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  L'archive ouverte pluridisciplinaire

1. Introduction. This research aims at estimating multivariate functions with the use of the oracle approach. The first step of the method consists in justification of pointwise and global oracle inequalities for the estimation procedure; the second step is the deriving from them adaptive results for estimation of the point functional and the entire function correspondingly. The obtained results show full adaptivity of the proposed estimator as well as its minimax rate optimality.

Model and set-up. Let D ⊃ [-1/2, 1/2] d be a bounded interval in R d . We observe a path {Y ε (t), t ∈ D} , satisfying the stochastic differential equation

(1.1) Y ε (dt) = F (t)dt + εW (dt) , t = (t 1 , . . . , t d ) ∈ D,
where W is a Brownian sheet and ε ∈ (0, 1) is the deviation parameter.

In the single-index modeling the signal F has a particular structure:

(1.2)

F (x) = f (x θ • ),
where f : R → R is called link function and θ • ∈ S d-1 is the index vector. We consider the case of completely unknown parameters f and θ • and the only technical assumption is that f ∈ F M where F M = {g : R → R | sup u∈R |g(u)| ≤ M } for some M > 0. However, the knowledge of M as well as any information on the smoothness of the link function are not required for the proposed below estimation procedure. The consideration is restricted to the case d = 2 except the second assertion of Theorem 3 concerning a lower bound for function estimation at a given point. Also, without loss of generality we will assume that D = [-1, 1] 2 and ε ≤ e -1 .

Let F (•) be an estimator, i.e. a measurable function of the observation {Y ε (t), t ∈ D} and E ε F denote the mathematical expectation with respect to P ε F , the family of probability distributions generated by the observation process {Y ε (t), t ∈ D} on the Banach space of continuous functions on D , when F is the mean function. The estimation quality is measured by the L r risk, r ∈ [1, ∞) ,

(1.3) R (ε) r ( F , F ) = E ε F F -F r ,
where • r is the L r norm on [-1/2, 1/2] 2 or by the "pointwise" risk

(1.4) R (ε) r,x ( F , F ) = (E ε F | F (x) -F (x)| r ) 1/r .
The aim is to estimate the entire function F on [-1/2, 1/2] 2 or its value F (x) from the observation {Y ε (t), t ∈ D} satisfying (1.1) without any prior knowledge of the nuisance parameters f and θ • . More precisely, we will construct an adaptive (not depending of f and θ • ) estimator F (x) at any point x ∈ [-1/2, 1/2] 2 . In what follows F notation stands for an adaptive estimator and F denotes an arbitrary estimator. Our estimation procedure is a random selector from a special family of kernel estimators parameterized by a window size (bandwidth) h > 0 and a direction of the projection θ ∈ S 1 , see Section 2.2 below. For this procedure we then establish a pointwise oracle inequality (Theorem 1) of the following type:

(1.5) R (ε) r,x ( F , F ) ≤ C 1 ε ln(1/ε)/h * (x θ • ) + C 2 ε ln(1/ε),
where h * is an optimal in a certain sense (oracle) bandwidths, see Definition 2.1. As r < ∞ Jensen's inequality and Fubini's theorem trivially imply

R (ε) r ( F , F ) r ≤ E ε F F (•) -F (•) r r = R (ε) r,• ( F , F ) r r .
Hence, we immediately obtain the "global" oracle inequality

(1.6) R (ε) r ( F , F ) ≤ C 1 ε ln(1/ε)/h * r + C 2 ε ln(1/ε).
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Both inequalities (1.5) and (1.6) aside of being quite informative itself -we will see in Section 2.1 from Proposition 1 that they claim that our adaptive estimator mimics its ideal (oracle) counterpart, i.e. their risk bounds differ only by a numerical constant, -they are further used to judge the minimax rate of convergence under the pointwise and L r losses correspondingly (Theorems 3 and 4). We will see that these rates are in accordance with Stone's dimensionality reduction principle, see pp. 692-693 in [START_REF] Stone | Additive regression and other nonparametric models[END_REF]. Indeed, as the statistical model is effectively one-dimensional due to the structural assumption (1.2) so the rate of convergence is.

The obtained results demonstrate full adaptivity of the proposed estimator to the unknown direction of the projection θ • and the smoothness of f . Moreover, the lower bound given in the second assertion of Theorem 3 shows that in the case of pointwise estimation over the range of classes of d -variate functions having the single-index structure, see definition (3.1), our estimator is even optimally rate adaptive, that is it achieves the minimax rate of convergence. This fact is in striking contrast to the common knowledge that a payment for pointwise adaptation in terms of convergence rate is unavoidable. Indeed, if the index θ • would be known, than the problem boils down to pointwise adaptation over Hölder classes in the univariate GWN model. As demonstrated in Lepski (1990), an optimally adaptive estimator does not exist in this case.

Although the literature on the single-index model is rather numerous, we mention only books [START_REF] Härdle | Nonparametric and semiparametric models[END_REF], [START_REF] Horowitz | Semiparametric and Nonparametric Methods in Econometrics[END_REF], [START_REF] Györfi | A distribution-free theory of nonparametric regression[END_REF] and [START_REF] Korostelev | Mathematical statistics. Asymptotic minimax theory[END_REF], quite a few works address the problem of function estimating when both the link function and index are unknown. To the best of our knowledge the only exceptions are [START_REF] Golubev | Asymptotically minimax estimation of a regression function in an additive model[END_REF], [START_REF] Gaïffas | Optimal rates and adaptation in the single-index model using aggregation[END_REF] and [START_REF] Goldenshluger | Universal pointwise selection rule in multivariate function estimation[END_REF]. An adaptive projection estimator is constructed in [START_REF] Golubev | Asymptotically minimax estimation of a regression function in an additive model[END_REF], in [START_REF] Gaïffas | Optimal rates and adaptation in the single-index model using aggregation[END_REF] the aggregation method is used. Both the papers employ L 2 losses. [START_REF] Goldenshluger | Universal pointwise selection rule in multivariate function estimation[END_REF] seems to be the first work on pointwise adaptive estimation in the considered set-up, the upper bound for estimation at a point obtained therein is similar to our, but the estimation procedure is different.

Organization of the paper. In Section 2 we motivate and explain the proposed selection rule. Then in Section 2.3 we establish for it local and global oracle inequalities of type (1.5) and (1.6). In Section 3 we apply these results to minimax adaptive estimation. Particularly, Section 3.1 is devoted to the upper bound and already discussed above lower bound for estimation over a range of Hölder classes. Section 3.2 addresses the "global" adaptation under the L r losses and the estimator performance over the collection of classes of singleindex functions with the link function in a Nikol'skii class, see Definition 2 and (3.2). That consideration allows to incorporate in analysis functions of inhomogeneous smoothness, that is those which can be very smooth on some parts of observation domain and irregular on the others. The proofs of the main results are given in Section 4 and the proofs of technical lemmas are postponed until Appendix.

2. Oracle approach. Below we define an "ideal" (oracle) estimator and describe our estimation procedure. Then we present local and global oracle inequalities demonstrating a nearly oracle performance of the proposed estimator.

Denote by K : R → R any function (kernel) that integrates to one, and define for any

z ∈ R, h ∈ (0, 1] and any f ∈ F M ∆ K,f (h, z) = sup δ≤h 1 δ K u -z δ f (u) -f (z) du , a monotonous approximation error of the kernel smoother 1/δ K (u -z)/δ f (u)du . In particular, if the function f is uniformly continuous then ∆ K,f (h, z) → 0 as h → 0 .
In what follows we assume that the kernel K obeys

Assumption 1. (1) supp(K) ⊆ [-1/2, 1/2], K = 1, K is symmetric;
(2) there exists Q > 0 such that

K(u) -K(v) ≤ Q|u -v|, ∀u, v ∈ R.
2.1. Oracle estimator. For any y ∈ R denote by

∆ K,f (h, y) = sup a>0 1 2a y+a y-a ∆ K,f (h, z)dz,
the Hardy-Littlewood maximal function of ∆ K,f (h, •), see for instance [START_REF] Wheeden | Measure and integral. An introduction to real analysis[END_REF]. Put also

