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ADAPTIVE ESTIMATION OVER ANISOTROPIC FUNCTIONAL
CLASSES VIA ORACLE APPROACH

BY OLEG LEPSKI

Aix-Marseille Université

We address the problem of adaptive minimax estimation in white Gaus-
sian noise models under Lp-loss, 1 ≤ p ≤ ∞, on the anisotropic Nikol’skii
classes. We present the estimation procedure based on a new data-driven se-
lection scheme from the family of kernel estimators with varying bandwidths.
For the proposed estimator we establish so-called Lp-norm oracle inequality
and use it for deriving minimax adaptive results. We prove the existence of
rate-adaptive estimators and fully characterize behavior of the minimax risk
for different relationships between regularity parameters and norm indexes
in definitions of the functional class and of the risk. In particular some new
asymptotics of the minimax risk are discovered, including necessary and suf-
ficient conditions for the existence of a uniformly consistent estimator. We
provide also a detailed overview of existing methods and results and formu-
late open problems in adaptive minimax estimation.

1. Introduction. Let Rd, d ≥ 1, be equipped with Borel σ -algebra B(Rd)

and Lebesgue measure νd . Put B̃(Rd) = {B ∈ B(Rd) :νd(B) < ∞}, and let
(W(B),B ∈ B̃(Rd)) be the white noise with intensity νd . Set also for any A ∈
B(Rd) and any 1 ≤ p <∞,

Lp(A, νd)=
{
g :A →R :‖g‖pp,A :=

∫
A

∣∣g(t)∣∣pνd(dt) <∞
}
;

L∞(A)=
{
g :A→R :‖g‖∞,A := sup

t∈A
∣∣g(t)∣∣<∞

}
.

1.1. Statistical model and Lp-risk. Consider the sequence of statistical ex-
periments (called Gaussian white noise models) generated by the observation
Xε = {Xε(g), g ∈ L2(R

d, νd)}ε where

Xε(g)=
∫
f (t)g(t)νd(dt)+ ε

∫
g(t)W(dt).(1.1)

Here ε ∈ (0,1) is understood as the noise level which is usually supposed suffi-
ciently small.
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The goal is to recover unknown signal f from observation Xε on a given cube
(−b, b)d, b > 0. The quality of an estimation procedure will be described by Lp-
risk, 1 ≤ p ≤ ∞, defined in (1.2) below, and as an estimator we understand any
Xε-measurable Borel function belonging to Lp(R

d, νd). Without loss of generality
and for ease of notation, we will assume that functions to be estimated vanish
outside (−b, b)d .

Thus, for any estimator f̃ε and any f ∈ Lp(R
d, νd)∩L2(R

d, νd), we define its
Lp-risk as

R(p)ε [f̃ε;f ] = {E(ε)f (‖f̃ε − f ‖qp
)}1/q

, q ≥ 1.(1.2)

Here and throughout the paper, ‖ · ‖p,1 ≤ p ≤ ∞ stands for ‖ · ‖p,(−b,b)d , and E
(ε)
f

denote the mathematical expectation with respect to the probability law of Xε .
Let F be a given subset of Lp(Rd, νd)∩L2(R

d, νd). For any estimator f̃ε define

its maximal risk by R(p)ε [f̃ε;F] = supf∈FR
(p)
ε [f̃ε;f ] and its minimax risk on F

is given by

φε(F) := inf
f̃ε

R(p)ε [f̃ε;F].(1.3)

Here infimum is taken over all possible estimators. The estimator f̂ is called min-
imax on F if

lim sup
ε→0

φ−1
ε (F)R(p)ε [f̂ε;F]<∞.

1.2. Adaptive estimation. Let {Fϑ,ϑ ∈ �} be the collection of subsets of
Lp(R

d, νd) ∩ L2(R
d, νd), where ϑ is a nuisance parameter which may have very

complicated structure.
The problem of adaptive estimation can be formulated as follows: is it possible

to construct a single estimator f̂ε which would be simultaneously minimax on each
class Fϑ,ϑ ∈�, that is,

lim sup
ε→0

φ−1
ε (Fϑ)R(p)ε [f̂ε;Fϑ ]<∞ ∀ϑ ∈�?

