 1

Ef

∣∣G(
h, Xi

)∣∣ = Ef

{∣∣G(
h, Xi

)∣∣1
Hm

(
hm

)(X1,i)
}

+ Ef

{∣∣G(
h, Xi

)∣∣1
Hm\Hm

(
hm

)(X1,i)
}

≤ G∞
(
h(k)) [

Pf

{
X1,i ∈ Hm

(
hm

)}
+ n−1

]
≤ G∞

(
h(k)) [

Pf

{
X1,i ∈ Hm(i)

}
+ n−1

]
. (4.9)

The last inequality follows from (4.2). It yields for any n ∈ Ñ and any h ∈ Hi(n)

n−1
n∑

i=1

Ef

∣∣G(
h, Xi

)∣∣ ≤ G∞
(
h(k)) [

fi + n−1
]
≤ 2(n1)−1G∞

(
h(k)), (4.10)

since fi ≤ (n1)−v for any i ∈ I2 and v ≥ 1.
Introduce random events

Ci =

{
n2∑

i=1

1Hm(i)(X1,i) ≥ 2

}
, i ∈ I2, C =

⋃

i∈I2

Ci.

Note that if the random event C̄ holds (where, as usual, C̄ is complementary to C) then for any
n ∈ Ñ and any h ∈ Hi(n) in view of Assumption 4 and (4.2)

n−1
n∑

i=1

∣∣G(
h, Xi

)∣∣ ≤ 2n−1G∞
(
h(k)) ≤ 2(n1)−1G∞

(
h(k)). (4.11)

Taking into account that bounds found in (4.10) and (4.11) are independent of i we get for any
n ∈ Ñ and any h ∈ H̃(2)(n) := H̃(n)\ ∈ H̃(1)(n)

∣∣ξh(n)
∣∣1C̄ ≤ 4(n1)−1G∞

(
h(k)).

Noting that for any h ∈ H, z ≥ 1 and n ∈ Ñ

Ṽ(v,z)
r (n, h) > 8n−1G∞

(
h(k)) ≥ 4(n1)−1G∞

(
h(k)),

Ũ (v,z,q)
r (n, h) > 8n−1G∞

(
h(k)) ≥ 4(n1)−1G∞

(
h(k)).
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and, therefore, if the random event C̄ is realized we have

sup
n∈Ñ

sup
h∈H̃(2)(n)

[∣∣ξh(n)
∣∣− Ṽ(v,z)

r (n, h)
]

< 0, sup
n∈Ñ

sup
h∈H̃(2)(n)

[∣∣ξh(n)
∣∣− Ũ (v,z,q)

r (n, h)
]

< 0.

It yields, first,

Pf



sup

n∈Ñ

sup
h∈H̃(2)(n)

[∣∣ξh(n)
∣∣− Ṽ(v,z)

r (n, h)
]
≥ 0



 ≤ Pf {C} ≤

∑

i∈I2

Pf {Ci} . (4.12)

Next, taking into account the trivial bound
∣∣ξh(n)

∣∣ ≤ 2Gn for any n ∈ Ñ and any h ∈ H(n), we get

Ef



sup

n∈Ñ

sup
h∈H̃(2)(n)

[∣∣ξh(n)
∣∣− Ũ (v,z,q)

r (n, h)
]




q

+

≤
(
2Gn

)q
Pf {C} ≤

(
2Gn

)q ∑

i∈I2

Pf {Ci} . (4.13)

For any i ∈ I2 put pi,i = Pf

{
X1,i ∈ Hm(i)

}
. Since X1,i, i ≥ 1, are independent random elements

we have for any i ∈ I2 and any λ > 0 in view of exponential Markov inequality

Pf {Ci} ≤ exp

{
−2λ + (eλ − 1)

n2∑

i=1

pi,i

}
= exp

{
−2λ + n1(eλ − 1)fi

}
.

Minimizing the right hand side in λ we obtain for any i ∈ I2

Pf {Ci} ≤ (e/2)2(n1fi)2 ≤ 2fi n1
2−v.

