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Abstract

In this case study, we use discrete event simulation to model and analyze a real-life emer-

gency department (ED). Our approach relies on the appropriate integration of most real-life ED

features to the simulation model in order to derive useful practical results. Data is supplied

from the ED of the urban French hospital Saint Camille. Our purpose is to optimize the hu-

man resource staffing levels. We want to minimize the patient average length of stay (LOS),

by integrating the staffing budget constraint and a constraint securing that the most severe

incidents will see a doctor within a specified time limit. The second constraint allows to avoid

the perverse effect of only considering the LOS metric that would delay the treatment of the

most urgent patients. We use simulation-based optimization, in which we perform a sensitivity

analysis expressing LOS as a function of the staffing budget and also the average door-to-doctor

time for urgent patients (DTDT ). We show that the budget has a diminishing marginal effect

on the problem solution. Due to the correlation between LOS and DTDT , we also observe that

the DTDT constraint may significantly affect the feasibility of the problem or the value of the

optimal solution.

Keywords: Emergency department, operations management, simulation, staffing optimization,

length of stay, door-to-doctor time



1 Introduction

An emergency department (ED) is the main entrance to a hospital for emergency incidents, offering

non-stop services for any kind of patients. The continuous increase in demand combined with

austerity measures have led to extensive congestion [1]. There are several congestion signs, such as

patients treated in corridors due to scarcity of accommodation resources, or patients experiencing

excessive waiting times. Overcrowding has an immediate effect on the working environment of

employees and on the quality of service offered to patients, which is mainly measured by certain

key performance indicators (KPIs) [2].

Under a difficult economic context, ED managers are trying to improve performance by minimiz-

ing the mismatch between patient demand and supply. However, an ED is a complex environment

with various types of heterogeneous patients and resources where most of the parameters are un-

certain. Healthcare practitioners have therefore resorted to researchers in operations management

and operations research in order to develop scientific approaches for the performance optimization

of EDs. Their tools can be divided into two main categories: analytical methods and simulation.

In this case study, the need for high impact solutions motivates us to use discrete event simulation

(DES). This allows to capture most of the realistic features in an ED. In using simulation for ED

operations management, we are following longstand practice. [3], [4], [5], [6] and [7] conduct sim-

ulation studies for the analysis of EDs in Virginia (USA), London (Britain), Moncton (Canada),

Kuwait and Dublin (Ireland) respectively. They address the problem of resource staffing optimiza-

tion. [8] lay the foundation for developing a simulation tool to analyze the ED performance. For a

background on simulation models for EDs, we refer the reader to the surveys by [9] and [10].

The simulation model proposed in this study is based on a comprehensive understanding of the

real-world functioning of emergency departments. A field study was conducted for this purpose

through a close collaboration with the ED of Saint Camille hospital. Saint Camille hospital is

a teaching hospital situated in an Eastern suburb of Paris. Real data and expert judgments are

both used for the construction of the model. For the validation, the model outputs are compared

to historical data and judged by experts. In order to alleviate congestion, ED managers and the

general management of Saint Camille hospital intend to invest in human staffing. Their objective is

to improve the ED performance by investing in human resources. The question we are facing here

is: By how much should the current staffing budget be increased and how should this additional

budget be used in the allocation of human resources?

The selection of a KPI for ED optimization has always been a controversial subject. Neither the

scientific community nor practitioners are able to decide about the most appropriate KPI, as each
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indicator presents at the same time benefits and drawbacks. The most known and used KPI is the

average length of stay (LOS). LOS is the sum of the sojourn times in all subsections of the ED.

It is the KPI on which EDs are generally judged in practice, because it allows to approach the ED

in a holistic way. It is abundantly used in the literature as well. Some references include [11], [12],

[13], [14], [15], [16], and [17]. However focusing only on LOS could have important drawbacks. It

gives an overview of the entire system performance but doesn’t allow to figure out local strengths

and weaknesses. Besides, the impact could be in the non-urgent cases, or worst, the non-urgent

cases could be benefited on behalf of prolonging the waiting time of the urgent ones. From this

appears the necessity to take another ED KPI into consideration, which is the Average door-to-

doctor time (DTDT ). DTDT, also called time to first treatment or time to physician, describes

the time between the patient’s arrival and the first handling by a physician. DTDT measures the

most crucial element for seriously ill patients because they need urgent attention. For non urgent

patients, the average DTDT is generally close to the entire LOS and thus the latter is sufficient as

a KPI for this kind of patients. There are references in the literature that consider DTDT as the

sole performance indicator for the analysis of EDs. Examples include [18], [19] and [20]. Only rare

papers such as [21] and [22] consider both indicators, as we do in this paper.