We refer to this question as the problem of adaptive estimation over the scale of
{Fϑ,ϑ ∈�}. If such estimator exists, we will call it optimally or rate-adaptive.

In the present paper we will be interested in adaptive estimation over the scale

Fϑ =N
r,d( 
β, 
L), ϑ = ( 
β, 
r, 
L),
where N
r,d( 
β, 
L) is an anisotropic Nikol’skii class; see Section 3.1 for a formal
definition. Here we only mention that for any f ∈ N
r,d( 
β, 
L), the coordinate βi
of the vector 
β = (β1, . . . , βd) ∈ (0,∞)d represents the smoothness of f in the
direction i, and the coordinate ri of the vector 
r = (r1, . . . , rd) ∈ [1,∞]d repre-
sents the index of the norm in which βi is measured. Moreover, N
r,d( 
β, 
L) is the
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intersection of the balls in some semi-metric space, and the vector 
L ∈ (0,∞)d
represents the radii of these balls.

The aforementioned dependence on the direction is usually referred to
anisotropy of the underlying function and the corresponding functional class.
The use of the integral norm in the definition of the smoothness is referred
to inhomogeneity of the underlying function. The latter means that the func-
tion f can be sufficiently smooth on some part of the observation domain and
rather irregular on the other part. Thus the adaptive estimation over the scale
{N
r,d( 
β, 
L), ( 
β, 
r, 
L) ∈ (0,∞)d ×[1,∞]d × (0,∞)d} can be viewed as the adap-
tation to anisotropy and inhomogeneity of the function to be estimated.

1.3. Historical notes. The history of the adaptive estimation over scales of sets
of smooth functions dates back 30 years. During this time a variety of functional
classes was introduced in nonparametric statistics, particularly those of Sobolev,
Nikol’skii and Besov. The relations between different scales as well as between
classes belonging to the same scale can be found, for instance, in Nikol’skiı̆ (1977).
It is worth mentioning that although the considered classes are different, the same
estimation procedure may be (nonadaptively) minimax on them. In such situations
we will say that the class F1 is statistically equivalent to the class F2 and write
F1 �� F2. Also for two sequences aε → 0 and bε → 0, we will write aε ∼ bε and
aε � bε if 0< limε→0 aεb

−1
ε <∞ and limε→0 aεb

−1
ε ≥ 1, respectively.

Estimation of univariate functions. The first adaptive results were obtained in
Efroı̆movich and Pinsker (1984). The authors studied the problem of adaptive es-
timation over the scale of periodic Sobolev classes (Sobolev ellipsoids), W(β,L),
in the univariate model (1.1) under L2-loss (p = 2). The exact asymptotics of min-
imax risk onW(β,L) is given by P(L)ε2β/(2β+1), where P(L) is the Pinsker con-
stant. The authors proposed the estimation procedure based on blockwise Bayesian
construction and showed that it is adaptive and efficient over the scale of consid-
ered classes. Noting thatW(β,L) �� N2,1(β,L), one can assert that Efroimovich–
Pinsker estimator is rate-adaptive on N2,1(β,L) as well.

Influenced by this pioneering paper, a variety of adaptive methods under L2-loss
were proposed in different statistical models such as density and spectral density
estimation, nonparametric regression, deconvolution model, inverse problems and
many others. Let us mention some of them.