∆ * K,f (h, •) = max ∆ K,f (h, •), ∆ K,f (h, •
) and remark that in view of the Lebesgue differentiation theorem ∆ * K,f (h, •) and ∆ K,f (h, •) coincide almost everywhere. Note also, that if f is a continuous function then ∆ * K,f (h, •) ≡ ∆ K,f (h, •). Define for ∀y ∈ R the oracle (depending on the underlying function) bandwidth h * K,f (y)

(2.1)

h * K,f (y) = sup h ∈ [ε 2 , 1] : √ h ∆ * K,f (h, y) ≤ K ∞ ε ln(1/ε) .
We see that with the proviso f ∈ F M , the "bias" ∆ * K,f (h, •) ≤ 2M K 1 , and consequently the set (2.1) is not empty for all ε ≤ exp -

(2M K 1 K ∞ ) 2 . Here K p , 1 ≤ p ≤ ∞ , denotes the L p norm of K . For any (θ, h) ∈ S 1 × [ε 2 , 1] define the matrix E (θ,h) = h -1 θ 1 h -1 θ 2 -θ 2 θ 1
and consider the family of kernel estimators

F = F (θ,h) (•) = det E (θ,h) K E (θ,h) (t -•) Y ε (dt), (θ, h) ∈ S 1 × [ε 2 , 1] .
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We use the product type kernels K(u, v) = K(u)K(v) with a one-dimensional kernel K obeying Assumption 1. Note also that det E (θ,h) = h -1 and

(2.2)

F (θ,h) (•) -E ε F F (θ,h) (•) ∼ N 0, K 4 2 ε 2 h -1 .
The choice θ = θ • and h = h * := h * K,f (x T θ • ) leads to the "ideal" (oracle) estimator F (θ • ,h * ) , that is the estimator constructed as if θ • and f would be known. Such an "estimator" is not available but serves as a quality benchmark, given by the following result.

Proposition 1. For any (f, θ • ) ∈ F M × S 1 , ε ≤ exp -max[1, (2M K 1 K ∞ ) 2 ] and any r ≥ 1 R (ε) r,x F (θ • ,h * ) , F ≤ c r K 4 ∞ ε 2 ln(1/ε) h * K,f (x θ • ) 1/2 , ∀x ∈ [-1/2, 1/2] 2 ,
where c r = E 1 + |ς| r 1/r , ς ∼ N (0, 1). The proof is straightforward and can be omitted.

The meaning of Proposition 1 is that the "oracle" knows the exact value of the index θ • and the optimal, up to ln(1/ε), bias-variance trade-off h * between the approximation error caused by ∆ * K,f (h * , •) and the variance, see formula (2.2), of the kernel estimator from the collection F.

Below we will propose an adaptive (not depending of θ • and f ) estimator and show that this estimator is as good as the oracle one, i.e. that the risk of that estimator is worse than that of Proposition 1 by a numerical constant only.

Selection rule.

The procedure below is based on a pairwise comparison of the estimators from F with an auxiliary estimator defined as follows. For any θ, ν ∈ S 1 and any h ∈ [ε 2 , 1] introduce the matrices

E (θ,h)(ν,h) =   (θ 1 +ν 1 ) 2h(1+|ν θ|) (θ 2 +ν 2 ) 2h(1+|ν θ|) -(θ 2 +ν 2 ) 2(1+|ν θ|) (θ 1 +ν 1 ) 2(1+|ν θ|)   , E (θ,h)(ν,h) = E (θ,h)(ν,h) , ν θ ≥ 0; E (-θ,h)(ν,h) , ν θ < 0.
It is easy to check that (4h

) -1 ≤ det E (θ,h)(ν,h) ≤ (2h) -1 .
Then, similarly to the construction of the estimators from F we define a kernel estimator parametrized by

E (θ,h)(ν,h) (2.3) F (θ,h)(ν,h) (x) = det E (θ,h)(ν,h) K(E (θ,h)(ν,h) (t -x))Y ε (dt). Put Λ(K, Q) = 8 ln (1 + 2Q K ∞ ) + 50 and let for any η ∈ (0, 1] TH(η) = 2 K 2 ∞ Λ(K, Q) + √ 4r + 2 + 1 ε η -1 ln(1/ε). Set H ε = h k = 2 -k , k = 0, 1, . . . ∩ [ε 2 , 1] and define for any θ ∈ S 1 and h ∈ H ε (2.4) R (θ,h) (x) = sup η∈Hε: η≤h sup ν∈S 1 F (θ,η)(ν,η) (x) -F (ν,η) (x) -TH(η) .
For any x ∈ [-1/2, 1/2] 2 introduce the random set

P(x) = (θ, h) ∈ S 1 × H ε : R (θ,h) (x) ≤ 0 ,
and let h = max h : (θ, h) ∈ P(x) if P(x) = ∅. Note that there exists ϑ ∈ S 1 such that (ϑ, h) ∈ P(x), since the set H ε is finite. Define

θ = (1, 0) , P(x) = ∅; θ s.t. (θ, h) ∈ P(x), P(x) = ∅.
If θ is not unique, let us make any measurable choice. In particular, if Θ := θ ∈ S 1 : (θ, h) ∈ P(x) one can choose θ as a vector belonging to Θ with the smallest first coordinate. The measurability of this choice follows from the fact that the mapping θ → R (θ,h) (x) is almost surely continuous on S 1 . This continuity, in its turn, follows from Assumption 1 (2), bound (5.9) for Dudley's entropy integral proved in Lemma 2 below and the condition

f ∈ F M . Define (2.5) h = sup h ∈ H ε : F ( θ,h) (x) -F ( θ,η) (x) ≤ TH(η), ∀η ≤ h, η ∈ H ε
and put as a final estimator F (x) = F ( θ, h) (x) .

The proposed above procedure belongs to the stream of pointwise adaptive procedures originating from Lepski (1990). Indeed, the second step determined by (2.5) for the "frozen" θ is exactly the procedure of Lepski (1990) which was originally developed in the framework of the univariate GWN model. There is a rather vast literature on that topic, we mention [START_REF] Bauer | Iteratively regularized Gauss-Newton method for nonlinear inverse problems with random noise[END_REF] adapted the method of Lepski (1990) for the choice of the parameter for iterated Tikhonov regularization in nonlinear inverse problems, [START_REF] Bertin | Maxiset in sup-norm for kernel estimators[END_REF] showed the maxiset optimality of that procedure for bandwidth selection under the sup norm losses, [START_REF] Chichignoud | Minimax and minimax adaptive estimation in multiplicative regression: locally Bayesian approach[END_REF] used it for selecting among local bayesian estimators, [START_REF] Gaïffas | On pointwise adaptive curve estimation based on inhomogeneous data[END_REF] studied the problem of pointwise estimation in random design Gaussian regression, Serdyukova (2012) investigated a heteroscedastic Gaussian regression under noise misspecification, among many others.

The application of Lepski (1990) requires some sort of ordering on the set of estimators, for instance in (2.5) as soon as θ is fixed it is due to the monotonicity of the "bias" ∆ * K,f (•, y) . However, when the projection direction is unknown no natural order on F is available. This problem is similar to the one arising in generalizations of the pointwise adaptive method for multivariate (anisotropic) settings, see for developments in that direction [START_REF] Lepski | Adaptive nonparametric estimation of smooth multivariate functions[END_REF], [START_REF] Kerkyacharian | Nonlinear estimation in anisotropic multi-index denoising[END_REF] and Goldenshluger and Lepski imsart-aos ver. 2011/12/01 file: single-index-7-GWN-_02.tex date: February 3, 2016 (2009). Usually the aforementioned issue requires to introduce an auxiliary estimator and construct a procedure carefully capturing the "incomparability" of the estimators. In the considered set-up it is realized by the first step of procedure with R (θ,h) (x) given by (2.4).

Oracle inequalities.

Throughout the paper we assume that

ε ≤ exp -max[1, (2M K 1 K ∞ ) 2 ] . Theorem 1. For any (f, θ • ) ∈ F M × S 1 , x ∈ [-1/2, 1/2] 2 and any r ≥ 1 R (ε) r,x F ( θ, h) , F ≤ C r,1 (Q, K) K 4 ∞ ε 2 ln(1/ε) h * K,f (x T θ • ) + C r,2 (M, Q, K) K 2 ∞ ε ln(1/ε).
The constants C r,1 (Q, K) and C r,2 (M, Q, K) are given in the beginning of the proof.