The main contributions of this paper can be summarized as follows. We propose a simulation

model that is based on a comprehensive understanding of the ED functioning. Most common

structural and functional characteristics of EDs, at least in France, are taken into consideration

thanks to a close collaboration with Saint Camille ED. Based on the above, we point out a set of

important ED features that are frequently ignored in the related literature. The model is close to

the real system and is then appropriate to be used to address some operations management issues.

We focus on the simulation-based optimization of staffing levels of the various human resource types

involved in the ED. We study the effect of the staffing budget on LOS, and show that it has a

diminishing marginal effect. For instance, an increase of 10%, 20% and 30% in the staffing budget

can generate an improvement of 33%, 44% and 50% in the optimal LOS, respectively. We also show

the effect of including a DTDT constraint for urgent patients in the model. We investigate how

this additional constraint affects the optimality and the feasibility of the staffing problem solution.

The results point out the fact that considering DTDT in addition to LOS involves a trade-off

that managers should be aware about. We also derive useful insights about which type of resource

to prioritize according to the available budget and the DTDT target. We surprisingly find that

additional investments should be allocated in priority to doctors, which is counterintuitive to ED

practitioners. Although the modeling is based on a specific ED, qualitative conclusions hold for

other ED frameworks.
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The rest of the paper is organized as follows. In Section 2.1, we describe how the ED charac-

teristics are implemented in the simulation model and the way data is collected. In Section 2.2,

we validate the simulation model using historical data and expert judgments. Furthermore, we

highlight the detailed level of modeling and compare it with the existing literature. In Section 3,

we conduct simulation-based optimization experiments for the ED staffing problem. In Section 4,

we give concluding remarks and highlight some future research.

2 Emergency Department Modeling

In this section, we provide the building of the simulation model as well as its validation.

2.1 Simulation Model

We use Saint Camille hospital’s ED as a main reference to build our model. In this section we

give an overview of the service with its resources and processes as well as the necessary data to

construct the simulation model.

Saint Camille hospital has approximately 300 beds and covers most of the medical and surgical

specialties. Its ED is operating 24 hours per day and serves more than 60,000 patients per year.

Within the ED, we consider the following different zones:

• The external waiting room for walk-in patient arrival

• The registration and triage zone

• A shock room (SR) for acute ill patients

• Examination rooms (ER) also called boxes or cubicles

• An internal waiting room with stretchers for lying patients

• An internal waiting room for sitting patients

• The Observation Unit (OU)

In addition, the ED includes an ambulance arrival area and a central operation room where all

the tasks that do not require the presence of the patient are made, such as reporting on computer,

interpretation of diagnostic tests, discussions between medical staff, preparation of equipments, etc.

Patients arriving to the ED cover a big range of severity levels. At the beginning of the process,

patients are categorized by a triage nurse according to their condition into five degrees of severity,

known as Emergency Severity Index (ESI), where ESI 1 are the most severe patients and ESI 5 the
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least severe ones [23]. There are several different types of resources. The resources are also splited

into dedicated groups for the ESIs, with different staffing levels for each group. A physician for

instance can be either senior or junior. A junior physician can be responsible only for a combination

of ESI 3, 4 and 5 patients, while seniors can treat all categories. There are also two different types

of nurses: The first one, referred to as triage nurse, is dedicated to the triage. The other nurses

are inside the ED and are in charge of in-process patients. Moreover, ESIs 1, 2 and 3 belong to

a group of patients referred to as long circuit (LC) and are treated by dedicated physicians and

nurses. ESIs 4 and 5 are part of a group called short circuit (SC) and are also treated by resources

dedicated to them. The shock room is dedicated to ESI 1 patients and a part of ESIs 2 and 3

patients. The shock room is also known as trauma and resuscitation room [24, 14]. Examination

rooms are also assigned to certain ESIs but with a different subdivision: medium boxes for ESIs 2

and 3, general boxes for ESI 4, and a fast track for ESI 5. Other resources such as stretcher bearers

are not dedicated to any specific patient type. The reason for not including some resources in our

model, such as janitorial staff, is that they do not really affect the system performance in terms of

patient waiting times.