• Extension of the Efroimovich–Pinsker method, Efroimovich (1986, 2008);
• Unbiased risk minimization, Golubev (1992), Golubev and Nussbaum (1992);
• Model selection, Barron, Birgé and Massart (1999), Birgé (2008), Birgé and

Massart (2001);
• Aggregation of estimators, Nemirovski (2000), Juditsky and Nemirovski (2000),

Wegkamp (2003), Tsybakov (2003), Rigollet and Tsybakov (2007), Bunea, Tsy-
bakov and Wegkamp (2007), Goldenshluger (2009);
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• Exponential weights, Leung and Barron (2006), Dalalyan and Tsybakov (2008),
Rigollet and Tsybakov (2011);

• Risk hull method, Cavalier and Golubev (2006);
• Blockwise Stein method, Cai (1999), Cavalier and Tsybakov (2001), Rigollet

(2006).

Some of aforementioned papers deal with not only adaptation over the scale of
functional classes but contain sharp oracle inequalities [about oracle approach and
its relation to adaptive estimation; see, e.g., Goldenshluger and Lepski (2013) and
the references therein]. Without any doubt, the adaptation under L2-loss is the best
developed area of the adaptive estimation. A rather detailed overview and some
new ideas related to this topic can be found in the recent paper Baraud, Giraud and
Huet (2014).

The adaptive estimation under Lp-loss, 1 ≤ p ≤ ∞ was initiated by Lepskiı̆
(1991) over the collection of Hölder classes, that is, N∞,1(β,L). The asymptotics
of minimax risk is given by

φε
(
N∞,1(β,L)

)∼ { ε2β/(2β+1), p ∈ [1,∞);(
ε2∣∣ln(ε)∣∣)β/(2β+1)

, p = ∞.
The author constructed the optimally-adaptive estimator which is obtained by the
selection from the family of piecewise polynomial estimators. Selection rule is
based on pairwise comparison of estimators (bias-majorant tradeoff). Some sharp
results were obtain in Lepskiı̆ (1992b), where an efficient adaptive estimator was
proposed in the case of L∞-loss; see also Tsybakov (1998).

Recent development in adaptive univariate density estimation under L∞-loss
can be found in Giné and Nickl (2009), Gach, Nickl and Spokoiny (2013). Another
“extreme” case, the estimation under L1-loss, was scrutinized by Devroye and
Lugosi (1996, 1997).

The consideration of the classes of inhomogeneous functions in nonparametric
statistics was started in Nemirovskiy (1985), where the minimax rates of conver-
gence were established and minimax estimators were constructed in the case of
generalized Sobolev classes. The adaptive estimation problem over the scale of
Besov classes Bβr,q(L) was studied for the first time in Donoho et al. (1996) in the

framework of the density model. We note that Bβr,∞ = Nr,1(β,L), and although
B
β
r,q ⊃ Nr,1(β,L) for any q ≥ 1 [see Nikol’skiı̆ (1977)], one has Bβr,q �� Nr,1(β,L).
The same problem in the univariate model (1.1) was studied in Lepski, Mammen

and Spokoiny (1997). The asymptotics of minimax risk is given by

φε
(
B
β
r,q(L)

)∼ { ε2β/(2β+1), (2β + 1)r > p;(
ε2∣∣ln(ε)∣∣)(β−1/r+1/p)/(2β−2/r+1)

, (2β + 1)r ≤ p.
The set of parameters satisfying r(2β + 1) > p is called in the literature the

dense zone and the case r(2β + 1) ≤ p is referred to the sparse zone. As it was
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shown in Donoho et al. (1996) hard threshold wavelet estimator is nearly adaptive
over the scale of Besov classes. The latter means that the maximal risk of the pro-
posed estimator differs from φ(B

β
r,q(L)) by logarithmic factor on the dense zone

and on the boundary (2β + 1)r = p. A similar result was proved in Lepski, Mam-
men and Spokoiny (1997), but for a completely different estimation procedure: for
the first time, a local bandwidth selection scheme was used for the estimation of an
entire function. Moreover, the computations of the maximal risk of the proposed
estimator on B

β
r,q(L) was made by integration of the local oracle inequality.