As already mentioned, the global oracle inequality is obtained by integrating the local oracle inequality. For ease of notation, we write r(ε

) = C r,2 (M, Q, K) K 2 ∞ ε ln(1/ε) and C r = C r,1 (Q, K).
It follows from Jensen's inequality and Fubini's theorem that

R (ε) r ( F , F ) ≤ R (ε) r,• ( F , F ) r ≤ C r    [-1/2,1/2] 2 K 4 ∞ ε 2 ln(1/ε) h * K,f (x T θ • ) r 2 dx    1 r + r(ε).
Integration by substitution gives:

[-1/2,1/2] 2 K 4 ∞ ε 2 ln(1/ε) h * K,f (x T θ • ) r 2 dx ≤ 1/2 -1/2 K 4 ∞ ε 2 ln(1/ε) h * K,f (z) r 2
dz leading to the following result.

Theorem 2. For any

(f, θ • ) ∈ F M × S 1 and any r ≥ 1 R (ε) r F ( θ, h) , F ≤ C r,1 (Q, K) K 4 ∞ ε 2 ln(1/ε) h * K,f (•) r + C r,2 (M, Q, K) K 2 ∞ ε ln(1/ε).
3. Adaptation. In this section with the use of the local oracle inequality from Theorem 1 we solve the problem of pointwise adaptive estimation over a collection of Hölder classes. Then, we turn to the problem of adaptive estimating the entire function over a collection of Nikol'skii classes with the accuracy of an estimator measured under the L r risk. That is done with the help of the global oracle inequality given in Theorem 2.

Throughout this section we will assume that the kernel K satisfies additionally Assumption 2 below. Introduce the following notation: for any a > 0 let m a ∈ N be the maximal integer strictly less than a.

Assumption 2. There exists β max > 0 such that z j K(z)dz = 0, ∀j = 1, . . . , m βmax . 

(β, L) if g is m β -times continuously differentiable, g (m) ∞ ≤ L, ∀m ≤ m β , and 
g (m β ) (t + h) -g (m β ) (t) ≤ Lh β-m β , ∀t ∈ R and h > 0.
The aim is to estimate the function

F (x) at a given point x ∈ [-1/2, 1/2] 2 under the additional assumption that F ∈ F(β max ) := β≤βmax L>0 F 2 (β, L), where (3.1) F d (β, L) = F : R d → R | F (z) = f z θ , f ∈ H(β, L), θ ∈ S d-1 , d ≥ 2
is the dimension and β max is the constant from Assumption 2, which can be arbitrary but must be chosen a priory.

Theorem 3. Let β max > 0 be fixed and let Assumptions 1 and 2 hold. Then, for any

β ≤ β max , L > 0 and x ∈ [-1/2, 1/2] 2 , we have sup F ∈F 2 (β,L) R (ε) r,x F ( θ, h) , F ≤ K 2 ∞ C r,1 (Q, K)ψ ε (β, L) + C r,2 (L, Q, K) ε ln(1/ε) , where ψ ε (β, L) = L 1 2β+1 ε ln(1/ε) 2β 2β+1 . Moreover, for any β, L > 0, r ≥ 1 , x ∈ [-1/2, 1/2] d with d ≥ 2 and any ε > 0 small enough, inf F sup F ∈F d (β,L) R (ε) r,x F , F ≥ κψ ε (β, L),
where infimum is over all possible estimators. Here κ is a numerical constant independent of ε and L.

We conclude that the estimator F ( θ, h) is minimax adaptive with respect to the collec-

tion of classes F d (β, L), β ≤ β max , L > 0 .
As already mentioned, this result is quite surprising. Indeed, if for example, the directional vector θ = (1, 0) , i.e. is known, then F(β, L) = H(β, L) and the considered estimation problem can be easily reduced to estimation of f at a given point in the univariate Gaussian white noise model. As it is shown in Lepski (1990) the adaptive estimator over the collection H(β, L), β ≤ β max , L > 0 does not exist.
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Also, we would like to emphasize that the lower bound result given by the second assertion of the theorem is proved for arbitrary dimension. As to the proof of the first statement of the theorem it is based on the evaluation of the uniform, over H d (β, L), lower bound for h * K,f (•) and on the application of Theorem 1. We note also that the upper bound for the minimax risk given in Theorem 3 was earlier given in [START_REF] Goldenshluger | Universal pointwise selection rule in multivariate function estimation[END_REF], but the estimation procedure used there is completely different from our selection rule.

3.2. Adaptive estimation under the L r losses. We start this section with the definition of the Nikol'skii class of functions.

Definition 2. Let β > 0 , L > 0 and p ∈ [1, ∞) be fixed. A function g : R → R belongs to the Nikol'skii class N p (β, L), if g is m β -times continuously differentiable and R g (m) (t) p dt 1 p ≤ L, ∀m = 1, . . . , m β ; R g (m β ) (t + h) -g (m β ) (t) p dz 1 p ≤ Lh β-m β , ∀h > 0.
Later on we assume that

N p (β, L) = H(β, L) if p = ∞.
Here the target of estimation is the entire function F (•) under the assumption that

F ∈ F p (β max ) := β≤βmax L>0 F 2,p (β, L), where (3.2) F d,p (β, L) = F : R d → R | F (z) = f z θ , f ∈ N p (β, L), θ ∈ S d-1 .
Theorem 4. Let β max > 0 be fixed and let Assumptions 1 and 2 hold. Then, for any

L > 0, p > 1, p -1 < β ≤ β max and r ≥ 1, sup F ∈F 2,p (β,L) R (ε) r F ( θ, h) , F ≤ K 2 ∞ κC r,1 (Q, K)ϕ ε (β, L, p) + C r,2 (L, Q, K)ε ln(1/ε) ,
where

ϕ ε (β, L, p) =              L 1 2β+1 ε ln(1/ε) 2β 2β+1 , (2β + 1)p > r; L 1 2β+1 ε ln(1/ε) 2β 2β+1 ln(1/ε) 1 r , (2β + 1)p = r; L 1/2-1/r β-1/p+1/2 ε ln(1/ε) β-1/p+1/r β-1/p+1/2 , (2β + 1)p < r.
The constant κ is independent of ε, L and K.

Let us make some remarks. First, note that F 2,p (β, L) ⊃ N p (β, L). Indeed, the class N p (β, L) can be viewed as the class of functions F satisfying

F (•) = f (θ •) with θ = (1, 0) .
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Then, the problem of estimating such (2-variate) functions can be reduced to the estimation of univariate functions observed in the one-dimensional GWN model. In view of this remark the rate of convergence for the latter problem (which can be found for example in [START_REF] Delyon | On minimax wavelet estimators[END_REF], [START_REF] Donoho | Wawelet shrinkage: asymptopia? (with discussion)[END_REF] ) is the lower bound for the minimax risk defined on F 2,p (β, L). Under assumption βp > 1 this rate of convergence is given by

φ ε (β, L, p) =            L 1 2β+1 ε 2β 2β+1 , (2β + 1)p > r; L 1 2β+1 ε ln(1/ε) 2β 2β+1 , (2β + 1)p = r; L 1/2-1/r β-1/p+1/2 ε ln(1/ε) β-1/p+1/r β-1/p+1/2 , (2β + 1)p < r.
The minimax rate of convergence in the case (2β + 1)p = r remains an open problem, and the rate presented in the middle line above is only the lower asymptotic bound for the minimax risk. Therefore the proposed estimator F ( θ, h) is adaptive whenever (2β + 1)p < r.

In the case (2β +1)p ≥ r we loose only a logarithmic factor with respect to the optimal rate and, as mentioned in Introduction, the construction of adaptive estimator over a collection F 2,p (β, L), β > 0, L > 0 in this case remains an open problem.

Proofs.

4.1. Proof of Theorem 1. The section starts with the constants used in the statement of the theorem as well as technical lemmas whose proofs are postponed to Appendix.

