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Abstract: We address the problem of adaptive minimax density estimation on Rd with Lp–
loss on the anisotropic Nikol’skii classes. We fully characterize behavior of the minimax risk
for different relationships between regularity parameters and norm indexes in definitions of the
functional class and of the risk. In particular, we show that there are four different regimes
with respect to the behavior of the minimax risk. We develop a single estimator which is
(nearly) optimal in order over the complete scale of the anisotropic Nikol’skii classes. Our
estimation procedure is based on a data-driven selection of an estimator from a fixed family
of kernel estimators.
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1. Introduction

Let X1, . . . , Xn be independent copies of random vector X ∈ Rd having density f with respect
to the Lebesgue measure. We want to estimate f using observations X(n) = (X1, . . . , Xn). By
estimator we mean any X(n)-measurable map f̂ : Rn → Lp

(
Rd
)
. Accuracy of an estimator f̂ is

measured by the Lp–risk

R(n)
p [f̂ , f ] :=

(
Ef‖f̂ − f‖pp

)1/p
, p ∈ [1,∞),

where Ef denotes expectation with respect to the probability measure Pf of the observations
X(n) = (X1, . . . , Xn), and ‖ · ‖p, p ∈ [1,∞), is the Lp-norm on Rd. The objective is to construct an
estimator of f with small Lp–risk.

In the framework of the minimax approach density f is assumed to belong to a functional class
Σ, which is specified on the basis of prior information on f . Given a functional class Σ, a natural
accuracy measure of an estimator f̂ is its maximal Lp–risk over Σ,

R(n)
p [f̂ ; Σ] = sup

f∈Σ
R(n)
p [f̂ , f ].

The main question is:
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(i) how to construct a rate–optimal, or optimal in order, estimator f̂∗ such that

R(n)
p [f̂∗; Σ] � φn(Σ) := inf

f̂
R(n)
p [f̂ ; Σ], n→∞?

Here the infimum is taken over all possible estimators. We refer to the outlined problem as the
problem of minimax density estimation with Lp–loss on the class Σ.

Although the minimax approach provides a fair and convenient criterion for comparison between
different estimators, it lacks some flexibility. Typically Σ is a class of functions that is determined
by some hyper-parameter, say, α. (We write Σ = Σα in order to indicate explicitly dependence of
the class Σ on the corresponding hyper-parameter α.) In general, it turns out that an estimator
which is optimal in order on the class Σα is not optimal on the class Σα′ . This fact motivates the
following question:

(ii) is it possible to construct an estimator f̂∗ that is optimal in order on some scale of functional
classes {Σα, α ∈ A} and not only on one class Σα? In other words, is it possible to construct
an estimator f̂∗ such that for any α ∈ A one has

R(n)[f̂∗; Σα] � φn(Σα), n→∞?

We refer to this question as the problem of adaptive minimax density estimation on the scale of
classes {Σα, α ∈ A}.

The minimax and adaptive minimax density estimation with Lp–loss is a subject of the vast
literature, see for example Bretagnolle and Huber (1979), Ibragimov and Khasminskii (1980, 1981),
Devroye and Györfi (1985), Devroye and Lugosi (1996, 1997, 2001), Efroimovich (1986, 2008),
Hasminskii and Ibragimov (1990), Donoho et al. (1996), Golubev (1992), Kerkyacharian, Picard
and Tribouley (1996), Rigollet (2006), Massart (2007)[Chapter 7], Samarov and Tsybakov (2007),
Rigollet and Tsybakov (2007) and Birgé (2008). It is not our aim here to provide a complete review
of the literature on density estimation with Lp-loss. Below we will only discuss results that are
directly related to our study. First we review papers dealing with the one–dimensional setting; then
we proceed with the multivariate case.

The problem of minimax density estimation on R1 with Lp–loss, p ∈ [2,∞), was studied by
Bretagnolle and Huber (1979). In this paper the functional class Σ is the class of all densities such

that
[
‖f (β)‖p‖f‖βp/2

]1/(2β+1) ≤ L < ∞, where f (β) is the generalized derivative of order β. It was
shown there that

φn(Σ) � n−
1

2+1/β , ∀p ∈ [2,∞).

Note that the same parameter p appears in the definitions of the risk and of the functional class.
The problem of adaptive minimax density estimation on a compact interval of R1 with Lp–loss

was addressed in Donoho et al. (1996). In this paper class Σ is the Besov functional class Bβrθ(L),
where parameter β stands for the regularity index, and r is the index of the norm in which the
regularity is measured. It is shown there that there is an elbow in the rates of convergence for
the minimax risk according to whether p ≤ r(2β + 1) (called in the literature the dense zone) or
p ≥ r(2β + 1) (the sparse zone). In particular,

φn
(
Bβrθ(L)

)
≥

{
n
− 1

2+1/β , p ≤ r(2β + 1),

(lnn/n)
1−1/(βr)+1/(βp)
1−1/(βr)+1/(2β) , p ≥ r(2β + 1).

(1.1)

Donoho et al. (1996) develop a wavelet–based hard–thresholding estimator that achieves the indi-

cated rates (up to a lnn–factor in the dense zone) for a scale of the Besov classes Bβr,θ(L) under
additional assumption βr > 1.
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It is quite remarkable that if the assumption that the underlying density has compact support is
dropped, then the minimax risk behavior becomes completely different. Specifically, Juditsky and
Lambert–Lacroix (2004) studied the problem of adaptive minimax density estimation on R1 with
Σ being the Hölder class N∞,1(β, L). Their results are in striking contrast with those of Donoho et
al. (1996): it is shown that

φn
(
N∞,1(β, L)

)
≥

{
n
− 1

2+1/β , p > 2 + 1/β,

n
− 1−1/p

1+1/β , 1 ≤ p ≤ 2 + 1/β.

Juditsky and Lambert–Lacroix (2004) develop a wavelet–based estimator that achieves the indi-
cated rates up to a logarithmic factor on a scale of the Hölder classes. Note that if the aforemen-
tioned results of Donoho et al. (1996) for densities with compact support are applied to the Hölder
class, r = ∞, then the rate is n−1/(2+1/β) for any p ≥ 1. Thus, the rate corresponding to the zone
1 ≤ p ≤ 2 + 1/β, does not appear in the case of compactly supported densities.

In a recent paper, Reynaud–Bouret et al. (2011) consider the problem of adaptive density esti-

mation on R1 with L2–losses on the Besov classes Bβrθ(L). It is shown there that

φn
(
(Bβrθ(L)

)
≥

{
n
− 1

2+1/β , 2/(2β + 1) < r ≤ 2,

n
− 1

1−1/(βr)+1/β , r > 2.

They also proposed a wavelet–based estimator that achieves the indicated rates up to a logarithmic
factor for a scale of Besov classes under additional assumption 2βr > 2− r. It follows from Donoho
et al. (1996) that if p = 2 and the density is compactly supported then the corresponding rates are
φn(Σ) � n−1/(2+1/β) for all r ≥ 2/(2β + 1). Hence the rate corresponding to the zone r > 2, p = 2,
does not appear in the case of the compactly supported densities.

As for the multivariate setting, Ibragimov and Khasminskii in a series of papers [Ibragimov and
Khasminskii (1980, 1981), and Hasminskii and Ibragimov (1990)] studied the problem of minimax
density estimation with Lp–loss on Rd. Together with some classes of infinitely differentiable den-

sities, they considered the anisotropic Nikolskii’s classes Σ = N~r,d
(
~β, ~L

)
, where ~β = (β1, . . . , βd),

~r = (r1, . . . , rd) and ~L = (L1, . . . , Ld) (for the precise definition see Section 3.1). It was shown that
if ri = p for all i = 1, . . . , d then

φn
(
N~r,d(~β, ~L)

)
�

{
n
− 1−1/p

1−1/(βp)+1/β , p ∈ [1, 2),

n
− 1

2+1/β , p ∈ [2,∞).
(1.2)

Here β is the parameter defined by the relation 1/β =
∑d

j=1 1/βj . It should be stressed that in the
cited papers the same norm index p is used in the definitions of the risk and of the functional class.
We also refer to the recent paper by Mason (2009), where further discussion of these results can be
found.

Delyon and Juditsky (1996) generalized the results of Donoho et al. (1996) to the minimax density
estimation on a bounded interval of Rd, d ≥ 1 over a collection of the isotropic Besov classes. In
particular, they showed that the minimax rates of convergence given by (1.1) hold with 1/(βr) and
1/β replaced by d/(βr) and d/β respectively. Comparing rates in (1.2) with the asymptotics of
minimax risk found in Delyon and Juditsky (1996) with r = p we conclude that the rate in (1.2)
in the zone p ∈ [1, 2) does not appear for compactly supported densities.

Recently Goldenshluger and Lepski (2011b) developed an adaptive minimax estimator over a
scale of classes N~r,d(~β, ~L); in particular, if ri = p for all i = 1, . . . , d then their estimator attains
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the minimax rates indicated in (1.2). Note that in the considered setting the norm indexes in the
definitions of the risk and the functional class coincide.

The results discussed above show that there is an essential difference between the problems of
density estimation on the whole space and on a compact interval. The literature on density estima-
tion on the whole space is quite fragmented, and relationships between aforementioned results are
yet to be understood. These relationships become even more complex and interesting in the multi-
variate setting where the density to be estimated belongs to a functional class with anisotropic and
inhomogeneous smoothness. The problem of minimax estimation under Lp–loss over homogeneous
Sobolev Lq–balls (q 6= p) was initiated in Nemirovski (1985) in the regression model on the unit
cube of Rd. For the first time, functional classes with anisotropic and inhomogeneous smoothness
were considered in Kerkyacharian et al. (2001, 2008) for the Gaussian white noise model on a
compact subset of Rd. In the density estimation model Akakpo (2012) studied the case p = 2 and
considered compactly supported densities on [0, 1]d.

To the best of our knowledge, the problem of estimating a multivariate density from anisotropic
and inhomogeneous functional classes on Rd was not considered in the literature. This problem
is a subject of the current paper. Our results cover the existing ones and generalize them in the
following directions.

1. We fully characterize behavior of the minimax risk for all possible relationships between
regularity parameters and norm indexes in the definition of the functional classes and of the risk.
In particular, we discover that there are four different regimes with respect to the minimax rates
of convergence: tail, dense and sparse zones, and the last zone, in its turn, is subdivided in two
regions. Existence of these regimes is not a consequence of the multivariate nature of the problem
or the considered functional classes; in fact, these regimes appear already in the dimension one.
Thus our results reveal all possible zones with respect to the rates of convergence in the problem
of density estimation on Rd and explain different results on rates of convergence in the existing
literature. In particular, results in Juditsky and Lambert–Lacroix (2004) and Reynaud–Bouret et
al. (2011) pertain to the rates of convergence in the tail and dense zones, while those in Donoho et
al. (1996) and Delyon and Juditsky (1996) correspond to the dense zone and to a subregion of the
sparse zone.

2. We propose an estimator that is based upon a data–driven selection from a family of kernel
estimators, and establish for it a point–wise oracle inequality. Then we use this inequality for
derivation of bounds on the Lp–risk over a collection of the Nikol’skii functional classes. Since the
construction of our estimator does not use any prior information on the class parameters, it is
adaptive minimax over a scale of these classes. Moreover, we believe that the method of deriving
Lp–risk bounds from point–wise oracle inequalities employed in the proof of Theorem 2 is of interest
in its own right. It is quite general and can be applied to other nonparametric estimation problems.

3. Another issue studied in the present paper is related to the existence of the tail zone. This zone
does not exist in the problem of estimating compactly supported densities. Then a natural question
arises: what is a general condition on f which ensures the same asymptotics of the minimax risk
on Rd as in the case of compactly supported densities? We propose a tail dominance condition and
show that, in a sense, it is the weakest possible condition under which the tail zone disappears. We
also show that this condition guarantees existence of a consistent estimator under L1-loss. Recall
that smoothness alone is not sufficient in order to guarantee consistency of density estimators in
L1(Rd) [see Ibragimov and Khasminskii (1981)].

The paper is structured as follows. In Section 2 we define our estimation procedure and derive
the corresponding point–wise oracle inequality. Section 3 presents upper and lower bounds on

4



the minimax risk. We also discuss the obtained results and relate them to the existing results
in the literature. The same estimation problem under the tail dominance condition is studied in
Section 4. Sections 5–7 contain proofs of Theorems 1–4; proofs of auxiliary results are relegated to
Appendices A and B.

The following notation and conventions are used throughout the paper. For vectors u, v ∈ Rd the
operations u/v, u∨v, u∧v and inequalities such as u ≤ v are all understood in the coordinate–wise
sense. For instance, u∨ v = (u1 ∨ v1, . . . , ud ∨ vd). All integrals are taken over Rd unless the domain
of integration is specified explicitly. For a Borel set A ⊂ Rd symbol |A| stands for the Lebesgue
measure of A; if A is a finite set, |A| denotes the cardinality of A.

2. Estimation procedure and point–wise oracle inequality

In this section we define our estimation procedure and derive an upper bound on its point–wise
risk.

2.1. Estimation procedure

Our estimation procedure is based on data-driven selection from a family of kernel estimators. The
family of estimators is defined as follows.

2.1.1. Family of kernel estimators

Let K : [−1/2, 1/2]d → R1 be a fixed kernel such that K ∈ C(Rd),
∫
K(x)dx = 1, and ‖K‖∞ <∞.

Let
H =

{
h = (h1, . . . , hd) ∈ (0, 1]d : hj = 2−kj , kj = 0, . . . , log2 n, j = 1, . . . , d

}
;

without loss of generality we assume that log2 n is integer.
Given a bandwidth h ∈ H, define the corresponding kernel estimator of f by the formula

f̂h(x) :=
1

nVh

n∑
i=1

K

(
Xi − x
h

)
=

1

n

n∑
i=1

Kh(Xi − x), (2.1)

where Vh :=
∏d
j=1 hj , Kh(·) := (1/Vh)K(·/h). Consider the family of kernel estimators

F(H) := {f̂h, h ∈ H}.

The proposed estimation procedure is based on data–driven selection of an estimator from F(H).

2.1.2. Auxiliary estimators

Our selection rule uses auxiliary estimators that are constructed as follows. For any pair h, η ∈ H
define the kernel Kh ∗Kη by the formula [Kh ∗Kη](t) =

∫
Kh(t − y)Kη(y)dy. Let f̂h,η(x) denote

the estimator associated with this kernel:

f̂h,η(x) =
1

n

n∑
i=1

Kh,η(Xi − x), Kh,η = Kh ∗Kη.
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The following representation of kernels Kh,η will be useful: for any h, η ∈ H

[Kh ∗Kη](t) =
1

Vh∨η
Qh,η

( t

h ∨ η

)
, (2.2)

where function Qh,η is given by the formula

Qh,η(t) =

∫
K
(
v(y, t− νy)

)
K
(
v(t− νy, y)

)
dy, ν :=

h ∧ η
h ∨ η

. (2.3)

Here function v : Rd × Rd → Rd is defined by

vj(y, z) =

{
yj , hj ≤ ηj ,
zj , hj > ηj ,

, j = 1, . . . , d.

The representation (2.2)–(2.3) is obtained by a straightforward change of variables in the con-
volution integral [see the proof of Lemma 12 in Goldenshluger and Lepski (2011a)]. We also
note that supp(Qh,η) ⊆ [−1, 1]d, and ‖Qh,η‖∞ ≤ ‖K‖2∞ for all h, η. In the special case where

K(t) =
∏d
i=1 k(ti) for some univariate kernel k : [−1/2, 1/2]→ R1 we have

Qh,η(t) =
d∏
i=1

∫
k(ti − νiui)k(ui)dui, νi = (hi ∧ ηi)/(hi ∨ η).

We also define

Q(t) = sup
h,η∈H

∣∣∣ ∫ K
(
v(y, t− νy)

)
K
(
v(t− νy, y)

)
dy
∣∣∣,

and note that supp(Q) ⊆ [−1, 1]d, and ‖Q‖∞ ≤ ‖K‖2∞.

2.1.3. Stochastic errors of kernel estimators and their majorants

Uniform moment bounds on stochastic errors of kernel estimators f̂h(x) and f̂h,η(x) will play an
important role in the construction of our selection rule. Let

ξh(x) =
1

n

n∑
i=1

Kh(Xi − x)−
∫
Kh(t− x)f(t)dt, (2.4)

ξh,η(x) =
1

n

n∑
i=1

Kh,η(Xi − x)−
∫
Kh,η(t− x)f(t)dt

denote the stochastic errors of f̂h and f̂h,η respectively. In order to construct our selection rule we
need to find uniform upper bounds (majorants) on ξh and ξh,η, i.e. we need to find functions Mh

and Mh,η such that moments of random variables

sup
h∈H

[
|ξh(x)| −Mh(x)

]
+
, sup

h,η∈H

[
|ξh,η(x)| −Mh,η(x)

]
+

(2.5)

are “small” for each x ∈ Rd. We will be also interested in the integrability properties of these
moments.
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It turns out that the majorants Mh(x) and Mh,η(x) can be defined in the following way. For a
function g : Rd → R1 let

Ah(g, x) =

∫
|gh(t− x)|f(t)dt, gh(·) = V −1

h g
(
· /h
)
, h ∈ H. (2.6)

Now define

Mh(g, x) =

√
κAh(g, x) lnn

nVh
+

κ lnn

nVh
, (2.7)

where κ is a positive constant to be specified. In Lemma 2 in Section 5 we show that under
appropriate choice of parameter κ functions

Mh(x) := Mh(K,x), Mh,η(x) := Mh∨η(Q, x) (2.8)

uniformly majorate ξh and ξh,η in the sense that the moments of random variables in (2.5) are
“small”.

It should be noted, however, that functions Mh(x) and Mh,η(x) given by (2.8) cannot be directly
used in construction of the selection rule because they depend on unknown density f to be estimated.
We will use empirical counterparts of Mh(x) and Mh,η(x) instead.

For g : Rd → R1 we let

Âh(g, x) =
1

n

n∑
i=1

|gh(Xi − x)|,

and define

M̂h(g, x) = 4

√
κÂh(g, x) lnn

nVh
+

4κ lnn

nVh
. (2.9)

2.1.4. Selection rule and final estimator

Now we are in a position to define our selection rule. For every x ∈ Rd let

R̂h(x) = sup
η∈H

[
|f̂h,η(x)− f̂η(x)| − M̂h∨η(Q, x)− M̂η(K,x)

]
+

+ sup
η≥h

M̂η(Q, x) + M̂h(K,x), h ∈ H. (2.10)

The selected bandwidth ĥ(x) and the corresponding estimator are defined by

ĥ(x) = arg inf
h∈H

R̂h(x), f̂(x) = f̂ĥ(x)(x), x ∈ Rd. (2.11)

Note that the estimation procedure is completely determined by the family of kernel estimators
F(H) and by the constant κ appearing in the definition of M̂h.