The last inequality follows from the definition of I2. We obtain finally in view of (4.6)
∑

i∈I2

Pf {Ci} ≤ 4n5 n1
2−v. (4.14)

The assertions of the theorem follow now from (4.7), (4.8), (4.12), (4.13) and (4.14).

4.2. Proof of Corollary 1

To prove the assertion of the corollary it suffices to bound from above the function Ln,v(·). Remind
that we proved, see (4.9), for any n ≥ 1, any h ∈ H(n) and i ≥ 1

Ef

∣∣G(
h, Xi

)∣∣ ≤ G∞
(
h(k)) [

Pf

{
X1,i ∈ Hm

(
hm

)}
+ n−1

]
.

It yields for any n ∈ Ñ and any h ∈ H(n)

Fn2(h) ≤ G∞
(
h(k)) [

An(hm) + n−1
]
, An(hm) = n−1

n∑

i=1

∫

Hm(hm)
f1,i(x)ν1

(
dx

)
. (4.15)

Indeed, if n1 = n2 then n = n2 and (4.15) is obvious. If n1 6= n2 then Pf

{
X1,i ∈ Hm

(
hm

)}

is independent of i since we supposed that X1,i, i ≥ 1 are identically distributed. Hence, An(·) is
independent of n and (4.15) holds. Let n ∈ Ñ be fixed and let h ∈ H(n) be such that Fn2(h) ≥ n−1/2.
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If An(hm) ≤ n−1 we have G∞
(
h(k)

) ≥ 2−1√n and, therefore,

2v
∣∣∣ ln

{
2G∞

(
h(k))}∣∣∣ ≥ v ln(n) ≥ Ln,v(hm).

If An(hm) > n−1 we have F̂n2(h) = Fn2(h) ≤ 2G∞
(
h(k)

)
An(hm) and, therefore,

Ln,v(hm) ≤ ln
(
A−1

n (hm)
)

≤ ln
(
2G∞

(
h(k))F̂−1

n2
(h)

)
=

∣∣∣ln
(
2G∞

(
h(k))F̂−1

n2
(h)

)∣∣∣

≤
∣∣∣ln

(
2G∞

(
h(k)))∣∣∣ +

∣∣∣ln
(
F̂n2(h)

)∣∣∣ .

Here we have also used that An(hm) ≤ 1. Thus, if Fn2(h) ≥ n−1/2 for any v ≥ 1

Ln,v(hm) ≤ 2v
∣∣∣ln

(
2G∞

(
h(k)))∣∣∣ +

∣∣∣ln
(
F̂n2(h)

)∣∣∣ . (4.16)

If now h ∈ H(n) be such that Fn2(h) < n−1/2 then obviously F̂n2(h) < n−1/2 and, therefore,

2v
∣∣∣ln

(
F̂n2(h)

)∣∣∣ ≥ v ln(n) ≥ Ln,v(hm).

The latter inequality together with (4.16) yields for any n ∈ Ñ, any h ∈ H(n) and v ≥ 1

Ln,v(hm) ≤ 2v
[ ∣∣∣ln

(
2G∞

(
h(k)))∣∣∣ +

∣∣∣ln
(
F̂n2(h)

)∣∣∣
]
. (4.17)

Hence, choosing r = ln(n2) and replacing Ln,v(·) in the expressions of Ṽ(v,z)
r (·, ·) and Ũ (v,z,q)

r (·, ·) by
its upper bound found in (4.17) we come to the assertion of the corollary.

4.3. Proof of Theorem 2

For any l ∈ N∗ set nl = j2l, Nl =
{
nl, nl + 1, . . . , nl+1

}
and let

ζj = sup
n≥j

sup
h(k)∈H

k
1(n,a)

√
n ηh(k)(n)√

G∞
(
h(k)

)[
ln

{
G∞

(
h(k)

)} ∨ ln ln (n)
] .