Constants. C r,1 (Q, K) = 8 Λ(K, Q) + √ 4r + 2 + 1 + c r (2 + √ 2)Λ(K, Q) + 2 + 1; C r,2 (M, Q, K) = 2 1/r [2M + Λ(K, Q)c 2r ] .
4.1.1. Auxiliary results. For any θ, ν ∈ S 1 and h ∈ [ε 2 , 1] denote

S (θ,h)(ν,h) (x) = det E (θ,h)(ν,h) K(E (θ,h)(ν,h) (t -x))F (t)dt, S (θ,h) (x) = det E (θ,h) K(E (θ,h) (t -x))F (t)dt.
For ease of notation, we write

h * f = h * K,f (x θ • ).
Lemma 1. Grant Assumption 1. Then, for any ν ∈ S 1 and any η, h ∈ [ε 2 , 1] satisfying imsart-aos ver. 2011/12/01 file: single-index-7-GWN-_02.tex date: February 3, 2016

η ≤ h ≤ 2 -1 h * f , one has S (θ • ,h)(ν,h) (x) -S (ν,h) (x) ≤ 2(h * f ) -1/2 K 2 ∞ ε ln(1/ε); S (ν,h) (x) -S (ν,η) (x) ≤ 2(h * f ) -1/2 K 2 ∞ ε ln(1/ε); S (θ • ,h) -F (x) ≤ (h * f ) -1/2 K ∞ ε ln(1/ε). Let E a,A , 0 < a, A < ∞, be a set of 2 × 2 matrices such that |det(E)| ≥ a, |E| ∞ ≤ A, ∀E ∈ E a,A .
Here |E| ∞ = max i,j |E i,j | denotes the supremum norm, the maximum absolute value entry of the matrix E . Later on without loss of generality we will assume that a ≤ A, A ≥ 1. Assume that the function L : R 2 → R is compactly supported on [-1/2, 1/2] 2 , L = 1 and satisfies the Lipschitz condition

|L(u) -L(v)| ≤ Υ|u -v| 2 , ∀u, v ∈ R 2 ,
where | • | 2 is the Euclidian norm. Let y ∈ R 2 be fixed. On the parameter set E a,A let a Gaussian random function be defined by

ζ y (E) = L -1 2 |det(E)| L E(u -y) W (du). Put c(a, A) = 4 √ 2 ln(A ∨ {A/a} 2 ) + 2 ln (1 + √ 2Υ) 1/2 +29 and c q = E 1 + |ς| q 1/q ,
where ς ∼ N (0, 1) .

Lemma 2. For any z > 0

P sup E∈E a,A ζ y (E) ≥ c(a, A) + z ≤ P{|ς| ≥ z} ≤ e -z 2 2 .
Moreover, for any q ≥ 1

E sup E∈E a,A ζ y (E) q 1/q ≤ c q c(a, A) 4.1.2. Proof of Theorem 1. Let h * ∈ H ε be such that h * ≤ 2 -1 h * f < 2h * . Introduce the random events A = {(θ • , h * ) ∈ P(x)} , B = h ≥ h * , C = A ∩ B,
and let C denote the event complimentary to C. We split the proof into two steps.
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Risk computation under C . The triangle inequality gives

F ( θ, h) (x) -F (x) ≤ F ( θ, h) (x) -F ( θ,h * ) (x) + F (θ • ,h * )( θ,h * ) (x) -F ( θ,h * ) (x) + F (θ • ,h * )( θ,h * ) (x) -F (θ • ,h * ) (x) + F (θ • ,h * ) (x) -F (x) . (4.1) 1 0 . Since h * ≥ 4 -1 h * f the definition of h yields F ( θ, h) (x) -F ( θ,h * ) (x) 1 B ≤ TH(h * ) ≤ TH h * f /4 . (4.2)
Let us make some remarks. Note that E (θ,h)(ν,h) = ±E (ν,h)(θ,h) for any θ, ν and h. Hence, we conclude that

F (θ • ,h * )( θ,h * ) (•) ≡ F ( θ,h * )(θ • ,h * ) (•) since K is symmetric, see Assumption 1.
Next, we note that obviously A ⊆ {P(x) = ∅} and, moreover, A ⊆ h ≥ h * in view of the definition of h. Lastly, θ, h ∈ P(x) by definition that means R ( θ, h) (x) ≤ 0. Consequently,

F (θ • ,h * )( θ,h * ) (x) -F (θ • ,h * ) (x) 1 A = F ( θ,h * )(θ • ,h * ) (x) -F (θ • ,h * ) (x) 1 A ≤ TH(h * ) ≤ TH h * f /4 . (4.3) 2 0 . Introduce the following notations. For any θ, ν ∈ S 1 and h ∈ [ε 2 , 1] set ξ (θ,h)(ν,h) (x) = K -1 2 det E (θ,h)(ν,h) K E (θ,h)(ν,h) (t -x) W (dt); ξ (θ,h) (x) = K -1 2 det E (θ,h) K E (θ,h) (t -x) W (dt).
We remark that

E (θ,h) ∞ ≤ h -1 and E (θ,h)(ν,h) ∞ ≤ h -1 . Moreover, ( 4h 
) -1 ≤ det E (θ,h)(ν,h) ≤ (2h) -1 , det E (θ,h) = h -1 . (4.4) Since h ∈ [ε 2 , 1], we assert that (4.5) E (θ,h)(ν,h) , E (θ,h) ∈ E 1 4 , 1 ε 2 , ∀θ, ν ∈ S 1 , ∀h ∈ [ε 2 , 1].
We note also that for any θ, ν ∈ S 1 and h ∈ [ε 2 , 1]

F (θ • ,h * )( θ,h * ) (x) -F ( θ,h * ) (x) ≤ S (θ • ,h * )( θ,h * ) (x) -S ( θ,h * ) (x) +ε K 2 det E (θ • ,h * )( θ,h * ) ξ (θ • ,h * )( θ,h * ) (x) + ε K 2 det E ( θ,h * ) ξ ( θ,h * ) (x) .
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We obtain from the first assertion of Lemma 1 with ν = θ, h = h * , (4.4) and (4.5)

F (θ • ,h * )( θ,h * ) (x) -F ( θ,h * ) (x) ≤ 2 K 2 ∞ h * f ε ln(1/ε) + 2 + √ 2 h * f K 2 2 ε ln(1/ε) ζ ε (x) ≤ K 2 ∞ h * f ε ln(1/ε) 2 + (2 + √ 2)ζ ε (x) , (4.6)
where we denoted

ζ ε = [ln (1/ε)] -1/2 sup E∈E 1 4 , 1 ε 2 ζ x E .
We have also used that 2h * ≤ h * f < 4h * . 3 0 . We get in view of the third assertion of Lemma 1 that

F (θ • ,h * ) (x) -F (x) ≤ 1/h * f K ∞ ε ln(1/ε) + 1/h * K 2 2 ε|ς| ≤ 1/h * f K 2 ∞ ε ln(1/ε) 1 + 2|ς| , (4.7)
where ς ∼ N (0, 1). 4 0 . We obtain from (4.1), (4.2), (4.3), (4.6) and (4.7) and the second assertion of Lemma 2 with L = K, a = 1/4, A = ε -2 and q = r, noting that Υ

= √ 2Q K ∞ , E F ( θ, h) (x) -F (x) r 1 C 1/r ≤ 2 TH h * f /4 + (2 + √ 2)Λ(K, Q)c r + 2c r + 1 K 2 ∞ h * f ε ln(1/ε) ≤ C r,1 K 2 ∞ h * f ε ln(1/ε). (4.8)
Here we have also used that sup

ε≤e -1   4 √ 2 2 ln (2/ε) + 2 ln(1 + 2Q K ∞ ) + 29 ln (1/ε)   ≤ Λ(K, Q).
Risk computation under C . Since f ∈ F M one can easily evaluate the discrepancy between the adaptive estimator and the value of function

F ( θ, h) (x) -F (x) ≤ M 1 + K 1 + ε K 2 det E ( θ, h) ξ ( θ, h) (x) .
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We obtain in view of (4.4) and (4.5), taking into account that h > ε 2 ,

F ( θ, h) (x) -F (x) ≤ M 1 + K 2 1 + K 2 2 ln(1/ε)ζ ε .
Thus, applying the second assertion of Lemma 2 with L = K, a = 1/4, A = ε -2 , Υ = √ 2Q K ∞ and q = 2r, we get

E ε F F ( θ, h) (x) -F (x) 2r 1/2r ≤ [2M + Λ(K, Q)c 2r ] K 2 ∞ ln(1/ε).
Here it is used that 1 ≤ K 1 ≤ K 2 ≤ K ∞ due to Assumption 1 (1) and that ε ≤ e -1 .