Similarly to [3], [13] and [5], our methodology is based on assessing the effect of staff changes on

key performance indicators. We consider human and space resources in the model. Human resources

are considered as control variables. The model development is performed using Arena simulation

software provided by Rockwell Automation. During their sojourn, patients go over several stages

that involve various types of limited resources, and then various patient waiting durations. The

optimization of LOS involves the optimization of the sum of these durations. Processing times

such as physician examinations or diagnostic tests are considered as exogenous variables, and thus

they are not to be optimized. The main waiting durations of the simulation model are given in

Figure 1.

The patient path in the ED comprises a series of assessments that constitutes the ED process,

as synthesized in Figure 1. Patients have different severity levels. Therefore, the process varies

from one patient type to another. However, the typical complete patient stay in an ED can be

divided into five main parts, as described below.

(1) From arrival to triage: Upon arrival to the ED, the patient is first registered at the reception

desk and she is then triaged by the triage nurse in a dedicated box at the entry of the ED, based

on the ESI triage system. The severity determines the priority of the patient over others [23] and

how she will be routed to the appropriate resources throughout the process. When the triage nurse

is busy, patients must wait in the external waiting room. The red code patients (ESI 1) generally
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arrive by ambulance. They must be stabilized immediately and skip triage.

(2) The initial consultation: After completing the triage process, the patient goes to the wait-

ing room (sitting or on a stretcher depending on the severity) until an appropriate box becomes

available. Then, she is transported and installed in the box by an appropriate nurse except ESI 5

patients who can do it themselves. The consultation starts once a doctor that is responsible for the

patient’s category becomes available. The doctor makes a first assessment and may request tests

in order to confirm or refine her diagnosis. In case there is no examination required, the patient

is discharged from the system. After the consultation, the doctor reports the diagnosis and the

decisions made in the information system. Moreover, some important organizational aspects in the

model are to be mentioned:

• Each decision made by a junior doctor must be validated by a senior one,

• Each patient must be treated by the same doctor and the same nurse all along the process.

The “same patient-same staff” constraint, mentioned in [21] and [25], is a strong constraint

with a significant impact on the system’s behavior,

• Among any given ESI level and for any doctor, arriving patients have the priority over in-

process ones.

(3) Diagnosis tests: According to the decision made by the doctor, there is a large variety of

diagnosis tests that can follow the consultation. The doctor can order an electrocardiogram which

is generally performed by a nurse in the box. Blood tests can be ordered; the nurse is responsible

for the sampling in the box. Then, the sample is sent to the laboratory to be analyzed. During

this time, the patient can wait in her box or can be put in an internal waiting room (if possible)

in order to release the box and make it available for other patients. This decision depends on the

patient’s condition and we integrate it in our model by using a certain probability for each ESI.

The duration of blood tests starts at that moment and finishes as soon as the results are ready. It

represents one of the longest delays in the ED. Radiology tests can be also ordered with different

combinations of X-Ray, CT-Scan, Echo and MRI. Note that LC patients must be transported by a

Stretcher Bearer. When both tests are ordered, radiology and lab tests periods generally overlap.

Analgesics can also be requested by the doctor. In the case of a perfusion, it will be done at the

same time with the sampling (if any). It requires however an additional delay because a preparation

beforehand is needed.

Diagnosis tests are undergone by resources located in another department and shared with

other services of the hospital. Therefore, the durations that we fit do not represent only processing
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times, but the total wait for the results. We include in this duration waiting times outside the ED.

Consequently, reducing waiting times for external activities (radiology and laboratory) falls out of

the scope of this study. They are considered as incompressible.

(4) Result interpretation and decision of the outcome: Once all the tests are completed, the doctor

responsible for the patient evaluates the results, makes an interpretation and decides how the

treatment procedure will be continued. In several cases, the doctor asks the patient to undertake

supplementary examinations or even to redo some already taken examinations. The doctor can

also request the opinion of a specialist from the hospital, a scenario that we model with a certain

probability. Since the specialist belongs to another department, her intervention implies three

additional durations: The time that the ED doctor spends to call the specialist by phone, the time

necessary for the specialist to arrive, and the discussion with the ED doctor once she arrives. The

duration is longer when the ED doctor is a junior one due to the lack of experience and her interest

in learning.