It is important to emphasize that both aforementioned results were proved under
the additional assumption

1 − (βr)−1 + (βp)−1 > 0.(1.4)

Independently, an approach similar to Lepski, Mammen and Spokoiny (1997)
was proposed in Goldenshluger and Nemirovski (1997). The authors constructed
nearly adaptive estimation over the scale of generalized Sobolev classes.

The optimally adaptive estimator over the scale of Besov classes was built by
Juditsky (1997). The estimation procedure is the hard threshold wavelet construc-
tion with random thresholds whose choices are based on some modifications of
the comparison scheme proposed in Lepskiı̆ (1991). Several years later similar a
result was obtained by Johnstone and Silverman (2005). This estimation method
is again a hard threshold wavelet estimator but with empirical Bayes selection of
thresholds. Both results were obtained under additional condition β > 1/r which
is slightly stronger than (1.4). Efficient adaptive estimator over the scale of Besov
classes under L2-loss was constructed in Zhang (2005) by use of empirical Bayes
thresholding.

We finish this section by mentioning the papers Juditsky and Lambert-Lacroix
(2004) and Reynaud-Bouret, Rivoirard and Tuleau-Malot (2011), where very in-
teresting phenomena related to the adaptive density estimation under Lp-loss with
unbounded support were observed, and the paper Goldenshluger (2009), where
Lp-aggregation of estimators was proposed.

Multivariate function estimation. Much less is known when adaptive estimation
of multivariate function is considered. The principal difficulty is related to the fact
that the methods developed in the univariate case cannot be directly generalized to
the multivariate setting.

In a series of papers from the late 1970s, Ibragimov and Hasminskii studied
the problem of minimax estimation over N
r,d( 
β, 
L) under Lp-losses in different
statistical models; see Hasminskii and Ibragimov (1990) and references therein.
Note, however, that these authors treated only the case ri = p, i = 1, . . . , d , which
allowed them to prove that standard linear estimators (kernel, local polynomial,
etc.) are minimax. The optimally adaptive estimator corresponding to the latter
case was constructed in Goldenshluger and Lepski (2011) in the density model
on R

d .
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The estimation over isotropic Besov class B

β

r,q( 
L) was studied in Delyon and

Juditsky (1996), where the authors established the asymptotic of minimax risk
under Lp-loss and constructed minimax estimators. Here the isotropy means that

β = (β, . . . ,β), 
r = (r, . . . , r) and 
L = (L, . . . ,L). The asymptotics of minimax
risk is given by

φε
(
B


β

r,q( 
L)

)∼ { ε2β/(2β+d), (2β + d)r > dp;(
ε2∣∣ln(ε)∣∣)(β−d/r+d/p)(2β−2d/r+d)

, (2β + d)r ≤ dp.
Nearly adaptive with respect to Lp-risk, 1 ≤ p < ∞, an estimator over a

collection of isotropic Nikol’skii classes N
r,d( 
β, 
L) �� B

β

r,q( 
L) was built by

Goldenshluger and Lepski (2008). The proposed procedure is based on the spe-
cial algorithm of local bandwidth selection from the family of kernel estimators.
The corresponding upper bound for maximal risks is proved under the additional
assumption β > d/r.

Apparently, the first results on the minimax adaptive estimation over anisotropic

Besov classes B

β

r,q( 
L) was obtained in Neumann (2000) under L2-loss in the

model (1.1). The author proposed the minimax and then nearly adaptive proce-
dures based on the original hard threshold wavelet construction. This result was
obtained under nonstandard and quite restrictive assumptions imposed on 
β and 
r .

Bertin (2005) considered the problem of adaptive estimation over the scale of
anisotropic Hölder classes, that is, N
r,d( 
β, 
L) with ri = ∞ for any i = 1, . . . , d
under L∞-loss. The asymptotics of minimax risk is given here by

φε
(
N 
∞,d( 
β, 
L))∼ (ε2∣∣ln(ε)∣∣)β/(2β+1)

,

where 1/β = 1/β1 + · · · + 1/βd . The construction of the optimally adaptive esti-
mator is based on the selection rule from the family of kernel estimators developed
in Lepski and Levit (1998).

