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Abstract: In this paper we are interested in finding upper functions for a collection real-
valued random variables {¥(xp),0 € ©}. Here {xs,0 € O} is a family of continuous random
mappings, VU is a given sub-additive positive functional and © is a totally bounded subset of a
metric space. We seek a non-random function U : © — R such that supyce { ¥ (x0) —U(6) }+
is "small” with prescribed probability. We apply the results obtained in the general setting to
the variety of problems related to gaussian random functions and empirical processes.

AMS 2000 subject classifications: Primary 60E15; secondary 62G07, 62G08.
Keywords and phrases: upper function, empirical processes, gaussian random function,
metric entropy, doubling measure.

Contents
1 Introduction . . . . . . . . . . . e e e e 2
General setting . . . . . . . oL 5
2.1 Inequalities for the suprema . . . . . . . . . .. .. L 6
2.2 Upper functions of the first and second type . . . . . . . . . .. .. ... .. ... .. 7
2.3 Upper functions for the modulus of continuity of random mappings . . . . . . . . .. 10
3 Application to empirical processes theory . . . . . . . . . ... 13
3.1 Problem formulation and examples. Main condition . . . . . . . ... ... ... ... 14
3.2 Totally bounded case . . . . . . . . . . .. 17
3.2.1 Assumptions and main result . . . . ... ... ... 18
3.2.2 Law of iterated logarithm . . . . . .. .. . ... ... . 19
3.3 Partially totally bounded case . . . . . . . . . ... 20
3.3.1 Assumptions and main result . . . . . ... ... 21
3.3.2 Lawoflogarithm . . . . . . . ... ... . . 23
3.4 Application to localized processes . . . . . . . . . ... 24
3.4.1 Pointwise results . . . . . . .. 26
3.4.2 Sup-normresults . . ... 30
4 Gaussian random functions . . . . ... Lo 32
4.1 Upper functions for L,-norms of Wiener integrals . . . . . ... ... ... ... ... 32
4.2  Upper functions for local modulus of continuity under doubling condition . . . . . . 33
5 Proof of Propositions 1-3 . . . . . . . . .. 36
5.1 Proof of Proposition 1 . . . . . . . . .. 37
5.2 Proof of Proposition 2 . . . . . . . . .. 40
5.3 Proof of Proposition 3 . . . . . . ... 43
6 Proof of Theorems 1-4 . . . . . . . . . . . . e e 46

imsart-generic ver. 2011/12/01 file: upper_function_finall.tex date: August 29, 2015



6.1 Proof of Theorem 1. . . . . . . . . . . . e 46

6.1.1 Preliminaries . . . . . . . . . ... 46

6.1.2 Constants . . . . . . . . . . e 47

6.1.3 Proof of the theorem . . . . . . . . . . .. .. . ... ... . 48

6.2 Proof of Theorem 2. . . . . . . . . 56
6.3 Proof of Theorem 3. . . . . . . . . . . . . o 58
6.4 Proof of Corollary 2 . . . . . . . . . . 61
6.5 Proof of Theorem 4. . . . . . . . . . . . . 62

7 Proof of Theorem 9. . . . . . . . . . o 63
8 Appendix . . . ... 67
References . . . . . . . . e 72

1. Introduction

The main objective of this paper is to look from a novel point of view at some phenomena arising in
different areas of probability theory and mathematical statistics. We will try to understand what is
common between classical probabilistic results, such as the law of iterated logarithm for example,
and well-known problem in adaptive estimation called price to pay for adaptation. Why do two
different kinds of this price exist? What relates exponential inequalities for M-estimators, so-called
uniform-in-bandwidth consistency in density or regression model and the bounds for modulus of
continuity of gaussian random functions defined on a metric space equipped with doubling measure?
It turned out that all these and many other problems can be reduced to the following one.
Let ¥ be a set and let (£2,B,P) be a complete probability space. Let x defined on T x Q be a
given B-measurable map into a linear metric space & and let ¥ : & — R be a given continuous
sub-additive functional.
Let © C ¥ and suppose that V6 € © and Vz > 0 one can find non-random U(¢,z) > 0 and ¢ > 0
such that

P{[¥(xp) —U(8,2)] >0} <ce”. (1.1)
Assuming additionally that AU(+,z) > U(+, Az) for any z > 0, A > 1 we also have for any ¢ > 1
E{[¥(xg) —U®0,2)], } <cT(g+1[UOB, )], Vz>1, (1.2)

where T is gamma-function and [a] is the positive part of a.
The problem which we address now consists in a finding of U(#, z) and U,(0, z) satisfying

P {sup (W(xg) — U6, 2)] > 0} <ce® Vz>1 (1.3)
0O
q q
E{ Slelg [W(xo) —Uq(0,2)], } <cq Luelg U,®, 1)] e ?, Vz>1, (1.4)

where ¢ and ¢, are constants. If (1.3) and (1.4) hold we will say that U(:,-) and U(-,-) are upper
functions for the collection of random variables {¥(xy), 0 € O}.
The main questions which we would like to answer are the following.

e Do U(:,-) and U,(+,-) coincide with U(-,-) up to numerical constants or there is a ”price to
pay” for passing from pointwise results (1.1)—(1.2) to uniform ones given in (1.3)-(1.4)?
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e Do U(:,-) and U(+, ) coincide up to numerical constants? In other words should one to pay
the same price for the probability and moment’s bounds?

We will show that a payment exists and in general Ug(-,-) > U(:,-) > U(-,-). Thus, we will
seek U(-,-) and U,(-, -) satisfying (1.3) and (1.4) and "minimally” separated away from U(-,-). We
will realize this program under the following condition.

Assumption 1. 1. There exist A: T — Ry, B: T — Ry and ¢ > 0 such that Vz > 0
2

P{W(XQ)ZZ}SCGXP{—W}, Vo € ©. (1.5)

2. There erista: T X T =Ry andb: T x T — Ry such that Vz > 0

2

a2(01,6-) +b<91,02>z}’

Remark 1. If Assumption 1 (1) holds on ¥ (not only on ©), T is linear space and if, additionally,
the map x. is linear on T , then the Assumption 1 (2) is automatically fulfilled since one can take
a(fl,fg) = A(fl - fQ) and b(fl,fg) = B(fl - fg), tl, t2 S T.

Remark 2. We can easily deduce from (1.5) that for any 6 € ©

p {Q(th - X92) > Z} < cexp{ V01,0, € O. (1.6)

P{w(xo) = A(O)Vz + B(0)2} < cexp{—z}, V22 0; (1.7)
E{\I’(Xg) - [,4(0)\/24r B(G)z} }i < (g +1) [A(e) n B(G)}qexp{—z}, Ve>1. (1.8)

Therefore, (1.1)-(1.2) hold with U(0, z) = A(0)\/z + B(0)z.

Assumption 1 is not new. In particular, it can be found in slightly different form in van der Vaart
and Wellner (1996), Talagrand (2005), where this assumption is used for deriving the bound for
E [supgece ¥(xo)]. The usual technique is based on the chaining argument available in view of (1.6).
It is worth mentioning that uniform probability and moment bounds for [supgcg ¥(xp)] in the case
where Yy is empirical or gaussian process are a subject of vast literature, see, e.g., Alexander (1984),
Talagrand (1994), Lifshits (1995), van der Vaart and Wellner (1996), van de Geer (2000), Massart
(2000), Bousquet (2002), Giné and Koltchinskii (2006) among many others. Such bounds play an
important role in establishing the laws of iterative logarithm and central limit theorems [see, e.g.,
Alexander (1984) and Giné and Zinn (1984)].

However much less attention was paid to finding of upper functions. The majority of the papers,
where such problems are considered, contains asymptotical results, see, i.e. Kalinauskaite (1966),
Qualls and Watanabe (1972), Bobkov (1988), Shiryaev et al. (2002) and references therein. We
would like especially mention the paper Egishyants and Ostrovskii (1996), where upper function
satisfying the inequalities similar to (1.3), was obtained for the modulus of continuity of random
fields satisfying the Cramer condition.

The researches carried out in the present paper complete the investigations done in Goldenshluger
and Lepski (2011), where the upper functions as well as inequalities (1.3)—(1.4) were obtained under
following condition: y; is linear and there are A: ¥ - Ry, B: ¥ —- R,, V : % — R, such that

2

P{U(xe) —V(t) > 2} < 9<A2

OF! B(t)z)’ e
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where g : Ry — Ry is a strictly decreasing to zero function. We note that if g(x) = e¢™® and

V' = 0 this assumption coincides with (1.5) and, since x; is linear (1.6) is automatically fulfilled, see
Remark 1. In Goldenshluger and Lepski (2011) under additional assumption imposed on A, B,V
and © C T the upper functions for the collection {U(xy), 6 € ©} were found. As it was shown
that they coincide with the function V up to universal constants! The imposed assumptions do not
admit the case V' = 0 that, as it was said above, leads to some ”price to pay” for passing from
pointwise results (1.1)—(1.2) to uniform ones given in (1.3)—(1.4).

To derive upper functions satisfying (1.3)—(1.4) we complete Assumption 1 by the following
conditions.

Assumption 2. y, : ¥ — & is continuous P-a.s.
Mappings a and b are semi-metrics on T and © is totally bounded with respect to a\V b.

Ag = supgee A(0) < 0o, Be = supgeg B(f) < .

Denote by S the following set of real functions:

S = {s:R—>R+\{O}: is(Qk/2) < 1}.

k=0

For any © C © and any semi-metric d on T let €5 4(0), > 0, denote the entropy of O measured
in d. For any x > 0, © C © and s € S define the quantities

el (m,é) = supé_QL’Eé N (2(485)7's(9)) , e(P) (x,(:j) = sup (5_103(:) b (z(485)7's(0)) . (1.9)
>0 ’ >0 ’

Assumption 3. There exist s1,82 € S such that Vx > 0
eg‘? (:U,@) < 00, egg’) (x,@) < 0.

What is this paper about? In the next section we construct upper functions for {U(xy), 6 € ©}
and prove for them the inequalities (1.3)—(1.4) under Assumptions 1-3. We show that they are
completely determined by the functions A and B and by the entropies of their level sets measured
in semi-metrics a and b. We will see that obtained upper functions do not coincide with U (6, z) =
A(0)\/z + B(6)z, see Remark 2, and provide with explicit expression for the ”price to be paid for
uniformity”. In particular, if A := infgce A(f) > 0 and B := infyce B(f) > 0, we prove that this
"price” can be expressed as a given function of A(#)/A and B(6)/B.