We have to ensure that the map x 7→ f̂ĥ(x)(x) is an X(n)-measurable Borel function. This follows
from continuity of K and the fact that H is a discrete set; for details see Appendix A, Section A.1.

The main idea behind the construction of the selection procedure (2.10)–(2.11) is the following.
The expression M̂h∨η(Q, x) + M̂η(K,x) appearing in the square brackets in (2.10) dominates with

large probability the stochastic part of the difference |f̂h,η(x)− f̂η(x)|. Consequently, the first term

on the right hand side of (2.10) serves as a proxy for the deterministic part of |f̂h,η(x) − f̂η(x)|
which is the absolute value of the difference of biases of kernel estimates f̂h,η(x) and f̂η(x). The

latter, in its own turn, is closely related to the bias of the estimator f̂h(x). Thus, the first term on
the right hand side of (2.10) is a proxy for the bias of f̂h(x), while the second term is an upper
bound on the standard deviation of f̂h(x).
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2.2. Point–wise oracle inequality

Let Bh(f, t) be the bias of the kernel estimator f̂h(t),

Bh(f, t) =

∫
Kη(y − t)f(y)dy − f(t), (2.12)

and define

B̄h(f, x) = |Bh(f, x)| ∨ sup
η∈H

∣∣∣ ∫ Kη(t− x)Bh(f, t)dt
∣∣∣. (2.13)

Theorem 1. For any x ∈ Rd one has

|f̂(x)− f(x)| ≤ inf
h∈H

{
4B̄h(f, x) + 60 sup

η≥h
Mη(Q, x) + 61Mh(K,x)

}
+ 7ζ(x) + 18χ(x), (2.14)

where

ζ(x) := sup
h∈H

[|ξh(x)| −Mh(K,x)]+ ∨ sup
h,η∈H

[|ξh,η(x)| −Mh∨η(Q, x)]+, (2.15)

χ(x) := max
g∈{K,Q}

sup
h∈H

[
|Âh(g, x)−Ah(g, x)| −Mh(g, x)

]
+
. (2.16)

Furthermore, for any q ≥ 1 if κ ≥ [‖K‖∞ ∨ 1]2[(4d+ 2)q + 4(d+ 1)] then∫
Ef
{

[ζ(x)]q + [χ(x)]q
}

dx ≤ Cn−q/2, ∀n ≥ 3, (2.17)

where C is the constant depending on d, q and ‖K‖∞ only.

We remark that Theorem 1 does not require any conditions on the estimated density f .

3. Adaptive estimation over anisotropic Nikol’skii classes

In this section we study properties of the estimator defined in (2.10)–(2.11). The point–wise oracle
inequality of Theorem 1 is the key technical tool for bounding Lp-risk of this estimator on the
anisotropic Nikol’skii classes.

3.1. Anisotropic Nikol’skii classes

Let (e1, . . . , ed) denote the canonical basis of Rd. For function g : Rd → R1 and real number u ∈ R
define the first order difference operator with step size u in direction of the variable xj by

∆u,jg(x) = g(x+ uej)− g(x), j = 1, . . . , d.

By induction, the k-th order difference operator with step size u in direction of the variable xj is
defined as

∆k
u,jg(x) = ∆u,j∆

k−1
u,j g(x) =

k∑
l=1

(−1)l+k
(
k

l

)
∆ul,jg(x). (3.1)
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Definition 1. For given real numbers ~r = (r1, . . . , rd), rj ∈ [1,∞], ~β = (β1, . . . , βd), βj > 0, and
~L = (L1, . . . , Ld), Lj > 0, j = 1, . . . , d, we say that function g : Rd → R1 belongs to the anisotropic

Nikol’skii class N~r,d
(
~β, ~L

)
if

(i) ‖g‖rj ≤ Lj for all j = 1, . . . , d;
(ii) for every j = 1, . . . , d there exists natural number kj > βj such that∥∥∥∆

kj
u,jg
∥∥∥
rj
≤ Lj |u|βj , ∀u ∈ Rd, ∀j = 1, . . . , d. (3.2)

The anisotropic Nikol’skii class is a specific case of the anisotropic Besov class, often encoun-
tered in the nonparametric estimation literature. In particular, N~r,d

(
~β, ·
)

= Bβ1,...,βdr1,...,rd;∞,...,∞(·), see
(Nikol’skii 1977, Section 4.3.4).

3.2. Construction of kernel K

We will use the following specific kernel K in the definition of the family F(H) [see, e.g., Kerky-
acharian et al. (2001) or Goldenshluger and Lepski (2011b)].

Let ` be an integer number, and let w : [−1/(2`), 1/(2`)] → R1 be a function satisfying∫
w(y)dy = 1, and w ∈ C(R1). Put

w`(y) =
∑̀
i=1

(
`

i

)
(−1)i+1 1

i
w
(y
i

)
, K(t) =

d∏
j=1

w`(tj), t = (t1, . . . , td). (3.3)

The kernel K constructed in this way is bounded, supported on [−1/2, 1/2]d, belongs to C(Rd) and
satisfies ∫

K(t)dt = 1,

∫
K(t)tkdt = 0, ∀|k| = 1, . . . , `− 1,

where k = (k1, . . . , kd) is the multi–index, ki ≥ 0, |k| = k1 + · · · + kd, and tk = tk11 · · · t
kd
d for

t = (t1, . . . , td).

3.3. Main results

Let N~r,d
(
~β, ~L

)
be the anisotropic Nikol’skii functional class. Put

1

β
:=

d∑
j=1

1

βj
,

1

s
:=

d∑
j=1

1

βjrj
, Lβ :=

d∏
j=1

L
1/βj
j ,

and define

ν =



1−1/p
1−1/s+1/β , p < 2+1/β

1+1/s ,

β
2β+1 ,

2+1/β
1+1/s ≤ p ≤ s(2 + 1/β),

s/p, p > s(2 + 1/β), s < 1,

1−1/s+1/(pβ)
2−2/s+1/β , p > s(2 + 1/β), s ≥ 1,

(3.4)

µn =


ln

d
p (n), p ≤ 2+1/β

1+1/s ;

(lnn)1/p, p = s(2 + 1/β),

1, otherwise.
9



In contrast to Theorem 1 proved over the set of all probability densities, the adaptive results
presented below require the additional assumption: the estimated density should be uniformly
bounded. For this purpose we define for M > 0

N~r,d
(
~β, ~L,M

)
:= N~r,d

(
~β, ~L

)
∩ {f : ‖f‖∞ ≤M} .

Note, however, that if J := {j = 1, . . . , d : rj = ∞} then N~r,d
(
~β, ~L,M

)
= N~r,d

(
~β, ~L) with

M = infJ Lj . Moreover, in view of the embedding theorem for the anisotropic Nikol’skii classes [see
Section 6.1 below], condition s > 1 implies that the density to be estimated belongs to a class of
uniformly bounded and continuous functions. Thus, if s > 1 one has N~r,d

(
~β, ~L,M

)
= N~r,d

(
~β, ~L)

with some M completely determined by ~L.
The asymptotic behavior of the Lp-risk on class N~r,d(~β, ~L,M) is characterized in the next two

theorems.
Let family F(H) be associated with kernel (3.3). Let f̂ denote the estimator given by the selection

rule (2.10)–(2.11) with κ = (‖K‖∞ ∨ 1)2[(4d+ 2)p+ 4(d+ 1)] that is applied to the family F(H).

Theorem 2. For any M > 0, L0 > 0, ` ∈ N∗, any ~β ∈ (0, `]d, ~r ∈ (1,∞]d, any ~L satisfying
minj=1,...,d Lj ≥ L0, and any p ∈ (1,∞) one has

lim sup
n→∞

{
µn

(Lβ lnn

n

)−ν
R(n)
p

[
f̂ ;N~r,d

(
~β, ~L,M

)]}
≤ C <∞.

Here constant C does not depend on ~L in the cases p ≤ s(2 + 1/β) and p ≥ s(2 + 1/β), s < 1.

Remark 1.

1. Condition minj=1,...,d Lj ≥ L0 ensures independence of the constant C on ~L in the cases

p ≤ s(2 + 1/β) and p ≥ s(2 + 1/β), s < 1. If p ≥ s(2 + 1/β), s ≥ 1 then C depends on ~L,
and the corresponding expressions can be easily extracted from the proof of the theorem. We
note that in this case the map ~L 7→ C(~L) is bounded on every closed cube of (0,∞)d.

2. We consider the case 1 < p < ∞ only, not including p = 1 and p = ∞. It is well–known,
Ibragimov and Khasminskii (1981), that smoothness alone is not sufficient in order to guar-
antee consistency of density estimators in L1(Rd); see also Theorem 3 for a lower bound. The
case p =∞ was considered recently in Lepski (2012).

3. As it was discussed above, Theorem 2 requires uniform boundedness of the estimated den-
sity, i.e. ‖f‖∞ ≤ M < ∞. We note however that our estimator f̂ is fully adaptive, i.e., its
construction does not use any information on the parameters ~β,~r, ~L and M .

Now we present lower bounds on the minimax risk. Define

αn =

{
lnn, p > s(2 + 1/β), s ≥ 1,

1, otherwise.

Theorem 3. Let ~β ∈ (0,∞)d, ~r ∈ [1,∞]d, ~L ∈ (0,∞)d and M > 0 be fixed.
(i) There exists c > 0 such that

lim inf
n→∞

{(Lβαn
n

)−ν
inf
f̃
R(n)
p

[
f̃ ; N~r,d(~β, ~L,M)

]}
≥ c, ∀p ∈ [1,∞),

where the infimum is taken over all possible estimators f̃ . If minj=1,...,d Lj ≥ L0 > 0 then in the

cases p ≤ s(2 + 1/β) or p ≥ s(2 + 1/β) and s < 1 the constant c is independent of ~L.
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(ii) Let p =∞ and s ≤ 1; then there is no consistent estimator, i.e., for some c > 0

lim inf
n→∞

inf
f̃

sup
f∈N~r,d(~β,~L,M)

Ef
∥∥f̃ − f∥∥∞ > c.

Remark 2.

1. Inspection of the proof shows that if maxj=1,...,d Lj ≤ L∞ <∞ then the statement (i) is valid

with constant c depending on ~β,~r, L0, L∞, d and M only.
2. As it was mentioned above, adaptive minimax density estimation on Rd under L∞–loss was

a subject of the recent paper Lepski (2012). A minimax adaptive estimator is constructed in
this paper under assumption s > 1. Thus, statement (ii) of Theorem 3 finalizes the research on
adaptive density estimation in the supremum norm. It is interesting to note that the minimax
rates in the case p =∞ coincide with those of Theorem 2 if we put formally p =∞.

3.4. Discussion

The results of Theorem 2 together with the matching lower bounds of Theorem 3 provide complete
classification of minimax rates of convergence in the problem of density estimation on Rd. In
particular, we discover four different zones with respect to the minimax rates of convergence.

• Tail zone corresponds to “small” p, 1 < p ≤ 2+1/β
1+1/s . This zone does not appear if density

f is assumed to be compactly supported, or some tail dominance condition is imposed, see
Section 4.
• Dense zone is characterized by the “intermediate” range of p, 2+1/β

1+1/s ≤ p ≤ s(2 + 1/β). Here

the “usual” rate of convergence n−β/(2β+1) holds.
• Sparse zone corresponds to “large” p, p ≥ s(2 + 1/β). As Theorems 2 and 3 show, this zone,

in its turn, is subdivided into two regions with s ≥ 1 and s < 1. This phenomenon was not
observed in the existing literature even for settings with compactly supported densities. For
other statistical models (regression, white Gaussian noise etc) this result is also new.

It is important to emphasize that existence of these zones is not related to the multivariate nature
of the problem or to the anistropic smoothness of the estimated density. In fact, these results hold
already for the one–dimensional case, and this, to a limited degree, was observed in the previous
works. In the subsequent remarks we discuss relationships between our results and the existing
results in the literature, and comment on some open problems.

1. In Donoho et al. (1996), Delyon and Juditsky (1996) and Kerkyacharian et al. (2008) the
sparse zone is defined as p > 2(1 + 1/β), s > 1. Recall that condition s > 1 implies that the density
to be estimated belongs to a class of uniformly bounded and continuous functions. In the sparse
zone we consider also the case s ≤ 1, but density f is assumed to be uniformly bounded. It turns
out that in this zone the rate corresponding to the index ν = s/p emerges.

2. The one–dimensional setting was considered in Juditsky and Lambert–Lacroix (2004) and
Reynaud–Bouret et al. (2011). The setting of Juditsky and Lambert–Lacroix (2004) corresponds
to s = ∞, while Reynaud–Bouret et al. (2011) deal with the case of p = 2 and β > 1/r − 1/2.
Both settings rule out the sparse zone. The rates of convergence in the dense zone obtained in the
aforementioned papers are easily recovered from our results. However, in the tail zone our bound
contains additional ln(n)-factor.
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3. In the previous papers on adaptive estimation of densities with unbounded support [cf. Ju-
ditsky and Lambert–Lacroix (2004) and Reynaud–Bouret et al. (2011)] the developed estimators
are explicitly shrunk to zero. This shrinkage is used in bounding the minimax risk on the whole
space. We do not employ shrinkage in our estimator construction. We derive bounds on the Lp–risk
by integration of the point–wise oracle inequality (2.14). The key elements of this derivation are
inequality (2.17) and statement (i) of Proposition 2. The inequality (2.17) is based on the follow-
ing fact: the errors ζ(x) and χ(x) are integrable by the accurate choice of the majorant. Indeed,
Section 5.3 shows that these errors are not equal to zero with probability which is integrable and
“negligible” in the regions where the density is “small”. This leads to integrability of the remainders
in (2.14). As for Proposition 2, it is related to the integrability of the main term in (2.14). The
main problem here is that the majorant Mh(·, x) itself is not integrable. To overcome this difficulty
we use the integrability of the estimator f̂ , approximation properties of the density f , and (2.17).

4. In the context of the Gaussian white noise model on a compact interval Kerkyacharian et al.
(2001) developed an adaptive estimator that achieves the rate of convergence (lnn/n)β/(2β+1) on
the anisotropic Nikol’skii classes under condition

∑d
i=1[ 1

βi
( pri −1)]+ < 2. This restriction determines

a part of the dense zone, and our Theorem 2 improves on this result. In fact, our estimator achieves
the rate (lnn/n)β/(2β+1) in the zone

∑d
i=1

1
βi

( pri − 1) ≤ 2 which is equivalent to p ≤ s(2 + 1/β).

5. It follows from Theorem 3 that the upper bound of Theorem 2 is sharp in the zone p >
s(2 + 1/β), s > 1, and it is nearly sharp up to a logarithmic factor in all other zones. This extra
logarithmic factor is a consequence of the fact that we use the point–wise selection procedure
(2.10)–(2.11). We also have extra lnn–term on the boundaries p = 2+1/β

1+1/s , p = s(2 + 1/β).

Conjecture 1. The rates found in Theorem 3 are optimal.

Thus, if our conjecture is true, the construction of an estimator achieving the rates of Theorem 3
in the tail and dense zones remains an open problem.

6. Theorem 2 is proved under assumption ~r ∈ (1,∞]d, i.e., we do not include the case where rj = 1
for some j = 1, . . . , d. This is related to the construction of our selection rule, and to the necessity
to bound Lrj–norm, j = 1, . . . , d of the term B̄h(f, x); see (2.13) and (2.14). In our derivations for
this purpose we use properties of the strong maximal operator [for details see Section 6.1], and it
is well–known that this operator is not of the weak (1, 1)–type in dimensions d ≥ 2. Nevertheless,
using inequality (6.5) we were able to obtain the following result.

Corollary 1. Let ~r be such that rj = 1 for some j = 1, . . . , d. Then the result of Theorem 2 remains
valid if the normalizing factor

(
n−1 lnn

)ν
is replaced by

(
n−1[lnn]d

)ν
.

The proof of Corollary 1 coincides with the proof of Theorem 2 with the only difference that bounds
in the proof of Proposition 1 should use (6.5) instead of the Chebyshev inequality. This will result
in an extra (lnn)d−1-factor. We note that the results of Theorem 2 and Corollary 1 coincide if
d = 1. It is not surprising because in the dimension d = 1 the strong maximal operator is the
Hardy-Littlewood maximal function which is of the weak (1,1)–type.

4. Tail dominance condition

Let g : Rd → R1 be a locally integrable function. Define the map g 7→ g∗ by the formula

g∗(x) := sup
h∈(0,2]d

1

Vh

∫
Πh(x)

g(t)dt, x ∈ Rd, (4.1)
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where Πh(x) = [x1 − h1/2, x1 + h1/2] × · · · × [xd − hd/2, xd + hd/2]. In fact, formula (4.1) defines
the maximal operator associated with the differential basis ∪x∈Rd{Πh(x), h ∈ (0, 2]}, see Guzman
(1975).

Consider the following set of functions: for any θ ∈ (0, 1] and R ∈ (0,∞) let

Gθ(R) =
{
g : Rd → R : ‖g∗‖θ ≤ R

}
. (4.2)

Note that, although we keep the previous notation ‖g‖θ = (
∫
|g(x)|θdx)1/θ, ‖ · ‖θ is not longer a

norm if θ ∈ (0, 1).
The assumption that f ∈ Gθ(R) for some θ ∈ (0, 1] and R > 0 imposes restrictions on the tail of

the density f . In particular, the set of densities, uniformly bounded and compactly supported on
a cube of Rd, is embedded in the set Gθ(·) for any θ ∈ (0, 1] (for details, see Section 7.4). We will
refer to the assumption f ∈ Gθ(R) as the tail dominance condition.

In this section we study the problem of adaptive density estimation under the tail dominance
condition. We show that under this condition the minimax rate of convergence can be essentially
improved in the tail zone. In particular, if θ ≤ θ∗ for some θ∗ < 1 given below then the tail zone
disappears.