(5) The process outcome: After the completion of the treatment procedure, the patient can be

transferred to another service of the hospital, transferred to another hospital, admitted in the

observation unit (OU) or discharged. When a patient is transferred to another department to

be hospitalized, the responsible doctor must organize the transfer by phone. Then, the stretcher

bearer is responsible for the transportation and the installation of the patient to the destination

department. When a patient is transferred to another hospital, the responsible doctor must also

call the hospital to organize the transfer. In this case, the transportation to the ambulance is done

by the ambulance crew.

The OU is the area of the ED that hosts patients for a short stay before a transfer to another unit

that could be the ward of the hospital or another hospital, or when the patient situation requires an

additional observation before being released [26]. The beds are the critical resources of the OU. It

has a limited capacity of beds and it admits and releases patients only during some specific periods

of the day. Observation units are generally neglected in ED modeling in the literature, and yet it is

very important to include them because they interact with the rest of the ED and have an impact

on its performance. In Saint Camille ED, when the OU is full, patients supposed to be admitted

are kept in the ED, laid in boxes or in the internal waiting room. In this case, a nurse from the

ED must control these patients regularly, as described also in [27].

It is well known that the quality of output data relies on the accuracy of input parameters.

Therefore, data collection and analysis are undertaken carefully. The first step consists of the
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collection of the different types of data. In the second step, we model the data with statistical

distributions in order to use them as input parameters for the model. Our simulation model

requires three types of data: arrival pattern, processing times and routing probabilities. Depending

on their type, ED data are more or less easy to collect. Thus we relied on the wide variety of data

sources commonly used in similar studies and summarized in [9]: records from databases, interviews

with experts and decision makers, and on-site observations; in addition to comparison with other

hospitals’ ED. Arrival pattern and some routing probabilities are relatively easy to collect since the

corresponding data is systematically recorded and stored in the ED database. On the other hand,

processing times and some process information are not recorded. For the above we used on-site

observations and interviews with experts.

Arrival pattern: Similarly to [28] and [6], we assume that arrivals follow a non-homogenous

Poisson process. The time dependent arrival pattern is quite typical for most EDs in the world

[29]. Monday is usually the day that records the most arrivals, whereas higher arrival rates are

found in the period between 10 am and 10 pm for any given day. Arrivals are modeled by using

an average arrival rate λ̂(t) for each hour of the week (7 days × 24 hours = 168 rates). These 168

rates are estimated from the database of Saint Camille’s ED for 103 consecutive weeks, starting

from September 2011 and ending in September 2013 (Figure 2).

Figure 2: Estimated hourly patient arrival rates λ̂(t) per day

Processing times: There are 26 different service times that we modeled with statistical distri-

bution fits, using the package Input Analyzer in Arena software. The processing times for each

step of the process depend on the resource type (junior doctors are slower than seniors) as well as

patient’s category (critical patients require more time).
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Routing probabilities: These probabilities depend on the patient’s ESI and represent the chance

for a patient to experience or not a certain stage of the process. The probabilities needed in our

model correspond for instance to diagnosis tests, the mix of these tests (imaging, lab test, none

or both), imaging mix (X-ray, scan, echo or MRI), patient abandonment, the need for specialist

opinion, the clinical outcome, Remaking tests, observation unit outcome, etc.

2.2 Model Validation

[30] explain that if the model is not a close approximation of the real system, any conclusions

derived from the model are likely to be erroneous and may result in costly and ineffective decisions.

Simulation models need to be built in a very precise way in order to represent the real environment

as realistically as possible. The completion of our simulation model was a long procedure that

contained many iterations; each step of the conceptual model had to be validated by experts in

order to secure that it is an accurate representation of the system.

Exhaustivity: Concerning the granularity of simulation models, researchers have stated in the past

that EDs are such complex systems that it is impossible to take all their features into consideration.

[31] has shown that in most cases, 80% of model accuracy is obtained from only 20% of the model’s

detail. However, ED models in the literature generally use many assumptions where important

characteristics of the system are neglected. In most cases, such simplifications are more frequent

in models using analytical methods, but they still exist in simulation models as well.