In this context it is interesting to compare our results with the usual probability bounds for
supgce Y(xp) above E {supycg V(xp)} obtained from Talagrand’s or the Borel-Sudakov-Tsirelson
inequality (when available), combined with uniform bounds for E {supgcg ¥(xg)} proved in Tala-
grand (2005), Theorem 1.2.7, under condition close to our Assumption 1. Following this strategy
we will come to upper functions which are constant in 6. The main question is then what can one
gain using the technique developed in the paper with respect to the aforementioned approach? We
do not think that the answer can be done under ”abstract considerations”, i.e. under Assumptions
1-3 since it would require to prove that the found ”price to be paid for uniformity” is minimal.
However, in concrete examples it seems to be possible, in particular for some problems studied in
mathematical statistics. Let us mention some of them. First, we note that upper functions are used
in all known constructions of adaptive procedures. Next, the use of upper functions being constant
in 6 will lead to adaptive estimators which are not optimal (remind, that the adaptive estimation
theory is equipped with very developed criterion of optimality). Contrary to this, in all known to
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the author examples the use of upper functions found in Propositions 2 and 3 allows to construct
optimal adaptive procedures (for more details see discussion after Proposition 2). Also, we would
like to emphasize that upper functions being constant in # and the probability bounds related to
them are similar to the construction and the results described in Proposition 1, which is, in its turn,
the initial step for our considerations. This step as well as the Talagrand’s bounds are obtained
from chaining argument under, for instance, Assumption 1. In some sense one of our goals is to
show that the use of concentration inequalities (which cannot be guaranteed by a condition similar
to Assumption 1 ) in the construction of upper functions is not necessary. In particular, in Section
4.1 we derive an upper function for the LL,,-norms of Wiener integrals and deduce the corresponding
probability bounds directly from Proposition 3 without passing to the concentration inequalities.

As it was mentioned above upper functions for random objects appear in various areas of math-
ematical statistics. To apply them in the construction of statistical procedures they have to be
computed explicitly. In particular the study of the adaptive estimation in the density model re-
quires to find upper functions for the empirical processes of different kind. For the majority of
existed problems Assumption 1 follows from the Berstein’s inequality. However the application of
Propositions 2-3 requires to compute the functions £ or g (involved in the description of upper
functions) and there is no a general recipe how to do it. One of our main objectives is to provide
with rather general assumptions under which the latter quantities can be computed explicitly. In
particular, we provide with Assumption 4 and to the best of our knowledge the assumptions of such
kind have not been appeared in the existing literature. Under this assumption the upper functions
are found for the variety of particular problems.

Organization of the paper In Section 2 we construct upper functions for {¥(xp), 0 € O} and
prove for them the inequalities (1.3)—(1.4) under Assumptions 1-3. In fact we present two different
constructions which will be referred to upper functions of the first and second type (Propositions
2 and 3). We also derive some consequences related to the upper functions for modulus of continu-
ity of random real-valued mappings (Propositions 4 and 5 ). Section 3 is devoted to the detailed
consideration of generalized empirical processes. We provide with rather general assumption (As-
sumption 4) under which the upper functions admit the explicit expression, Section 3.2 (Theorem
1) and Section 3.3 (Theorem 3). We also establish non-asymptotical versions of the law of iterated
logarithm (Theorem 2) and the law of logarithm (Theorem 4). Section 3.4 is devoted to the ap-
plication of Theorems 1 and 3 to empirical processes possessing some special structure, Theorems
5-8. In Section 4 we apply Propositions 3 and 4 to gaussian random functions. In Section 4.1 we
derive upper functions for L,-norm of some Wiener integrals (Theorem 9) and in Section 4.2 we
study the local modulus of continuity of gaussian functions defined on a metric space satisfying
doubling condition (Theorem 10). Proofs of main results are given in Sections 5-7 and technical
lemmas are proven in Appendix.

2. General setting

Denote by S, the subset of S x S for which Assumption 3 holds and let A, B,a and b be any
mappings for which Assumption 1 is fulfilled. N
For any 5= (s1,52) € Sap, any s = (31, 22), 21 > 0,300 > 0, and any © C O put

ez (s, é) = eg?) (541, C:)) + egg)(%g, (:)) (2.1)



2.1. Inequalities for the suprema

Putforany(:)g@,anys>0andanyy20

USEE) (y, =, C:)) = \/2[1 + 5_1]265(%, C:)) +y+ o (2[1 + 671]265(%, C:)) + y).
Proposition 1. Let Assumptions 1-3 hold and let O C O be fized. Then for any 3 satisfying
21 2> supy.g A(0) and 320 > sup, g B(0), any §€ Sap, € € (0, V2 — 1] andy > 1,

p {suE\I/ (x0) > USEE) (y, 7, (:))} < 2cexp{-y/(1+¢)*}.
0cO

Moreover, for any q > 1

E {su]g U (xg) — US@ (y, =, é)} <2l (g+1) [(1 + 5)2y*1U§(‘E) (y, 7, é)}qexp {-y/(1+e)%}.
0c6 .

We remark that sup, g ¥ (xp) is B-measurable for any 5 C © since V¥ is continuous, the mapping
0 — xyg is continuous P-a.s., © is a totally bounded set and considered probability space is complete
(see, e.g. Lemma 1 below).

Discussion We will see that the Proposition 1 is crucial technical tool for deriving upper func-
tions. It contains the main ingredient of our future construction the quantity ez. The important
issue in this context is the choice of 5 € S, . For many particular problems it is sufficient to choose
§ = (s* s*), where

s*(z) = (6/7%) (14 [nz]?) "', z > 0. (2.2)

This choice is explained by two simple reasons: its explicit description allowing to compute the
quantity ez in particular problem and the logarithmical decay of this function when x — oo. In
view of the latter remark we can consider the set © those entropy obeys the restriction which is
closer to the minimal one (c.f. Sudakov lower bound for gaussian random functions Lifshits (1995)).
We note, however, that there exist examples where § has to be chosen on a more special way (see
Theorem 9).

Let us now discuss the role of the parameter . In most particular problems considered in the
paper we will not be interested in optimization of the numerical constants involved in the description
of upper functions. If so, the choice of this parameter can be done in arbitrary way and we will
put ¢ = v/2 — 1 to simplify the notations and computations. Note, however, that there are some
problems (see, for instance Section 4.2), where € must be chosen carefully. The typical requirements
to this choice is € = e(y) and

ey) =0, ye*(y) =0, y— oo.

The bounds similar to those presented in Proposition 1 are the subject of vast literature see,
for instance, the books Lifshits (1995), van der Vaart and Wellner (1996) or van de Geer (2000).
Note, however, that the results presented in the proposition may have an independent interest, at
least, for the problems where the quantity ez can be expressed explicitly. In this case under rather
general conditions it is possible, putting © = © and > = (Z@, E@), to compute the tail probability
as well as the expected value of the suprema of random mappings. Note also that Assumptions 1-3
guarantee that E {supycg ¥ (xp)}? is finite for any ¢ > 1.
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2.2. Upper functions of the first and second type

We will now use Proposition 1 in order to derive the upper functions for ¥ (yg) on ©. Denote
A = infypco A(f) and B = infycg B(0).

We present two kinds of upper functions for ¥ (yy) on © which we will refer to upper functions
of the first and second type. The first construction is completely determined by the functions A,
B and by the semi-metrics a and b. It requires however the additional condition A > 0, B > 0. We
will use corresponding results for the particular problems studied in Section 3.

The second construction is related to some special structure imposed on the set ©. Namely we
will suppose that © = U,BOqcq, where {@a, o€ 2[} is a given collection of sets. Here we will be
interested in a finding of upper function for supsce_ ¥ (xg) on 2, which can be also viewed as an
upper function for ¥ (yg) on ©. The corresponding results are used in order to obtain rather precise
inequalities for the modulus of continuity of random functions, Section 4.2. Moreover we apply this
bound for deriving of an upper function for the L,-norms of Wiener integrals, Section 4.1.

We finish this short introduction with the following remark. In order to establish the inequali-
ties (1.3)—(1.4) for the upper functions presented below we will need to prove that corresponding
supremum is a random variable. The result below is sufficient for all problems considered in the
paper and before we start the proofs we will not discuss the measurability issue.

Lemma 1. Let T be the set equipped with the metric 0, (2,8, P) be a complete probability space
and ¢ : & X T — R be P-a.s. continuous. Let 3 be a set, g : 3 — R be a given function and

{%; €T, 3 € 3} be an arbitrary sequence of sets. If T is totally bounded then sup,c3 {SuPte‘za C(t,)—
9(3)] 1s B -measurable.

The proof of the lemma is given in Appendix. We would like to emphasize that there is no any
assumption imposed on the function g, index set 3 and on the collection {T; C ¥, 3 € 3}.
Putting 3 = T and T = {t} we come to the following consequence of Lemma 1.

Corollary 1. Under assumptions of Lemma 1 supi g [C(t, )= g(t)} is B-measurable.

Upper functions of the first type As it was said above throughout this section we will suppose
that A > 0,B > 0. Put for any ¢t > 0

OA(t) = {9 €O A®0) < t}, Op(t) = {9 cO: B < t}.
For any § € S, introduce the function
Ex(uv) = e (Au, 04 (Au) ) + e (Bv, ©p(B) ), w1, (2.3)
Denote also £(u) = In {1+ In (1)} + 2In {1+ In {1 + In (u)}} and set for any 6 and € > 0,7 > 0
Po(0) = 2[1 + e 1]°E¢(A(0), B-(0)) + (1 + )2 [£(A(0)) + £(B=(0))]; (2.4)
Meo(0) = (1+¢)? {2[1 + e E:(A(0), B-(6)) + (= + ) In [A-(6)B.(0)] } o (25)

where A-(0) = (1+¢)[A(6)/A] and B.(0) = (1 + €)[B(¢)/B]. Define for any z > 0

VE) = (1422 (AO) V) (L F e + BO)[P6) + (1+)%]) (26)

UEE(@) = (1+¢)? < \/Mw 1+e)z+B(9)[ME,T<9)+<1+e)QZ]). (2.7)
7



In the proposition below we prove that the functions defined in (2.6) and (2.7) are upper functions
for W (xp) on ©. We remark that they are completely determined by the functions A and B and by
the entropies of their level sets measured in semi-metrics a and b. The number ¢ and the couple of
functions § can be viewed as tuning parameters allowing either to weaken assumptions or to obtain
sharper bounds but they are not related to the random functional ¥ (xp) itself.

Proposition 2. Let Assumptions 1-3 be fulfilled. Then V5 € S,4,, Ve € (0, V2 — 1] and Vz > 1

P {21618 [\ll (x6) — V(Zvﬁ)(g)} > 0} < 2c [1 + [ln{l +1In(1+ 5)}} _2]Qexp{—z};

q
E {zug [\I/ (xo) — U9 (9)} } < 2092 (g 4 1) g0 [AV B]"exp {—=2}.
€ +

It is obvious that the assertions of the proposition remain valid if one replaces the function
&z by any its upper bound. It is important since the exact computation of this function is too
complicated in general. We note that the role of the latter function in our construction is similar
to those which Dudley integral plays in the computations of the expectation of the suprema of
gaussian or sub-gaussian processes Lifshits (1995), Talagrand (2005).

Price to be paid for ”uniformity” We remark that in view of (1.7) and (1.8), the function
U () := A(6)/z + B(0)z can be viewed as ”pointwise upper function” for ¥(yy), i.e. for fixed 6.
Comparing the inequalities (1.7) and (1.8) with those given in Proposition 2 we conclude that they
differ from each other by numerical constants only. In this context, the functions P.(-) and M. ,(-)
given by (2.4) and (2.5) can be viewed as price to be paid for ”uniformity”. That means that in order
to pass from ”pointwise” result to the ”uniform” one we need, roughly speaking, to multiply A(-) by
V/P:(+) or \/M,,(-) and B(:) by P.(-) or M, ,(-). The question, arising naturally: is such payment
necessary or minimal? In this context it is worth mentioning the relation between well-known
phenomenon in adaptive estimation, called price to be paid for adaptation Lepski (1991), Lepski
and Spokoiny (1997) and Spokoiny (1996), and what we call here price to be paid for uniformity.
We have no place here to describe this relation in detail and mention only several facts.