We obviously have for any y ≥ 0

Pf {ζj ≥ Υ}

≤
∞∑

l=1

Pf

{
sup
n∈Nl

sup
h(k)∈H

k
1(n,a)

[
ηh(k)(n)−Υ

√
n−1G∞

(
h(k)

)[
ln

{
G∞

(
h(k)

)} ∨ ln ln (n)
]]
≥ 0

}
.

Remind, that for any 3 ≤ n1 ≤ n2 ≤ 2n1 and any n ∈ Ñ

V̂(v,z)(n, h) = λ1

√(
F̂n2(h)n−1

)
G∞

(
h(k)

)(
P̂v(h(k)

)
+ 2(v + 1)

∣∣ ln {
F̂n2(h)

}∣∣ + z
)

+λ2

(
n−1 lnβ (n)

)
G∞

(
h(k))(P̂v(h(k)) + 2(v + 1)

∣∣ ln {
F̂n2(h)

}∣∣ + z
)
;
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Let l ∈ N∗ be fixed and choose v = 3 and z = 2 ln (1 + ln (nl)). Later on Υr, r = 1, 2, 3, 4 denote
the constants independent on l and n.

We have in view of (2.3), (2.4) and (2.5) for any n ∈ Nl and h ∈ H̃(n)

V̂(3, 2 ln (1+ln (nl)))(n, h) ≤ Υ1

√√√√G∞
(
h(k)

)[
ln

{
G∞

(
h(k)

)} ∨ ln ln (n)
]

n
+ Υ2

[
G∞

(
h(k)

)
lnb+1 (n)

n

]
.

To get the latter inequality we have used, first, that

F̂n2(h)
∣∣ ln {

F̂n2(h)
}∣∣ ≤ sup

x∈(0,F]
x
∣∣ ln(x)| =: c(F) < ∞, ∀F < ∞.

Next, to get the second term, we have used that for any n ∈ Nl and h ∈ H̃(n)

P̂3(h(k)) ≤ Υ3 ln(n),
∣∣ ln {

F̂n2(h)
}∣∣ ≤ max

[∣∣ ln {
F

}∣∣, ln(nl+1)
] ≤ max

[∣∣ ln {
F

}∣∣, ln(2n)
]
.

Since b > 1 can be arbitrary chosen and a > 4 let 1 < b < a/2− 1. It yields for any n ≥ 3 and
any h(k) ∈ H

k
1(n, a)

G∞
(
h(k)

)
lnb+1 (n)

n
≤ Υ4

√√√√G∞
(
h(k)

)[
ln

{
G∞

(
h(k)

)} ∨ ln ln (n)
]

n

and, therefore, putting Υ = Υ1 + Υ2Υ4 we get for any n ∈ Nl

V̂(3, 2 ln (1+ln (nl)))(n, h) ≤ Υ

√√√√G∞
(
h(k)

)[
ln

{
G∞

(
h(k)

)} ∨ ln ln (n)
]

n
.

Noting that right hand side of the latter inequality is independent of h(k) and applying the first
assertion of Corollary 1 with Ñ = Nl and z = 2 ln (1 + ln (nl)) we obtain

Pf {ζj ≥ Υ} ≤ 2n5

{
2419

∞∑

l=1

(l + ln (j))−2 + j−1
∞∑

l=1

2−l

}
≤ 2n5

{
2419
ln (j)

+ j−1
}
≤ 4840n5

ln (j)
.

5. Appendix

Proof of Lemma 1 10. Remind that

G∞(r) = V −1
r ‖g‖∞‖K‖∞, Gn = V −1

r(max)(n)
‖g‖∞‖K‖∞, n ≥ 1. (5.1)

Hence we have have for any l = 1, d and any hl := rl ∈
[
r
(min)
l (n), r(max)

l (n)
]

Gl,n(rl) = ‖g‖∞‖K‖∞
[
Vr(min)(n)

]−1 [
r
(min)
l (n)

/
rl

]γl

;

Gl,n = ‖g‖∞‖K‖∞
[
Vr(min)(n)

]−1 [
r
(min)
l (n)

/
r
(max)
l (n)

]γl

.
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Thus, we get for any n ≥ 1, r ∈ R(n) and for any j = 1, d

G∞(r)
Gn

=
d∏

l=1

[
r
(max)
l

rl

]γl

≥

r

(max)
j

rj




γj

=
Gj,n(rj)

Gj,n

.