Building a realistic and useful simulation model requires an appropriate selection of the model’s

level of detail. Table 1 synthesizes some of the important features included in our model, and

compares that with the existing studies. For instance, the feature Resources Subdivisions refers

to the differentiation of the staff members. As explained in [8], some EDs distinguish between

acute and ambulatory patients and allocate doctors accordingly. Another possible subdivision is

the difference between seniors and juniors (generally neglected). This is included in our model

where processing times are function of both the expertise and the patient category.

Comparison with real data: To validate the simulation model, we compare between LOS given

by our model and that obtained from the ED data using descriptive statistics.

We consider a steady-state type simulation run with one pseudo-infinite length of time during

which the system is not re-initialized. This is coherent with the real system that works without

interruption (24/7). The replication length is 11 weeks (110,880 minutes), of which one week is used

as a warm-up period (10,080 minutes). The choice of the warm-up duration is based on graphical

inspection of the time-series of the simulation outputs. We observe that after one week the system
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Table 1: Comparison of previous works and the present study in terms of model’s granularity

Centeno et Komashie & Duguay & Ahmed & Weng et Present
al. (2003) Mousavi(2005) Chetouane (2007) Alkhamis (2009) al. (2009) Study

Arrival Depends on Depends on Depends on Depends on Depends on Depends on
process day period week day week day day hours day period week day

and day hours

Patients’ 4 2 5 3 4 5
categories

Receptionists Stretcher Bearers
Doctors Doctors Doctors Doctors Doctors Doctors

Included Nurses Nurses Nurses Nurses Nurses Nurses
resources Boxes Boxes Boxes Boxes Sick Beds Boxes

Lab technicians Sick Beds
Beds Beds

Resources
subdivision No Yes No No Yes Yes

Severity and/or
expertise based Yes, based Yes, based Yes, based No No Yes, based

processing on severity on severity on severity on both
times

Lab tests/ Yes No Yes Yes Yes Yes
radiology

transportation No No No No No Yes, for
times patients

Staff Yes No Yes No No Yes
shifts

Teaching No No No No No Yes
aspects

Specialist No No No No No Yes

Abandonment Yes No No No No Yes

Observation No Yes No Yes Yes Yes
unit

Simulation- Intuitive Intuitive Simulation- Simulation- Simulation-
Experiments optimization what-if what-if optimization optimization optimization

scenarios scenarios

Control Nurses All included All included Doctors Doctors All included
variables resources resources Nurses Nurses human

Lab technicians resources

reaches typical conditions of steady-state situations. Note that we do not use a cool-down period

because the ED works 24/7 without interruption.

Figure 3 provides a box-plot where the real LOS of 37,986 patients is compared to the LOS given

by simulation for 7,604 patients. The outliers represent less than 5% for both real and simulated

values. Figure 3 shows that there are some differences between the two distributions. Nevertheless,

the comparison between the real and simulated cumulative distributions reveals encouraging simi-

larities (Figure 4). For instance, starting from LOS = 200 minutes, the two distributions become

very close. Furthermore, we successfully confronted two other indicators with expert judgment:

resources workload and the durations of the five stages of the ED process (including the corre-

sponding waiting durations). These encouraging similarities allowed considering the model reliable

and valid to support experiments.
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Figure 3: Real and simulated LOS

3 Staffing Level Optimization

Investing in human staffing is one of the possible ways to improve the ED performance. We want to

address the following questions: By how much should we increase the current staffing budget, and

how should this additional budget be used in the allocation of human resources? The results of this

study has stood as a strong argument in order to convince the Saint Camille hospital management

on the usefulness of increasing the funding for ED staffing. In general, similar approaches are also

expected to support decision maker arbitrations.