For any θ ∈ (0, 1] let

ν∗(θ) = max

{
1− θ/p

1− θ/s+ 1/β
,

1

2 + 1/β

}
,

and define

ν(θ) =

{
ν∗(θ), p ≤ s(2 + 1/β),

ν, p > s(2 + 1/β),
µn(θ) =

{
(lnn)1/p, p ∈ { 2+1/β

1/θ+1/s , s(2 + 1/β)},

1, otherwise,
(4.3)

where ν is defined in (3.4).

Theorem 4. The following statements hold.

(i) For any θ ∈ (0, 1] and R > 0, Theorem 2 remains valid if one replaces N~r,d(~β, ~L,M) by

Gθ(R) ∩N~r,d(~β, ~L,M), ν by ν(θ) and µn by µn(θ). The constant C may depend on θ and R.

(ii) For any θ ∈ (0, 1], ~β, ~L ∈ (0,∞)d, ~r ∈ [1,∞]d and M > 0 one can find R > 0 such that
Theorem 3 remains valid if one replaces N~r,d(~β, ~L,M) by Gθ(R) ∩ N~r,d(~β, ~L,M), ν by ν(θ),
and µn by µn(θ).

Remark 3.

1. The leads to improvement of the rates of convergence in the whole tail zone. In particular,

if f ∈ G1(R) then the additional ln
d
p (n)-factor disappears, cf. µn and µn(1). Moreover, if

θ < 1 under tail dominance condition condition the faster convergence rate of the dense zone
is achieved over a wider range of values of p, 2+1/β

1/θ+1/s ≤ p ≤ s(2 + 1/β). Additionally, if

θ < θ∗ :=
ps

s(2 + 1/β)− p
,

then the tail zone disappears. Note that θ∗ ∈ (0, 1) whenever p ≤ 2+1/β
1+1/s .

As it was mentioned above, the set of uniformly bounded and compactly supported on a cube
of Rd densities is embedded in the set Gθ(·) for any θ ∈ (0, 1]. This fact explains why the tail
zone does not appear in problems of estimating compactly supported densities.
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2. We would like to emphasize that the couple (θ,R) is not used in the construction of the esti-
mation procedure; thus, our estimator is adaptive with respect to (θ,R) as well. In particular,
if the tail dominance condition does not hold, our estimator achieves the rate of Theorem 2.
On the other hand, if this assumption holds, the rate of convergence is improved automatically
in the tail zone.

3. The second statement of the theorem is proved under assumption that R is large enough.
The fact that R cannot be chosen arbitrary small is not technical; the parameters ~β, ~L, ~r,
M ,θ and R are related to each other. In particular, one can easily provide lower bounds on
R in terms of the other parameters of the class. For instance, by the Lebesgue differentiation
theorem, f(x) ≤ f∗(x) almost everywhere; therefore for any density f ∈ Gθ(R) such that
‖f‖∞ ≤M one has

1 =

∫
f ≤M1−θ‖f∗‖θθ ≤M1−θRθ ⇒ R ≥M1−1/θ.

Another lower bound on R in terms of ~L, ~r and θ can be established using the Littlewood
interpolation inequality [see, e.g., (Garling 2007, Section 5.5)]. Let 0 < q0 < q1 and α ∈ (0, 1)
be arbitrary numbers; then the Littlewood inequality states that ‖g‖q ≤ ‖g‖1−αq0 ‖g‖

α
q1 , where

q is defined by relation 1
q = 1−α

q0
+ α

q1
. Now, suppose that f ∈ Gθ(R) ∩N~r,d(~β, ~L), and choose

q0 = θ, q1 = ri and α = 1−θ
1−θ/ri ; then q = 1 and by the Littlewood inequality we have

1 = ‖f‖1 ≤ ‖f‖1−αθ ‖f‖αri ≤ R
riθ−θ
ri−θ L

ri−riθ
ri−θ
i , i = 1, . . . , d ⇒ R ≥ max

i=1,...,d
L
riθ−ri
ri−θ
i .

4. Another interesting observation is related to the specific case p = 1. Recall that the condition
f ∈ N~r,d(~β, ~L,M) alone is not sufficient for existence of consistent estimators. However, for
any θ ∈ (0, 1) we can show

inf
f̃
R(n)

1

[
f̃ ; Gθ(R) ∩ N~r,d(~β, ~L,M)

]
≤ C

[
Lβ(lnn)d

n

] 1−θ
1−θ/s+1/β

→ 0, n→∞.

This result follows from the proof of Theorem 4 and (6.5).

Now we argue that condition f ∈ Gθ∗(R) is, in a sense, the weakest possible ensuring the “usual”
rate of convergence, corresponding to the index ν = β/(2β + 1), in the whole zone p ≤ s(2 + 1/β).
Indeed, in view of Theorem 4, the minimax rate of convergence on the class Gθ∗(R)∩N~r,d(~β, ~L,M),
say ψn(θ∗), satisfies

c
(
Lβ/n

) β
2β+1 ≤ ψn(θ∗) ≤ C(lnn)1/p

(
Lβ lnn/n

) β
2β+1 ,

where the constants c and C may depend on R. On the other hand, if ψ
n
(θ∗) denotes the minimax

rate of convergence on the class N~r,d(~β, ~L,M) \Gθ∗(R) then

c
(
Lβ/n

) 1−1/p
1−1/s+1/β ≤ ψ

n
(θ∗) ≤ C

(
Lβ lnn/n

) 1−1/p
1−1/s+1/β , (4.4)

provided that p ≤ 2+1/β
1+1/s . The upper bound in (4.4) is one of the statements of Theorem 2, while

the lower bound is proved in Section 7.5.
Thus we conclude that there is no tail zone in estimation over the class Gθ∗(R) ∩N~r,d(~β, ~L,M),

and this zone appears when considering the class N~r,d(~β, ~L,M)\Gθ∗(R). In this sense f ∈ Gθ∗(R)∩
N~r(~β, ~L,M) is the necessary and sufficient condition eliminating the tail zone.
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5. Proof of Theorem 1

First we state two auxiliary results, Lemmas 1 and 2, and then turn to the proof of the theorem.
Proof of measurability of our estimator and proofs of Lemmas 1 and 2 are given in Appendix A.

5.1. Auxiliary lemmas

For any g : Rd → R1 denote

M̌h(g, x) =

√
κÂh(g, x) lnn

nVh
+

κ lnn

nVh
.

Lemma 1. Let χh(g, x) =
[
|Âh(g, x)−Ah(g, x)| −Mh(g, x)

]
+

, h ∈ H; then

[M̌h(g, x)− 5Mh(g, x)]+ ≤
1

2
χh(g, x), [Mh(g, x)− 4M̌h(g, x)]+ ≤ 2χh(g, x).

The next lemma establishes moment bounds on the following four random variables:

ζ1(x) = sup
h∈H

[|ξh(x)| −Mh(K,x)]+;

ζ2(x) = sup
h,η∈H

[|ξh,η(x)| −Mh∨η(Q, x)]+;

ζ3(x) := sup
h∈H

[|Ah(K,x)− Âh(K,x)| −Mh(K,x)]+;

ζ4(x) := sup
h∈H

[|Ah(Q, x)− Âh(Q, x)| −Mh(Q, x)]+.

(5.1)

Denote k∞ = ‖K‖∞ ∨ 1 and

F (x) =

∫
1[−1,1]d(t− x)f(t)dt.

Lemma 2. Let q ≥ 1, l ≥ 1 be arbitrary numbers. If κ ≥ k2
∞[(2q + 4)d+ 2l] then for all x ∈ Rd

Ef [ζj(x)]q ≤ C0n
−q/2{F (x) ∨ n−l

}
, j = 1, 2, 3, 4, (5.2)

where constant C0 depends on d, q, and k∞ only.

5.2. Proof of oracle inequality (2.14)

We recall the standard error decomposition of the kernel estimator: for any h ∈ H one has

|f̂h(x)− f(x)| ≤ |Bh(f, x)|+ |ξh(x)|,

where Bh(f, x) and ξh(x) are given in (2.12) and (2.4) respectively. Similar error decomposition
holds for auxiliary estimators f̂h,η(x); the corresponding bias and stochastic error are denoted by
Bh,η(f, x) and ξh,η(x).

10. The following relation for the bias Bh,η(f, x) of f̂h,η(x) holds:

Bh,η(f, x)−Bη(f, x) =

∫
Kη(t− x)Bh(f, t)dt, ∀h, η ∈ H. (5.3)
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Indeed, using the Fubini theorem and the fact that
∫
Kh(x)dx = 1 for all h ∈ H we have∫

[Kh ∗Kη](t− x)f(t)dt =

∫ [∫
Kh(t− y)Kη(y − x)dy

]
f(t)dt

=

∫
Kη(y − x)f(y)dy

+

∫
Kη(y − x)

[∫
Kh(t− y)[f(t)− f(y)]dt

]
dy.

It remains to note that
∫
Kh(t − y)[f(t) − f(y)]dt = Bh(f, y) and to subtract f(x) from the both

sides of the above equality. Thus, (5.3) is proved.

20. By the triangle inequality we have for any h ∈ H

|f̂ĥ(x)− f(x)| ≤ |f̂ĥ(x)− f̂ĥ,h(x)|+ |f̂ĥ,h(x)− f̂h(x)|+ |f̂h(x)− f(x)|. (5.4)

We bound each term on the right hand side separately.
First we note that, by (5.3) and (2.13), for any h ∈ H

R̂h(x)− sup
η≥h

M̂η(Q, x)− M̂h(K,x) = sup
η∈H

[
|f̂h,η(x)− f̂η(x)| − M̂h∨η(Q, x)− M̂η(K,x)

]
+

≤ B̄h(f, x) + sup
η∈H

[
|ξh,η(x)− ξη(x)| − M̂h∨η(Q, x)− M̂η(K,x)

]
+
.

Thus, for any h ∈ H

R̂h(x) ≤ B̄h(f, x) + 2ζ̂(x) + M̂h(K,x) + sup
η≥h

M̂η(Q, x), (5.5)

where we put

ζ̂(x) := sup
h,η∈H

[
|ξh,η(x)| − M̂h∨η(Q, x)

]
+
∨ sup

h∈H

[
|ξh(x)| − M̂h(K,x)

]
+
.

Second, by (5.3) and f̂h,η ≡ f̂η,h for any h, η ∈ H we have

|f̂h,η(x)− f̂h(x)| ≤ |Bη,h(f, x)−Bh(f, x)|+ |ξh,η(x)− ξh(x)|

≤ Bη(f, x) +
[
|ξh,η(x)− ξh(x)| − M̂h∨η(Q, x)− M̂h(K,x)

]
+ sup

η≥h
M̂η(Q, x) + M̂h(K,x)

≤ B̄η(f, x) + 2ζ̂(x) + R̂h(x),

where the last inequality holds by definition of R̂h(x) [see (2.10)]. There inequalities imply the
following upper bound on the first term on the right hand side of (5.4): for any h ∈ H

|f̂ĥ,h(x)− f̂ĥ(x)| ≤ B̄h(f, x) + R̂ĥ(x) + 2ζ̂(x)

≤ B̄h(f, x) + R̂h(x) + 2ζ̂(x)

≤ 2B̄h(f, x) + 4ζ̂(x) + sup
η≥h

M̂η(Q, x) + M̂h(K,x); (5.6)

where we have used the fact that R̂ĥ(x) ≤ R̂h(x) for all h ∈ H, and inequality (5.5).
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Now we turn to bounding the second term on the right hand side of (5.4). We get for any h ∈ H

|f̂ĥ,h(x)− f̂h(x)| = |f̂ĥ,h(x)− f̂h(x)| ±
[
M̂ĥ∨h(Q, x) + M̂h(K,x)

]
≤ R̂ĥ(x) + sup

η≥h
M̂η(Q, x) + M̂h(K,x)

≤ B̄h(f, x) + 2ζ̂(x) + 2 sup
η≥h

M̂η(Q, x) + 2M̂h(K,x), (5.7)

where we again used (5.5) and the fact that R̂ĥ(x) ≤ R̂h(x) for all h ∈ H.
Finally for any h ∈ H

|f̂h(x)− f(x)| ≤ |Bh(f, x)|+ |ξh(x)| ≤ B̄h(f, x) +Mh(K,x) + ζ(x).

Thus, combining (5.6), (5.7) and (5.4) we obtain

|f̂ĥ(x)−f(x)| ≤ inf
h∈H

{
4B̄h(f, x)+3 sup

η≥h
M̂η(Q, x)+3M̂h(K,x)+Mh(K,x)

}
+6ζ̂(x)+ ζ(x). (5.8)

30. In order to complete the proof we note that by the first inequality of Lemma 1 for any
g : Rd → R1

M̂h(g, x) ≤ 20Mh(g, x) + 2χh(g, x).

In addition, by the second inequality in Lemma 1

|ξh(x)| − M̂h(K,x) = |ξh(x)| −Mh(K,x) +Mh(K,x)− M̂h(K,x) ≤ ζ(x) + 2χ(x),

|ξh,η(x)| − M̂h∨η(Q, x) = |ξh,η(x)| −Mh∨η(Q, x) +Mh∨η(Q, x)− M̂h∨η(Q, x) ≤ ζ(x) + 2χ(x),

so that ζ̂(x) ≤ ζ(x) + 2χ(x). Substituting these bounds in (5.8) we obtain

|f̂(x)− f(x)| ≤ inf
h∈H

{
4B̄h(f, x) + 60 sup

η≥h
Mη(Q, x) + 61Mh(K,x)

}
+ 7ζ(x) + 18χ(x),

as claimed.

5.3. Proof of moment bounds (2.17)

Let ζj(x), j = 1, . . . , 4 be defined by (5.1). Then

Ef [ζj(x)]q ≤ C0n
−q/2{F (x) ∨ n−l

}
,

as claimed in Lemma 2.
Let T1 = {x ∈ Rd : F (x) ≥ n−l} and T2 = Rd \ T1. Therefore∫

T1

Ef [ζj(x)]qdx ≤ C0n
−q/2

∫
T1

F (x)dx ≤ C0n
−q/2

∫
F (x)dx = 2dC0n

−q/2. (5.9)

Now we analyze integrability on the set T2. We consider only the case j = 1, 2 since computations
for j = 3, 4 are the same as for j = 1.

17



Let Umax(x) = [x− 1, x+ 1]d and define the event D(x) =
{∑n

i=1 1[Xi ∈ Umax(x)] < 2
}

, and let
D̄(x) denote the complementary event. First we argue that for j = 1, 2

ζj(x)1{D(x)} = 0, ∀x ∈ T2. (5.10)

Indeed, if x ∈ T2 then for any h ∈ H

|EfKh(Xi − x)| ≤ ndk∞F (x) ≤ k∞n
d−l, |EfQh(Xi − x)| ≤ ndk2

∞F (x) ≤ k2
∞n

d−l.

Here we have used that H =
[
1/n, 1]d and that supp(K) = [−1/2, 1/2]d, supp(Q) = [−1, 1]d.

Hence, by definition of ξh(x), for any h ∈ H one has for any l ≥ d+ 1

|ξh(x)|1{D(x)} ≤
∣∣∣ 1
n

n∑
i=1

Kh(Xi − x)
∣∣∣1{D(x)}+ k∞n

d−l

≤ 2k∞
nVh

+ k∞n
d−l ≤ 4k∞

nVh
≤Mh(K,x),

where we have used that nd−l ≤ (nVh)−1 for l ≥ d+ 1, κ lnn ≥ 4k∞ by the condition on κ [see also
definition of Mh(K,x)], and n ≥ 3. Therefore ζ1(x)1{D(x)} = 0 for x ∈ T2. By the same reasoning
for ζ2(x) we obtain that ζ2(x)1{D(x)} = 0, ∀x ∈ T2 because κ lnn ≥ 4k2

∞. Thus (5.10) is proved.
Using (5.10) we can write∫

T2

Ef [ζj(x)
]q

1{D̄(x)}dx ≤
∫
T2

Ef
([

sup
h∈H
|ξh(x)|q ∨ sup

h,η∈H
|ξh,η(x)|q

]
1{D̄(x)}

)
dx

≤
(
2k2
∞n

d
)q ∫

T2

Pf{D̄(x)}dx. (5.11)

Now we bound from above the integral on the right hand side of the last display formula. For any
z > 0 we have in view of the exponential Markov inequality

Pf{D̄(x)} = Pf
{ n∑
i=1

1[Xi ∈ Umax(x)] ≥ 2
}
≤ e−2z

[
ezF (x) + 1− F (x)

]n
= e−2z

[
(ez − 1)F (x) + 1]n ≤ exp{−2z + n(ez − 1)F (x)}.

Minimizing the right hand side w.r.t. z we find z = ln 2− ln {nF (x)} and, therefore,

Pf
{
D̄(x)

}
≤ 4−1n2F 2(x) exp{2− nF (x)} ≤ (e2/4)n2F 2(x).

Since F (x) ≤ n−l for any x ∈ T2 we obtain∫
T2

Pf{D̄(x)}dx ≤ (e2/4)n2−l
∫
F (x)dx = 2d

(
e2/4

)
n2−l.

Combining this inequality with (5.11) we obtain∫
T2

Ef [ζj(x)
]q

1{D̄(x)}dx ≤ 2d(2k2
∞)q(e2/4)n2+dq−l. (5.12)

Choosing l = (d+ 1)q + 2 we come to the assertion of the theorem in view of (5.9) and (5.12).
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6. Proofs of Theorem 2 and statement (i) of Theorem 4

The proofs of Theorem 2 and of statement (i) of Theorem 4 go along similar lines. That is why
we state our auxiliary results (Propositions 1 and 2) in the form that is suitable for the use in the
proof of Theorem 4.

This section is organized as follows. First, in Subsection 6.1 we present and discuss some facts
from functional analysis. Then in Lemma 3 of Subsection 6.2 we state an auxiliary result on ap-
proximation properties of the kernel K defined in (3.3). Proof outline and notation are discussed
in Subsection 6.3. Subsection 6.4 presents two auxiliary propositions, and the proofs of Theorem 2
and statement (i) of Theorem 4 are completed in Subsections 6.5 and 6.6. Proofs of the auxiliary
results, Lemma 3 and Propositions 1 and 2 are given in Appendix B.

In the subsequent proof ci, Ci, c̄i, C̄i, ĉi, Ĉi, c̃i, C̃i, . . ., stand for constants that can depend on L0,
M ~β, ~r, d and p, but are independent of ~L and n. These constants can be different on different
appearances. In the case when the assumption f ∈ Gθ(R) with θ ∈ (0, 1) is imposed, they may also
depend on θ and R.