With λ r (M, K, Q) = 2M + Λ(K, Q)c 2r the use of the Cauchy-Schwartz inequality leads to the following bound:

E ε F F ( θ, h) (x) -F (x) r 1 C 1/r λ r (M, K, Q) K 2 ∞ ln(1/ε) P ε F (A) + P ε F (B)
1/2r . (4.9) 1 0 . Let us bound from above P ε F (A). We note that

P ε F (A) = P ε F (θ • , h * ) / ∈ P(x) = P ε F R (θ • ,h * ) (x) > 0 ≤ k: ε 2 ≤2 -k ≤h * P ε F sup ν∈S 1 F (θ • ,2 -k )(ν,2 -k ) (x) -F (ν,2 -k ) (x) > TH 2 -k . (4.10)
For any k satisfying 2 -k ≤ h * and any ν ∈ S 1 , similarly to (4.6), we obtain from the first assertion of Lemma 1 with h = 2 -k , (4.4) and (4.5) that

F (θ • ,2 -k )(ν,2 -k ) (x) -F (ν,2 -k ) (x) ≤ 2(h * f ) -1/2 K 2 ∞ ε ln(1/ε) + 2 √ 2 k K 2 2 ε ln(1/ε) ζ ε (x) ≤ 2 1+k/2 K 2 ∞ ε ln(1/ε) 1 + ζ ε (x) . (4.11)
Here we have also used that h

* f ≥ 2 -k . Remembering, that TH(η) = 2 K 2 ∞ Λ(K, Q) + √ 4r + 2 + 1 ε η -1 ln(1/ε),
we obtain from (4.11) for any k satisfying 2

-k ≤ h * P ε F sup ν∈S 1 F (θ • ,2 -k )(ν,2 -k ) (x) -F (ν,2 -k ) (x) > TH 2 -k ≤ P ε F sup E∈E 1 4 , 1 ε 2 ζ x E > c 1/4, ε -2 + (4r + 2) ln(1/ε) ≤ ε 2r+1 ,
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P ε F (A) ≤ 2ε 2r+1 log 2 (1/ε) ≤ 2ε 2r
. (4.12) 2 0 . An upper bound on the probability of event h < h * is given by

P ε F (B) = P ε F   k: ε 2 ≤2 -k ≤h * F ( θ,h * ) (x) -F ( θ,2 -k ) (x) > TH 2 -k   = ≤ k: ε 2 ≤2 -k ≤h * P ε F F ( θ,h * ) (x) -F ( θ,2 -k ) (x) > TH 2 -k . (4.13)
We note that

F ( θ,h * ) (x) -F ( θ,2 -k ) (x) ≤ S ( θ,h * ) (x) -S ( θ,2 -k ) (x) +ε K 2 det E ( θ,h * ) ξ ( θ,h * ) (x) + ε K 2 det E ( θ,2 -k ) ξ ( θ,2 -k ) (x) .
Applying the second assertion of Lemma 1 with ν = θ, h = h * , η = 2 -k , (4.4) and (4.5)

F ( θ,h * ) (x) -F ( θ,2 -k ) (x) ≤ 2(h * f ) -1/2 K 2 ∞ ε ln(1/ε) + 2 √ 2 k K 2 2 ε ln(1/ε) ζ ε (x) ≤ 2 1+k/2 K 2 ∞ ε ln(1/ε) 1 + ζ ε (x) . (4.14)
We remark that the right-hand sides of (4.11) and (4.14) coincide and, therefore, repeating the computation led to (4.12) we get

P ε F (B) ≤ 2ε 2r . (4.15)
We obtain from (4.9), (4.12) and (4.15)

E ε F F ( θ, h) (x) -F (x) r 1 C 1/r ≤ 2 1/r λ r (M, K, Q) K 2 ∞ ε ln(1/ε). (4.16)
The assertion of the theorem follows now from (4.8) and (4.16). 4.2. Proof of Theorem 3. We start this section with an auxiliary result used in the proof of the second assertion of the theorem. That result is proved in [START_REF] Kerkyacharian | Nonlinear estimation in anisotropic multi-index denoising[END_REF], Proposition 7, and for convenience, we formulate it as Lemma 3 below. 4.2.1. Auxiliary result. The result cited below concerns a lower bound for estimators of an arbitrary mapping in the framework of GWN model. Below a version adjusted to the estimation at a given point is provided.

Let F be a nonempty class of functions and let F : R d → R be an unknown signal from model (1.1)-( 1

.2) satisfying F ∈ F ⊂ L 2 (D) , D = [-1, 1] d . The aim is to estimate the functional F (x) , x ∈ [-1/2, 1/2] d .
Lemma 3. [START_REF] Kerkyacharian | Nonlinear estimation in anisotropic multi-index denoising[END_REF]) Assume that for any ε > 0 there exist a positive integer N ε , N ε → ∞ as ε → 0 , ρ ∈ (0, 1) , c > 0 and functions F 0 , F 1 , . . . , F Nε ∈ F such that:

|F i (x) -F 0 (x)| = λ ε , ∀i = 1, . . . , N ε ; (4.17) F i -F 0 , F j -F 0 ≤ cε 2 ∀i, j = 1, . . . , N ε , i = j; (4.18) F i -F 0 2 2 ≤ ρε 2 ln(N ε ), ∀i = 1, . . . , N ε . (4.19) Then for r ≥ 1 inf F sup F ∈F E ε F F (x) -F (x) r 1 r ≥ 1 2 1 - e c -1 e c + 3 λ ε . 4.2.2. Proof of Theorem 3.
Proof of the first assertion. Under Assumptions 1 and 2 the standard computation of the bias of kernel estimators, for any f ∈ H(β, L) and any z ∈ R , gives

∆ K,f (h, z) ≤ Lh β 2 -β K ∞ (1 + β)m β ! ≤ K ∞ Lh β .
The right-hand side of the latter inequality does not depend of z so

∆ * K,f (h, z) ≤ K ∞ Lh β . Hence, h * K,f (z) ≥ L -1 ε ln(1/ε) 2/(2β+1)
for any z ∈ R and the first assertion of the theorem follows from Theorem 1.

Proof of the second assertion. The proof is based on the construction of a family F 0 , . . . ,

F Nε ∈ F = F d (β, L) ⊂ L 2 ([-1, 1] d ) satisfying conditions (4.17)-(4.19) of Lemma 3.
1 0 . Firstly, we construct F 0 , . . . , F Nε and verify (4.17). Let g : R → R be such that supp(g) ⊂ (-1/2, 1/2) , g ∈ H(β, 1) and g(0

) = 0. Put h = aL -1 ε ln(1/ε) 2/(2β+1)
, where the constant a > 0 will be chosen later in order to satisfy (4.19).
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For b > 0 put N ε = ε -b assuming without loss of generality that N ε is an integer. The value of b will be determined later in order to satisfy (4.18).

Let {ϑ i , i = 1, . . . , N ε } ⊂ S d-1 be defined as

ϑ i = θ (1) i , θ (2) 
i , 0, . . . , 0 , θ

(1)

i = cos(i/N ε ), θ (2) 
i = sin(i/N ε ),

and let f i (v) = Lh β g v -ϑ i x h -1 , i = 1, . . . , N ε . Finally, set (4.20) F 0 ≡ 0 and F i (t) = f i ϑ i t , i = 1, . . . , N ε . Note that F i , i = 1, . . . , N ε , obey structural assumption (1.2), with f = f i and θ • = ϑ i .
This, together with g ∈ H(β, 1) , allows us to assert that all F i are in F = F d (β, L) . We have, for any i = 1, . . . , N ε

F i (x) -F 0 (x) = f i ϑ i x = |g(0)|L 1 2β+1 aε ln(1/ε) 2β 2β+1 = |g(0)|a 2β 2β+1 ψ ε (β, L), (4.21)
and, therefore, (4.17) holds with λ ε = |g(0)|a

2β 2β+1 ψ ε (β, L) .
2 0 . Now we check (4.18). Set θ i⊥ = (-sin(i/N ε )), cos(i/N ε ) . We have

F i , F j = L 2 h 2β [-1,1] d g h -1 ϑ i (t -x) g h -1 ϑ j (t -x) dt ≤ 3 d-2 L 2 h 2β+2 R 2 g θ i u g θ j u du = 3 d-2 L 2 h 2β+2 θ i ⊥ θ j -1 g 2 1 . = 3 d-2 L 2 h 2β+2 cos(j/N ε ) sin(i/N ε ) -cos(i/N ε ) sin(j/N ε ) -1 g 2 1 = 3 d-2 L 2 h 2β+2 sin (i -j)/N ε -1 g 2 1 = 3 d-2 L 2 h 2β+2 sin |i -j|/N ε -1 g 2 1 .
Thus, we obtain sup

i =j; i,j=1,...,Nε F i , F j ≤ 3 d-2 L 2 h 2β+2 sin 1/N ε -1 g 2 1 ≤ 3 d-2 2L 2 h 2β+2 N ε g 2 1 = 3 d-2 2 g 2 1 a 2 ε 2 ln(1/ε)[N ε h]. (4.22)
Hence, choosing b < 2/(2β + 1) we conclude that (4.18) holds with any given c > 0 for ε small enough. 