Akakpo (2012) studied the problem of adaptive estimation over the scale of

anisotropic Besov classes B

β

r,q( 
L) under L2-loss in multivariate density models

on the unit cube. The construction of the optimally-adaptive estimator is based
on the model selection approach, and it uses sophisticated approximation bounds.
Note, however, that all results are proved in the situation where coordinates of the
vector 
r are the same (ri = r, i = 1, . . . , d).

For the first time the minimax and minimax adaptive estimation over the scale
of anisotropic classes N
r,d( 
β, 
L) under Lp-loss in the multivariate model (1.1)
was studied in full generality in Kerkyacharian, Lepski and Picard (2001, 2008).

To describe the results obtained in this paper we will need the following notation
used in the sequel as well. Set ω−1 = (β1r1)

−1 + · · · + (βdrd)−1, and define for
any 1 ≤ s ≤ ∞

τ(s)= 1 − 1/ω+ 1/(sβ), κ(s)= ω(2 + 1/β)− s.
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In Kerkyacharian, Lepski and Picard (2001) under assumption

τ(∞) > 0,
d∑
i=1

[
1/(riβi)− 1/(pβi)

]
+ < 2/p(1.5)

(called by the authors the dense zone), the following asymptotics of minimax risk
was found:

φε
(
N
r,d( 
β, 
L))∼ εβ/(2β+1).

In Kerkyacharian, Lepski and Picard (2008) under assumptions

τ(∞) > 0, κ(p)≤ 0, 
r ∈ [1,p]d(1.6)

(called by the authors the sparse zone) the following asymptotics of minimax risk
was found:

φε
(
N
r,d( 
β, 
L))∼ (ε2∣∣ln(ε)∣∣)τ(p)/(2τ(2)).

The authors built a nearly adaptive estimator with respect to Lp-risk, 1 ≤ p <∞.
Its construction is based on the pointwise bandwidths selection rule which differs
from that presented in Lepski and Levit (1998) as well as from the construction
developed several years later in Goldenshluger and Lepski (2008, 2014). It is im-
portant to emphasize that the method developed in the present paper is in some
sense a “global” version of the aforementioned procedure.

The existence of an optimally-adaptive estimator as well as the asymptotics of
minimax risk in the case, where assumptions (1.5) and (1.6) are not fulfilled, re-
mained an open problem. Note also that assumption (1.4), which appeared in the
univariate case, can be rewritten as τ(p) > 0. The minimax as well as adaptive
estimation in the case τ(p)≤ 0 was not investigated. One can suppose that a uni-
formly consistent estimator on Nr,1(β,L) does not exist if τ(p)≤ 0 since τ(p) > 0
is the sufficient condition for the compact embedding of the univariate Nikol’skii
space into Lp; see Nikol’skiı̆ (1977).

The attempt to shed light on aforementioned problems was recently undertaken
in Goldenshluger and Lepski (2014) in the framework of the density estimation
on R

d . The authors are interested in adaptive estimation under Lp-loss, p ∈ [1,∞)
over the collection of functional classes

Fϑ =N
r,d( 
β, 
L,M) := N
r,d( 
β, 
L)∩ {f :‖f ‖∞ ≤M}, ϑ = ( 
β, 
r, 
L,M).
Adapting the results obtained in the latter paper to the observation model (1.1), we
first state that the asymptotics of the minimax risk satisfies

φε
(
N
r,d( 
β, 
L,M))� μνε,
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where

ν =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

β

2β + 1
, κ(p) > 0;

τ(p)

2τ(2)
, κ(p)≤ 0, τ (∞) > 0;

ω

p
, κ(p)≤ 0, τ (∞)≤ 0;

με =
{
ε2, κ(p) > 0 or κ(p)≤ 0, τ (∞)≤ 0;
ε2
∣∣ln(ε)∣∣, κ(p)≤ 0, τ (∞) > 0.