6.1. Preliminaries

We present an embedding theorem for the anisotropic Nikol’skii classes and discuss some properties
of the strong maximal operator.

6.1.1. Embedding theorem

The statement given below in (6.2) is a particular case of the embedding theorem for anisotropic
Nikol’skii classes N~r,d(~β, ~L); see (Nikol’skii 1977, Section 6.9.1.).

For the fixed class parameters ~β and ~r define

τ(p) = 1−
d∑
j=1

1

βj

(
1

rj
− 1

p

)
, τi = 1−

d∑
j=1

1

βj

(
1

rj
− 1

ri

)
, i = 1, . . . , d,

and put

qi = ri ∨ p, γi =

{
βiτ(p)
τi

, ri < p,

βi, ri ≥ p.
(6.1)

Let τ(p) > 0 and τi > 0 for all i = 1, . . . , d; then for any p ≥ 1 one has

N~r,d
(
~β, ~L

)
⊆ N~q,d

(
~γ, c~L

)
, (6.2)

where constant c > 0 is independent of ~L and p.

6.1.2. Strong maximal function

Let g : Rd → R be a locally integrable function. We define the strong maximal function g? of g by
formula

g?(x) := sup
H

1

|H|

∫
H
g(t)dt, x ∈ Rd, (6.3)
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where the supremum is taken over all possible rectangles H in Rd with sides parallel to the coor-
dinate axes, containing point x. It is worth noting that the Hardy–Littlewood maximal function is
defined by (6.3) with the supremum taken over all cubes with sides parallel to the coordinate axes,
centered at x.

It is well known that the strong maximal operator g 7→ g? is of the strong (p, p)–type for all
1 < p ≤ ∞, i.e., if g ∈ Lp(Rd) then g? ∈ Lp(Rd) and there exists a constant C̄ depending on p only
such that

‖g?‖p ≤ C̄‖g‖p, p ∈ (1,∞].

Let g∗ be defined defined in (4.1). Since obviously g∗(x) ≤ g?(x) for all x ∈ Rd we have

‖g∗‖p ≤ C̄‖g‖p, p ∈ (1,∞]. (6.4)

In distinction to the Hardy–Littlewood maximal function, the strong maximal operator is not of
the weak (1,1)–type. In fact, the following statement holds: there exists constant C depending on
d only such that

∣∣{x : g?(x) ≥ α}
∣∣ ≤ C ∫ |g(x)|

α

{
1 +

(
ln+
|g(x)|
α

)d−1}
dx, ∀α > 0. (6.5)

We refer to Guzman (1975) for more details.

6.2. Approximation properties of kernel K

The next lemma establishes an upper bound on norm of the bias Bh(f, ·) of kernel estimator f̂h
when f belongs to the anisotropic Nikol’skii class.

Lemma 3. Let f ∈ N~r,d
(
~β, ~L

)
. Let f̂h be the estimator (2.1) associated with kernel (3.3) with

` > maxj=1,...,d βj. Then Bh(f, x) can represented as the sum Bh(f, x) =
∑d

j=1Bh,j(f, x) with
functions Bh,j(f, x) satisfying the following inequalities:∥∥Bh,j(f, ·)∥∥rj ≤ C1Ljh

βj
j , ∀j = 1, . . . , d. (6.6)

Moreover, if s ≥ 1, then for any p ≥ 1∥∥Bh,j(f, ·)∥∥qj ≤ C2Ljh
γj
j , ∀j = 1, . . . , d, (6.7)

where ~γ = ~γ(p) and ~q = ~q(p) are defined in (6.1). Here C1 and C2 are constants independent of ~L
and p.

6.3. Proof outline and notation

The starting point of our proof is the pointwise oracle inequality (2.14) together with the moment
bound (2.17). Denote

Ūf (x) = inf
h∈H

{
B̄h(f, x) + sup

η≥h
Mη(K ∨Q, x)

}
; (6.8)

then, taking into account that Mη(K ∨Q, x) is greater than Mη(K,x) and Mη(Q, x) for any x and
η [see (2.6) and (2.9)], and using (2.14), we have

|f̂(x)− f(x)| ≤ c0[Ūf (x) + ω(x)],
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where c0 is an absolute constant, and ω(x) := ζ(x) +χ(x) with ζ(x) and χ(x) defined in (2.15) and
(2.16). Therefore, by (2.17) applied with q = p and by the Fubini theorem, there exists constant
c̄0 > 0 such that for any probability density f and any Borel set A ⊆ Rd one has

Ef
∫
A
|f̂(x)− f(x)|pdx ≤ c̄0

[ ∫
A
Ūpf (x)dx+ n−p/2

]
. (6.9)

Recall that k∞ = ‖K‖∞ ∨ 1; by definition of B̄h(f, x) [see (2.13)] and by Lemma 3 one has

B̄h(f, x) ≤ k∞

d∑
j=1

B∗h,j(f, x),

where B∗h,j(f, x) is the strong maximal function of |Bh,j(f, x)|, j = 1, . . . , d. Therefore if we let

Uf (x) := inf
h∈H

{
max
j=1,...,d

B∗h,j(f, x) + sup
η≥h

Mη(K ∨Q, x)
}
, (6.10)

then
Ūf (x) ≤ k∞Uf (x), ∀x ∈ Rd. (6.11)

The key element of the proof is derivation of upper bounds on the integral

J :=

∫
Rd
Upf (x)dx.

These bounds will be established by division of Rd in “slices”, and appropriate choice of bandwidth
h ∈ H on every “slice”. For this purpose the following bounds on norms of B∗h,j(f, ·) will be used.

Inequality (6.4) and the first assertion of Lemma 3 imply that for any p > 1, ~r ∈ (1,∞]d and any
f ∈ N~r,d

(
~β, ~L

)
one has ∥∥B∗h,j(f, ·)∥∥rj ≤ c̄1Ljh

βj
j , ∀j = 1, . . . , d, (6.12)

Moreover, if s ≥ 1 then, by the second assertion of Lemma 3, for any p > 1, ~r ∈ (1,∞]d and
f ∈ N~r,d

(
~β, ~L

)
∥∥B∗h,j(f, ·)∥∥qj ≤ c̄2Ljh

γj
j , ∀j = 1, . . . , d. (6.13)

Let δ := lnn/n, ϕ := (Lβδ)
β/(2β+1). Let m0(θ), θ ∈ (0, 1], be an integer number to be specified

later; see (6.19) below. For m ∈ Z, m ≥ m0(θ) define “slices”

Xm :=
{
x ∈ Rd : 2mϕ < Uf (x) ≤ 2m+1ϕ

}
, X−m0(θ) :=

{
x ∈ Rd : Uf (x) ≤ 2m0(θ)ϕ},

and consider the corresponding integrals

Jm :=

∫
Xm

Upf (x)dx, J−m0
:=

∫
X−
m0(θ)

Upf (x)dx.
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With this notation, using (6.9) and (6.11) we can write

Ef‖f̂ − f‖pp ≤ Ef
∫
X−
m0(θ)

|f̂(x)− f(x)|pdx + c̃1

∞∑
m=m0(θ)

∫
Xm

Upf (x)dx + c̃2n
−p/2

=: J−m0(θ) + c̃1

∞∑
m=m0(θ)

Jm + c̃2n
−p/2. (6.14)

The rest of the proof consists of bounding the integrals J−m0(θ) and Jm on the right hand side of

(6.14) and combining these bounds in different zones.
The following notation will be used in the subsequent proof. For the sake of brevity we will write

Mη(x) := Mη(K ∨Q, x), Aη(x) := Aη(K ∨Q, x), ∀η ∈ H.

We let I := {1, . . . , d}, and

I+ := {j ∈ I : p ≤ rj <∞}, I− := {j ∈ I : 1 < rj < p}, I∞ := {j ∈ I : rj =∞}.

With ~γ = (γ1, . . . , γd) and ~q = (q1, . . . , qd) given by (6.1) we define quantities γ, υ and Lγ by the
formulas

1

γ
:=

d∑
j=1

1

γj
,

1

υ
:=

d∑
j=1

1

γjqj
, Lγ :=

d∏
j=1

L
1/γj
j . (6.15)

Note some useful inequalities between the quantities defined above. First, γj < βj for all j ∈ I−
which is a consequence of the fact that τ(p) < τj for j ∈ I−. This implies

1

γ
− 1

β
=
∑
j∈I−

( 1

γj
− 1

βj

)
> 0. (6.16)

Next, if s ≥ 1 then
1

s
>

1

υ
. (6.17)

We have
1

s
− 1

υ
=
∑
j∈I−

( 1

βjrj
− 1

γjp

)
=
∑
j∈I−

1

βj

( 1

rj
− τj
τ(p)p

)
.

Hence (6.17) will be proved if we show that r−1
j τ(p)p ≥ τj for all j ∈ I−. Indeed,

τ(p)p

rj
=
p(1− 1/s) + 1/β

rj
≥ 1− 1

s
+

1

βrj
:= τj ,

where to get the second inequality we have used that rj ≤ p for any j ∈ I− and that s ≥ 1.
Finally, remark also that

p− υ(2 + 1/γ) < 0. (6.18)

Indeed, since rj ≥ p for any j ∈ I+ ∪ I∞,

p

υ
=
∑
j∈I+

p

βjrj
+
∑
j∈I−

1

γj
≤
∑
j∈I+

1

βj
+
∑
j∈I−

1

γj
=

1

γ
.

This yields p ≤ υ/γ, and (6.18) follows.
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6.4. Auxiliary results

For θ ∈ (0, 1] and for some constant ĉ1 > 0 define

m0(θ) := min

{
m ∈ Z : 2

m0(θ)
(

1−θ/s+1/β
1+θ/s

)
> ĉ1κϕ

}
. (6.19)

Note that 1 − θ/s + 1/β > 0 for any θ ∈ (0, 1], since s ≥ β by rj ≥ 1, j = 1, . . . , d. Therefore
m0(θ) < 0 for large enough n.

It will be convenient to introduce the following notation

m1 := min
{
m ∈ Z : 2m[υ(2+1/γ)−s(2+1/β)] ≥

(
Lγ/Lβ

)υ
ϕυ(1/β−1/γ)

}
. (6.20)

It follows from this definition that[(
Lγ/Lβ

)
ϕ1/β−1/γ

] υ
υ(2+1/γ)−s(2+1/β) ≤ 2m1 ≤ 2

[(
Lγ/Lβ

)
ϕ1/β−1/γ

] υ
υ(2+1/γ)−s(2+1/β)

. (6.21)

In view of (6.16) and (6.17)

υ
(

2 +
1

γ

)
− s
(

2 +
1

β

)
= sυ

[(
2 +

1

β

)(1

s
− 1

υ

)
+

1

s

(1

γ
− 1

β

)]
> 0; (6.22)

hence m1 > 1 for large n.
The bounds on J−m0(θ) and Jm are given in the next two propositions.

Proposition 1. There exist constants ĉ1, ĉ2 > 0 and Ĉ1, Ĉ2 > 0 such that any n large enough the
following statements hold.

(i) For any probability density f and any m0(1) ≤ m ≤ 0

Jm ≤ Ĉ1 2
m
(
p− 2+1/β

1+1/s

)
ϕp. (6.23)

(ii) Let f ∈ Gθ(R), θ ∈ (0, 1); then for any m0(θ) ≤ m ≤ 0 one has

Jm ≤ Ĉ1 2
m
(
p− 2+1/β

1/θ+1/s

)
ϕp. (6.24)

(iii) For any m ∈ Z satisfying 1 ≤ 2m ≤ ĉ2ϕ
−1 and any probability density f one has

Jm ≤ Ĉ22m[p−s(2+1/β)]ϕp. (6.25)

(iv) Let s ≥ 1; then for any m ∈ Z such that m ≥ m1, 2m ≤ ĉ2ϕ
−1 and any probability density

f one has

Jm ≤ Ĉ2ϕ
p

[
Lγϕ

1/β

Lβϕ1/γ

]υ
2m[p−υ(2+1/γ)] . (6.26)

Proposition 2. There exist constants Ĉ3, Ĉ4 > 0 such that the following statements hold.

(i) Let ν is defined in (3.4). Then for all large enough n and for any density f one has

J−m0(1) = Ef
∫
X−
m0(1)

∣∣f̂(x)− f(x)
∣∣pdx ≤ Ĉ3 lnd(n)(Lβδ)

pν . (6.27)

(ii) Let ν(θ) is defined in (4.3). Then for any θ ∈ (0, 1] and for all n large enough

sup
f∈Gθ(R)

Ef
∫
X−
m0(θ)

∣∣f̂(x)− f(x)
∣∣pdx ≤ Ĉ4(Lβδ)

pν(θ). (6.28)
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6.5. Proof of Theorem 2

Using (6.14) and inequality (6.27) of Proposition 2 we obtain

Ef‖f̂ − f‖pp ≤ c1πn
(
Lβδ

)pν
+ c2

∞∑
m=m0(1)

Jm, (6.29)

where πn = lnd(n) if p ≤ 2+1/β
1+1/s and πn = 1 otherwise.

We proceed with bounding the second term on the right hand side of the last display formula.
First, because ‖f‖∞ ≤M ,

max
j=1,...,d

‖B∗h,j(f, ·)‖∞ ≤ 2dMk2
∞, sup

η>0
‖Aη‖∞ ≤ 2dMk2

∞.

This implies that there exists constant c3 > 0 with the following property:

m2 := min{m ∈ Z : 2m ≥ c3ϕ
−1} ⇒ Jm = 0, ∀m ≥ m2.

Thus the sum on right hand side of (6.29) extends from m0(1) to m2.

10. Tail zone: p < 2+1/β
1+1/s . Using bounds (6.23) and (6.25) of Proposition 1, we obtain

∞∑
m=m0(1)

Jm ≤ c4ϕ
p
[ 0∑
m=m0(1)

2
m(p− 2+1/β

1+1/s
)

+

m2∑
m=1

2m[p−s(2+1/β)]
]
≤ c5 ϕ

p2
m0(1)(p− 2+1/β

1+1/s
)
,

where the last inequality follows from the fact that m0(1) < 0 and p < 2+1/β
1+1/s < s(2 + 1/β). Using

(6.19), after straightforward algebra we obtain that

∞∑
m=m0(1)

Jm ≤ c6

(
Lβδ

) p−1
1+1/β−1/s ≤ c6

(
Lβδ

)pν
.

20. Dense zone: 2+1/β
1+1/s < p < s(2 + 1

β ). Because p > 2+1/β
1+1/s , by Proposition 1, inequality (6.23)

with θ = 1,
0∑

m=m0(1)

Jm ≤ c7ϕ
p

0∑
m=m0(1)

2
m(p− 2+1/β

1+1/s
) ≤ c8 ϕ

p = c8(Lβδ)
pβ

2β+1 . (6.30)

Furthermore, because p < s(2 + 1
β ) we have by Proposition 1, inequality (6.25), that

m2∑
m=1

Jm ≤ c9ϕ
p
m2∑
m=1

2
m(p−s(2+ 1

β
))

= c10(Lβδ)
pβ

2β+1 .

Thus, in the dense zone
m2∑

m=m0(1)

Jm ≤ c11(Lβδ)
pβ

2β+1 ≤ c11(Lβδ)
pν .
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30. Sparse zone: p > s(2 + 1/β), s < 1. First we note that the bound in (6.30) remains true since
p > s(2 + 1/β). By the same reason in view of Proposition 1, inequality (6.25),

m2∑
m=1

Jm ≤ c12ϕ
p2
m2(p−s(2+ 1

β
)) ≤ c13ϕ

s(2+ 1
β

)
= c13

(
Lβδ

)s ≤ c13(Lβδ)
pν . (6.31)

Here we have used the definition of m2. It remains to note that conditions p > s(2 + 1/β), s < 1
imply that ϕpδ−s → 0 as n → 0. Therefore the statement of the theorem follows from (6.30) and
(6.31).

40. Sparse zone: p > s(2+1/β), s ≥ 1. We need to bound only
∑m2

m=1 Jm, because (6.30) remains
true. By inequality (6.25) of Proposition 1 and because p > s(2 + 1/β)

m1∑
m=1

Jm ≤ c14ϕ
p2
m1(p−s(2+ 1

β
))
.

Next, we have in view of the inequality (6.26) of Proposition 1

m2∑
m=m1+1

Jm ≤ c15ϕ
p

[
Lγϕ

1/β

Lβϕ1/γ

]υ m2∑
m=m1+1

2m[p−υ(2+1/γ)].

Since p− υ(2 + 1/γ) < 0 [see (6.18)],

m2∑
m=m1+1

Jm ≤ c16ϕ
p

[
Lγϕ

1/β

Lβϕ1/γ

]υ
2m1(p−υ[2+1/γ]) ≤ c16ϕ

p2m1(p−s[2+1/β]).

In order to obtain the second inequality we have used (6.21). Thus,

m2∑
m=1

Jm ≤ c17ϕ
p2m1[p−s(2+1/β)].

Using equality (6.22) and (6.21) we obtain

m1∑
m=1

Jm ≤ c20

(
Lγ/Lβ

) p−s(2+1/β)
s(2+1/β)(1/s−1/υ)+(1/γ−1/β)

(Lβδ)
p(1/s−1/υ)+1/γ−1/β

(2+1/β)(1/s−1/υ)+(1/γ−1/β)s−1 .

The statement of the theorem is now obtained by the following routine computations. Denote

A =
1

s−
− 1

pβ−
,

1

s−
=
∑
j∈I−

1

βjrj
,

1

β−
=
∑
j∈I−

1

βj
,

1

γ−
=
∑
j∈I−

1

γj
.

First, we remark that

p
(1

s
− 1

υ

)
+

1

γ
− 1

β
=

p

s−
− 1

γ−
+

1

γ−
− 1

β−
=

p

s−
− 1

β−
= Ap. (6.32)

Next,

1

γ−
=
∑
j∈I−

τj
τ(p)βj

=
1

τ(p)

∑
j∈I−

1

βj
[1− 1/s+ 1/(rjβ)] =

1− 1/s

τ(p)β−
+

1

τ(p)βs−

=
1− 1/s

τ(p)β−
+

1

τ(p)β

(
1

s−
− 1

pβ−

)
+

1

τ(p)βpβ−

=
1

τ(p)β−

(
1− 1

s
+

1

pβ

)
+

A

τ(p)β
=

1

β−
+

A

τ(p)β
.
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Hence, 1/γ − 1/β = 1/γ− − 1/β− = A/(τ(p)β), which implies that

1

s
− 1

υ
=

1

s−
− 1

pγ−
= A+

1

p

(
1

β−
− 1

γ−

)
= A

(
1− 1

pτ(p)β

)
.