First let us remark almost all constructions of adaptive estimators (model selection Barron et
al. (1999), risk hull minimization Cavalier and Golubev (2006), Lepski method Lepski (1991), or
recently developed universal estimation routine Goldenshluger and Lepski (2008, 2009)) involve the
upper functions for stochastic objects of different kinds. Next, it is known that there are two types
of price to be paid for adaptation: (In)-price, Lepski (1991) and (InIn)-price, Spokoiny (1996). The
(In)-price appears in the problems where the risk of estimation procedures is described by a power
loss-functions and it corresponds to the function M, ,(-), where the parameter r is a power. The
(Inln)-price appears in the case of bounded losses that corresponds to the function P.(-). Since the
theory of adaptive estimation is equipped with very developed criteria of optimality, Lepski (1991),
Tsybakov (1998), Kluchnikoff (2005), we might assert that the payment for uniformity is optimal
if the use of corresponding upper function leads to optimal adaptive estimators.

We finish the discussion concerning the statements of Proposition 2 with the following remark.
Comparing the result given in (1.8) with the second assertion of Proposition 2 we can state that
the inequality obtained there is very precise since, remind, A = infgcg A(#) and B = infycg B(0).

Upper functions of the second type Suppose that we are given by the collection {@a, a € Ql},
satisfying © = U, 04, and by two mappings 7 : % — (O,Fl], T A — (O,?g], where 71, T2 < 0.

8



For any u > 0 put

Oiw = |J ©a gilu)= sup A®);
00’ (u)

a: 1 (a)<u

Oyu)= | J ©a gplu) = sup B(0),

a: mo(a)<u €05 (u)

and let g4 and gp be arbitrary chosen increasing functions, satisfying g4 > ¢% and gp > g} (we
note that obviously g% and g are increasing).

Since ©(+),05(-) C O, in view of Assumption 3 for any u,v > 0 one can find the functions
s1(u,-) and s2(v,-) for which the latter assumption is fulfilled on ©(u) and ©%(v) respectively. Let
us suppose additionally that

s1(xt, o xt, §
Al = sup sSup sup 1(7) < 00, Ag = sup sup sup ( )

LY < 0, 2.8
te[l f] r>71 6>0 31(.@ 5) te[l f] T>T9 >0 SQ(x 5) ( )

where 7, = inf, 7 («) and 7, = inf,, T2(«).

We remark that if the functions si(u,-) and sa2(v,-) are chosen independently of u,v then A; =
Ao = 1. It is also obvious that Ay, Ay > 1.

The condition (2.8) allows us to define the function:

&' (u,v) :ei?)(w')()\l_lg,q(u),@'l(u)) +e )()\2_193(11),@’2(1))>, wo>0. (29

We note that the function £’ is constructed similarly to the function £ used in the previous section,
but now the functions s; and sy can be chosen in accordance with considered level sets.
At last, for any a € A and any € > 0 set

EE) () = 5’((1 +e)m(a), (1+ a)TQ(Q)).

Put §; = (1+¢)77,7 >0, and let R, : Ry x Ry — Ry, 7 > 0, be an arbitrary family of increasing
(or decreasing) in both arguments functions, satisfying for any e € (0, V2 — 1]

J K
Z Z gA 7’15 V gB (ﬁ&k)]r exp {—RT (?15j5?25k)} = R(s,r) < 00. (2.10)
7=0 k=0

Here integers J, K are defined as follows.

J = L1H1+e (?1/11” +1, K= L1D1+e (FQ/IQ)J + 1.

If 7, =0, i = 1,2, the corresponding quantity is put equal to infinity.
Set ﬁgg)(a) =R, <ra7'1 (), 7’572(04)), where 7. = (1 + ¢) if R, is increasing and 7. = (1 +¢)~ ! if
R, is decreasing, and define

0een(0) = (1+)ga([L+Pn(e))y/2[1 +e1)” 8 (a) + B (a) + 2

+ (1+¢)2gp ([1 n 5]272(04)) (2[1 +e 12 E@(a) + RO (a) + z).
9



Below we assert that U (z:e7) = 0,r = ¢, are upper functions for [supgega v (Xg)] on 2. However,
before to present exact statements, let us briefly discuss some possible choices of the functions R,.
We would like to emphasize that the opportunity to select these functions allows to obtain quite
different and precise results. First possible choice is given by

Ro(u,v) = Z(ﬂu_1> + K(?gv_1>, R, (u,v) = e[ln (?114_1) +1n (?211_1)}, r > 0. (2.11)

These functions are used in the problems in which £ (#)(-) is bounded by some absolute constant
independent of all quantities involved in the description of the problem, assumptions etc.
This choice leads to the following values of the constants in (2.10):

r

RED < [2 + [ln{l +ln(l+ e)}] _2]2, RED < 4[9A (71) V gp (?2)} et (2.12)

Another important choice is given by R, = £ independently of r, see, for instance, Theorem 9. In
view of (2.10), this choice corresponds to the case when the function £’ increases to infinity.

Proposition 3. Let Assumptions 1-3 be fulfilled. Then for any s1, s satisfying (2.8) and any
R, r >0, satisfying (2.10), for any ¢ € (O, V2 — 1] and any z > 1, > 1

P {sup [ sup W (yg) — U0 (a)] > 0} < 2cREY exp {—2};
acd OO,

. q
E {sup [ sup VU (xg) — U(Z’E’Q)(a)} } < 20921 (¢ + 1)RED =T exp {—2}.
o€ [ 0€0, +

Remark 3. We note that the results of the proposition is very general. Indeed, there are no as-
sumptions imposed on the collection O, a € A, and the functions 11,7 can be chosen arbitrary.
Moreover, the condition (2.10) is very mild, so the choice of functions R, is quite flexible.

2.3. Upper functions for the modulus of continuity of random mappings

In this section we apply Proposition 3 in order to derive upper functions for the local and global
modulus of continuity of real-valued random mappings. It is worth mentioning that in this circle
of problems the upper functions are actively exploited, see e.g. Egishyants and Ostrovskii (1996)
and the references therein. We will suppose that Assumption 1 (2), Assumption 2 and Assumption
3 are verified, x; is real-valued random mapping defined on the metric space ¥, d is a semi-metric
on Tand ¥(-) =|-|.

Upper function for local modulus of continuity Let 6y be a fixed element of © and set for
any A € (0, Dq(0)], where D4(©) is the diameter of © measured in the semi-metric d,

ma(fo) = sup X6 — X05|, Oa = {.9 €O d(0,0) < A}.
A

Thus, ma(6p), A € (O, Dd(@)], is the local modulus of continuity of xg in 8y measured in d.

If we put Xg = x0—X0,, 0 € O, we assert first that Assumption 1 (2) can be viewed as Assumption
1 (1) for Xp on © with A(-) = a(-,60p) and B(-) = b(+,0p). Next, noting that Xg, — Xo, = X6, — X6
for any 61,02 € © we conclude that Assumption 1 (2) is verified for yy on © with a and b.
10



Thus, we can apply Proposition 3 with a = A, 6, = Oa, A = (O, Dd(@)] and we choose
T1(A) = 1(A) = A. This choice implies obviously for any u < D4(©)

01 (u) = O4(u) = Oy, ga(u)= sup a(0,60), gs(u)= sup  b(6,6p).
0: d(0.00) <u 0:d(0.00) <u

Fix §€ S, 1, and put for any A € (O,Dd(@)] and any ¢ € (0, V2 — 1]

(Z:\(E)(A, 90) = eg?) (gA([l + 5]A),@[1+5]A) + 692)) (gB([l + 8]A),@[1+5}A>.

Here eg?) and eg];) are defined by (1.9). We also set A\; = A2 = 1 since the functions si, se are chosen

independently of the collection {@A7 A € (O, Dd(G)] }
Choose also Ry(u,v) = 6(?1u_1> + E(?gv_l) and define

V(AL 60) = (1+s)gA([1+g}2A)\/2[1+e—1]2§<6>(A,90)+2£(( +¢)Da(© /A)+z
+ (1+e)295([1+s]%>{2[1+5—] £O(A, 90)+2€<(1+6Dd /A>+z}

Then, applying Proposition 3 and taking into account (2.12) we come to the following result.

Proposition 4. Let Assumptions 1-3 be fulfilled. Then for any 5 € Sy, € € (O, V2 — 1] and z > 1

~ —272
P sup [mA - V;’E)(A, 6o)| >0 <2 [2 + [ln{l +In(1+ 6)}} } exp {—z}.
Ae(0,04(0)]

In Section 4 we apply Proposition 4 to gaussian random functions defined on a metric space
satisfying so-called doubling condition.

Remark 4. If b =0,d = a and supAe(O ] g(e)(A,Go) =: EA’(E)(HO) < oo, the upper function

Dq(©)

(Z ®) has a very simple form

%Z’E)(Aﬁo) _ (1+€)3A\/2[1+5—1]2§(6)(90)+€<(1+€ )D4(© /A) + z. (2.13)

Hence, the result of Proposition 4 can be viewed as the non-asymptotical version of the law of
iterated logarithm for sub-gaussian processes defined on some totaly bounded subset of metric space.
In this context it is worth mentioning the paper Egishyants and Ostrovskii (1996) where the upper
functions for local and global modulus of continuity were found for the stochastic processes satisfying
Cramer’s condition.

Remark 5. We also note that we replaced in (2.13) the factor 2((D4q(©)/A) appeared in the
upper function used in Proposition 4 by E(Dd(@)/A). It is explained by the fact that To = 0
in (2.11) since B,b = 0. By the same reason, the probability bound in this case is given by

2c [2 + [ln{l +1In(1 —i—e)}} ] exp {—z}.

11



Upper function for global modulus of continuity Set ) = © x © and let for any ¥ =
(61,05) € ©) and any A € (0, Dq(0)],

() = X601 — X625 MA = SUI()) ‘(19‘, @(AQ) = {19 S CIRE d(91,02) < A}
9eef

Thus, ma, A € (0, Dd(@)], is the global modulus of continuity of yg on © measured in d.
Put A(9) = a(6y,62), B(¥) = b(6y,62), 9 = (01,602) € O, and equip O with the following
semi-metrics: ¥ = (61,02),s = (s1,%2) € 0@

a®(9,¢) = 2[a(01,51) V a(fa,2)], bDP(0,¢) =2[b(01,1) V b(0a, )] .

Some remarks are in order. We note first that Assumption 1 (2) can be viewed as Assumption 1
(1) for ¢(0) on ©® with A= A and B = B.
Next we obtain in view of Assumption 1 (2) Vd,¢ € 0@ and Vz >0

PLIC@) = <ol = 2} < P{|xo = xal = 2/2} + P{ [0, — x| > 2/2]

22

22
= oo {_4[a(91,§1)}2 + 2b(91,c1)z} reew {_4[5‘(92’ %)]” + 2b(65, Q)Z}

@) xp d 2
< c\¥ exp 5
[ (,5)]% + bC) (9, 6)z
We conclude that Assumption 1 (2) holds for ¢(9) on ©® with a = a®, b =b® and ¢® = 2c.
Since obviously
€2 00 (S) < 2€0(s/2), €y oo (S) < 2€he(s/2), >0, (2.14)
we assert that Assumptions 2 and 3 are fulfilled on O with a = a(® and b = b(?.