It is important to note that the obtained lower bound remains true if p = ∞, which
implies in particular that under L∞-loss, there is no uniformly consistent estimator
on N
r,d( 
β, 
L,M) if τ(∞)≤ 0 [note that κ(∞)= −∞].

The authors proposed nearly adaptive estimator, that is, an estimator whose
maximal risk is proportional to (ε2| ln(ε)|)ν , whatever the value of the nuisance
parameter ϑ = ( 
β, 
r, 
L,M) and p ∈ [1,∞).

Thus the existence of optimally-adaptive estimators remains an open problem.
Moreover, all discussed results are obtained under additional assumption that the
underlying function is uniformly bounded. We will see that the situation changes
completely if this condition does not hold. The optimally-adaptive estimator over
the scale of anisotropic Nikol’skii classes under L∞-loss was constructed in Lepski
(2013) under assumption τ(∞) > 0. Since τ(∞) > 0 implies automatically that
N
r,d( 
β, 
L,M)= N
r,d( 
β, 
L) for some M completely determined by 
L, the inves-
tigation under L∞-loss is finalized.

We would like to finish our short overview by mentioning works where the
adaptation is studied not only with respect to the smoothness properties of the
underlying function but also with respect to some structural assumptions imposed
on the statistical model:

• Composite function structure, Horowitz and Mammen (2007), Juditsky, Lepski
and Tsybakov (2009), Baraud and Birgé (2014);

• Multi-index structure (single-index, projection pursuit etc.), Hristache et al.
(2001), Goldenshluger and Lepski (2009), Lepski and Serdyukova (2014);

• Multiple index model in density estimation, Samarov and Tsybakov (2007);
• Independence structure in density estimation, Lepski (2013).

The problems of adaptive estimation over the scale of functional classes de-
fined on some manifolds were studied [Kerkyacharian, Thanh and Picard (2011),
Kerkyacharian, Nickl and Picard (2012)].

1.4. Objectives. Considering the collection of functional classes

Fϑ =N
r,d( 
β, 
L), ϑ = ( 
β, 
r, 
L),
we want to answer on the following questions:
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(1) What is the optimal decay of the minimax risk for any fixed value of the
nuisance parameter ϑ and norm index p ∈ [1,∞]?

(2) Do optimally-adaptive estimators always exist?

To realize this program we propose first a new data-driven selection rule from
the family of kernel estimators with varying bandwidths and establish for it so-
called Lp-norm oracle inequality. Then we use this inequality in order to prove the
adaptivity properties of the proposed estimation procedure.

Let us discuss our approach more in detail. Throughout of the paper we will
use the following notation. For any u, v ∈ R

d the operations and relations u/v, uv,
u∨ v, u∧ v, u < v, au, a ∈ R, are understood in a coordinate-wise sense, and |u|
stands for Euclidean norm of u. All integrals are taken over Rd unless the domain
of integration is specified explicitly. For any real a its positive part is denoted by
(a)+, and �a� is used for its integer part.

Kernel estimator with varying bandwidth. Put H = {hs = e−s−2, s ∈ N}, and
denote by S1 the set of all measurable functions defined on (−b, b)d and taking
values in H. Introduce

Sd = {
h : (−b, b)d →Hd : 
h(x)= (h1(x), . . . , hd(x)
)
,

x ∈ (−b, b)d, hi ∈ S1, i = 1, d
}
.

Let K :Rd → R be a function satisfying
∫
K = 1. With any 
h ∈ Sd we associate

the function

K
h(t, x)= V −1

h (x)K

(
t − x

h(x)

)
, t ∈ R

d, x ∈ (−b, b)d,

where V
h(x)=
∏d
i=1 hi(x). Let S∗ be a given subset of Sd . Consider the family

of estimators

F
(
S∗)= {f̂
h(x)=Xε

(
K
h(·, x)

)
, 
h ∈ S∗, x ∈ (−b, b)d}.(1.7)

We will call these estimators kernel estimators with varying bandwidth. This type
of estimator was introduced in Müller and Stadtmüller (1987) in the context of
cross-validation technique.