Two last equalities yield(
2 +

1

β

)(1

s
− 1

υ

)
+
(1

γ
− 1

β

)1

s
=

A

τ(p)

[(
2 +

1

β

)(
τ(p)− 1

pβ

)
+

1

sβ

]
=

A

τ(p)

(
2 +

1

β
− 2

sβ

)
,

where the last equality follows from the fact that τ(p)−1/(pβ) = 1−1/s. This together with (6.32).
leads to the statement of the theorem in the sparse zone.

50. Boundary zones: p = s(2 + 1
β ), p = 2+1/β

1+1/s . Here the proof coincides with the proof for the

dense zone with the only difference that the corresponding sums equal |m1| and m2 respectively.

6.6. Proof of statement (i) of Theorem 4

In view of (6.14) and by bound (6.28) of Proposition 2,

Ef‖f̂ − f‖pp ≤ c1

(
Lβδ

)pν(θ)
+ c2

∞∑
m=m0(θ)

Jm.

If p < 2+1/β
1/θ+1/s then, using bounds (6.24) and (6.25) of Proposition 1, we have

∞∑
m=m0(θ)

Jm ≤ c3ϕ
p

m2∑
m=m0(θ)

2
m
(
p− 2+1/β

1/θ+1/s

)
≤ c4 ϕ

p2
m0(θ)

(
p− 2+1/β

1/θ+1/s

)
= c5(Lβδ)

p−θ
1−θ/s+1/β ,

and the assertion of the theorem follows. If s(2 + 1/β) ≥ p ≥ 2+1/β
1/θ+1/s then

∞∑
m=m0(θ)

Jm ≤ c6µ
p
n(θ)ϕp ≤ c7µ

p
n(θ)

(
Lβδ

)pν(θ)
.

7. Proofs of Theorem 3, statement (ii) of Theorem 4 and the lower bound in (4.4)

The proof is organized as follows. First, we formulate two auxiliary statements, Lemmas 4 and 5.
Second, we present a general construction of a finite set of functions employed in the proof of lower
bounds. Then we specialize the constructed set of functions in different regimes and derive the
announced lower bounds.

7.1. Auxiliary lemmas

The first statement given in Lemma 4 is a simple consequence of Theorem 2.4 from Tsybakov
(2009). Let F be a given set of probability densities.
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Lemma 4. Assume that for any sufficiently large integer n one can find a positive real number ρn
and a finite subset of functions

{
f (0), f (j), j ∈ Jn

}
⊂ F such that∥∥f (i) − f (j)

∥∥
p
≥ 2ρn, ∀i, j ∈ Jn ∪ {0} : i 6= j; (7.1)

lim sup
n→∞

1

|Jn|2
∑
j∈Jn

Ef (0)

{
dPf (j)
dPf (0)

(X(n))

}2

=: C <∞. (7.2)

Then for any q ≥ 1

lim inf
n→∞

inf
f̃

sup
f∈F

ρ−1
n

(
Ef
∥∥f̃ − f∥∥q

p

)1/q
≥
(√

C +
√
C + 1

)−2/q
,

where infimum on the left hand side is taken over all possible estimators.

We will apply Lemma 4 with F = N~r,d(~β, ~L,M) in the proof of Theorem 3 and with F =

Gθ(R) ∩ N~r,d(~β, ~L,M) in the proof of statement (ii) of Theorem 4.
Next we quote the Varshamov–Gilbert lemma [see, e.g., Lemma 2.9 in Tsybakov (2009)].

Lemma 5 (Varshamov–Gilbert). Let %m be the Hamming distance on {0, 1}m, m ∈ N∗, i.e.

%m(a, b) =
m∑
j=1

1 {aj 6= bj} , a, b ∈ {0, 1}m.

For any m ≥ 8 there exists a subset Pm of {0, 1}m such that
∣∣Pm∣∣ ≥ 2m/8, and

%m
(
a, a′

)
≥ m

8
, ∀a, a′ ∈ Pm.

7.2. Proof of Theorem 3. General construction of a finite set of functions

10. For any t ∈ R set

Λ(t) =

(∫ 1

−1
e−1/(1−u2)du

)−1

e−1/(1−t2) 1[−1,1](t).

Note that Λ is a probability density compactly supported on [−1, 1] and infinitely differentiable on
the real line, Λ ∈ C∞(R1). Obviously, for any α > 0 and r ≥ 1 there exists constant c1 = c1(α, r) <
∞ such that

Λ ∈ Nr,1(α, c1). (7.3)

Define

f̄ (0)(x) =

d∏
l=1

[
1

N

∫
R1

Λ(y − xl)1[−N
2
,N
2

](y)dy

]
, x = (x1, . . . , xd) ∈ Rd,

where parameter N = N(n) > 8 will be chosen later. By construction, f̄ (0) is a probability density
for any choice of N , supp(f̄ (0)) = [−N/2− 1, N/2 + 1]d, and

f̄ (0)(x) = N−d, ∀x ∈
[
−N/2 + 1, N/2− 1

]d
. (7.4)
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Moreover, in view of (7.3) and by the Young inequality, there exist constants ~C =
(
C̃1, . . . , C̃d

)
depending on ~β and ~r only such that

f̄ (0) ∈ N~r,d
(
~β, ~C

)
. (7.5)

Note that ~C do not depend on N .
Let L0 > 0 be fixed, and let f (0)(x) = κdf̄ (0)

(
xκ
)
, where κ > 0 is chosen in such a way that f (0)

belongs to the class N~r,d(~β, 2−1~L0), where ~L0 = (L0, . . . , L0). The existence of such κ independent

of N and determined by ~β, ~r and L0 is guaranteed by (7.5). Note also that f (0) is a probability
density. Moreover, we remark that ‖f̄ (0)‖∞ ≤ N−d since

∫
|Λ| = 1. Thus,

f (0) ∈ N~r,d(~β, ~L0/2,M/2), (7.6)

provided that N > (2M−1)1/dκ. This condition is assumed to be fulfilled.

20. Put for any t ∈ R1

g(t) =

∫
R1

Λ(y − t)
[
1[0,1](y)− 1[−1,0](y)

]
dy.

We obviously have g ∈ C∞(R1), and

(i)

∫
R1

g(y)dy = 0, (ii) supp(g) ⊆ [−2, 2], (iii) ‖g‖∞ ≤ 1. (7.7)

For any l = 1, . . . , d let (20κ)−1 > σl = σl(n) → 0, n → ∞, be the sequences to be specified
later. Let Ml = (20κσl)−1N , and without loss of generality assume that Ml, l = 1, . . . , d are integer
numbers. Define also

xj,l = −N − 4

4κ
+ 8jσl, j = 1, . . . ,Ml, l = 1, . . . , d,

and let M = {1, . . . ,M1} × · · · × {1, . . . ,Md}. For any m = (m1, . . . ,md) ∈M define

Gm(x) =

d∏
l=1

g

(
xl − xml,l

σl

)
, x ∈ Rd,

Πm =
[
xm1,1 − 3σ1, xm1,1 + 3σ1

]
× · · · ×

[
xmd,d − 3σd, xmd,d − 3σd

]
⊂ Rd.

Several remarks on these definitions are in order. First, in view of (7.7)(ii)

supp
(
Gm
)
⊂ Πm, ∀m ∈M, (7.8)

Πm ∩Πj = ∅, ∀m, j ∈M : m 6= j. (7.9)

Second, since g ∈ C∞(R1), we have that Gm ∈ C∞(Rd) for any m ∈ M. Moreover, for any
l = 1, . . . , d, any |h| ≤ σl and any integer k

supp
{

∆h,l (D
k
l Gm)

}
⊆ Πm, ∀m ∈M, (7.10)

where Dk
l G stands for the kth order derivative of a function G with respect to the variable xl, and

∆h,l is the first order difference operator with step size h in direction of the variable xl.
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For m ∈M define

π(m) =

d−1∑
j=1

(mj − 1)

( d∏
l=j+1

Ml

)
+md.

It is easily checked that π defines enumeration of the set M, and π : M → {1, 2 . . . , |M|} is a
bijection. Let W be a subset of {0, 1}|M|. Define a family of functions {Fw, w ∈W} by

Fw(x) = A
∑
m∈M

wπ(m)Gm(x), x ∈ Rd,

where wj , j = 1, . . . , |M| are the coordinates of w, and A is a parameter to be specified. It follows
from (7.7)(iii), (7.8) and (7.9) that ∥∥Fw∥∥∞ ≤ A, ∀w ∈W, (7.11)

and (7.7)(i) implies that ∫
Rd
Fw(x)dx = 0, ∀w ∈W. (7.12)

30. Now we find conditions which guarantee that Fw ∈ N~r,d(~β, 2−1~L) for any w ∈W .
Fix l = 1, . . . , d, and let kl = bβlc + 1 if βl /∈ N∗, and kl = bβlc + 2 if βl ∈ N∗ (here bxc stands

for the maximal integer number strictly less than x).
First, for any w ∈W and h ∈ R∥∥∥∆kl

h,lFw

∥∥∥
rl

=
∥∥∥∆kl−1

h,l (∆h,lFw)
∥∥∥
rl
≤ |h|kl−1

∥∥∥∆h,l(D
kl−1
l Fw)

∥∥∥
rl
, (7.13)

where the last inequality is found in (Nikol’skii 1977, Section 4.4.4). Next, in view of (7.9) and
(7.10) we obtain for any w ∈W and any rl 6=∞∥∥∥∆h,l(D

kl−1
l Fw)

∥∥∥rl
rl

=
∑
j∈M

∫
Πj

∣∣∣∆h,l(D
kl−1
l Fw)(x)

∣∣∣rldx
= Arl

∑
j∈M

wπ(j)

∫
Πj

∣∣∣∆h,l(D
kl−1
l Gj)(x)

∣∣∣rldx
≤ ArlSW

∥∥g∥∥(d−1)rl
rl

σ
−(kl−1)rl
l

( d∏
j=1

σj

)∥∥∥g(kl−1)
(
· − h

σl

)
− g(kl−1)(·)

∥∥∥rl
rl
,

where we have put SW := supw∈W |{j : wj 6= 0}|. Thus, for any rl 6=∞ we have∥∥∥∆h,l(D
kl−1
l Fw)

∥∥∥
rl
≤ A

∥∥g∥∥(d−1)rl
rl

σ
−(kl−1)
l

(
SW

d∏
j=1

σj

) 1
rl
∥∥∥g(kl−1)

(
· − h

σl

)
− g(kl−1)(·)

∥∥∥
rl
. (7.14)

Similarly, we get for any w ∈W∥∥∥∆h,l(D
kl−1
l Fw)

∥∥∥
∞

= sup
j∈M

sup
x∈Πj

∣∣∣∆h,l(D
kl−1
l Fw)(x)

∣∣∣
= A sup

j∈M
wπ(j) sup

x∈Πj

∣∣∣∆h,l(D
kl−1
l Gj)(x)

∣∣∣
≤ A

∥∥g∥∥(d−1)

∞ σ
−(kl−1)
l

∥∥∥g(kl−1)
(
· − h

σl

)
− g(kl−1)(·)

∥∥∥
∞
. (7.15)
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In view of (7.7)(ii) and |h| ≤ σl, function g(kl−1)
(
· −[h/σl]

)
− g(kl−1)(·) is supported on [−3, 3].

Therefore the fact that g ∈ C∞(R1) implies for any rl ∈ [1,∞]∥∥∥g(kl−1)
(
· −h/σl

)
− g(kl−1)(·)

∥∥∥
rl
≤ 61/rl

∥∥g(kl)
∥∥
∞(h/σl) ≤ 61/rl

∥∥g(kl)
∥∥
∞|h/σl|

βl−kl+1.

In the last inequality we have used that 0 ≤ βl−kl + 1 ≤ 1 by definition of kl. Combining this with
(7.13), (7.14) and (7.15) we have for any |h| ≤ σl and any rl ∈ [1,∞]

∥∥∥∆kl
h,lFw

∥∥∥
rl
≤ A|h|βl61/rl

∥∥g∥∥d−1

rl

∥∥g(kl)
∥∥
∞σ
−βl
l

(
SW

d∏
j=1

σj

)1/rl

. (7.16)

If |h| ≥ σl then we note that ∆h,l(D
kl−1
l Fw)(·) = (Dkl−1

l Fw)(· − hel)− (Dkl−1
l Fw)(·), and by the

triangle inequality∥∥∥∆h,l(D
kl−1
l Fw)

∥∥∥
rl
≤ 2
∥∥∥Dkl−1

l Fw

∥∥∥
rl
≤ 2
∥∥∥Dkl−1

l Fw

∥∥∥
rl
|h/σl|βl−kl+1.

In view of (7.8) and (7.9) we get for any w ∈W and any rl 6=∞∥∥∥Dkl−1
l Fw

∥∥∥rl
rl

=
∑
j∈M

∫
Πj

∣∣∣Dkl−1
l Fw(x)

∣∣∣rldx = Arl
∑
j∈M

wπ(j)

∫
Πj

∣∣∣Dkl−1
l Gj(x)

∣∣∣rldx
≤ ArlSW

∥∥g∥∥(d−1)rl
rl

∥∥∥g(kl−1)
∥∥∥rl
rl
σ

(1−kl)rl
l

( d∏
j=1

σj

)
.

Moreover, ∥∥∥Dkl−1
l Fw

∥∥∥
∞

= sup
j∈M

sup
x∈Πj

∣∣∣Dkl−1
l Fw(x)

∣∣∣ = A sup
j∈M

wπ(j) sup
x∈Πj

∣∣∣Dkl−1
l Gj(x)

∣∣∣
≤ A

∥∥g∥∥(d−1)

∞

∥∥∥g(kl−1)
∥∥∥
∞
σ

(1−kl)
l .

We obtain finally from (7.13) that for any |h| ≥ σl and any rl ∈ [1,∞]

∥∥∥∆kl
h,lFw

∥∥∥
rl
≤ A|h|βl2

∥∥g∥∥d−1

rl

∥∥g(kl−1)
∥∥
rl
σ−βll

(
SW

d∏
j=1

σj

)1/rl

. (7.17)

Combining (7.16) and (7.17) we conclude that for any w ∈W and rl ∈ [1,∞]

∥∥∥∆kl
h,lFw

∥∥∥
rl
≤ C1A|h|βlσ−βll

(
SW

d∏
j=1

σj

)1/rl

, ∀h ∈ R1,

where C1 = maxl(‖g
∥∥d−1

rl
max{61/rl‖g(kl)‖∞, 2‖g(kl−1)‖rl}). Thus, if

Aσ−βll

(
SW

d∏
j=1

σj

)1/rl

≤ (2C1)−1Ll, ∀l = 1, . . . , d (7.18)
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then Fw ∈ N~r,d(~β, 2−1~L) for any w ∈W .

40. Define for any w ∈W

fw(x) = f (0)(x) + Fw(x), x ∈ Rd.

Remind that f (0) is the probability density belonging to N~r,d(~β, ~L0/2,M/2). Therefore, in view of
(7.12) and under condition (7.18), for any w ∈W∫

Rd
fw(x)dx = 1, fw ∈ N~r,d(~β, ~L), (7.19)

where the latter inclusion holds because minj=1,...,d Lj ≥ L0.
By construction of Fw, for any w ∈W

Fw(x) = 0, ∀x /∈
[
− 1

4κ
(N − 4),

1

4κ
(N + 4)

]d
. (7.20)

This yields

fw(x) = f (0)(x) ≥ 0, ∀x /∈
[
− 1

4κ
(N − 4),

1

4κ
(N + 4)

]d
. (7.21)

On the other hand, by (7.4)

f (0)(x) = κdN−d, ∀x ∈
[
− 1

4κ
(N − 4),

1

4κ
(N + 4)

]d
. (7.22)

Therefore, if we require

A ≤ κdN−d, (7.23)

this together with (7.13) implies

fw(x) ≥ 0, ∀x ∈
[
− 1

4κ
(N − 4),

1

4κ
(N + 4)

]d
.

We conclude that fw ≥ 0 for any w ∈ W . Moreover, we get from (7.6), (7.11) and (7.23) that
‖fw‖∞ ≤M for any w ∈W .

All this, together with (7.19), shows that {f (0), fw, w ∈W} is a finite set of probability densities
from N~r,d(~β, ~L,M). Thus Lemma 4 is applicable with Jn = W and F = N~r,d(~β, ~L,M).

50. Suppose now that the set W is chosen so that

%|M|
(
w,w′

)
≥ B, ∀w,w′ ∈W, (7.24)

where, we remind, %|M| is the Hamming distance on {0, 1}|M|. Here B = B(n) ≥ 1 is a parameter
to be specified. Then we deduce from (7.19), (7.8) and (7.9), that for all w,w′ ∈W

‖fw − fw′‖pp = ‖Fw − Fw′‖pp = Ap
∑
j∈M

∣∣∣wπ(j) − w′π(j)

∣∣∣ ∫
Πj

∣∣∣Gj(x)
∣∣∣pdx

= Ap
∥∥g∥∥dp

p

( d∏
j=1

σj

) ∑
j∈M

∣∣∣wπ(j) − w′π(j)

∣∣∣ = Ap
∥∥g∥∥dp

p

( d∏
j=1

σj

)
%|M|

(
w,w′

)
≥

∥∥g∥∥dp
p
ApB

( d∏
j=1

σj

)
. (7.25)
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Here we have used that the map π is a bijection. Putting C2 = 1
2

∥∥g∥∥d
p
, we conclude that condition

(7.1) of Lemma 4 is fulfilled with

ρn = C2A

(
B

d∏
j=1

σj

)1/p

. (7.26)

Let us remark that (7.26) remains true if we formally put p =∞. Indeed, similarly to (7.25),

‖fw − fw′‖∞ = ‖Fw − Fw′‖∞ = A sup
j∈M

∣∣wj − w′j∣∣∥∥g∥∥d∞ ≥ A∥∥g∥∥d∞. (7.27)

Here we have used (7.9), the fact that the map π is a bijection and, that w 6= w′ for all w,w′ ∈W
in view of (7.24).