Put @(2) = UA>0@(AQ). Since @(2) c ©®@ we can apply Proposition 3 with o = A, 0, =
G(Az), 2 = (0,D4(0)] and we choose 71 (A) = 12(A) = A.
The latter choice implies obviously for any u < Dy(0)
O (u) = O4(u) = O, ga(u) = sup A(Y), gn(u) = sup B(?).
90 9ee

Fix 5 € S, and put for any A € (0, Dd(@)] and any € € (0, V2 — 1]

~ (2) 2 (2) 2

EO(A) = el ><gA([1 + E]A),@[(liam) +elb ><gB([1 +e)A), @fllam).
Here eg?(Q)) and eg2<2>) are defined by (1.9), where a,b are replaced by a® and b® respectively.
We also set Ay = Ao = 1 since the functions s1,so are chosen independently of the collection

{@g), A € (0,Dq(0)] } Choose Ry(u,v) = 6(?171*1) +€<?gv*1> and define

79y = a —i—e)gA([l +em) \/2[1 + e 12E@(A) + 2@((1 +5)Dd(@)/A) +2
+ (1+ 5)293([1 + 8]2A> {2[1 - 571]25(5)(A) + 26((1 - E)Dd(G)/A) + z}.

Then, applying Proposition 3 and taking into account (2.12) we come to the following result.
12



Proposition 5. Let Assumptions 1-3 be fulfilled. Then for any 5 € Sy, € € (O, V2 — 1] and z > 1

~ _912
P sup [mA _‘ézva)(A) >0, <4c [24— [ln{l—&—ln (1—}—5)}] ] exp {—z}.
Ae(0,04(0)]

The obtained inequality allows, in particular, to prove that the families of probabilities measures
generated by xg is dense. This, in its turn, is crucial step in proving of the weak convergence of
probabilities measures.

3. Application to empirical processes theory

Let (X,.’f, 1/) be o-finite space and let (€2,2(, P) be a commplete probability space. Let X;, i > 1,
be a the collection of X-valued independent random variables defined on (2,2, P) and having the
densities f; with respect to measure v. Furthermore, P¢, f = (f1, f2,...), denotes the probability
law of (X1, Xo,...) and E¢ is mathematical expectation with respect to Ps.

Let G: $ x X — R be a given mapping, where $3 is a set. Put Vn € N*

*12[ CEGH,X)|, hesn. (3.1)

We will say that & (n), h € §, is a generalized empirical process. Note that if h : X — R and
G(h,z) =bh(z), h € H,z € X, then & (n) is the standard empirical process parameterized by $).
Throughout this section we will suppose that

Goo(h) := sup |G(b,x)| < oo, VheSH, (3.2)
TeEX
and it will be referred to bounded case. Some generalizations concerning the situations where this
assumption fails are discussed in Section 3.1.
The condition (3.2) implies that the random variables G(h, X;),h € $, and G(h1, X;) —G (b2, X;),
bi,bh2 € $, i = 1,n, are bounded, and we obtain in view of Bernstein’s inequality Vz > 0

2
Pe{l6o(n)| > 2} < 2exp {— FE R }; (33
52

H {‘éhl(n) - &)Q(n)‘ g Z} = e {_a?(f)l, B2) + zbos (b1, b2) }7 (34)

where
AF(h) =272 E;GP(h,X,),  af(bi,bha) = QZEf (h1, X;) — G(h2, X))%  (3.5)

i=1

Boo(h) = (4/3)n7"! v (b1, h2) = (4/3)n sup |G(b1,2) = G(h2, )| (3.6)
We conclude that Assumption 1 is fulfilled with U(-) =|-|, A= Af, B = Boo, a = af, b = by

and ¢ = 2.
It is easily seen that af and by, are semi-metrics on $). We note also that & : $ — R is P-a.s
continuous in the topology generated by bo,. Thus, if § C $) is totally bounded with respect to
13



afV by and such that Ap = suppeq Af(h) < o0, By = SUPpes Boo(h) < 00, then we conclude that
Assumption 2 is verified.

Thus, in the problems for which Assumption 3 is verified the machinery developed in Propositions
2-3 can be applied for ‘&, (n)}, h € H. We would like to emphasize, however, that problems studied
below are not always related to the consideration of ‘fb (n)],h € $H with $ being totally bounded,
although such problems are also studied. The idea is to reduce them (if necessary) to those for
which one of Propositions 2-3 can be used. For instance, we will be interested in finding upper
functions for |fh (n)! on b € $ not only for given n but mostly on N x §), where N is a given subset
of N*. It will allow, in particular, to study generalized empirical processes with random number of
summands.

However the application of Propositions 2-3 requires to compute the functions £ or & and there
is no a general recipe how to do it. The main goal of this section is to provide with rather general
assumptions under which the latter quantities can be computed explicitly. As it was already men-
tioned in Introduction upper functions for random objects appear in various areas of probability
theory and mathematical statistics. As the consequence the different nature of problems requires
to specify the imposed assumptions. The assumptions presented below are oriented mostly to the
problems arisen in mathematical statistics that definitely reflects author’s scientific interests. How-
ever, some pure probabilistic results like the law of iterated logarithm and the law of logarithm will
be established as well.

3.1. Problem formulation and examples. Main condition

In this section we find upper functions for several functionals of the generalized empirical process
&p(n) defined in (3.1) under condition (3.2). We remark that the parameter h may possess a compos-
ite structure and its components may have very different nature. In order to treat such situations
it will be convenient for us to assume that for some m > 1

H=9H1 %X (3.7)

where $);, j = 1, m, be given sets. We will use the following notations. For any given k = 0, m put

k
N =91 X XDk, D41 = D1 X X D,

with the agreement that 5’)? =0, 5%4—1 = (). The elements of f)’f and S’JZLH will be denoted by b(k)
and b respectively. We will suppose that for any j = k + 1, m the set §; is endowed with the
semi-metric o; and the Borel measure ;.

In the next two sections we find upper functions for |£;(n)| on on some subsets of §) (possibly
depending on n!) and we will consider two cases.

Totally bounded case. In this case we will suppose that §); is totally bounded with respect to g;
for any j =k + 1,m.

Partially totally bounded case. Here we first suppose that for some p > 1
(X,v)= (X1 X XXy, v X+ X 1), (3.8)

where (X}, ;) I = 1, p, are of measurable spaces and v is the product measure.
Next we will assume that $,, = X;. As the consequence, the assumption, that §,, is totally
bounded, is too restrictive. In particular, it does not verified in the case X = &X; = R? which
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appears in many examples. Before to start with the presentation of the results let us consider
several examples.

Example 1. Density model. Let K : R* — R be a given function and let

d —1
Kh() = [H hz] K(/hla '7'/hd)’ h = (hlv" '7hd) € (0’ 1]d7
=1

where, as previously, for two vectors u, v € R the notation u /v denotes the coordinate-vice division.
Pt p=1m=d+1,k=d X = H5.1 = RL $H = (0,1], i = 1,d and consider for any
h=(hz)€$H:=(01%xR?

&) = () =01 Y {Kh (X —2) — B {Fn (Xi — )} |.
=1

We have come to the well-known in nonparametric statistics kernel density estimation process. Here
the function K is a kernel and the vector h is a multi-bandwidth.

Example 2. Regression model. Let ¢;,i = 1,n, be independent real random variables dis-
tributed on Z C R and such that Ee; = 0 for any ¢ = 1,n. Let Y;,i = 1,n, be independent
d-dimension random vectors. The sequences {Ei,i = 1,7} and {Yi,i = 1,7} are assumed indepen-
dent. Let M be a given set of d x d invertible matrices and let Z C R and A7 C RY be given
interval.

Putp=2,m=d+2 k=d X =902=R, %=1 6;=(0,1], j=1,d and Hgy1 = M.
Consider for any h = (h, M,z) € $ := (0,1]% x M x R?

&9(n) = Enata(n) = |det(M)| Y Kn | M(Yi — a)|es.
1=1

The family of random fields {EhM’x(n), x,h, M € (0,1]9 x M x Rd} appears in non-parametric

regression under single index hypothesis, Stone (1985).

If 7 is bounded interval, i.e. ; are bounded random variables, then (3.5) and (3.6) hold and the
results from Section 2 are applicable. However this assumption is too restrictive and it does not
satisfied even in the classical gaussian regression. At the first glance it is seemed that if Z = R
Propositions 2-3 are not applicable here. Although the aforementioned problem lies beyond of the
scope of the paper, let us briefly discuss how to reduce it to the problem in which the machinery
developed in Propositions 2-3 can be applied.

Some generalizations. Let (z—:i,i = 1,771) be the sequence of independent real-valued random
variables such that Ee; = 0 (later on for simplicity we assume that ; has symmetric distribution)
and Ee? =: 02-2 < 00. Let X;, i = 1,n, be a the collection of X-valued independent random elements
and suppose also that (X},i = ﬁ) and (ei,i = 1,7) are independent. Consider the generalized
empirical process

(n)=n""Y G0, Xi)ei, hes,

i=1
where, as previously, G : $§ x X — R be a given mapping satisfying (3.2). For any y > 0 define

&(n,y) =n"" Z G(b, Xi)eil iy (ei),  mn(y) = sup [aif [1— 1y ()]

=1 i=1,n
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Obviously, for any y > 0
&ny) =n Y |Gy(0,X0) ~EiGy(b, Xi)|. X = (i),
i=1
where Gy (b, z) = G(h, Z)ul_y (u), = = (Z,u) € X := X xR, h € $. Since G, is bounded for any
y > 0 the inequalities (3.3) and (3.4) hold and, analogously to (3.5) and (3.6), we have

A%(h) = 271_220'7;2}}3]"@2(['],)_(1'), (blah? 2ZU2Ef blu ) G(bQuXZ))27

=1

Boo(h) = (4y/3)n~"

boo (b1, b2) = (4/3)y Sgg |G(b1, %) — G(ba, T)|.

TEX

Let also $ C $ be such that the results obtained in Propositions 2-3 are applicable to ‘E;, (n, y)| on
$ for any y > 0. It is extremely important to emphasize that neither A¢(-) nor a¢(-,-) depend on y.

This yields, in view of Theorems 1 and 3 below, that upper functions for Eb(y)‘ , b e (for
brevity V(h,y) and Uy(h,y),q > 1) can be found in the form:

V(b,y) = Vi(b) +yVa(h), Ug(h,y) = Uga(b) + yUsg2(h).

It means that we are able to bound from above any y > 0

q
Pf {Sup Héb(na y)| - V(b7y)] > 0} ) Ef {Sup th(na y)} - Uq(hay)]}

heH heN +

Moreover, we obviously have for any y > 0

Pf{ilelg [ ()| — V(b,y)] >0} <1P’f{?)1€1p[\§h n,y)| = V(b,y)] >0}+Pf{77n(y) > 0};
Ef{zlelg (1€ ()] — Uqg(b,9)] }+ < Ef{zug [1€6(n,y)| — Uq(h,9)] }+ + <21€12Goo(h)> E (0. (y))?.