We conclude that Assumption 1 (i) is fulfilled.

20. Remind that for any r, r′ ∈ R(n)

%(d)
n

(
r, r′

)
:= max

l=1,d
m0

(
Gl,n(rl), Gj,n(r′l)

)
= max

l=1,d
γl

∣∣∣ ln(rl)− ln(r′l)
∣∣∣ =: %(d)

(
r, r′

)
, (5.2)

30. Set
∥∥Kr −Kr′

∥∥
∞ = supz∈Rd

∣∣Kr(z) −Kr′(z)
∣∣ and note that for any x ∈ Xd

1 × Xd+1 and for
any h =

(
r, z, y(d)

)
, h′ =

(
r′, z′, z(d)

)

∣∣G(h, x)−G(h′, x)
∣∣ ≤ ‖g‖∞

∥∥Kr −Kr′
∥∥
∞ + ‖K‖∞ [Vr ∨ Vr′ ]

−1 ∣∣g(
z, x

)− g
(
z′, x

)∣∣,

+ ‖g‖∞V −1
r′

∣∣∣K
(
~ρ
(
x(d), y(d))/r′

)
−K

(
~ρ
(
x(d), z(d))/r′

)∣∣∣
≤ ‖g‖∞

∥∥Kr −Kr′
∥∥
∞ + Lα‖K‖∞ [Vr ∨ Vr′ ]

−1 [
d(z, z′)

]α

+ ‖g‖∞V −1
r′

∣∣∣K
(
~ρ
(
x(d), y(d))/r′

)
−K

(
~ρ
(
x(d), z(d))/r′

)∣∣∣ .

The get the last inequality we have used Assumption 5 (ii). Using Assumption 5 (i) we have
∣∣∣K

(
~ρ
(
x(d), y(d))/r′

)
−K

(
~ρ
(
x(d), z(d))/r′

)∣∣∣ ≤ L1 max
l=1,d

[
(r′l)

−1
∣∣ρl

(
xl, yl

)− ρl

(
xl, zl

)∣∣
]

≤ L1 max
l=1,d

[
(r′l)

−1ρl

(
yl, zl

)]
.

To get the last inequality we have taken into account that ρl, l = 1, d, are semi-metrics. Note also
that (r′l)

−1 ≤ V −1
r′ for any l = 1, d, since r′l ≤ 1 and we obtain

∣∣∣K
(
~ρ
(
x(d), y(d))/r′

)
−K

(
~ρ
(
x(d), z(d))/r′

)∣∣∣ ≤ L1V
−1
r′ ρ(d)(y(d), z(d)), (5.3)

where we have put ρ(d) = maxl=1,d ρl. Obviously,

∥∥Kr −Kr′
∥∥
∞ ≤ ‖K‖∞

∣∣∣V −1
r − V −1

r′

∣∣∣ + [Vr ∨ Vr′ ]
−1 ∥∥K

( · /r
)−K

( · /r′
)∥∥
∞ . (5.4)

We have in view of Assumption 5 (i) and (5.2)

∥∥K
( · /r

)−K
( · /r′

)∥∥
∞ ≤ L1 sup

u∈Rd

max
l=1,d

[
|ul| |1/rl − 1/r′l|

1 + |ul|
(
1/rl ∧ 1/r′l

)
]
≤ L1 max

l=1,d

[
rl ∨ r′l
rl ∧ r′l

− 1

]

= L1

[
exp

{
max
l=1,d

∣∣∣ ln(rl)− ln(r′l)
∣∣∣
}
− 1

]
≤ L1

[
exp

{
γ−1%(d)