Now we verify condition (7.2) of Lemma 4. First observe that

dPfw
dPf (0)

(
X(n)

)
=

n∏
k=1

fw(Xk)

f (0)(Xk)
.

Since Xk, k = 1, . . . , n are i.i.d. random vectors, we have for any w ∈W

Ef (0)

{
n∏
k=1

fw(Xk)

f (0)(Xk)

}2

=

{∫
Rd

f (0)(x) + 2Fw(x) + F 2
w(x)

f (0)(x)
dx

}n

=

{
1 +

∫
Rd

F 2
w(x)

f (0)(x)
dx

}n
.

The last equality follows from (7.12). By (7.20) and (7.22),∫
Rd

F 2
w(x)

f (0)(x)
dx = κ−dNd‖Fw‖22;

hence for any w ∈W

Ef (0)

{
dPfw
dPf (0)

(
X(n)

)}2

=
{

1 + κ−dNd‖Fw
∥∥2

2

}n
≤ exp

{
nκ−dNd‖Fw

∥∥2

2

}
.

Repeating computations that led to (7.17) we have

∥∥Fw∥∥2

2
≤ A2‖g‖2d2 SW

d∏
j=1

σj .

The right hand side of the latter inequality does not depend on w; hence we

1

|W |2
∑
w∈W

Ef (0)

{
dPfw
dPf (0)

(
X(n)

)}2

≤ exp
{
C3nA

2SWN
d

( d∏
j=1

σj

)
− ln

(
|W |

)}
,

where we have put C3 = κ−d‖g
∥∥2d

2
. Therefore, if

C4nA
2SWN

d
d∏
j=1

σj ≤ ln
(
|W |

)
(7.28)

32



then condition (7.2) of Lemma 4 is fulfilled with C = 1.
In order to apply Lemma 4 it remains to specify the set W and the parameters A, N , σj ,

j = 1, . . . , d so that the relationships (7.18), (7.23), (7.24), and (7.28) are simultaneously fulfilled.
According to (4), under these conditions the lower bound is given by ρn in (7.26).

7.3. Proof of Theorem 3. Derivation of lower bounds in different zones

We begin with the construction of the set W . Let m ≥ 8 be an integer number whose choice will
be made later, and, without loss of generality, assume that |M|/m is integer. Let Pm be a subset
of {0, 1}m such that

|Pm| ≥ 2m/8, %m(z, z′) ≥ m/8, ∀z, z′ ∈ Pm. (7.29)

Existence of such set Pm is guaranteed by Lemma 5. Let J := {1 + j
m |M|, j = 0, . . . ,m− 1}, and

note that J ⊆ {1, . . . , |M|} with the equality in the case m = |M|. Define the map Υ : Pm →
{0, 1}|M| by

Υj [a] =

{
aj , j ∈ J ,
0, j ∈ {1, . . . , |M|} \ J ,

and let W = Υ(Pm). Obviously, %|M|(w,w
′) = %|M|(Υ[a],Υ[a′]) = %m(a, a′) for all w,w′ ∈ W ;

therefore (7.29) implies that

|W | ≥ 2m/8, %|M|(w,w
′) ≥ 8−1m, ∀w,w′ ∈W. (7.30)

With such a set W , SW ≤ m; moreover, since ln(|W |) ≥ m ln 2/8, condition (7.28) holds true if

A2nNd
d∏
j=1

σj ≤ (8C4)−1 ln 2. (7.31)

We also note that condition (7.18) is fulfilled if we require

Aσ−βll

(
m

d∏
j=1

σj

)1/rl

≤ (2C1)−1Ll, ∀l = 1, . . . , d. (7.32)

In addition, (7.24) holds with B = m/8.

7.3.1. Tail zone: p ≤ 2+1/β
1+1/s

Let m = |M|. By construction, |M| =
∏d
l=1Ml = (20κ)−dNd

∏d
l=1 σ

−1
l and, therefore (7.32) is

reduced to

Aσ−βll Nd/rl ≤ C5Ll. (7.33)

Thus, choosing

σl = C6A
1/βlL

−1/βl
l N

d
βlrl , (7.34)
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we guarantee the fulfillment of (7.33) provided that C6 ≥ maxl=1,...,dC
−1/βl
5 . Moreover, with this

choice (7.31) is reduced to

A2+1/βNd(1+1/s) ≤ C7Lβn
−1, (7.35)

where, as before, Lβ =
∏d
l=1 L

1/βl
l . Moreover, we have from (7.26)

ρn = C8AN
d/p, C8 = C3(160κ)−1/p. (7.36)

Let Nd = C9A
−1, where constant C9 ≤ κd will be specified below; then (7.23) holds. Next, in

view of (7.35) and (7.36)

A = C10(Lβ/n)
1

1−1/s+1/β , ρn = C11(Lβ/n)
1−1/p

1−1/s+1/β = C11

(
Lβαnn

−1
)ν
.

We remark that N → ∞ as n → ∞. It remains to check that σl, l = 1, . . . , d are small enough. It
follows from (7.34) that if rl > 1, then σl → 0 as n→∞ since A→ 0. If rl = 1, then

σl = C12C
1/βl
9 L

−1/βl
l ≤ C12

(
C9/L0

)1/βl .
Choosing C9 small enough we guarantee that σl ≤ (20κ)−1, for all l = 1, . . . , d. This condition
is required in the construction of the family Gm, m ∈ M. Thus, Lemma 4 can be applied with
ρn = C11

(
Lβαnn

−1
)ν

, and the result follows.

7.3.2. Dense zone: 2+1/β
1+1/s ≤ p ≤ s(2 + 1

β )

Here, as in the previous case, we let m = |M|. The relationships (7.34) (7.35) and (7.36) remain
to be true, but our choice of N will be different.

Let N = C12 from some constant C12. This yields in view of (7.35) and (7.36)

A = C13(Lβ/n)
β

2β+1 , ρn = C14(Lβ/n)
β

2β+1 = C14

(
Lβαnn

−1
)ν
.

The requirement (7.23) is obviously fulfilled since A→ 0, n→∞. Moreover, we obtain from (7.34)
that σl → 0 as n→∞ and, therefore, σl ≤ (20κ)−1, l = 1, . . . , d for n large enough. Thus, Lemma 4
can be applied with ρn = C14

(
Lβαnn

−1
)ν

and the result follows.

7.3.3. Sparse zone: s(2 + 1
β ) < p <∞, s < 1

Let A = C̃ and N = C17 and suppose that C̃ ≤ C−1
17 κd; then (7.23) is satisfied. Moreover (7.31)

and (7.32) are reduced to

n
d∏
j=1

σj ≤ C̃−2C18, σ−βll

(
m

d∏
j=1

σj

)1/rl

≤ C̃−1C19Ll, ∀l = 1, . . . , d. (7.37)

Let c̃1, c̃2 be constants satisfying c̃1 ≤ C̃−1C18, and c̃2 ≤ C̃−1C19. It is straightforward to check
that if we choose

m = c̃−1+s
1 c̃

s/β
2 Lsβn

1−s, σl = (c̃2Ll)
−1/βl

(
c̃1c̃

1/β
2 Lβn

−1
)s/(βlrl)

, l = 1, . . . , d, (7.38)
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then inequalities (7.37) are fulfilled. With this choice (7.26) is reduced to

ρn = C̃C17

(
m

d∏
j=1

σj

)1/p

= C̃C20(Lβn
−1)s/p = C̃C20

(
Lβαnn

−1
)ν
. (7.39)

It remains to verify that σl are small enough, and that m ≥ 8, |M|/m ≥ 1. Note that m → ∞ as
n→∞ because of s < 1. Remind also that

|M| =
d∏
l=1

Ml = (20κ)−dNd
d∏
l=1

σ−1
l = (20κ)−dCd17c̃1n ;

hence |M|/m ≥ (20κ)−dCd17(c̃1c̃
1/β
2 )−sL

−s/β
0 ns. Thus |M|/m ≥ 1 for large enough n. We note

also that σl ≤ (c̃2L0)−1/βl for all n large enough. Therefore, if we choose C̃ large enough and put
c̃2 = C̃−1C19 we can ensure that σl ≤ (20κ)−1 for all l = 1, . . . , d. Thus, Lemma 4 can be applied
with ρn = C̃C20

(
Lβαnn

−1
)ν

and the result follows.

7.3.4. Sparse zone: s(2 + 1
β ) < p <∞, s ≥ 1

Here we consider another choice of the set W . Let W = {e1, e2, . . . , e|M|}, where ej , j = 1, . . . , |M|
is the canonical basis in R|M|. With this choice

SW = 1, |W | = Nd
d∏
j=1

σ−1
j ,

and (7.24) holds with B = 1. Let N = C14; then (7.18) and (7.28) take the form

Aσ−βll

( d∏
j=1

σj

)1/rl

≤ (2C1)−1Ll, ∀l = 1, . . . , d; (7.40)

A2n

d∏
j=1

σj ≤ C15 ln
( d∏
j=1

σ−1
j

)
. (7.41)

Moreover, we get from (7.26)

ρn = C16A
( d∏
j=1

σj

)1/p
. (7.42)

Put ε =
√

lnn/n and

A = c1L
1

2−2/s+1/β

β ε
1−1/s

1−1/s+1/(2β) , σl = c2L
1−2/rl

βl(2−2/s+1/β)

β ε
1−1/s+1/(βrl)

βl(1−1/s+1/(2β))L
−1/βl
l . (7.43)

We have

d∏
l=1

σl = cd2L
− 2

2−2/s+1/β

β ε
1/β

1−1/s+1/(2β) ,
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and it is evident that
∏d
l=1 σl ≤ ε1/(β+1/2) for all n large enough; hence ln(

∏d
l=1 σ

−1
l ) ≥ lnn/(2β+1).

Then is is easily checked that our choice (7.43) satisfies (7.40) and (7.41) provided that

c1 ≤ (2C1)−1, c2 ≤ 1 c2
1c
d
2 ≤ C15/(2β + 1). (7.44)

Here we have also used that d− 1/s ≥ 0. Note also that if s > 1 then

A→ 0, max
l=1,...,d

σl → 0, n→∞,

which ensures (7.23) and σl ≤ (20κ)−1, l = 1, . . . , d for all n large enough.
On the other hand, if s = 1 then we should add to (7.44) the conditions

c1L
1

2−2/s+1/β

β ≤ C14κd, c2 max
l=1,...,d

[
L

1/βl−2/(βlrl)

2−2/s+1/β

β L
−1/βl
0

]
≤ (20κ)−1.

Obviously, both restrictions hold if we choose c1 and c2 small enough, but now these constants may
depend on ~L. Note, however, that if maxl=1,...,d Ll ≤ L∞ then c1 and c2 can be chosen depending
on L0 and L∞ only.

Using (7.42) and (7.43) we conclude that Lemma 4 is applicable with

ρn = C16L
1/2−1/p

1−1/s+1/(2β)

β

(
lnn

n

) 1−1/s+1/(pβ)
2(1−1/s+1/(2β))

= C16L
1/2−1/p

1−1/s+1/(2β)
−ν

β

(
Lβαn
n

)ν
. (7.45)

that completes the proof of statement (i) of the theorem.

7.3.5. Proof of statement (ii): sparse zone, p =∞, s ≤ 1

The proof in this case coincides with the one for the sparse zone with s < 1. Thus, we keep (7.37),
(7.38), and, in view of (7.27), (7.39) is replaced by ρn = C̃C17. Since ρn does not tend to 0 as
n → ∞, a consistent estimator does not exist. All other details of the proof remain unchanged.
This completes the proof of Theorem 3.

7.4. Proof of statement (ii) of Theorem 4

The proof goes along the lines of the proof of Theorem 3 with modifications indicated below.
We start with the following simple observation: for any M > 0 and y > 0 one has

‖g‖∞ ≤M, supp{g} ⊆ [−y, y]d ⇒ g ∈ Gθ

(
M(2y + 4)d/θ

)
, ∀θ ∈ (0, 1]. (7.46)

This is an immediate consequence of the fact that conditions ‖g‖∞ ≤M , supp{g} ⊆ [−y, y]d imply
that ‖g∗‖∞ ≤M and supp{g} ⊆ [−y − 2, y + 2]d.

Next, we note that the lower bounds of Theorem 3 in the dense and sparse zones are proved
over the set of compactly supported densities. Hence they are valid also on Gθ(R) ∩N~r,d(~β, ~L,M),

provided that R is large enough. Hence, if p ≥ 2+1/β
1/θ+1/s the assertion of the theorem follows.

Let p < 2+1/β
1/θ+1/s . The proof of the lower bound here differs from the proof of Theorem 3 only in

construction of the function f (0).
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Let f (0) be the function constructed exactly as in the proof of Theorem 3 with N = N0 fixed
throughout the asymptotics n→∞, and such that f (0) ∈ N~r,d(~β, 4−1~L0, 4

−1M). Since N0 is fixed,
f (0) is compactly supported and, by (7.46) we have that f (0) ∈ Gθ(R1) for some large enough
R1 > 0. Define

f̄ (θ)(x) =

d∏
l=1

[
N−1/θ

∫
R

Λ(y − xl)1[−N
2
,N
2

](y)dy

]
, x = (x1, . . . , xd) ∈ Rd,

where N = N(n) → ∞ will be specified later. Let f̃ (θ)(x) = ςdf̄ (θ)(ςx), where ς > 0 is chosen to
guarantee f̃ (θ) ∈ N~r,d(~β, 4−1~L0, 4

−1M). We note however that, in contrast to the case θ = 1, f̃ (θ) is

not a probability density. In particular,
∫
f̃ (θ) → 0 as N →∞, because θ < 1. Define

f (θ) = (1− pN )f (0) + f̃ (θ),

where pN :=
∫
f̃ (θ) ensures

∫
f (θ) = 1.

Note also that f (1) = f̃ (1) since f̃ (1) is a probability density and, therefore pN = 1. Thus, we can
assert that

f (θ) ∈ N~r,d(~β, 2−1~L0, 2
−1M),

∫
f (θ) = 1, f (θ) ≥ 0.

Note that, by construction, f̃ (θ) is supported on the cube [(−N/2− 1)/ς, (N/2 + 1)/ς]d and bounded
by N−d/θςd. Therefore, in view of (7.46), f̃ (θ) ∈ Gθ(R2) for some large enough R2.

Let W be the parameter set as defined in the proof of Theorem 3. For any w ∈W and any θ < 1
we let

f (θ)
w (x) = f (θ)(x) + Fw(x), x ∈ Rd,

where functions Fw are constructed as in the proof of Theorem 3. If instead of (7.23) we require

A ≤
[
κd + ςd

]
N−d/θ, (7.47)

then we obtain in view of (7.11) and (7.47) that {Fw, w ∈W} ⊂ Gθ(R3) for some large enough R3.

All said above one allows to conclude that {f (θ), f
(θ)
w , w ∈W} is a finite set of probability densities

from Gθ(R)∩N~r,d(~β, ~L,M) for some large enough R > 0, and Lemma 4 is applicable with Jn = W

and F = Gθ(R) ∩ N~r,d(~β, ~L,M).
Note also that if θ = 1 we come to the construction used in the proof of Theorem 3 and, therefore,

the statement of the theorem in the case θ = 1 follows.
Suppose now that θ < 1. We will follow construction of the set W for the tail zone which is given

in Subsection 7.3.1. Choose m = |M| and note that (7.33), (7.34), (7.36) remain unchanged, while
(7.35) should be replaced by

A2+1/βNd(1/θ+1/s) ≤ C7Lβn
−1. (7.48)

Now we choose Nd = cA−θ with c ≤ κd + ςd; then (7.47) is valid. We obtain from (7.48) that

A = C8(Lβ/n)
1

1−θ/s+1/β , ρn = C9(Lβ/n)
1−θ/p

1−θ/s+1/β .

Finally, because (7.34) remains intact, σl → 0 as n → ∞ for any l = 1, . . . , d; this follows from
A→ 0 and θ < 1. This completes the proof.
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7.5. Proof of the lower bound in (4.4)

The required result will follow from the lower bound of Theorem 3 in the tail zone (see Section 7.3.1)
if we will show that for any given R > 0 and θ ∈ (0, 1)

f (0) /∈ Gθ(R), fw /∈ Gθ(R), ∀w ∈W. (7.49)

First we note that f (0) = N−d for x ∈ [−(N − 2)/(2κ), (N − 2)/(2κ)
]d

; therefore, ‖[f (0)]∗‖θ →∞
as N →∞, because θ < 1.

Next, in view of (7.21), fw(x) = f (0)(x) for any x /∈ [−(N − 4)/(4κ), (N − 4)/(4κ)]d, which also
implies

inf
w∈W

∥∥f∗w∥∥θ →∞, N →∞.

It remains to note that in the tail zone the parameter N is chosen so that N = N(n) → ∞ as
n→∞. This completes the proof of (7.49).

Appendix A: Proofs of auxiliary results of Section 5

A.1. Measurability

Write f(x,X(n)) := f̂ĥ(x)(x), and note that the map f : Rd × Rdn → R is completely determined
by the kernel K and the set H. We need to show that f is a Borel function.

Let Rh(x,X(n)) := R̂h(x), and note that for every h ∈ H, the map Rh : Rd × Rdn → R is a
continuous function. This follows from the continuity of the kernel K and from the fact that H
is a finite set. The continuity of K also implies that the map fh : Rd × Rdn → R is a continuous
function for any h ∈ H, where fh(x,X(n)) := f̂h(x). Next, denote by B the Borel σ-algebra on
Rd ×Rdn, and let b : Rd ×Rdn → H be the function b(x,X(n)) := ĥ(x). We obviously have for any
given h ∈ H{

(x, y) ∈ Rd × Rdn : b(x, y) = h
}

=
⋃
η∈H

{
(x, y) ∈ Rd × Rdn : Rh(x, y)−Rη(x, y) ≤ 0

}
∈ B,

where the last inclusion follows from the continuity of Rη, η ∈ H. Here we have also used that H
is a finite set. It remains to note that

f̂ĥ(x)(x) =
∑
h∈H

fh(x,X(n))1
{
b
(
x,X(n)

)
= h

}
,

and the required statement follows.

A.2. Proof of Lemma 1

10. Note that M̌h(g, x) = 4−1M̂h(g, x) and let H0 = {h ∈ H : Ah(g, x) ≥ 4κ lnn/(nVh)}.
For any h ∈ H0 we have√

κAh(g, x) lnn

nVh
≥ 2κ lnn

nVh
⇒ Mh(g, x) ≤ 3

4
Ah(g, x).
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Therefore,

|Âh(g, x)−Ah(g, x)| ≤ χh(g, x) +Mh(g, x) ≤ χh(g, x) + (3/4)Ah(g, x).