Typically, V(-,y) = VI (-,y) and U,(-,y) = Uq(n)(-,y) and VZ(n)(-) < Vl(n) and Uq(g)(') < Uq(ﬁ) for
all n large enough. It allows to choose y = vy, in optimal way, i.e. to balance both terms in latter
inequalities, that usually leads to sharp upper functions Vl(n)(-) —|—ynV2(n)(-) and U, ﬁ)() +ynU, q(g)()

Main Assumption Now let us come back to the consideration of generalized empirical processes
obeying (3.2). Assumption 4 below is the main tool allowing us to compute explicitly upper functions.
Introduce the following notation: for any *) e Hh

Goo () = sup sup |G(h,2)],

(k)EY)ZL_H reX
and let Go : H¥ — R, be any mapping satisfying
Goo(h'?) < Goo (8™), WH ™ € f. (3.9)

Let {§;(n) C $;, n>1},j = 1,k, be a sequence of sets and denote $H%¥(n) = H1(n) x --- H(n).
Set for any n > 1
G,= inf Geo(h®), G,= sup Guso(h™).
hE) ehk(n) ( ) h(*K) €HE (n) ( )
16



For any n > 1, j = 1,k and any b; € $;(n) define

Gn(h;) = sup Goe(0™), Gy = inf  Gin(hy).
H1€H1(n)s,0j—1€9;-1(n),h;+1€9;5+1(n),....hx ENK(n) h;€9;(n)

Noting that | In (t;) —In (t2)| is a metric on Ry \ {0}, we equip $%(n) with the following semi-metric.
For any n > 1 and any h*), p*) € H¥(n) set
ol (6.5%) = max [ {G0(6)} ~ In {G(5,)} .
]: 2

where ﬁj, 6]-, j =1, k, are the coordinates of ﬁ(k) and h*) respectively.
Assumption 4. (i) 0< G, <G, < < for anyn > 1 and for any j = 1,k

Goo (™)) - Gin(by)
G, -G ’

n Zin

Vo™ = (b1,...,bx) € 9¥(n), Vn>1;

(ii) There exist functions L;j : Ry — Ry, D; : Ry — Ry, j = 0,k+1,...,m, satisfying L;
non-decreasing and bounded on each bounded interval, D; € C! (R), D(0) =0, and such that

{Gao(8) v G (5) } Do o (5. 5) }
C 5 Lfon(s)von() )0, (ui0nn),

for any b, € H¥(n) x 9, andn > 1.

We remark that Assumption 4 (i) is automatically fulfilled if & = 1.

IN

1G(v,) = G(b. ).

Remark 6. If n > 1 is fized or j(n), j = 1,k, are independent on n, for example $;(n) =
Nj, J = 1,k, for all n > 1 then upper functions for |&n(n)| can be derived under Assumption 4.
However, if we are interested in finding of upper functions for |£,(n)| when n is varying, we cannot
do it in general without specifying the dependence of $;(n), j = 1,k, on n.

In view of latter remark we will seek upper functions for |¢,(n)| when b € H(n) = 5?(71) X 9
Here $H%(n) = H1(n) x ---H(n) and {5](71) C Hj(n), n> 1} ,j = 1,k, be a sequence of sets

satisfying additional restriction. We will not be tending here to the maximal generality and complete
Assumption 4 by the following condition.

Assumption 5. For any m € N* there exists nim] € {m,m +1,...,2m} such that

U 9% (n) C H¥(n[m)).

ne{m,m+1,....2m}

We note that Assumption 5 obviously holds if for any j = 1,k the sequence {5] (n), n> 1} is

increasing/decreasing sequence of sets.

3.2. Totally bounded case

The objective is to find upper functions for [£;(n)| under Assumption 4 enforced, if necessary, by
Assumption 5 and the condition imposed on the entropies of the sets §;, j =k + 1, m.
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3.2.1. Assumptions and main result

The following condition will be additionally imposed in this section.
Assumption 6. Suppose that (3.7) holds and there exist N, R < oo such that for any ¢ > 0 and
any j=k+1,m

Cqj0,() < N [log2 {R/g}]+ ,
where, as previously, €g, ,. denotes the entropy of $); measured in g;.

We remark that Assumption 6 is fulfilled, in particular, when (f)j, Qj,%j), j =k+1,m, are
bounded and satisfy doubling condition. Note also that this assumption can be considerably weak-
ened, see discussion after Theorem 1.

Notations Let 3 < nj; < ny < 2n; be fixed and set N = {ny,...,nz}. For any h € § set

F (b — Supiszf‘G(thi) ) n; 7’5 ng;
* (n2)™' 302 E¢|G(h, X;)|, n1=na,

and remark that if additionally X;, ¢ > 1, are identically distributed then we have the same
definition of Fy,(-) in both cases. We note that

Fy, :=sup sup Fy,(h) < sup G, < o0
neN he%(n) neN

in view of Assumption 4 (i). Let b > 1 be fixed and put

n— nj, nj = ng; ,8: 07 n; = ng;
n[ni], ny # ng, b, ni # na,

where, remind, that n[-] is defined in Assumption 5.
Define E](z) = sup,<, max {u 'L;(u),1} and LF)(z) = > i logy {Ej (22)} and introduce
the following quantities: for any h*) e H% and any ¢ > 0

P () = (365872 + 6)In (1+1n {265 Goo (6®) } ) + 36N82LH) (Goo (5) ) +18Cn i
M, (6®) = (726672 + 2,50 + 1.5) In (26" G (60) ) + 72N6, 2L (G (60) ) + 36C, -

Here §, it is the smallest solution of the equation (485)~'s*(§) = 1, where, remind, s*(§) =
(6/7%)(1+ [In (5}2)71, 0 > 0. The quantities N, R are defined in Assumption 6.

The explicit expression of the constant C g m k, as well as explicit expressions of the constants
A1, A2 and Cpp used in the description of the results below, are given in Section 6.1.2 which
precedes the proof of Theorem 1.
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Result For any r € N put Fp, r(h) = max [Fn, (h), e %] and define for any h € $, u > 0 and ¢ > 0

W (n,h) = Al\/aoo(ww) (P @)n1) (P(5®) + 210 {1 + In (Foy.o(6))]} + )

+X0Goo (58) <n71 In® (n)) (P(W) +2In {1+ [In (Fay ()]} + u);

U 0,8) = Ay G (00) (Faa =) (M (59) 200 (1 i P )]) )

+20Goo (00 (7 10" () (M, (5) + 210 {1 + 11 (Fug r ()]} + ).

Theorem 1. Let Assumptions 4 and 6 be fulfilled. If ny # na suppose additionally that Assumption
5 holds. Then for anyr e N;b>1u>1andqg>1

P {sup sup [‘fh(n)‘ — Vlgu)(n, h)] > O} <2419 7%
neN hes(n)

q
Ef{suB sup [\gh(n)}—u&’q)(n,h)}} < ¢ [V01) TFuGy v (1) 110 (n2)G, )] e,
neN heH(n) I

where cq = 2(7q/2)+53q+4p(q +1)(Cpp)?.

Remark 7. The inspection of the proof of the theorem allows us to assert that Assumption 6 can be

weakened. The condition that is needed in view of the used technique: for some o € (0,1), L < 0o
sups *€gq, 0. () <L, j=k+1,m. (3.10)
¢>0

In particular, it allows to consider the generalized empirical processes indexed by the sets of smooth

functions. However the latter assumption does not permit to express upper functions explicitly as it
18 done in Theorem 1. This explains why we prefer to state our results under Assumption 6.

Several other remarks are in order.

19, First we note that the results presented in the theorem are obtained without any assumption
imposed on the densities f;, ¢ > 1. In particular, found upper functions remain finite even if the
densities f;, ¢ > 1 are unbounded.

20. Next, putting r = +00 we get the results of the theorem with Fp, »(+) = Fny(+). It improves
the first terms in the expressions of Vﬁu) (+,+) and ur(“”)(-, -), however the second terms may explode
if Fn,(h) = 0 for some h € $. The latter fact explains the necessity to ”"truncate” Fy,(-) from

below, i.e. to consider Fp, »(-) instead of Fy,(+).

3.2.2. Law of iterated logarithm

Our goal here is to use the first assertion of Theorem 1 in order to establish a non-asymptotical
version of the law of iterated logarithm for

My (n) == sup | (n)].
b(r) €91

Let us suppose that for some ¢ > 0, b >0

¢<G, <G, < VYn>1. (3.11)
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We would like to emphasize that the restriction G,, > ¢ is imposed for the simplicity of the notations
and the results presented below are valid if G,, decreases to zero polynomially in n.
Moreover we will assume that

sup sup supE¢|G(h, X;)| = F < 0. (3.12)
n2lpeq(n) i21

We will see that the latter condition is checked in various particular problems if the densities
fi, @ > 1 are uniformly bounded. Suppose finally that for some a > 0

LP(2) <aln{l+n(2)}, Vz>3. (3.13)
For any a > 0 and n > 3 define
ﬁlf(n,a) =9k n)n {b(k) : Goo(h®) < n[ln(n)] _a} .

Theorem 2. Let Assumptions 4, 5 and 6 be fulfilled and suppose additionally that (3.11), (3.12)
and (3.13) hold. Then there exists Y > 0 such that for any j > 3 and any a > 2

vn Tl (k) (n)
V/Goe (59) In (14 1 (1))

The explicit expression of the constant T can be easily derived but it is quite cumbersome and
we omit its derivation.

P¢ < sup sup >T ) < ——.

"2l Ry (n,a)

Remark 8. The inspection of the proof of the theorem shows that for any y > 0 one can find
0 < Y(y) < oo such that the assertion of the theorem remains true if one replaces T by Y(y)

and the right hand side of the obtained inequality by 2419[1n(j)]_(1+y). It makes reasonable the
consideration of small values of j.

The simple corollary of Theorem 2 is the law of iterated logarithm:

Vn Ty (%) (n)
\/Goo () Inln (n)

limsup  sup
"0 heER] (n,a)

<7T, Pf—as. (3.14)

3.3. Partially totally bounded case

We begin this section with the following definition used in the sequel. Let T be a set equipped with
a semi-metric 9 and let n € N* be fixed.
Definition 1. We say that {T; C T, i € I} is n-totally bounded cover of T if

o T =UiiT; and I is countable;

o T; is totally bounded for any i€ I;
o card({kel: TiﬂTk#(b})SnforanyiEI.
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Let us illustrate the above definition by some examples.

Let T = R%, d > 1. Then any countable partition of R? consisted of bounded sets forms 1-totally
bounded cover of R?. Note, however, that the partitions will not be suitable choice for particular
problems studied later. We will be mostly interested in n-totally bounded covers satisfying the
following separation property: there exists v > 0 such that for all i,k € I satisfying T; N Ty = ()

inf 0(t1,t2) > t. 3.15
t1€'ﬂ}£f2€71'k (1 2) =t ( )

Let us return to R? that we equip with the metric generated by the supremum norm. Denote by
B.(t), t € R4, r > 0, the closed ball in this metric with the radius » and the center ¢. For given t > 0

consider the collection {B% (vi), i€ Zd}, where we understand ti as coordinate-wise multiplication.

It is easy to check that this collection is 3%-totally bounded cover of R? satisfying (3.15).

We would like to emphasize that n-totally bounded covers satisfying the separation property
can be often constructed when T is a homogenous metric space endowed with the Borel measure
obeying doubling condition. Some useful results for this construction can be found in the recent
paper Coulhon et al. (2011), where such spaces were scrutinized.