19). By changing variables for any

i = 1, . . . , N ε F i 2 2 ≤ 3 d-1 g 2 2 L 2 h 2β+1 = 3 d-1 g 2 2 a 2 ε 2 ln(1/ε) = 3 d-1 g 2 2 a 2 b -1 ε 2 ln N ε .
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Here the notation • 2 stands for the L 2 norms on [-1, 1] d and [-1/2, 1/2] correspondingly. Choosing a 2 = 3 -d b g -2 2 we see that (4.19) is fulfilled with ρ = 1/3. In view of (4.22) the constants c from (4.18) and a are chosen independently of L. Thus, the second assertion of the theorem follows from Lemma 3. 4.2.3. Proof of Theorem 4. To prove the theorem we will exploit the ideas developed in [START_REF] Lepski | Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors[END_REF]. Moreover, our considerations are, to a great degree, based on the technical result of Lemma 4 below. Its proof is postponed until Appendix.

Lemma 4. Grant Assumptions 1 and 2. Then, for any p > 1, 0

< s ≤ β max , Q > 0, sup g∈Np(s,Q) ∆ * K,g (h, •) p ≤ 2Qh s K ∞ (τ p + 1) [2 sp -1] -1 p , ∀h > 0.
Here τ p is a depending only of p constant from the (p, p)-strong maximal inequality.

Proof of Theorem 4. It is suffice to prove the theorem only in the case r ≥ p. Indeed, remind that the risk R

(ε) r (•, •) is described by the L r norm on [-1/2, 1/2], therefore R (ε) r (•, •) ≤ R (ε) p (•, •), r ≤ p.
Hence the case r ≤ p can be reduced to the case r = p. Yet another observation. In view of embedding of Nikol'skii class N p (β, L) in the Hölder class with parameters β -1/p and cL , c > 0 , the assumption βp > 1 provides that f ∈ F M and the assumptions of Theorem 2 are fulfilled. Moreover, in order to obtain the desired the assertion it suffices to bound from above

K 2 ∞ ε 2 ln(1/ε) h * K,f (•) r . Set Γ 0 = y ∈ [-1/2, 1/2] : h * K,f (y) = 1 and Γ k = y ∈ [-1/2, 1/2] : h * K,f (y) ∈ (2 -k , 2 -k+1 ]∩[ε 2 , 1] for k = 1,
2, . . . . Later on, the integration over empty set is supposed to be zero. We have

K 2 ∞ ε 2 ln(1/ε) h * K,f (•) r r = Γ 0 K 2 ∞ ε 2 ln(1/ε) h * K,f (y) r dy + k≥1 Γ k K 2 ∞ ε 2 ln(1/ε) h * K,f (y) r dy. 
The definition of Γ 0 implies (4.23)

Γ 0 K 2 ∞ ε 2 ln(1/ε) h * K,f (y) r dt ≤ K 2 ∞ ε 2 ln(1/ε) r 2 .
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Assumption 1 (2) implies that ∆ * K,f (•, y) is continuous on [ε 2 , 1], hence for any k ≥ 1 (4.24) ∆ * K,f h * K,f (y), y = K 2 ∞ ε 2 ln(1/ε) h * K,f (y) 1 2
, ∀y ∈ Γ k .

Let 0 ≤ q k ≤ r be a sequence whose choice will be done later. We obtain from (4.24)

k≥1 Γ k K 2 ∞ ε 2 ln(1/ε) h * K,f (y) r dy ≤ k≥1 K 2 ∞ ε 2 ln(1/ε) 2 -k r-q k 2 Γ k ∆ * K,f 2 1-k , y q k dy ≤ k≥1 K 2 ∞ ε 2 ln(1/ε) 2 -k r-q k 2 ∆ * K,f 2 1-k , y q k dy =: Ξ. (4.25)
To get the first inequality we have used that ∆ * K,f •, y in monotonically increasing function. The computation of the quantity on the right-hand side of (4.25), including the choice of (q k , k ≥ 1), will be done differently in dependence on β, p and r. Later on c 1 , c 2 , . . . , denote constants independent on ε, L and K.

1 0 . Case (2β + 1)p > r. Put h * = L -2 ε 2 ln(1/ε) 1 2β+1 and choose q k = p if 2 -k ≤ h * and q k = 0 if 2 -k > h * .
Applying Lemma 4 with p = p, s = β and Q = L we get

Ξ ≤ c 1 L K ∞ p k: 2 -k ≤h * K 2 ∞ ε 2 ln(1/ε) 2 -k r-p 2 2 -kβp + c 2 K 2 ∞ ε 2 ln(1/ε) h * r 2 ≤ c 3 K r ∞   L p ε 2 ln(1/ε) r-p 2 k: 2 -k ≤h * 2 -k βp-r-p 2 + ε 2 ln(1/ε) h * r 2   . (4.26) Because in the considered case βp -r-p 2 > 0, we obtain Ξ ≤ c 4 K r ∞ L p ε 2 ln(1/ε) r-p 2 (h * ) βp-r-p 2 + ε 2 ln(1/ε) h * r 2
.

It remains to note that h * is chosen by balancing two terms on the right-hand side of the latter inequality. It yields

Ξ ≤ 2c 4 K ∞ L 1 2β+1 ε ln(1/ε) 2β 2β+1 r . (4.27)
The argument in the case (2β + 1)p > r is completed with the use of Theorem 2, (4.23) and (4.27). 2 0 . Case (2β + 1)p = r. Put h * = 1 and choose q k = p for all k ≥ 1. Repeating the computations led to (4.26) we get

Ξ ≤ c 5 ln(1/ε) K ∞ L p/r ε 2 ln(1/ε) r-p 2r r . (4.28)
Here we have used that βp -r-p 2 = 0 and that the summation in (4.25) runs over k such that 2 -k ≥ ε 2 , since otherwise Γ k = ∅. It remains to note that the equality (2β + 1)p = r is equivalent to p/r = 1/(2β + 1) and (r -p)/2r = β/(2β + 1). The assertion of the theorem in the case (2β + 1)p = r follows now from Theorem 2, (4.23) and (4.28).

3 0 . Case (2β + 1)p < r. Choose q k = r if 2 -k ≤ h * and q k = p if 2 -k > h * ,
where the choice of h * will be done later.

The following embedding holds, see [START_REF] Besov | Integral Representations of Functions and Imbedding Theorems[END_REF]: N p (β, L) ⊆ N r β-1/p+1/r, c 6 L . Thus, applying Lemma 4 with p = r, s = β -1/p + 1/r and Q = c 6 L we get

Ξ 1 := k: 2 -k ≤h * K 2 ∞ ε 2 ln(1/ε) 2 -k r-q k 2 ∆ K,f 2 1-k , y q k dy = k: 2 -k ≤h * ∆ K,f 2 1-k , y r dy ≤ c 7 K ∞ L r (h * ) βr-(r/p)+1 . (4.29)
Applying Lemma 4 with p = r, s = β and Q = L we get

Ξ 2 := k: 2 -k >h * K 2 ∞ ε 2 ln(1/ε) 2 -k r-q k 2 ∆ K,f 2 1-k , y q k dy = c 8 L p K ∞ r ε 2 ln(1/ε) r-p 2 k: 2 -k >h * 2 -k βp-r-p 2 ≤ c 9 L p K ∞ r ε 2 ln(1/ε) r-p 2 (h * ) βp-r-p 2 . (4.30)
Here we have used that βp -r-p 2 < 0. In view of (4.29) and (4.30) we choose h * from the equality:

L r (h * ) βr-(r/p)+1 = L p ε 2 ln(1/ε) r-p 2 (h * ) βp-r-p 2 .
It yields h * = L -1 ε ln(1/ε) 1 β-1/p+1/2 and we obtain finally that (4.31) imsart-aos ver. 2011/12/01 file: single-index-7-GWN-_02.tex date: February 3, 2016

Ξ ≤ c 10 K ∞ r L r(1/2-1/r) β-1/p+1/2 ε ln(1/ε) r(β-1/p+1/r) β-1/p+1/2 .
The assertion of the theorem in the case (2β + 1)p < r follows now from Theorem 2, (4.23) and (4.31).