We have for any h ∈ H0

∣∣M̌h(g, x)−Mh(g, x)
∣∣ =

∣∣∣∣∣
√

κ lnn

nVh

Âh(g, x)−Ah(g, x)

Â
1/2
h (g, x) +A

1/2
h (g, x)

∣∣∣∣∣
≤

√
κ lnn

nVh

(
χh(g, x) + (3/4)Ah(g, x)

A
1/2
h (g, x)

)
≤ 1

2
χh(g, x) +

3

4
Mh(g, x).

It yields for any h ∈ H0[
M̌h(g, x)− 7

4
Mh(g, x)

]
+
≤ 1

2
χh(g, x),

[
Mh(g, x)− 4M̌h(g, x)

]
+
≤ 2χh(g, x). (A.1)

(b). Now consider the set H1 := H\H0. Here Ah(g, x) ≤ 4κ lnn/(nVh), and, by definition of Mh

we have

1

4
Ah(g, x) ≤ κ lnn

nVh
≤Mh(g, x) ≤ 3κ lnn

nVh
, ∀h ∈ H1. (A.2)

Note that we have M̂h(g, x) ≥ κ lnn/(nVh) for all h. This together with (A.2) shows that

[Mh(g, x)− 3M̃h(g, x)]+ = 0, ∀h ∈ H1. (A.3)

Furthermore, for any h ∈ H1

Âh(g, x) ≤ Ah(g, x) + χh(g, x) +Mh(g, x) ≤ χh(g, x) +
7κ lnn

nVh
.

Therefore

M̌h(g, x) =

√
κÂh(g, x) lnn

nVh
+

κ lnn

nVh
≤

√
κχh(g, x) lnn

nVh
+ (
√

7 + 1)
κ lnn

nVh

≤ 1

2
χh(g, x) +

(√
7 +

3

2

)κ lnn

nVh
≤ 1

2
χh(g, x) +

(√
7 +

3

2

)
Mh(g, x).

To get the penultimate inequality we have used that
√
|ab| ≤ 2−1(|a|+ |b|). Thus, it is shown that[

M̌h(g, x)−
(√

7 +
3

2

)
Mh(g, x)

]
+
≤ 1

2
χh(g, x), ∀h ∈ H1. (A.4)

Relations (A.4), (A.3) and (A.1) imply statement of the lemma.
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A.3. Proof of Lemma 2

10. Let g : Rd → R1 be a fixed bounded function, and let

ξh(g, x) :=
1

n

n∑
i=1

gh(Xi − x)−
∫
gh(t− x)f(t)dt, h ∈ H.

With this notation ξh(x) = ξh(K,x) and Âh(g, x)−Ah(g, x) = ξh(|g|, x). Therefore moment bounds
on ζ1(x), ζ3(x) and ζ4(x) will follow from those on ξh(g, x) with substitution g ∈ {K,Q, |K|, |Q|}.
Since Mh(g, x) depends on g only via |g| and ‖g‖∞ [see (2.6)–(2.7)], Mh(g, x) = Mh(|g|, x), and
moment bounds on ζ1(x) and ζ3(x) are identical. The bound on ζ4(x) will follow from bounds
on ζ1(x) and ζ3(x) with only one modification: kernel K should be replaced by Q. As for ζ2(x),
ξh,η(x) cannot be represented in terms of ξh(g, x) with function g independent of h and η; see (2.3).
However, the bounds on ζ2(x) will be obtained similarly with minor modifications. Thus it suffices
to bound Ef [ζ1(x)]q and Ef [ζ2(x)]q.

20. We start with bounding Ef [ζ1(x)]q. For any z > 0, h ∈ H and q ≥ 1 one has

Ef
[
|ξh(x)| −

√
2k∞Ah(K,x)z

nVh
− 2k∞z

3nVh

]q
+

≤ 2Γ(q + 1)

[√
2k∞Ah(K,x)

nVh
+

2k∞
3nVh

]q
e−z. (A.5)

This inequality follows by integration of the Bernstein inequality and the following bound on the
second moment of ξh(x):

Ef |ξh(x)|2 ≤ k∞
nVh

∫
|Kh(t− x)|f(t)dt =

k∞Ah(K,x)

nVh
.

We will show that Ef [ζ1(x)]q is bounded by the expression appearing on the right hand side of
(5.2). In fact, we will prove a stronger inequality. Let for some l > 0

λh := (1 + q) ln
(
1/Vh

)
+ ln

(
F−1(x) ∧ nl

)
.

In suffices to show that (5.2) holds when in the definition of ζ1(x) the quantity Mh(K,x) replaced
by M̃h(K,x), where

M̃h(K,x) =

√
2k∞Ah(K,x)λh

nVh
+

2k∞λh
3nVh

.

Indeed, since and n−d ≤ Vh ≤ 1 for any h ∈ H, we have that

λh ≤ (q + 1)d lnn+ l lnn.

Therefore M̃h(K,x) ≤Mh(K,x) for all x ∈ Rd and h ∈ H provided that

κ ≥ k∞
[
d(2q + 4) + 2l

]
.

Thus if we establish (5.2) with Mh(K,x) replaced by M̃h(K,x), the required bound for Ef [ζ1(x)]q

will be proved.
We have for any h ∈ H

exp{−λh} =
(
Vh
)q+1{

F (x) ∨ n−l
}
.
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Furthermore, taking into account that Ah(g, x) ≤ V −1
h ‖g‖∞ for any g, we obtain√

2k∞Ah(K,x)

nVh
+

2k∞
3nVh

≤ 2k∞√
nVh

.

Here we have used that n ≥ 3. If we set z = λh then (A.5) together with two previous display
formulas yields

Ef [ζ1(x)]q = Ef sup
h∈H

[
|ξh(x)| −Mh(K,x)

]q
+
≤
∑
h∈H

Ef
[
|ξh(x)| − M̃h(K,x)

]q
+

≤ 2Γ(q + 1)
(
2k∞

)q
n−q/2

{
F (x) ∨ n−l

}∑
h∈H

Vh

≤ 2d+1Γ(q + 1)
(
2k∞

)q
n−q/2

{
F (x) ∨ n−l

}
. (A.6)

As it was mentioned above, under the same conditions inequality (A.6) holds for Ef [ζ3(x)]q.
As for the moment bound for ζ4(x), in all formulas above K should be replaced by Q and k∞ by

k2
∞ since ‖Q‖∞ ≤ k2

∞. Specifically, if κ ≥ k2
∞[d(2q + 4) + 2l] then

Ef [ζ4(x)]q ≤ 2d+1Γ(q + 1)
(
2k2
∞
)q
n−q/2

{
F (x) ∨ n−l

}
.

30. Now we turn to bounding Ef [ζ2(x)]q. We have similarly to (A.5)

Ef
[
|ξh,η(x)| −

√
2k2
∞Ah∨η(Q, x)z

nVh∨η
− 2k2

∞z

3nVh∨η

]q
+

≤ 2Γ(q + 1)

[√
2k2
∞Ah∨η(Q, x)

nVh∨η
+

2k2
∞

3nVh∨η

]q
e−z.

Here we have used the following bound on the second moment of ξh,η(x):

Ef |ξh,η(x)|2 ≤
‖Qh,η‖∞
nVh∨η

∫ ∣∣∣ 1

Vh∨η
Qh,η

( t− x
h ∨ η

)∣∣∣f(t)dt

≤ ‖Q‖∞
nVh∨η

∫
|Qh∨η(t− x)|f(t)dt =

k2
∞Ah∨η(Q, x)

nVh∨η
.

The further proof goes along the same lines as the above proof with the following minor modi-
fications: in all formulas k∞ should be replaced with k2

∞, Vh∨η should be written instead of Vh,
and κ should satisfy κ ≥ k2

∞[d(2q + 4) + 2l]. The statement of the lemma holds with constant
C0 = 2d

2+1Γ(q + 1)(2k2
∞)q. Combining the above bounds we complete the proof.

Appendix B: Proofs of auxiliary results of Section 6

B.1. Proof of Lemma 3

We have

Bh(f, x) =

∫
K(u)

[
f(x+ uh)− f(x)

]
du =

∫ d∏
j=1

w`(uj)
[
f(x+ uh)− f(x)

]
du.
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First, we note that f(x+ uh)− f(x) can be represented by the telescopic sum

f(x+ uh)− f(x) =
d∑
j=1

∆ujhj ,jf(x1, . . . , xj , xj+1 + uj+1hj+1, . . . , xd + udhd), (B.1)

where we put formally hd+1ud+1 = 0.
Next, for any function g : Rd → R1 and j = 1, . . . , d we have∫

w`(uj)∆ujhj ,jg(x)duj =

∫ ∑̀
i=1

(
`

i

)
(−1)i+1 1

i
w
(uj
i

)
∆ujhj ,jg(x)duj

= (−1)`−1

∫
w(z)

∑̀
i=1

(
`

i

)
(−1)i+`∆izhj ,jg(x)dz = (−1)`−1

∫
w(z)∆`

zhj ,j
g(x)dz. (B.2)

The last equality follows from the definition of `-th order difference operator (3.1). Thus (B.2) and
(B.1) imply that Bh(f, x) =

∑d
j=1Bh,j(f, x), where

(−1)`−1Bh,j(f, x) :=∫ ∫
w(z)∆`

zhj ,j
f(x1, . . . , xj , xj+1 + uj+1hj+1, . . . , xd + udhd)dz

d∏
m=j+1

w`(um)dum.

Therefore, by the Minkowski inequality for integrals [see, e.g., (Folland 1999, Section 6.3)]∥∥Bh,j(f, ·)∥∥rj
≤
∫ ∫

|w(z)|
∥∥∥∆`

zhj ,j
f(·, . . . , ·, ·+ uj+1hj+1, . . . , ·+ udhd)

∥∥∥
rj

dz

d∏
m=j+1

|w`(um)|dum

=

∫ ∫
|w(z)|

∥∥∆`
zhj ,j

f
∥∥
rj

dz

d∏
m=j+1

|w`(um)|dum.

Since f ∈ N~r,d
(
~β, ~L

)
one has

∥∥Bh,j(f, ·)∥∥rj ≤ Ljh
βj
j

∫ ∫
|w(z)| |z|βjdz

d∏
m=j+1

|w`(um)|dum ≤ C1Ljh
βj
j .

This proves (6.6). To get (6.7) we first note that the condition s ≥ 1 implies τ(p) > 0 and τj > 0,
j = 1, . . . , d. Then the inequality in (6.7) follows by the same reasoning with rj replaced by qj , βj
replaced by γj and with the use of embedding (6.2).

B.2. Proof of Proposition 1

By definition of Jm and Xm,
Jm ≤ 2p(m+1)ϕp|Xm|, (B.3)
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and now we bound from above |Xm|. By definition of Xm we have for any h ∈ H

|Xm| ≤
∣∣∣{x : sup

η≥h
Mη(x) > 2m−1ϕ}

∣∣∣+

d∑
j=1

∣∣∣{x : B∗h,j(f, x) > 2m−1ϕ}
∣∣∣

=: Jm,1(h) + Jm,2(h). (B.4)

Recall that with the introduced notation

Mη(x) =

√
κAη(x)δV −1

η + κδV −1
η , η ∈ H.

For any h ∈ H we have

Jm,2(h) =
∑

j∈I\I∞

∣∣∣{x : B∗h,j(f, x) > 2m−1ϕ}
∣∣∣ +

∑
j∈I∞

∣∣∣{x : B∗h,j(f, x) > 2m−1ϕ}
∣∣∣

=: J
(1)
m,2(h) + J

(2)
m,2(h). (B.5)

By the Chebyshev inequality and (6.12) for any h

J
(1)
m,2(h) ≤

∑
j∈I\I∞

[
2(m−1)ϕ

]−rj‖B∗h,j(f, ·)‖rjrj ≤ c1

∑
j∈I\I∞

2−rjmϕ−rjL
rj
j h

βjrj
j . (B.6)

In addition, if s ≥ 1 then the Chebyshev inequality and (6.13) yield

J
(1)
m,2(h) ≤

∑
j∈j∈I\I∞

[
2(m−1)ϕ

]−qj‖B∗h,j(f, ·)‖qjqj ≤ c̃1

∑
j∈I\I∞

2−qjmϕ−qjL
qj
j h

γjqj
j . (B.7)

In order to prove statements (i)–(iv) of the proposition we bound quantities Jm,1(h) and Jm,2(h)
with bandwidth h = h[m] specified in an appropriate way.

B.2.1. Proof of statements (i) and (ii)

Note that the result of the statement of (i) coincides formally with those of the statement (ii) when
θ = 1. This implies obviously that the statement (ii) in the case θ = 1 follows from the statement
(i). So, with slight abuse of the notation we will identify the case θ = 1 with the assumption that
f is a probability density.

10. We start with bounding the term Jm,1(h) on the right hand side of (B.4). Assume that h ∈ H
is such that

κδV −1
h < 2m−2ϕ; (B.8)

then by the Chebyshev inequality

Jm,1(h) ≤
∣∣∣{x : sup

η≥h

√
κAη(x)δV −1

η > 2m−2ϕ
}∣∣∣

≤
∑
η≥h
η∈H

∣∣∣{x : Aη(x) > 22m−4ϕ2κ−1δ−1Vη}
∣∣∣

≤
(
2−2m+4ϕ−2δκ

)θ∑
η≥h
η∈H

‖Aη‖θθV −θη ≤ c2

(
2−2mϕ−2δ

)θ∑
η≥h
η∈H

V −θη ,
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where we have taken into account that, for any η, ‖Aη‖θ ≤ R if f ∈ Gθ(R) with θ < 1, and
‖Aη‖1 ≤ k2

∞. By definition of H, for any η ≥ h, η ∈ H, we have Vη = Vh2k1+···+kd for some
k1, . . . , kd ≥ 1, which implies that

∑
η≥h V

−θ
η ≤ (1− 2−θ)−dV −θh . Thus, we conclude that for any h

satisfying (B.8) one has

Jm,1(h) ≤ c3

(
2−2mϕ−2δV −1

h

)θ
. (B.9)

20. Let h̃ = (h̃1, . . . , h̃d) ∈ (0,∞]d be given by

h̃j =
(
c4L
−1
j ϕ)1/βj2

m
βj

(
1− θ(2+1/β)

rj(1+θ/s)

)
, j = 1, . . . , d, (B.10)

where constant c4 will be specified later. Let us prove that h̃ ∈
[
n−1, 1

]d
for large enough n.

Denote

a =
1− θ/s+ 1/β

1 + θ/s
, bj = 1− θ(2 + 1/β)

rj(1 + 1/s)
,

and remark that a > 0. We note also that

a−1bj =
(2 + 1/β)(1− θ/rj)

1− θ/s+ 1/β
− 1.

If bj ≤ 0 then, because m ≤ 0,

h̃j ≥
(
c4L
−1
j ϕ)1/βj = (c4L

−1
j )1/βj (Lβδ)

1
βj(2+1/β) > n−1

for all large enough n. On the other hand, since 0 ≥ m ≥ m0(θ) and 2m0(θ)a ≤ 2aĉ1κϕ by definition
of m0(θ),

h̃j ≤ (c4L
−1
j ϕ)1/βj2

m0(θ)bj
βj = (c4L

−1
j ϕ)1/βj

(
2m0(θ)a

) bj
aβj

≤ (c4L
−1
j )1/βj (2−aĉ1κ)

bj
aβj ϕ

1+bj/a

βj ≤ c5(c4L
−1
0 )1/βj ,

where we took into account that 1+bja
−1 > 0 and minj=1,...,d Lj ≥ L0 > 0. Then choosing constant

c4 small enough we have h̃j ≤ 1. Thus we showed that h̃j ∈ [n−1, 1] for j such that bj ≤ 0.
Now consider the case bj > 0. Here

h̃j ≥ (c4L
−1
j ϕ)1/βj

(
2m0(θ)a

)bja−1/βj ≥ (c4L
−1
j ϕ)1/βj

(
ĉ1κϕ

)bja−1/βj

≥ c6

(
c4L
−1
j )1/βjϕ

(2+1/β)(1−θ/rj)
βj(1−θ/s+1/β) .

It remains to note that

1− θ/rj
βj(1− θ/s+ 1/β)

=
1/βj − θ/(βjrj)
1− θ/s+ 1/β

< 1, ∀j = 1, . . . , d,

in view of the obvious inequality 1/β − θ/s ≥ 1/βj − θ/(βjrj), which, in its turn, follows from the
fact that θ ∈ (0, 1]. Thus, we have that h̃j > n−1 for all large enough n. Furthermore, if bj > 0 then
since m ≤ 0

h̃j ≤ (c4L
−1
j )1/βjϕ1/βj ≤ 1
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for all large enough n. Thus we have shown that h̃ ∈ [n−1, 1]d.
30. Now we proceed with bounding Jm,2(h) for a specific choice of h = h[m], which is defined as

follows. Let h[m] ∈ H such that h[m] < h̃ ≤ 2h[m]. Let constant c4 in (B.10) be chosen so that
c4 < (2c̄1)−1, where c̄1 appears on the right hand side of (6.12). With this choice of c4 by (6.12)

‖B∗h[m],j(f, ·)‖∞ ≤ c̄1Lj(hj [m])βj ≤ c̄1Lj h̃
βj
j ≤ 2m−1ϕ.

Therefore, J
(2)
m,2

(
h[m]

)
= 0, where J

(2)
m,2(·) is defined in (B.5). Moreover, we obtain from (B.6) and

h[m] ≤ h̃j that

J
(1)
m,2

(
h[m]

)
≤ c1

∑
I\I∞

2−rjmϕ−rjL
rj
j h̃

βjrj
j ≤ c1

∑
j∈I\I∞

c
rj
4 2
−m

(
2+1/β

1/θ+1/s

)
≤ c72

−m
(

2+1/β
1/θ+1/s

)
. (B.11)

Note that

Vh[m] ≥ 2−dVh̃ = 2−dc
1/β
4 L−1

β ϕ1/β2
m
(

1
β
− 2+1/β

1+s/θ

)
. (B.12)

This together with (B.9) yields

Jm,1
(
h[m]

)
≤ c82

−m
(

2+1/β
1/θ+1/s

)
. (B.13)

Then it follows from (B.11) and (B.13) that

Jm,1
(
h[m]

)
+ Jm,2

(
h[m]

)
≤ c92

−m
(

2+1/β
1/θ+1/s

)
,

which combined with (B.3) results in

Jm ≤ c102
m
(
p− 2+1/β

1/θ+1/s

)
ϕp.