(
r, r′

)}
− 1

]
,

we have put γ = min[γ1, . . . , γd]. Moreover, we obviously have for any r, r′ ∈ (0, 1]d

Vr ∨ Vr′

Vr ∧ Vr′
≤ Vr∨r′

Vr∧r′
= exp

{
d∑

l=1

γl

∣∣∣ ln
(
rl

)− ln
(
r′l

)∣∣∣
}
≤ exp

{
d%(d)(r, r′)

}
.
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Thus, we finally obtain from (5.4)

∥∥Kr −Kr′
∥∥
∞ ≤ [Vr ∨ Vr′ ]

−1
[
‖K‖∞

(
exp

{
d%(d)(r, r′)

}
− 1

)
+ L1

[
exp

{
γ−1%(d)

(
r, r′

)}
− 1

]]
.

This yields together with (5.3) for any h =
(
r, z, y(d)

)
and h′ =

(
r′, z′, z(d)

)

sup
x∈Xd

1×Xd+1

∣∣G(h, x)−G(h′, x)
∣∣ (5.5)

≤ ‖g‖∞ [Vr ∨ Vr′ ]
−1

[
‖K‖∞

(
exp

{
d%(d)(r, r′)

}
− 1

)
+ L1

[
exp

{
γ−1%(d)

(
r, r′

)}
− 1

]]

+Lα‖K‖∞ [Vr ∨ Vr′ ]
−1 [

d(z, z′)
]α + L1‖g‖∞V −2

r′ ρ(d)(y(d), z(d))

≤ ‖g‖∞‖K‖∞ [Vr ∧ Vr′ ]
−1

[
D0

(
%(d)

)
+ Dd+1

(
%d+1

)
+ [Vr ∧ Vr′ ]

−1 Dd+2

(
ρ(d)(y(d), z(d)))

]
,

where we have put %d+1 = [d]α, Dd+1(z) =
(
Lα/‖g‖∞

)
z, Dd+2(z) = L1

(‖g‖∞‖K‖2∞
)−1

z and

D0(z) = exp {dz} − 1 + (L1/‖K‖∞)
(

exp
{
γ−1z

}
− 1

)
.

Putting Ld+1(z) = z and Ld+2(z) = z2 we obtain from (5.1) and (5.5) for any h =
(
r, z, y(d)

)
and

h′ =
(
r′, z′, z(d)

)

sup
x∈Xd

1×Xd+1

∣∣G(h, x)−G(h′, x)
∣∣ ≤ G∞(r) ∨G∞(r′)D0

(
%(d)(r, r′)

)

+Ld+1

(
G∞(r) ∨G∞(r′)

)
Dd+1

(
%d+1

(
z, z′

))
+ Ld+2

(
G∞(r) ∨G∞(r′)

)
Dd+2

(
ρ(d)(y(d), z(d))) .

We conclude that Assumption 1 (ii) is fulfilled. It remains to note that if X̄d
1 consists of a single

element then last summand in the right hand side of the latter inequality disappears that correspond
formally to Ld+2 ≡ 0. This completes the proof of the lemma.

Proof of Lemma 2 In view of (3.4) for any r ∈ (0, 1]d

Fn2

(
r, x̄(d)

)
≤ f∞‖g‖∞

∫

Xd
1

∣∣∣Kr

(
~ρ
(
x(d), x̄(d)))∣∣∣ µ(d)(dx(d)) =: f∞‖g‖∞Ir. (5.6)

Denote for any l = 1, d

Rl(kl, rl) = Bl

(
2kl+1rl, x̄l

)
\ Bl

(
2klrl, x̄l

)
, Rl(0, rl) = Bl

(
rl, x̄l

)
, kl ∈ N.

and for any multi-index k = (k1, . . . , kd) ∈ Nd set Rk,r = R1(k1, r1) × · · · ×Rd(kd, rd). We get in
view of Assumption 7 that Xd