We finish the discussion about n-totally bounded covers with the following notation: for any

t €T put
Tt)= |J U T

i€l: T3t kel: TiNTyR#D

3.83.1. Assumptions and main result

Throughout this section we will assume that the representation (3.8) holds and the elements of
X, | = 1,p, will be denoted by x; . We keep all notations from previous section and replace
Assumption 6 by the following conditions.

Assumption 7. (i) Let (3.7) and (3.8) hold with X1 = $,, and for some n € N* there exists a

collection {Hm,i7 ie I} being the n-totally bounded cover of Hy, satisfying for some N, R < oo

CH,,10m(s) < N [logy {R/s}],, Viel, V>0
(ii) For any ¢ >0
eﬁjy@j (§) <N [IOgQ {R/g}]+ , Vj = m

Usually one can construct many n-totally bounded covers satisfying Assumption 7 (i). The con-
dition below restricts this choice and relates it to properties of the mapping G(-,-) describing
generalized empirical process.

Assumption 8. For anyn > 1 and any b = (h1,...,bm) € H(n)

sup |G(h,z)| < n 'Gxs (h(k)).
TEX: £1¢9m (hm)
We would like to emphasize that in order to satisfy Assumption 8 in particular examples, the
n-totally bounded cover {Hm,i, ie I} should usually possess the separation property. Indeed, one

of the typical examples, where Assumption 8 is fulfilled, is the following: there exist v > 0 such
that for G(x,h) = 0 for any = € X, h € 9, satisfying pp,(z1, bhm) > 7.
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Result For any i = 1,n we denote X; = (XLi, .. ,Xp,i),

fl,i(xl) :/X e fi(xla---axp)HVl(d-Tl)-

and if X = &} (p =1) then we put X;; = X; and f1; = f;.
Put for any n > 1, v > 0 and any b,, € Hm

sn,v(hm):_lnd Z/m L e yl(dx)] \/n_“).

Note that obviously 0 < £, ,(bm) < vIn(n), Vb, € Hy,. Put for any h € $
B(H) = P(5®) + Lo () + 210 {1+ 10 (P (5)) ]}

M,(h) = My(6%)) + L0 (him) + 210 {1 + [In (Fayr(h))]}.
Define for any h € §, r €N, 2 >0and ¢ > 0

) 01,5) = Auy oo (569) (Fan 01171 (B0) +2) + oGl (60) (7 0 () (B(5) + 2):

G4 (01,5) = A0y G (009) (Fa 00~ 1) () + 2) + DaGe (0) (™ 0 () (W1 0) + ).

Theorem 3. Let Assumptions 4, 7 and 8 hold. If ny # nga suppose additionally that Assumption
5 holds. Then for anyre N, v>1,2>1andqg>1

P {Sup sup [I&; )| =V (b ] > 0} < n5{48386*Z +4n12*v};
neN hes(n)
q
Ef {Sup sup |:‘§h ‘ (’U,Z,q (n h)i| } S 2n5cq |: (nl)_lFIlen V ((nl)fl lnﬁ (nz)Qn>i|qefz
neN heh(n) N

20203 (G) g 2.

Although the assertions of the theorem are true whenever v > 1 the presented results are obvi-

ously reasonable only if v > 2. For example (as we will see later) the typical choice of this parameter
for the ?moment bound” is v = g + 2.

In spite of the fact that upper functions presented in Theorem 3 are found explicitly their
expressions are quite cumbersome. In particular, it is unclear how to compute the function £, ,(-).
Of course, since £y, (hy) < vin(n), Vb, € Hm, one can replace it by v1ln(n) in the definition of
P() and Mq(-), but the corresponding upper functions are not always sufficiently tight.

Our goal now is to simplify the expressions for upper functions given in Theorem 3. Surprisingly,
that if n is fixed, i.e. ny = ng, it can be done without any additional assumption.

Set for any v > 0 and h € $

Py (5®) = P(h®)) + 20 ‘ln (2Goo(h(k)))

L W (6®) = 24, (60) + 20| (260 (1))

)

and let Fy, (h) = max|Fy, (h), nz ']
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Corollary 2. Let the assumptions of Theorem 3 hold. If ny # na suppose additionally that X; 1, © >
1, are identically distributed.

Then, the results of Theorem 3 remain valid if one replaces Vr (n h) and U, v’z’q)( b)) by

D) = Ay Goc (00) (Faa 0)) (Po(0®) + 200+ 1] 1n { P01} + 2)

+)\2Goo(f)(k’))(n—1lnﬁ(n)>(P (5% + 2(v + 1) In { g ( )}HZ)%

G029 (n, ) = Al\/gm(h(m (Paa(0)n1) (Mg (6®) + 20+ 1)|In { Py (8)}] + 2)
+X2G oo (b(k)) (nil In” (n)) (]\//.Tq,v(f](k)) +2(v + 1)‘ In {ﬁnz(h)}} + Z)'

We would like to emphasize that we do not require that X;, ¢ > 1, would be identically dis-
tributed. In particular, coming back to the generalized empirical process considered in Example 2,
Section 3.1, where X; = (Y;,¢;), the design points Y;, i > 1, are often supposed to be uniformly
distributed on some bounded domain of R%. As to the noise variables ¢;, i > 1, the restriction that
they are identically distributed cannot be justified in general.

8.8.2. Law of logarithm

Our goal here is to use the first assertion of Corollary 2 in order to establish the result referred
later to the law of logarithm. Namely we show that for some Y > 0

. V1 T (1)
limsup  sup

1 ) €5 ) \/Goo(h(k)) 10 {Goc (59)} VI ()]

As previously we will first provide with the non-asymptotical version of (3.16).
We will suppose that (3.11) and (3.12) are fulfilled and replace (3.13) by the following assumption.
For some a > 0

<Y Pr—as. (3.16)

L£F)(z) <aln(z), Vz>2. (3.17)

Theorem 4. Let Assumptions 4, 5, 7 and 8 be fulfilled. Suppose also that (3.11), (3.12) and (3.17)
hold and assume that X;1, i > 1, are identically distributed.
Then there exits X > 0 such that for any j > 3 and any a > 4

vn T (k) (n) 4840n°
IPs sup sup ‘
n2J 0 €5t (n,a) \/Goo(h(k)) [m {Goe(h™)} VInln (n)}

Some remarks are in order. The explicit expression of the constant Y is available and the gener-
alization , similar to one announced in Remark 8, is possible. Also, (3.16) is an obvious consequence

of Theorem 4. At last, we note that in view of (3.11) the factor [ln {G (b(k))} V Inln (n)} can

be replaced by In(n) which is, up to a constant, its upper estimate. The corresponding result is, of

course, rougher than one presented in the theorem, but its derivation does not require X; 1, 7 > 1,

to be identically distributed. This result is deduced directly from Theorem 3. Its proof is almost

the same as the proof of Theorem 4 and based on the trivial bound £, ,(h,) < vin(n), Vb, € Hip,.
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3.4. Application to localized processes

Let (Xl, s ,01), l=1,d+ 1, d € N, be the collection of measurable metric spaces. Throughout this
section we will suppose that (3.8) holds with p = 2,

X=X x X, (X,01) = (Xy % x Xgop1 % - % pa) = (X4 u D), (X, v0) = (Xag1, pat)s
x; denotes the element of X;, j =1,d+ 1, and 2@ will denotes the element of X(f. We equip the
space X¢ with the semi-metric pld) = max;_y; Pl
Problem formulation This section is devoted to the application of Theorems 1 and 3 in the
following case:

e Nl :=H1 x - xH=(0,1] x --- x (0,1] = (0,1]¢, (i.e. k = d);

° ﬁgif = a1 X Nayo = Z X X’f , i.e. m = d+ 2, where X‘li =Xy x---x Xy be a given subset
of X¢ and (Z,0) is a given metric space.

e The function G(-,-) obeys some structural assumption described below and for any b :=
(r,g,jz(d)) € (0,1]¢ x Z x X¢ the function G(b,-) ”decrease rapidly ” outside of the set

{331 €X1: pi(z1,3) < 7“1} X e X {fvd €Xg: pa(wa,Tq) < Td} X Xg41-

Let K : R — R be a given function, (71, e ,’yd) € Ri be given vector and set for any r € (0, 1]¢
d
KT('):w_lK('/rlv---v'/rd)7 ‘/TZHT?Z'
=1

where, as previously, for u,v € R? the notation u/v denotes the coordinate-wise division. Let
G(b,2) = g(3,0) K, (A2 D,5@) ), b= (r3,2@) € (0,1 x 2 x X{ = §, (3.18)
where g : Z x X — R is a given function those properties will be described later and

ﬁ(x(d)vi‘(d)) = (pl (xlajl)v i -an(iUdafd)) .

The corresponding generalized empirical process is given by
i=1

We will seek upper functions for the random field ¢, (n, a‘c(d)) = sup ‘ﬁr 5.5 (n)‘ in two cases: X{ =
362 .2}

X¢ and X¢ = {z(D} for a fixed (9 € X{.

To realize this program we will apply Theorems 1 and 3 to &,(n), h = (r,g,fi(d)). It is worth
mentioning that corresponding upper functions can be used for constructing of estimation proce-
dures in different areas of mathematical statistics: M-estimation with locally polynomial fitting
(non-parametric regression), kernel density estimation and many others.

Moreover, we apply Theorem 2 for establishing a non-asymptotical version of the law of iterated
logarithm for (, (:i(d),n) in the case where X‘li = {i(d)} . We also apply Theorem 4 for deriving
a non-asymptotical version of the law of logarithm for ||.(n)||,, = SUPz (@) cxd [« (2D, n) |. Our
study here generalizes in several directions the existing results Einmahl and Mason (2000), Giné
and Guillou (2002), Einmahl and Mason (2005), Dony et al. (2006), Dony et Einmahl (2009).
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Assumptions and notations

Assumption 9. (i) [|K|e < 00 and for some L; >0

Ll’t—s‘ d
K({t)—-K(s)| < —————, Vt,seR?
K0~ K(3) < 25
where | - | denotes supremum norm on R,
(ii) llgllc :== sup |g(3,2)| < oo, and for some o € (0,1], Ly > 0,
}EZ, zeEX

sup |g(3,2) —g(3'2)| < La [0(,3)]", V3.5 € Z;
reEX

The conditions (i) and (ii) are quite standards. In particular (i) holds if K is compactly supported
and lipschitz continuous. If g(;,, ) = g(+), for any 3 € Z, then (ii) is verified for any bounded g.

Let 0 < rl(min) (n) < rl(max) (n) <1, l=1,d, n > 1, be given decreasing sequences and let
d .
H(n) =R(n) x Z x Xf, R(n) = H [rl(mm)@n),rl(max) (n)],

d
5(71) =R(n) x Z x X, R(n) = H
(max)

We note that S?J(n) C 9(n) for any n > 1 since rl(min)(-),rl (), I = 1,d, are decreasing, and
obviously (n) C $(m) for any n € {m,...,2m} and any m > 1.

Remark 9. Assumption 5 is fulfilled with n[m] = m.