Appendix.

5.1. Proof of Lemma 1.

Proof of the first assertion. The symmetry of the kernel K (Assumption 1 (1)) implies

S (-θ • ,h)(ν,h) (•) ≡ S (θ • ,h)(-ν,h) (•), S (-ν,h) (•) ≡ S (ν,h) (•).
Therefore it suffices to prove the first assertion of the lemma under the condition ν θ • ≥ 0. In this case E (θ • ,h)(ν,h) = E (θ • ,h)(ν,h) and we note that (5.1)

E (θ • ,h)(ν,h) = E -1 (θ • ,h) + E -1 (ν,h) -1
.

For any θ = (θ 1 , θ 2 ) ∈ S 1 let θ ⊥ = (-θ 2 , θ 1 ). Using (5.1) we obtain

S (θ • ,h)(ν,h) (x) = K(u)f h[θ • + ν] θ • u 1 + [θ • ⊥ + ν ⊥ ] θ • u 2 + x θ • du = K(u 1 )K(u 2 )f h[1 + ν θ • ]u 1 + ν ⊥ θ • u 2 + x θ • du 1 du 2 .
We also have

S (ν,h) (x) = K(u 1 )K(u 2 )f hν θ • u 1 + ν ⊥ θ • u 2 + x θ • du 1 du 2 . Put S * ν (x) = K(u 2 )f ν ⊥ θ • u 2 + x θ • du 2 and consider two cases. 1 0 . ν ⊥ θ • = 0. In this case S * ν (x) = f (x θ • ) and S (ν,h) (x) = K(u 1 )f hu 1 + x θ • du 1 = h -1 K [t -x θ • ]/h f (t)dt, S (θ • ,h)(ν,h) (x) = K(u 1 )f 2hu 1 + x θ • du 1 = (2h) -1 K [t -x θ • ]/2h f (t)dt.
Here we have used that ν ⊥ θ • = 0 together with ν θ • ≥ 0 implies ν = θ • . Thus, we obtain

S (θ • ,h)(ν,h) (x) -S (ν,h) (x) ≤ S (θ • ,h)(ν,h) (x) -S * ν (x) + S (ν,h) (x) -S * ν (x) ≤ ∆ K,f h, x θ • + ∆ K,f 2h, x θ • ≤ 2∆ * K,f 2h, x θ • . (5.2) 2 0 . ν ⊥ θ • = 0. In this case we have S * ν (x) = 1 h(1 + ν θ • ) K v 1 h(1 + ν θ • ) 1 |ν ⊥ θ • | K v 2 -x θ • |ν ⊥ θ • | f (v 2 )dv 1 dv 2 , S (ϑ * ,h)(ν,h) (x) = 1 h(1 + ν θ • ) K v 1 h(1 + ν θ • ) 1 |ν ⊥ θ • | K v 2 -x θ • |ν ⊥ θ • | f (v 1 + v 2 )dv 1 dv 2 .
Here we have used once again the symmetry of kernel K. Thus, taking into account that |ν θ • | ≤ 1, we get

S (θ • ,h)(ν,h) (x) -S * ν (x) ≤ 1 |ν ⊥ θ • | K v 2 -x θ • |ν ⊥ θ • | sup δ≤2h 1 δ K v 1 δ f (v 1 + v 2 ) -f (v 2 ) dv 1 dv 2 ≤ K ∞ sup a>0 1 a x θ • +a/2 x θ • -a/2 sup δ≤2h 1 δ K v 1 δ f (v 1 + v 2 ) -f (v 2 ) dv 1 dv 2 .
Here we have used that supp(K) ⊆ [-1/2, 1/2] (Assumption 1 (1)). Hence,

S (θ • ,h)(ν,h) (x) -S * ν (x) ≤ K ∞ ∆ K,f 2h, x θ • ≤ K ∞ ∆ * K,f 2h, x θ • . (5.3)
If ν θ • = 0 we obtain by the same computations (5.4) that yields together with (5.3)

S (ν,h) (x) -S * ν (x) ≤ K ∞ ∆ * K,f h, x θ • . Noting that S (ν,h) (•) ≡ S * ν (•) if ν θ • = 0 we get S (ν,h) (x) -S * ν (x) ≤ K ∞ ∆ * K,f h, x θ • ,
S (θ • ,h)(ν,h) (x) -S (ν,h) (x) ≤ 2 K ∞ ∆ * K,f 2h, x θ • . (5.5)
Finally, taking into account that in view of Assumption 1 (1) K ∞ ≥ 1, we obtain from (5.2) and (5.5) that

S (θ • ,h)(ν,h) (x) -S (ν,h) (x) ≤ 2 K ∞ ∆ * K,f 2h, x θ • ≤ 2 K ∞ ∆ * K,f h * f , x θ • , since we consider h such that 2h ≤ h * f . The definition of h * f implies ∆ * K,f h * f , x θ • ≤ (h * f ) -1/2 K ∞ ε ln(1/ε)
and the first assertion of the lemma follows.
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Proof of the second and third assertions. In view of (5.4) for ∀η

≤ h ≤ h * f S (ν,η) (x) -S (ν,h) (x) ≤ S (ν,η) (x) -S * ν (x) + S (ν,h) (x) -S * ν (x) ≤ K ∞ ∆ * K,f η, x θ • + ∆ * K,f h, x θ • ≤ 2 K ∞ ∆ * K,f h, x θ • ≤ 2 K ∞ ∆ * K,f h * f , x θ • ≤ 2(h * f ) -1/2 K 2 ∞ ε ln(1/ε),
in view of the definition of h * f . The second assertion is proved.

We have for any

h ≤ h * f S (θ • ,h) (x) -F (x) = 1 h K u h f (u + x θ • ) -f (x θ • ) du ≤ ∆ K,f h, x θ • ≤ ∆ * K,f h, x θ • ≤ ∆ * K,f h * f , x θ • = (h * f ) -1/2 K ∞ ε ln(1/ε),
in view of the definition of h * f . The third assertion is proved. 

(•) on E a,A : (E, E ) = E |ζ y (E) -ζ y (E )| 2 , E, E ∈ E a,A .
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Without loss of generality one can assume that |det(E)| ≥ |det(E )| , then we have

2 (E, E ) = 2 1 -L -2 2 |det(E)| |det(E )| L(Ev)L(E v)dv . = 2 1 -L -2 2 |det(E )| |det(E)| L(z)L(E E -1 z)dz = 2 1 -L -2 2 |det(E )| |det(E)| [-1 2 , 1 2 ] 2 L(z)L E E -1 z dz = 2 1 - | det(E )| | det(E)| + 2 L 2 2 | det(E )| | det(E)| [-1 2 , 1 2 ] 2 L(z) L(z) -L(E E -1 z) dz .
One bounds the first summand with the use of the assumption

| det(E)| ≥ a : 2 1 - | det(E )| | det(E)| ≤ 2 √ a | det(E)| -| det(E )| ≤ 2 √ a det(E) -det(E ) 1/2 .
As for the second term, putting

d 2 (E, E ) = [-1 2 , 1 2 ] 2 L E E -1 z -L(z) 2 dz,
by the Cauchy-Schwartz inequality we get

[-1 2 , 1 2 ] 2 L(z) L(z) -L(E E -1 z) dz ≤ L 2 d(E, E ).
As L 2 ≥ 1, we have

2 (E, E ) ≤ 2a -1/2 det(E) -det(E ) 1/2 + 2d(E, E ). First, we note that det(E) -det(E ) ≤ 4A E -E ∞ .
Second, because L satisfies the Lipschitz condition with a constant Υ , we have

d(E, E ) ≤ Υ sup z∈[-1 2 , 1 2 ] 2 (E -E)E -1 z 2 ≤ 2 √ 2ΥAa -1 E -E ∞ .
Since we assumed a ≤ A, the following bound holds:

(5.8)

2 (E, E ) ≤ 4 √ 2Υ + 1 Aa -1 E -E 1/2 ∞ E -E ∞ .
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Consider the cube [0, A] 4 endowed with the vector supremum norm |z| ∞ = max i=1,...,4 |z

i | . Let E [0,A] 4 ,|•|∞ (•) denote the metric entropy of [0, A] 4 measured in | • | ∞ . Then E [0,A] 4 ,|•|∞ ( ) ≤ 4 ln(A) + [4 ln (1/(2 ))] + , ∀ ∈ (0, 1].
Denoting by E E a,A , (•) the metric entropy of E a,A measured in , we get in view of (5.8)

E E a,A , (δ) ≤ E [0,A] 4 ,|•|∞ δ 4 16(1 + √ 2Υ) 2 A 2 a -2 , ∀δ ∈ (0, 1],
and, therefore,

E E a,A , (δ) ≤ 4 ln A ∨ {A/a} 2 + ln 8 + 2 ln (1 + √ 2Υ) + 4 ln (1/δ) .
Since sup E∈E a,A Var [ζ y (E)] = 1 the use of Dudley's integral bound, see Theorem 14.1 in [START_REF] Lifshits | Gaussian Random Functions[END_REF], leads to

E sup E∈E a,A ζ y (E) ≤ 4 √ 2 1/2 0 E E a,A , (δ) dδ ≤ 4 √ 2 ln(A ∨ {A/a} 2 ) + 2 ln (1 + √ 2Υ) 1/2
+ 29 =: c(a, A). (5.9)

Here we have used that 1/2 0 ln (1/δ) dδ ≤ 2 -1 √ π . The first assertion of the lemma follows now from (5.6), (5.7), (5.9) and the standard bound for the Gaussian tail.

To justify the second assertion we first note that for any q ≥ 1 E sup

E∈E a,A ζ y (E) q = q ∞ 0 u q-1 P sup E∈E a,A ζ y (E) ≥ u du.
Hence, applying the first assertion of the lemma we have

E sup E∈E a,A ζ y (E) q ≤ c(a, A) q + q ∞ 0 P {|ς| ≥ z} (c(a, A) + z) q-1 dz = E c(a, A) + |ς| q ,
where ς ∼ N (0, 1) . Thus, we finally have

E sup E∈E a,A ζ y (E) q 1/q
≤ c q c(a, A).

imsart-aos ver. 2011/12/01 file: single-index-7-GWN-_02.tex date: February 3, 2016 5.3. Proof of Lemma 4. First, in view of the (p, p)-strong maximal inequality, see e.g. Theorem 9.16 in [START_REF] Wheeden | Measure and integral. An introduction to real analysis[END_REF], one has ∆ K,g (h, •) p ≤ τ p ∆ K,g (h, •) p , where the constant τ p depends only of p . Since ∆ * K,g (h, •) ≤ ∆ K,g (h, •) + ∆ K,g (h, •) we have (5.10) ∆ * K,g (h, •) p ≤ (τ p + 1) ∆ K,g (h, •) p .

For any δ ∈ (0, h] put B(z, δ) = δ -1 K [u -z]/δ g(u) -g(z) du and define

∆ (n) K,g (h, z) = sup δ∈[hn -1 ,h]
B(z, δ), n = 1, 2, . . . .

We remark that the sequence {∆ 

∆ (n) K,g (h, •) p ≤ 2Qh s K ∞ [2 sp -1] -1 p , ∀n ≥ 1.
Assumption 1 (2) implies that we can assert that B(z, •) is continuous on [n -1 h, h]. Hence for any z ∈ R there exists δ(z) ∈ [n -1 h, h] such that (5.12) ∆

(n) K,g (h, z) = B z, δ(z) .

For any l = 0, . . . , log 2 n -1 (w.l.g. log 2 n is assumed an integer) we consider the slices V l = z ∈ R : a l+1 < δ(z) ≤ a l with a l = 2 -l h . Later on the integration over empty set is supposed to be zero. Then

(5.13) ∆

(n) K,g (h, •)

p p = log 2 n-1 l=0 V l |B z, δ(z) | p dz.
We will treat the cases s ≤ 1 and s > 1 separately. If s < 1 on any slice V l , l = 0, . . . , log 2 n , We obtain from (5.13) and (5.14) with the use of Minkowski's inequality for integrals and writing for ease of notation µ = 2 K ∞ that ∆ Here we have used that g ∈ N p (s, Q). Thus, we have for any s ≤ 1 and any n ≥ 1

B z, δ(z) ≤ K ∞ δ(z) δ(z) 2 - δ(z) 2 |g(z + v) -g(z)| dv ≤ 2 K ∞ a l a l 2 - a l 2 |g(z + v) -g(z)| dv = 2 K ∞
(5.15) sup g∈Np(s,Q)

∆ (n) K,g (h, •) p ≤ 2Qh s K ∞ [2 sp -1] -1 p .
If s > 1, using Taylor's formula we have for any g ∈ N p (s, Q)

any v ∈ R g(v + z) -g(z) = ms m=1 g (m) (z) m! v m + v ms (m s -1)! 1 0
(1 -λ) ms-1 g (ms) (z + vλ) -g (ms) (z) dλ.

We have in view of Assumptions 1 and 2 for any z ∈ R |t| ms (1-λ) ms-1 g (ms) (z + λta l ) -g (ms) (z) dλdt.

Thus, we obtain from (5.12), (5.13) and (5.16) with the use of Minkowskii inequality for integrals and denoting µ = 2 K ∞ (m s -1)! that ∆ 

3. 1 .

 1 Pointwise adaptation. Let us firstly recall the definition of Hölderian functions. Definition 1. Let β > 0 and L > 0 . A function g : R → R belongs to the Hölder class H

3 0 .

 0 It remains to verify (4.

  (h, •)} n≥1 increases monotonically and ∆(n) K,g (h, z) → ∆ K,g (h, z) for any z ∈ R , as n → ∞ . Hence, by Beppo-Levi's theorem ∆ K,g (h, •) p = lim n→∞ ∆ (n) K,g (h, •) p ,and, in view of (5.10), to complete the argument we need to show that (5.11) sup g∈Np(s,Q)

  + ta l ) -g(z)| dt. (5.14) imsart-aos ver. 2011/12/01 file: single-index-7-GWN-_02.tex date: February 3, 2016

  ms (1 -λ) ms-1 g (ms) z + λv -g (ms) (z) dλdv.By the latter inequality for any z ∈ V l we get (5.16) B z, δ(z) ≤ 2 K ∞ a ms l

  ms (1 -λ) ms-1 g (ms) (z + λta l ) -g (ms) ms (1 -λ) ms-1 g (ms) (• + λta l ) -g(ms) .imsart-aos ver. 2011/12/01 file: single-index-7-GWN-_02.tex date: February 3, 2016

  Thus, to complete the proof of the first assertion of the lemma it suffices to bound E sup E∈E a,A ζ y (E) . This will be done by the application of Dudley's theorem, see Theorem 14.1 in[START_REF] Lifshits | Gaussian Random Functions[END_REF]. Denote by the semi-metric generated by ζ y

					Borell,
	Tsirelson, Sudakov concentration inequality, see Theorem 12.2 in Lifshits (1995) provides
	(5.7) P	sup	ζ y (E) ≥ E sup	ζ y (E) + z ≤ P	sup
		E∈E a,A	E∈E a,A		E∈E a,A

5.2. Proof of Lemma 2. Since ζ y (•) is a zero mean Gaussian random function we have (5.6) P sup E∈E a,A

|ζ y (E)| ≥ u ≤ 2P sup E∈E a,A ζ y (E) ≥ u , ∀u > 0.

By Lemma 12.2 in

[START_REF] Lifshits | Gaussian Random Functions[END_REF] 

the median m of the random variable sup E∈E a,A ζ y (E) is dominated by the expectation, that is m ≤ E sup E∈E a,A ζ y (E) . That along with the ζ y (E) ≥ m + z ≤ P {ς ≥ z} since sup E∈E a,A Var [ζ y (E)] = 1 . Here ς ∼ N (0, 1) .
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Here we have used that g ∈ N p (s, Q). Thus, we have for any s > 1 and n ≥ 1 (5.17) sup

We conclude that (5.11) is established in view (5.15) and (5.17).