1 =
⋃

k∈Nd Rk,r for any r ∈ (0, 1]d and, therefore,

Ir =
∑

k∈Nd

∫

Rk,r

∣∣∣Kr

(
~ρ
(
x(d), x̄(d)))∣∣∣ µ(d)(dx(d)).
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We note that for any k ∈ Nd that for any x(d) ∈ Rk,r

∣∣∣Kr

(
~ρ
(
x(d), x̄(d)))∣∣∣ = V −1

r

∣∣∣∣∣K
(

~ρ
(
x(d), x̄(d)

)

r

)∣∣∣∣∣ ≤ V −1
r sup

|u|/∈Πt(k)

|K(u)| = V −1
r Ǩ

(
t(k)

)
.

where, we have put t(k) =
(
2k1 , . . . , 2kd

)
and where, remind, Πt = [0, t1]× · · · × [0, td], t ∈ Rd

+.
Thus, we obtain from (3.3) of Assumption 7 (remind that µ(d) is a product measure)

Ir ≤ V −1
r

∑

k∈Nd

Ǩ
(
t(k)

)
µ(d)

(
Πt(k)

)
≤ V −1

r

∑

k∈Nd

Ǩ
(
t(k)

)
[

d∏

l=1

µl

(
Bl

(
2kl+1rl, x̄l

))
]

≤
[

d∏

l=1

2γlL(l)

] ∑

k∈Nd

Ǩ
(
t(k)

)
[

d∏

l=1

2γlkl

]
. (5.7)

We get finally from (3.2) of Assumption 7 that for any r ∈ (0, 1]d

Ir ≤ 2dL2

d∏

l=1

2γlL(l).

The assertion of the lemma follows now from (5.6).

Proof of Lemma 3 Remind, that for the considered problem

H
(
hd+2

)
= Xd

1

(
x̄(d)) :=

⋃

i: x̄(d)∈Xi

⋃

k: Xk∩Xi 6=∅
Xk.

For any x̄(d) ∈ Xd
1 and any r > 0 denote Bρ(d)

(
r, x̄(d)

)
=

{
x(d) ∈ Xd

1 : ρ(d)
(
x(d), x̄(d)

) ≤ r
}

where,

remind, ρ(d) = max[ρ1, . . . , ρd]. The following inclusion holds in view of Assumption 8

Bρ(d)

(
t, x̄(d)) ⊆ Xd

1

(
x̄(d)), ∀x̄(d) ∈ Xd

1. (5.8)

Indeed, suppose that ∃y(d) ∈ Bρ(d)

(
t, x̄(d)

)
such that y(d) /∈ Xd

1

(
x̄(d)

)
. Then, the definition of Xd

1

(
x̄(d)

)

implies that for any p,q ∈ I such that x̄(d) ∈ Xp, y(d) ∈ Xq necessarily

Xp ∩Xq = ∅.
Hence, in view of Assumption 8, ρ(d)

(
y(d), x̄(d)

)
> t and, therefore, y(d) /∈ Bρ(d)

(
t, x̄(d)

)
. The obtained

contradiction proves (5.8).
Note that in view of Assumption 5 (ii) for any x ∈ Xd

1 × Xd+1 and any h =
(
r, z, x̄(d)

)

|G(h, x)| ≤ ‖g‖∞V −1
r

∣∣∣K
(
~ρ
(
x(d), x̄(d))/r

)∣∣∣

and, therefore, we get from (5.8) and (3.7)

sup
x∈Xd

1×Xd+1: x(d) /∈Xd
1

(
x̄(d)

) |G(h, x)| ≤ ‖g‖∞V −1
r sup

x(d) /∈B
ρ(d)

(
t,x̄(d)

)
∣∣∣K

(
~ρ
(
x(d), x̄(d))/r

)∣∣∣

≤ ‖g‖∞V −1
r sup

r∈R(n)
sup

u/∈[0,t]d
|K(u/r)| ≤ ‖g‖∞‖K‖∞V −1

r n−1

=: n−1G∞(r) = n−1G∞
(
h(d)).
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