We formulate an optimization problem that seeks to minimize the average length of stay under

a budgetary constraint, and a constraint ensuring that the average DTDT of LC patients (DTDT )

does not exceed some specified threshold. This is a hard problem, for which we use Arena OptQuest

package for simulation optimization. OptQuest is a commercial global optimizer that uses heuristics

to efficiently explore the set of feasible solutions [32, 33]. The ED uses two different shifts, a first

one from 9:30 am to 6:30 pm (day shift), and another one from 6:30 pm to 9:30 am (night shift). Let

I = {Senior, Junior, Nurse, Triage nurse, Stretcher bearer} be the set of the considered resources

with all possible subdivisions detailed in Section 2.1. Let J = {Day shift, Night shift} be the set

of the considered shifts. The real salaries of the ED staff have been used. The control variables

Xi,j represent the amount of a certain resource i during a given shift j. These variables are

defined in Arena and used as control variables in OptQuest. For each resolution, OptQuest needs

a starting solution that will serve as a starting point for exploring the set of feasible solutions.

The initial parameters we choose correspond to the actual scheduling used in Saint Camille ED.
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Figure 4: Cumulative distributions of real and simulated LOS

Since the results of the optimization can slightly vary according to the initial solution, we made

each optimization several times by varying the starting parameter values. For practical reasons,

the staffing levels for doctors during weekends will remain unchanged. The problem is expressed

as follows: 

minLOS

subject to
n∑

i=1

m∑
j=1

Ci,jXi,j ≤ C(1 + α), for iϵI, jϵJ

DTDT ≤ L,

Xi,j ≥ 0, for iϵI, jϵJ

(1)

where

LOS = Average length of stay in the system,

Xi,j = Amount of resource i during shift j,

Ci,j = Salary for resource i during shift j,

C = Current staffing budget,

α = Percentage of additional staffing budget,

DTDT = Average door-to-doctor time for LC patients (ESIs 1, 2 and 3),

L = DTDT limit.

The first constraint represents the staffing budget constraint. The budget limit is expressed as a

function of a coefficient α that is the percentage of additional staffing budget. The second constraint
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secures that the average door-to-doctor time for LC patients does not exceed a predetermined

threshold L. Although the differences in staffing requirements for LC patients (junior doctors),

we do only consider one single DTDT constraint for all LC patient types. In practice, the most

important point, with regard to DTDT, is the classification LC/SC and not the resource type

allocations.

We perform a sensitivity analysis by varying at the same time α and L. Table 2 gives the results

obtained by simulation optimization. Cells containing INF indicate that the combination of the

budget and DTDT constraints can not produce a feasible solution. The remaining values are the

achieved LOS, measured in minutes for an arbitrary patient. It should be mentioned that when

the limit L is higher than 57 minutes, which is the value obtained in the initial simulation model

with no supplementary budget, then the constraint is relaxed.

Table 2: Numerical experiments for the optimal LOS

Additional Staffing Budget (α) Current DTDT=57 DTDT≤50 DTDT≤40 DTDT≤30 DTDT≤20 DTDT≤10

0% 367 485 INF INF INF INF
5% 323 389 397 INF INF INF
10% 246 277 277 INF INF INF
20% 205 205 205 229 INF INF
30% 182 182 182 182 221 INF
40% 171 171 171 171 192 INF
50% 165 165 165 165 165 INF
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From Table 2, we observe that the budget has a diminishing marginal effect on performance.

This can be seen from the first column of the table where the DTDT constraint is relaxed. The

highest marginal effect of the coefficient α on the LOS corresponds to an investment of 10% of

the current budget. This result allowed the ED managers with the general management of Saint

Camille hospital to take an important tactical decision that consists on increasing the current

staffing budget by 10% in order to reduce the current LOS by 33%.

We also observe that the DTDT constraint affects the optimality or the feasibility of the

problem for small budgets. In certain cases, the limit L cannot be met by any possible allocation

of resources and therefore the problem is infeasible. In other cases, by decreasing the limit of the

DTDT constraint for a certain budget, the optimal LOS increases. For example, for α=20%, any

value of L ≥ 40 leads to an optimal LOS of 205 minutes. However when L = 30, the optimal LOS

increases to 229 minutes. For high budget levels, the DTDT constraint is automatically satisfied

(staff allocation secures a low DTDT ), and thus the LOS is independent of this constraint to some

extent. This captures the trade-off between the two performance metrics.

The explanation of the last result requires the examination of the different solutions of Table 2

in terms of resource staffing. Table 3 provides the staffing changes for each optimal solution with

regard to the initial staffing solution with no additional budget (α=0%, L = 57).