Inequality (B.3) is valid only if (B.8) is fulfilled for h[m], i.e., κδV −1
h[m] < 2m−2ϕ; now we verify

this condition. It is sufficient to check that κδ2dV −1

h̃
< 2m−2ϕ. In view of (B.12) this inequality

will follow if

c
1/β
4 ϕ1+1/β2

m
(

1+ 1
β
− 2+1/β

1+s/θ

)
> 2d+2κ(Lβδ).

Taking into account that Lβδ = ϕ2+1/β we conclude that (B.8) is fulfilled for h[m] if

2
m
(

1−θ/s+1/β
1+θ/s

)
> ĉ1κϕ,

which is ensured by the condition m ≥ m0(θ). This completes the proof of (6.24).

B.2.2. Proof of statement (iii)

10. Let ĉ4 be a constant to be specified later, and let c4 be the constant given in (B.10). Let Cj = c4

if j ∈ I∞ and Cj = ĉ4 if j ∈ I \ I∞. Define h̃ = (h̃1, . . . , h̃d) ∈ (0,∞]d by the formula

h̃j =
(
CjL

−1
j ϕ)1/βj2

m
(

1
βj
− s(2+1/β)

βjrj

)
, j = 1, . . . , d. (B.14)
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Note that if j ∈ I∞ the corresponding coordinates of h̃ given by (B.10) and (B.14) are the same.
Let us show that h̃ ∈

[
n−1, 1]d for large enough n. First consider the coordinates h̃j such that

1− s
rj

(2 + 1/β) ≥ 0. Because m ≥ 0 we have for all n large enough

h̃j ≥
(
CjL

−1
j ϕ)1/βj ≥

(
CjL

−1
j )1/βj (Lβδ)

1
2βj+βj/β > δ > n−1,

where we have used the obvious inequality βj/β > 1 for any j = 1, . . . , d. On the other hand,
because 2m ≤ ĉ2ϕ

−1 we obtain

h̃j ≤ c11

(
ĉ4L
−1
j )1/βjϕ

s(2+1/β)
βjrj → 0, n→∞, ∀j ∈ I \ I∞;

h̃j ≤ c11

(
CjL

−1
j )1/βjϕ

s(2+1/β)
βjrj ≤ c11

(
c4L
−1
0 )1/βj , ∀j ∈ I∞.

Thus h̃j ≤ 1 for large enough n if j ∈ I \ I∞, and h̃j ≤ 1 by choice of constant c4 if j ∈ I∞.
Now consider the case 1− s

rj
(2 + 1/β) < 0. Since 2m ≤ ĉ2ϕ

−1

h̃j ≥ c12

(
CjL

−1
j )1/βjϕ

s(2+1/β)
βjrj = c12

(
CjL

−1
j )1/βj (Lβδ)

s
βjrj > δ > n−1,

for all n large enough. Here we have used the obvious inequality 1/s > 1/βjrj ∀j = 1, . . . , d. On
the other hand, since m ≥ 0, h̃j ≤

(
CjL

−1
j ϕ)1/βj ≤ 1 for large enough n. Thus we have proved that

h̃ ∈ [n−1, 1]d for all large enough n.
20. Let h[m] ∈ H such that h[m] < h̃ ≤ 2h[m] and choose constant c4 satisfies c4 < (2c̄1)−1 [see

(6.12)]. Recall that formulas (B.10) and (B.14) coincide for j ∈ I∞. Therefore, as before, with the
indicated choice of c4 we have

J
(2)
m,2

(
h[m]

)
= 0. (B.15)

Let β± and β∞ be defined by expressions 1/β± :=
∑

j∈I+∪I− 1/βj and 1/β∞ :=
∑

j∈I∞ 1/βj . We
have

Vh[m] ≥ 2−dVh̃ = 2−dc
1/β∞
4 ĉ

1/β±
4 L−1

β ϕ1/β2−2m. (B.16)

This together with 2m ≤ ĉ2ϕ
−1 shows that Vh[m] ≥ c13ĉ

1/β±
4 L−1

β ϕ2+1/β = c13ĉ
1/β±
4 δ and, therefore,

κδV −1
h[m] ≤ c

−1
13 ĉ
−1/β±
4 κ. (B.17)

Remark that Aη(x) ≤ 2dMk2
∞ for all x ∈ Rd and η ∈ H. Hence, in view of (B.17)

sup
η≥h[m]

Mη(x) ≤ k∞
√

2dM
√
κδV −1

h[m] + κδV −1
h[m]

≤
(

k∞
√

2dM +

√
c−1

13 ĉ
−1/β±
4

)√
δV −1

h[m] = c14

√
δV −1

h[m].

It yields together with (B.16)

sup
η≥h̃

Mη(x) ≤ c15 ĉ
−1/(2β±)
4 2m

√
(Lβδ)ϕ−1/β = c15 ĉ

−1/(2β±)
4 2mϕ.
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Setting ĉ4 so that c15ĉ
−1/(2β±)
4 < 2−1, we obtain supη≥h̃Mη(x) ≤ 2m−1ϕ. This implies that

Jm,1
(
h[m]

)
= 0. (B.18)

Moreover, it follows from (B.6) and from inequality h[m] ≤ h̃ that

J
(1)
m,2

(
h[m]

)
≤ J (1)

m,2

(
h̃
)
≤
[
c1

∑
j∈I\I∞

ĉ
rj
4

]
2−ms(2+1/β). (B.19)

Then (6.25) is a consequence of (B.3), (B.15), (B.18) and (B.19). The statement (ii) is proved.

B.2.3. Proof of statement (iv)

10. Let Cj , j = 1, . . . , d be the same constants in the proof of statement (ii) in the previous section.
Define h̃ = (h̃1, . . . , h̃d) ∈ (0,∞]d by the following formula

h̃j =
(
CjL

−1
j ϕ)1/γj2

m

(
1
γj
−υ(2+1/γ)

γjqj

) [
Lγϕ

1/β

Lβϕ1/γ

] υ
γjqj

, j = 1, . . . , d, (B.20)

where γj , qj are defined in (6.1) and γ, υ and Lγ are given in (6.15).
Let us show that h̃ ∈

[
n−1, 1]d for large n. Let bj = 1− υ

qj
(2 + 1/γ).

First, assume that bj < 0. Since m > 0 and 2m ≤ ĉ2ϕ
−1,

h̃j ≥ c16

(
CjL

−1
j )1/γjϕ

υ(2+1/γ)
γjqj

[
Lγϕ

1/β

Lβϕ1/γ

] υ
γjqj

= c16

(
CjL

−1
j )1/γj [Lγ/Lβ]

υ
γjqj ϕ

υ(2+1/β)
γjqj

= c16

(
CjL

−1
j )1/γj [Lγ ]

υ
γjqj δ

υ
γjqj > δ > n−1,

where we have used the obvious inequality 1/υ > 1/(γjqj) for any j = 1, . . . , d. On the other hand,
in view of m ≥ m1 and by (6.20)

h̃j ≤
(
CjL

−1
j ϕ)1/γj2

m1bj
γj
[
(Lγ/Lβ)ϕ1/β−1/γ

] υ
γjqj

≤ (CjL
−1
j ϕ)1/γj2

m1bj
γj

[
2m1[υ(2+1/γ)−s(2+1/β)]

] 1
γjqj =

(
CjL

−1
j ϕ)1/γj2

m1

(
1
γj
− s(2+1/β)

γjqj

)
.

Then by (6.21)

h̃j ≤ c17C1(~L)C
1/γj
j ϕ

1
γj

(
1+[1− s

qj
(2+1/β)]

υ(1/β−1/γ)
υ[2+1/γ]−s[2+1/β]

)
, (B.21)

where the expression for constant C1(~L) is easily found. It remains to note that

υ(2 + 1/γ)− s(2 + 1/β) = sυ
[
(2 + 1/β)(1/s− 1/υ) + (1/γ − 1/β)s−1

]
,

and in view of (6.16) and (6.17)

1 +
[qj − s(2 + 1/β)]υ(1/β − 1/γ)

qj [υ(2 + 1/γ)− s(2 + 1/β)]
=

2 + 1/β

qj

[
(1/s− 1/υ)qj + (1/γ − 1/β)

(1/s− 1/υ)(2 + 1/γ) + (1/γ − 1/β)υ−1

]
> 0.

This shows that h̃j ≤ 1 for large n.
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Now assume that bj ≥ 0. Then, similarly to the reasoning that resulted in (B.21) we have

h̃j ≥
(
CjL

−1
j ϕ)1/γj2

m1bj
γj
[
(Lγ/Lβ)ϕ1/β−1/γ

] υ
γjqj

≥ C1(~L)C
1/γj
j ϕ

1
γj

(
1+
[
1− s

qj
(2+1/β)

]
υ(1/β−1/γ)

υ[2+1/γ]−s[2+1/β]

)
.

Since ϕ2+1/β = Lβδ,

h̃j ≥ c18C1(~L)C
1/γj
j δ

(1/s−1/υ)(1/γj)+(1/γ−1/β)(1/γjrj)

(1/s−1/υ)(2+1/γ)+(1/γ−1/β)υ−1 > δ > n−1

for all n large enough. Here we have used (6.16), (6.17), and obvious inequalities: 2 + 1/γ > 1/γj
and 1/υ > 1/γjrj for all j = 1, . . . , d. On the other hand, since 2m ≤ ĉ2ϕ

−1

h̃j ≤ c19

(
CjL

−1
j )1/γjϕ

υ(2+1/γ)
γjqj

[
Lγϕ

1/β

Lβϕ1/γ

] υ
γjqj

= c19

(
CjL

−1
j )1/γj [Lγ/Lβ]

υ
γjqj ϕ

υ(2+1/β)
γjqj

= c19

(
CjL

−1
j )1/γj [Lγ ]

υ
γjqj δ

υ
γjqj .

Therefore, h̃j → 0, n → ∞, ∀j ∈ I \ I∞, and h̃j ≤ c19

(
c4L
−1
0 )1/γj , ∀j ∈ I∞. Choosing c4 small

enough we come to required assertion.
30. Let h[m] ∈ H be such that h[m] < h̃ ≤ 2h[m], and let constant c4 satisfy c4 < (2c̄1)−1, where

c̄1 is given in (6.12). With this choice of c4, if j ∈ I∞ then the corresponding coordinates of h̃ given
by (B.14) and (B.20) coincide. Hence we have as before

J
(2)
m,2

(
h[m]

)
= 0. (B.22)

Let 1
γ±

:=
∑

j∈I+∪I−
1
γj

; then

Vh[m] ≥ 2−dVh̃ = 2−d
(
c4)1/β∞

(
ĉ4)1/γ±L−1

β ϕ1/β2−2m. (B.23)

We remark that (B.23) and (B.16) coincide up to the change in notation β± ↔ γ±. Hence all the
computations preceding (B.18) remain valid, and we have as before

Jm,1
(
h[m]

)
= 0. (B.24)

Moreover, we obtain from (B.7)

J
(1)
m,2

(
h[m]

)
≤
[
c̃1

∑
j∈I\I∞

ĉ
rj
4

][
Lγϕ

1/β

Lβϕ1/γ

]υ
2−mυ(2+1/γ). (B.25)

The bound given in (6.26) follows now from (B.3), (B.22), (B.24) and (B.25).

B.3. Proof of Proposition 2

In view of (2.14) and (6.11)

|f̂(x)− f(x)| ≤ c0[Ūf (x) + ω(x)] ≤ c1[Uf (x) + ω(x)], (B.26)

where c0 and c1 are appropriate constants, Ūf (x) and Uf (x) are given by (6.8) and (6.10) respec-
tively, and ω(x) := ζ(x) + χ(x) with ζ(x) and χ(x) defined in (2.15) and (2.16).
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B.3.1. Proof of statement (i)

Here for brevity we will write m0 = m0(1). By (B.26)∫
X−m0

|f̂(x)− f(x)|pdx ≤ cp−1
1

∫
X−m0

[
Uf (x) + ω(x)

]p−1|f̂(x)− f(x)|dx

≤ c2

[
(2m0ϕ)p−1

∫
Rd
|f̂(x)− f(x)|dx+

∫
Rd
ωp−1(x)[2m0ϕ+ ω(x)]dx

]
.

Noting that ‖f̂‖1 ≤ lnd(n)‖K‖1 ≤ lnd(n)k∞, we have ‖f̂ − f‖1 ≤ lnd(n)k∞ + 1 and, therefore,

(2m0ϕ)p−1

∫
Rd
|f̂(x)− f(x)|dx ≤

(
lnd(n)k∞ + 1

)
(2m0ϕ)p−1.

Moreover, since κ = k2
∞[(4d+ 2)p+ 4(d+ 1)], the second statement of Theorem 1 implies

Ef
∫
Rd
ωp−1(x)[2m0ϕ+ ω(x)]dx ≤ c3(2m0ϕ)n−(p−1)/2 + c4n

−p/2.

Combining these inequalities and taking into account that 2m0ϕ ≤ 1 we obtain

J−m0
= Ef

∫
X−m0

|f̂(x)− f(x)|pdx ≤ c5

[
lnd(n)(2m0ϕ)p−1 + 2m0ϕn−(p−1)/2 + n−p/2

]
≤ 2c5

[
lnd(n)(2m0ϕ)p−1 + n−p/2

]
.

By definition of m0 = m0(1), 2m0ϕ ≤ c6

(
Lβδ

)1/(1+1/β−1/s)
; therefore

J−m0
≤ c7 lnd(n)

(
Lβδ

) p−1
1−1/s+1/β + c7n

−p/2.

It remains to note that for large n that(
Lβδ

) p−1
1+1/β−1/s ≤

(
Lβδ

)νp
, n−p/2 <

(
Lβδ

)νp
,

and (6.27) follows.

B.3.2. Proof of statement (ii)

Let f∗ be the maximal operator of f defined in (4.1). It follows from the definition of Mη(x) that
for any h ∈ H

sup
η≥h

Mη(x) ≤ c8

√
κf∗(x) lnn

nVh
+

κ lnn

nVh
.

Moreover, by definition of B̄h(f, x), B̄h(f, x) ≤ c9[f∗(x) + f(x)] ≤ 2c9f
∗(x) almost everywhere,

where the last inequality follows from the Lebesgue differentiation theorem. Using these two in-
equalities and setting h = (1, . . . , 1) in (6.8) we come to the following upper bound on Ūf (x)

Ūf (x) ≤ c10

[
f∗(x) +

√
f∗(x)δ + δ

]
. (B.27)
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In view of (6.11) we have that X−m0(θ) ⊆ X
− := {x ∈ Rd : Ūf (x) ≤ k∞2m0(θ)ϕ}; therefore if we put

D1 := X− ∩ {x ∈ Rd : f∗(x) ≤ δ}, D2 := X− ∩ {x ∈ Rd : f∗(x) > δ}

then

J−m0(θ) ≤ Ef
∫
D1

|f̂(x)− f(x)|pdx+ Ef
∫
D2

|f̂(x)− f(x)|pdx =: EfS1 + EfS2. (B.28)

We bound from above the two terms on the right hand side of the above inequality.
First consider EfS1. By (B.26) for any θ ∈ (0, 1] we have

S1 =

∫
D1

|f̂(x)− f(x)|pdx ≤ cp−θ0

∫
D1

[
Ūf (x) + ω(x)

]p−θ|f̂(x)− f(x)|θdx

≤ c11

{
δp−θ

∫
Rd
|f̂(x)− f(x)|θdx+

∫
Rd
ωp−θ(x)[δ + ω(x)]θdx

}
.

Here we have used that, by (B.27), Ūf (x) ≤ 2c10δ for all x ∈ D1. Remind that f̂(x) = f̂ĥ(x)(x);

therefore, for any θ ∈ (0, 1]

Ef |f̂(x)|θ ≤
(
Ef |f̂(x)|

)θ ≤ (∑
h∈H

Ef
∣∣f̂h(x)

∣∣)θ ≤ c12

[
(lnn)df∗(x)

]θ
.

Thus, for any f ∈ Gθ(R),

δp−θEf
∫
Rd
|f̂(x)− f(x)|θdx ≤ δp−θ

{
‖f‖θθ + c12(lnn)dθ‖f∗‖θθ

}
≤ c13δ

p−θRθ(lnn)dθ.

Furthermore, because κ = k2
∞[(4d+ 2)p+ 4(d+ 1)], by the second statement of Theorem 1

Ef
∫
Rd
ωp−θ(x)[δ + ω(x)]θdx ≤ c14δ

θn−(p−θ)/2 + c15n
−p/2 ≤ c15n

−p/2.

Combining the last two inequalities we obtain

EfS1 = Ef
∫
D1

|f̂(x)− f(x)|pdx ≤ c16

[
δp−θRθ(lnn)dθ + n−p/2

]
. (B.29)

Now we proceed with bounding EfS2. We have

EfS2 = Ef
∫
D2

|f̂(x)− f(x)|pdx ≤ cp0 Ef
∫
D2

[
Ūf (x) + ω(x)

]p
dx

(a)

≤ c17

[
(2m0(θ)ϕ)p−θ

∫
D2

|Ūf (x)|θdx+ n−p/2
]

(b)

≤ c17

[
(2m0(θ)ϕ)p−θRθ + n−p/2

]
≤ c18

[
Rθ(Lβδ)

p−θ
1−θ/s+1/β + n−p/2

]
. (B.30)

Here (a) follows from the second statement of Theorem 1 and Ūf (x) ≤ 2m0(θ)ϕ for x ∈ D2, and (b)
is valid because Ūf (x) ≤ 3c10f

∗(x) for all x ∈ D2, see (B.27).

Note that δ
1− 1

1−θ/s+1/β (lnn)
dθ
p−θ → 0 as n → ∞ since θ ≤ 1 and 1/β > 1/s, where the latter

inequality follows from r ∈ (1,∞]d.
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Thus, combining (B.29) and (B.30) with (B.28), we obtain

J−m0(θ) ≤ c19

[(
Lβδ

) p−θ
1−θ/s+1/β + n−p/2

]
≤ c20

(
Lβδ

)pν(θ)
,

as claimed.
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