Lemma 2. Suppose that Assumption 9 is fulfilled and let Xil C X4 be an arbitrary subset. Then,

(min)

for arbitrary sequences 0 < (n) < rl(max)(n) <1,1=1,d, n>1, Assumption 4 holds with

o

(73 ?“/) = m&jhl In (Tz/?“f) ,  0d+1 = [D]Q, Od+2 = Max py;
I=1,d =

) 17

Do(z) = exp {dz} = 1+ (La/[| K ls) (exp {37} = 1), 5 = miny

-1
Das1(2) = (La/llgle)z,  Das2(2) = Li(llgllo | K1IZ) ™ 20 Las1(2) =2, Laya(2) = 2%

Additionally, if X§ consists of a single point ) e X¢ then Ly = 0.

The proof of the lemma is postponed to Appendix. We remark that g1 is a semi-metric, since

a € (0,1], and the semi-metric g%d) is independent on n. In view of latter remark all quantities

involved in Assumption 4 are independent on the choice of rl(min)(-), rl(max)(-), I =1,d,. We want to
emphasize nevertheless that the assertion of the lemma is true for an arbitrary but a priory chosen
(min) (max) T3
ri (), (), l=1,d.
Thus, Lemma 2 guarantees the verification of the main assumption of Section 3.1, that makes
possible the application of Theorems 1-4. Hence, we have to match the notations of these theorems

to the notations used in the present section.
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Since k = d and H¥ = (0,1]? we have H*) = r and, therefore, in view of Assumption 9

Goo(r)i= s swp |G ({r5,3D},0)| Vi glocl Koo = Goclr),

(3,2 D)eZxX¢ pexdt!

3 _ -1
G, = 7“617%{71) Goo(r) = Vr(max)(n)”g”oonKHom Vn > 1.

We remark that the function G (+) is independent of the choice of X¢. Define

FD (@) = fi@)nasr (dza), =1,
Xay1

and let 3 < nj; < ngy < 2n; be fixed. Set for any (T,ﬂ?(d)) € (0, l]d X X‘f

19lloc(n2) =1 3772 fxg |K, (p(z(@,2(D))] £ (¢ @)@ (A @), 1y = n;
F, (r,2@®) =
2 (T T ) llglloo sup / K, (ﬁ(x(d),:f‘(d))>
T e d
1

i=1,ng

fi(d) (z() D (dzD), n; # ng,

and note that in view of Assumption 9 (ii)
Fay(h) < Fr, (r,a?(d)) , Vhe (0,17 x Z x X{.
We remark that the function Fy, (-, ) is independent of the choice of Z. Put also

Fh, == sup sup Fa, (r, a‘cd) < 00,
neN (rz4) R (n)x X4

where, remind, N = {ny, ..., nz}. Finally for any r € N set Foyr(v, ) = max [Fn, (-, ), e ]

3.4.1. Pointwise results

Here we will consider the case, where Xil = {a‘c(d)} and 7@ is a fixed element of Xil. Note that in
view of Lemma 2 Ly 1(z) = z and Lg,9 = 0 that implies £*) = 0.

We will suppose that Assumption 6 holds with k = d,m = d + 1 and (9441, 04+1) = (Z,[0]%).
It is equivalent obviously to assume that Assumption 6 holds with ($441, 04+1) = (£,9) and with
the constants N = aN and R = RY/°.

Let f and Cn rm,k be the constants defined in Theorem 1. Set for any r € (0, 1]d and ¢ >0

d 27a(max)(n)
P(r) = (36d6,2 +6)In ( 1+ > yInd =Lb——15 | +18Cn,pat1.4:

.
=1 !

d (max)
2
M,(r) = (724572 +2.5¢+1.5) Yy 1n ("”ln(”)> 360N R st a.
=1
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and define for r € N and u > 0

Vr(u) (n,’r, a’cd) = Al\/[Fnzm (7“, :Ed) (nVr)—l} [P(r) +21n {1 + }ln {Fnz’,r (7“, Ed)}‘} + u}

+A2 [(nVT)_1 In” (n)} [P(r) +2In {1 + ’1n {Fm,,r (r, fd) } ‘} + u};

D (n,r,z7) = )\1\/ | Pz e (r, ) (0V2) 1| | My(r) + 210 {14 [In { Fag e (r, 89) } [} +
+A2 [(nVT)*1 In” (n)} [Mq(T) +21In {1 + ‘ln {Fnz,r (r, jd) } ’} + u} ,

where A1 = \/[|9]loo || K ||coA1; A2 = [|9]|co|| K ||coA2 and A1, Ao are defined in Theorem 1.

The result below is the direct consequence of Theorem 1 and Lemma 2. We remark that defined
above quantities are functions of r and n since z¢ is fixed. Since they do not depend on the variable
3, these quantities will be automatically upper functions for

G (1,79 = sup g, 0 (7).
€2
Theorem 5. Let Assumption 9 be fulfilled and suppose that Assumption 6 holds with k = d,m =
d+1 and (Hg+1, 0a+1) = (Z,[0]%). .
Then for any given decreasing sequences 0 < rl(mm) (n) < rl(max) (n)<1,1l=1,d, n>1, any
a’:dEX‘f anyr €N, b>1u>1andg>1

Py {sug sup [CT (n,a‘c(d)) — Vﬁu) (n,r, ;Tcd)} > 0} <2419 e

neNreR(n)
q
Fl‘l2 v lnﬁ (nz) e~
N1V} (max) (ny) V(max) (ng )11 ’

q
where ¢y = 20924530441 (g 4+ 1) (Cp p max [v/Tlgllao Klloes lgllocl K] )

The explicit expression for Cpp can be also found in Theorem 1. In the case considered here it
is completely determined by (v1,...74), L1, Lo and b.

As well as the assertions of Theorem 1 the latter theorem is proved without any assumption
imposed on the densities f;, ¢ = 1,n. The choice of rl(mm) (n),rl(max) (n), I =1,d, n > 1, is also
assumption free. Additionally, Assumption 6 can be replaced by (3.10), see Remark 7.

Note also that if g(g, ) = g(+), for any 3 € Z, then Assumption 6 is not needed anymore and,
moreover, Assumption 9 (ii) is verified for an arbitrary bounded g. Hence, in this case the assertions
of Theorem 5 are established under very mild Assumption 9 (i) imposed on the function K.

-~

q
1D {Sup sup [Q (n. 2D) =24 (n, 7, jd)} } s¢
neEN reﬁ(n) +

Remark 10. We note that the discussed in Introduction so-called price to pay for uniformity
disappears if r = r™8)  Indeed, P (r(max)) and M, (r(max)) are absolute constants. This property
is crucial, in particular, for constructing statistical procedures used in the estimation of functions
possessing inhomogeneous smoothness, see Lepski et al. (1997), Kerkyacharian et al. (2001).

Some additional assumptions and their consequences To apply Theorem 5 to specific
problems one needs to find an efficient upper bound for the quantity Fy,(:,-). Below we provide
with sufficient condition allowing to solve this problem under general consideration and we will not
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be tending here to the maximal generality. We impose some additional restrictions on the densities
fi» i = 1,n, and on the measures y; of p;-balls in the spaces X;, | = 1, d. Moreover, we should precise
the behavior of the function K at infinity. Then, we will use these assumptions for establishing of
the law of iterated logarithm.

Introduce the following notations. For any ¢ € Ri define

R(O)= sup (K@ o= [0 0,14
u Ht

For any [ =1,d, x; € X; and r > 0 set Bl(r,xl) = {y €X;: pl(y,:vl) < r}.
Assumption 10. There exists Lo > 0 such that

sup [(ﬁt;ﬂl)f((t)} < Lo; (3.19)
teRy L =g

For any l =1,d and any x; € X; one has X; = Uy (Bl (r, xl)) and there exist LY > 0

17 (Bl (r,xl)) < LO vr>o0; (3.20)
Moreover,
sup sup fi(d) (aj(d)) =: fy < 0. (3.21)

The condition (3.19) is obviously fulfilled if K is compactly supported on [0, 1]%. It is also satisfied
in the case of Gaussian or Laplace kernel.

The condition (3.20) can be easily checked if X;, [ = 1, d are doubling metric spaces. In particular,
if X; = R and y, | = 1,d, are the Lebesgue measures than (3.20) holds with LO =1, =1, 1=
1,d. If X; = R%, [ =1,d, then (3.20) holds with 7, = d; and the constants L® depending on the
choice of the distances py.

As to condition (3.21) we remark that the boundedness of the entire density f; is not required.
For example, under independence structure, i.e. fj(z) = fi(d) (x(d)) Di ($d+1)7 the densities p; may be
unbounded.

Lemma 3. The following bound holds under Assumption 10:

d
sup sup sup Fp, (T,ﬂ?(d)) < 2df00||g||ooL2H27lL(l).
n2>17e(0,1]4 () exg =1

The proof of lemma is postponed to Appendix. Our goal now is to deduce the law of iterated
logarithm for (. (n, f(d)) from Theorem 2. Set for any n € N* and ¢ > 0

Ra(n) = {7‘ e (0,1¢: v, > n_l(lnn)a}.

and choose A™¥) = (1,...,1) and A™™) = (1/n,...,1/n).

Remark 11. 1% Note that Ro(n) C [n~',1]¢ =1 R(n) for any n > 3 and any a > 0 and,
therefore, the assertion of Lemma 2 holds.
20, We have G,, = | K|lsollglloo;, Gn = || K]loollgllecn™® for any n > 1 and, therefore, (3.11) is
verified with ¢ = || K||x]|g|lcc and b =d.
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30. Lemma 8 implies that the condition (3.12) holds with F < 2% ||g|o0 L2 Hle on O,
40, In view of Lemma 2 Lqi1(z) = z and Lqyo = 0, that implies L% = 0. Hence, the condition
(5.13) is fulfilled for any a > 0.

Thus, all assumptions of Theorem 2 are checked and we come to the following statement.

Theorem 6. Let Assumptions 9 and 10 be fulfilled and suppose that Assumption 6 holds with
k=dm=d+1 and (9441, 04+1) = (Z,[0]%). Then there exists T > 0 such that for any ¢ € X¢
and any a > 2

VnV; ¢ (n, 7@ 241
Ps < sup sup nvr ¢ (n * ) >7T 5 < ,9.
n2j rin~t(lnn)e<V,<1 In (14 1In(n)) In(j)

Remark 12. The inspection of the proof of Theorem 2 together with Lemma 3 allows us to assert
that the statement of Theorem 6 is uniform over the set of bounded densities.
More precisely, for any §f > 0 there exists Y (f) such that

vV ¢ (n, 2@ 2419
sup P¢ ¢ sup sup W G (0, 210) >Y(f) p < ——, (3.22)
feF; n>j r:n=1l(lnn)e<V,<1 In (1+ln (n)) In(j)

where Fj = {(fl-,i >1): fo < f} As before the explicit expression of Y(-) is available.
The following consequence of Theorem 6 is straightforward.

vnV, Cr (na j(d))
In (1 +1n(n))

lim sup sup <T P;-as. (3.23)

n—00 r:n~l(lnn)2<V,<1

Theorem 6 generalizes the existing results, see for example Dony et Einmahl (2009), in the following
directions.

1. Structural assumption. The structural condition (3.18) is imposed in cited papers but with
additional restriction: either g(3,x) = const ("density case”) or g(3,2) = g(z) ("regression
case”). It excludes, for instance, the problems appearing in robust estimation. We note that
Assumption 9 (ii) is fulfilled here if g is bounded function and Assumption 6 is not needed
anymore, since g is independent of 3.