We can observe in all cases (for all problem formulations, i.e., with or without the DTDT

constraint) that the resource doctor is the most preferred one. There is always at least one ad-

ditional doctor for all combinations of investment and DTDT limit. Concerning the additional

doctors’ type, with the use of the DTDT constraint (L≤50), resources tend to be devoted to LC

patients in order to reduce DTDT . For instance, when α=5%, an LC doctor is added during night

shift to satisfy the DTDT constraint while an SC doctor is added when this constraint is relaxed

(DTDT=57). This means that under the DTDT constraint, there are less available resources for

the SC patients (majority of patients) which increases the overall LOS. Up to a certain budget

(α=10%), there is no investment on other resources such as nurses. This is consistent with the fact

that senior doctors’ workload is the highest among all ED human resources.

When higher budgets are available, additional nurses are staffed. For instance, when α=20%,

two additional nurses are added during night shift for LC patients when the DTDT constraint is

relaxed. Note that the nurse type privileged to overcome the DTDT limit are triage nurses (not

“in-process” nurses) because the triage stage and the corresponding waiting time is a part of the

DTDT. For instance, when α=10%, one additional triage nurse is staffed during day shift to satisfy

the DTDT constraint. For higher budgets (α≥30%), resources are devoted independently of the

DTDT constraint. This means that regardless to the DTDT constraint, there are enough resources
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to secure that the LC patients will be treated within the threshold L.

The main conclusions from the above observations can be summarized as follows:

• Additional investments should be allocated in priority to doctors. A restrictive quality of

service in terms ofDTDT will further give priority to LC doctors. This result seems surprising

and counterintuitive to ED managers. As explained in [9], these findings are interesting given

the large amount of research focusing on optimizing nursing allocation in various parts of the

hospital [34, 35, 36]. Only rare papers focus on the important impact of doctor scheduling

(compared to that of nurse) on the ED performance [37, 38].

• The lower is the budget, the more apparent is the correlation between LOS and DTDT .

4 Conclusions

We have built a realistic ED model using discrete event simulation. All common structural and

functional characteristics of EDs, at least in France, were taken into consideration thanks to a

close collaboration with practitioners. Based on the above, we point out a set of important ED

features that are frequently ignored in the related literature. Although a simulation model can not

be an exact imitation of the real system, the characteristics that we mention should be preferably

taken into account in ED models, given their impact on the system performance. Our experiments

focused on human staffing levels and provided useful insights to managers on the impact of the

budget and DTDT constraints on LOS.

We observed that the staffing budget reveals a decreasing marginal effect on performance. For

instance, an increase of 10%, 20% and 30% in the staffing budget can generate respectively an

improvement of 33%, 44% and 50% in the optimal LOS, when the DTDT constraint is relaxed.

Moreover, managers should be aware of the correlation between DTDT and LOS, for a given

staffing budget. In some cases, DTDT limits cannot be met with the use of several budgets,

whereas in other cases meeting the DTDT limits for the most severe patients has a negative effect

on the total length of stay of all patients. The explanation lies in the fact that for low DTDT

targets, the budget tends to be devoted to urgent patients at the expense of non urgent patients

(that represent the majority of patients) which affects the overall LOS. Besides, we derived insights

about the most appropriate type of resource to prioritize depending on the available staffing budget

and the DTDT target. We surprisingly find that additional investments should be allocated in

priority to doctors, which is counterintuitive to ED practitioners. The results provide to managers

a better understanding on how the budget can affect the system performance as well as on the

17



interdependency between the two main ED KPIs. This may then assist them in choosing the most

appropriate operational decisions.

Some limitations of the current study are as follows. One limitation is related to input data.

For instance, we considered routing probabilities and processing times as a function of the patient

severity. However, in practice, some of these data depend also on the patient age or the medical

specialty required for her treatment. Even though some correlations between several aspects exist,

such as between ESI and age, we think that this represents a shortcoming. Moreover, we used

an abandonment probability for patients as input to the model, while this parameter should be

an output that depends on the patient time before abandonment. Unfortunately, the data about

abandonment times is not reliable since it is not registered in the database when the patient leaves

the ED, but only once her absence is noticed by the staff. Another limitation is related to the

designed process. We assumed that the health status of a patient does not deteriorate during her

sojourn in the ED, which is not the case in general. Since this may affect the in-process operations

and durations, the simulation model can present a lack of accuracy.
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