2. Anisotropy. All known to the author results treat the case where X; = R, | = 1,d, and
R(n) ={(r1,...,mq) € (0,1]¢: r =1, Vi=1,d, re [t (n), 1) (n)]} (isotropic case).
We remark that (3.20) is automatically fulfilled with vy = 1, L) =1, I =1,d, and V, = r%
Note also that we consider independent but not necessarily identically distributed random
variables. This is important, in particular, for various estimation problems arising in non-

parametric regression model.

3. Kernel. We do not suppose that the function K is compactly supported. For instance, one
can use the gaussian or laplace kernel. It allows, for instaince, to consider the problems where
in is not linear space. In particular, it can be some manifold satisfying doubling condition.

4. Non-asymptotic nature. The existing results are presented as in (3.23). Note, however, that
the random field ¢, (n, Ed) appears in various areas of nonparametric estimation (density
estimation, regression). As the consequence a.s. convergence has no much sense since there is
no a unique probability measure (see, also Remark 12).
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3.4.2. Sup-norm results

Here we consider X¢ = X¢. We assume that there exists {X;, i € I} which is n-totally bounded
cover of (Xﬁl, p(d)) satisfying Assumption 7 (i) and possessing the separation property.

Assumption 11. There exists t > 0 such that for any i,k € I satisfying X; N Xy = 0

inf inf p(d) (x(d),y(d)) >t
z(@deX; ydeXy

Also we suppose that Assumption 7 (ii) holds with k = d,m = d+1 and (9411, 04+1) = (Z, [0]%).

We remark that in the considered case this assumption coincides with Assumption 6.
(min)

Let, as previously, 0 < r;"/(n) < rlmax) (n) <1, 1=1,d, n > 1, be given decreasing sequences,
d .
H(n) =R(n) x Z x Xf, R(n) = H [rl(mm)(Qn),rl(max) (n)],

d N
Hn) =R(n) x Zx X, R(n) =[] [«"™ (), 7™ ().

Our last condition relates the choice of the vector 7(™#¥)(n), n > 1 and the kernel K with the
parameter t appearing in Assumption 11. Let us assume that for any n > 1

sup  sup |K(u/r)] < ||K|oson™t. (3.24)
reR(n) lul(0,4¢

Note that (3.24) holds if K is compactly supported on [—t, {]¢ and (™) (n) € (0, t)? for any n > 1.
Lemma 4. Assumption 11 and (5.24) imply Assumption 8.
The proof of lemma is given in Appendix. Set for any r € (0,1]% and v > 0

My(r) = ([72d + 108N16, 2 + 2.5¢ + 20 + 1.5) In (2V,7) + C,

where we have put C = 72Nd; 2 [logy (||gloc || Kl0o)| + 36CN R.d+1,4-

Let 3 <nj; <ns <2n; be fixed. Set ﬁnz (r,a‘c(d)) = max [Fn2 (T,;Tc(d)) ,ng_l] and define

i v=0) (n, r,a—g(d)) = Al\/{ﬁnz (r, z(@) (nV,,)—l} []\/qu(r) +2(v+ 1)‘ In {ﬁnz (r, z(@) }‘ + z}
+A2 [(n%)_l In” (n)] []/W\q’v(r) +2(v+ 1)’ In {ﬁm (r, f(d)> }’ + z}
Theorem 7 below is the direct consequence of Lemma 2, Lemma 4 and Corollary 2. Remind that

¢ (n, a‘c(d)) = sup | 2@ (a_c(d))’ and N = {n1,...,n2}.

Tg+1€Xg41

Theorem 7. Let Assumption 9 be verified and suppose that Assumption 7 (ii) holds with k =
d+1,m=d+2 and (Ha+1,04+1) = (Z,[0]%). Suppose also that Assumption 7 (i) is fulfilled with
(Hd+2, 0dr2) = (ch,p(d)) and Hyyo5 = X, 1 € I, satisfying Assumption 11. Assume that (3.24)
holds as well and if ny; # ng let (Xi)d, 1 > 1, be identically distributed.
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Then for any given decreasing sequences 0 < rl(min) (n) < rl(max) (n) <1, 1=1,d, n>1, any
b>1,q>1,v>1andz>1

Py { sup sup G (D) =T (n,r, 5 D)] > 0} < n°{4838¢ 7 +2m 27,
neN (r,i(d)>eﬁ(n)fo

q
Ef{ sup sup |:Cr (n7 j(d)) _ Z:{\(v,z,q) (n’ r j(d))} }

neN (T,:Y:(d) ) eR(n) x X4

= q
F In? (n —q
< 2“56:1 nz vV ( 2) e % + 2q+1n5 (V;(min)(nl)> n12—v.
01V o) () \ Vytmon) (g 11
Remind that ﬁnz = sup sup ﬁnz (r,j(d)> and the expression for the constant cﬁl can

neN (r,z(@)eR (n)xX§
be found in Theorem 5. We also note that the first assertion of the theorem remains valid if one
replaces the quantity M, ,(r) by the smaller quantity ([36d +54N]672 + 20 + 6) In (2V,71) + C/2.
But the corresponding upper function will differ from Uw=a) only by numerical constant.

We also remark that Fi, < 29f.0]|g]lsoL2 Hle 21 LU for any ng > 3 under Assumption 10 in
view of Lemma 3. Moreover, if V, (min)(,y = n~? for some p > 0 then J/\/[\q,v(r) can be bound from
above by ([72d + 108N]6;2 + 2.5q + 2v + 1.5)pln (2n) which is independent on 7. Hence, if both
restrictions are fulfilled the upper function 1{(**9) in Theorem 7 takes rather simple form, namely

In(n) + 2 N A2(g) [0 (n) + 2]

where the constant A1(¢) and A2(q) can be easily computed.

Law of logarithm In this paragraph we will additionally suppose that Assumption 10 holds.
Then, we remark first that statements 1° — 3° of Remark 11 hold. Next, we note that Lgy1(2) = 2
and Lqyo(z) = 2% in view of Lemma 2 that implies £*)(2) = In(z) for any z > 1. Hence, the
condition (3.17) is fulfilled with a = 1.

Thus, all assumptions of Theorem 4 are checked and, taking into account that in our case

My (1) = (|G- 3= sup G, 3Y),

#(@) exd
we come to the following statement.

Theorem 8. Let assumptions of Theorem 7 be fulfilled and suppose additionally that that Assump-
tion 10 holds. Then there exists X such that for any a > 4

5
u»f{ 0 1 (00 T} _asion’
n>j r:n~Hlnn)*<V,.<1 \/ln (V'r—l) V1nln (n) In (.])

The uniform version over the set of bounded densities, similar to (3.22), holds as well.
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The immediate consequence of the latter theorem is so-called ” uniform-in-bandwidth consis-
tency’:
vnV, n
lim sup sup 7 16 )H‘X’ <Y Pf—as (3.25)
n=00 rin~t(lnn)*<V,<1 \/ln (Vi) Vinln (n)

The assertion of Theorem 8 and its corollary (3.25) generalizes in several directions the existing
results Einmahl and Mason (2000), Giné and Guillou (2002), Einmahl and Mason (2005), Dony et
al. (2006) (see, the discussion after Theorem 6).

We would like to conclude this section with the following remark. If K is compactly supported
and g(;«,, ) = g(-) for any 3 € Z, where g is a bounded function, then all results of this section
remain true under Assumptions 7 (i), 9 (i), 11, (3.20) and (3.21).

4. Gaussian random functions

In this section we apply Propositions 2-4 to the family of zero-mean gaussian random functions.
Thus, let xg,0 € O, is a real valued continuous gaussian random function such that Exg = 0, V6 €
©. We are interested first in finding an upper function for ‘X@ ,0 € ©. Let

V(0) = /E|xol>, p(61.62) = \/Elxe, — x0.|”

We remark that Assumption 1 holds with ¢ = 2, B =0 and b = 0 and YA > 2V, Va > v/2p.
Since b = 0 Assumption 3 is reduced to

Assumption 3 [Gaussian case]. There exist s € S such that for any x > 0

sup (5_2(’3@ N (x(486)_1s(5)) < 0.
>0 ’
Thus, if the latter assumption holds, Propositions 2-4 can be applied.

The aim of this section is to find uppers functions for quite different functionals of various
gaussian processes. We would like to emphasize that the original problem is not always related to
the consideration of |X9 ,0 € O, although such problems are also studied. The idea is to reduce it
(if necessary) to those for which one of Propositions 2-4 can be used. Without special mentionning
we will always consider a separable modification of g, 0 € ©.

4.1. Upper functions for Lp-norms of Wiener integrals

Let K : R? — R be a continuous compactly supported function such that || Ko < co. Without loss
of generality we will assume that the support of K is [—1/2,1/2]% Let 0 < h(™min) < p(max) < ] be

given numbers. Put H = [h(mi“), h(max)} and let Ky(u) = h™%K (ui/h,...,uq/h), h € H, u € R%
Let b(dt) is white noise on R? and consider the family of gaussian random fields
En(t) = Ky (t —u)b(du), heH.
R4
Let K, = [—p/2, 11/2]%, > 1, be a given cube and let for any 1 < p < oo

1

lol, = ([ loorar)”
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The objective is to find an upper function for Hfhﬂp on H and later on C7,C5..., denote the

constants completely determined by d,p,u, v and K. It is worth mentioning that the explicit

values of these constants can be found and some of them are given in the proof of the theorem.
We will be interested only the case 2 < p < oo, since for any p € [1,2) we obviously have

d(2—p)
P

lénll, < (02 [lénll,

and, therefore, we can use the upper function found for p = 2 for any p € [1,2).
Let By ,,s > 0, 1 < ¢,r < oo, denote the Besov space on R?, see e.g. Edmunds and Triebel
(1996), and later on Hy(s, L) denote the the ball of the radius L > 0 in B} ..

Suppose that K € Hy (v, L) and without loss of generality we assume that L = 1 that implies

in particular that || K|e < 1.
Theorem 9. Assume that v > d/2. Then for any 2 < p < oo, h{™™) p™aX) ¢ (0. 1), and ¢ > 1

o —d)2 o=3/2 (5 (max)) "2Y/P
P{}sltelg [llenll, = C1h"2] 20} < Cgexp{ 273/2 (plm=) }
qd(2—p)

o [l ~ ]} < cut (1) o oo o) ).

The proof of the theorem is given in Section 7. The constant C; involved in the description of
found upper functions is bounded function of p on any bounded interval. Thus, the upper functions
are independent of p if p € [2, pg] for any given py > 2.

Also it is important to mention that the obtained upper functions are sharp. Indeed, it is not
difficult to prove that for any h > 0

Cih™"? <E||&, < Csh™/2.

This, together with the concentration inequality for gaussian processes, Talagrand (1994), yields in
particular for any given h > 0

P {Hﬁth > 51h’d/2} < Cyexp {—@h’zd/”}-

This inequality coincides, up to numerical constants, with the first inequality in Theorem 9 in
particular case when p(min) — p(max) — p

4.2. Upper functions for local modulus of continuity under doubling condition

Let metric space (T,d) be equipped with Borel measure s¢. This measure is doubling if 3Q > 1
such that
%{IB%d(t, 2r)} < 