We will be particulary interested in the set S∗ = Sconst
d ⊂ Sd , which consists

of constant functions. Note that if 
h ∈ Sconst
d we come to the standard definition of

kernel estimators in a white Gaussian noise model.
In view of (1.1) we have the following decomposition which will be useful in

the sequel:

f̂
h(x)− f (x)=
∫
K
h(t, x)

[
f (t)− f (x)]νd(dt)+ εξ
h(x),

(1.8)
ξ
h(x)=

∫
K
h(t, x)W(dt).
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We note that ξ
h is a centered Gaussian random field on (−b, b)d with the covari-
ance function

V −1

h (x)V −1


h (y)

∫
K

(
t − x

h(x)

)
K

(
t − y

h(y)

)
νd(dt), x, y ∈ (−b, b)d .

Oracle approach. Our goal is to propose a data-driven (based on Xε) selection
procedure from the collection F(S∗) and establish for it Lp-norm oracle inequal-
ity. More precisely we construct the random field (
h(x), x ∈ (−b, b)d) completely
determined by the observation Xε , such that x �→ 
h(x) belongs to S∗, and prove
that for any p ∈ [1,∞], q ≥ 1 and ε > 0 small enough,

R(p)ε [f̂
h;f ] ≤ϒ1 inf

h∈S∗

A(ε)p,q(f,

h)+ϒ2ε.(1.9)

Here ϒ1 and ϒ2 are numerical constants depending on d,p, q, b and K only, and
inequality (1.9) is established for any function f ∈ Lp(R

d, νd) ∩ L2(R
d, νd). We

call (1.9) an Lp-norm oracle inequality.

We provide with explicit expression of the functional A(ε)p,q(·, ·) that allows us
to derive different minimax adaptive results from the unique Lp-norm oracle in-
equality. In this context it is interesting to note that in the “extreme cases” p = 1
and p = ∞, it suffices to select the estimator from the family F(Sconst

d ). When
p ∈ (1,∞), the oracle inequality (1.9) as well as the selection from the family
F(S∗) will be done for some special choice of the bandwidth’s set S∗. We will
see that the restrictions imposed on S∗ are rather weak, which will allow us to
prove very strong adaptive results presented in Section 3.

1.5. Organization of the paper. In Section 2 we present our selection rule and
formulate for it Lp-norm oracle inequality, Theorem 1. Its consequence related
to the selection from the family Sconst

d is established in Corollary 1. Section 3 is
devoted to adaptive estimation over the collection of anisotropic Nikol’skii classes.
The lower bound result is formulated in Theorem 2, and the adaptive upper bound
is presented in Theorem 3. In Section 4 we discuss open problems in adaptive
minimax estimation in different statistical models. Proofs of main results are given
in Sections 5–7, and all technical lemmas are proven in the Appendix.

2. Selection rule and Lp-norm oracle inequality.

2.1. Functional classes of bandwidths. Put for any 
h ∈ Sd and any s =
(s1, . . . , sd) ∈N

d

s[
h] =
d⋂
j=1

sj [hj ], sj [hj ] = {x ∈ (−b, b)d :hj (x)= hsj
}
.
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Let κ ∈ (0,1) and L> 0 be given constants. Define

Hd(κ,L)=
{

h ∈ Sd :

∑
s∈Nd

νκd
(
s[
h])≤ L

}
.

We remark that obviously Sconst
d ⊂ Hd(κ,L) for any κ ∈ (0,1) and L= (2b)dκ .

Put N∗
p = {�p� + 1, �p� + 2, . . .}, and define for any A ≥ ed

B(A)= ⋃
r∈N∗

p

Br (A), Br (A)= {
h ∈Sd :
∥∥V −1/2


h
∥∥
rp/(r−p) ≤A

}
.

Later on, in the case p ∈ (1,∞), we will be interested in selection from the family
F(H), where H is an arbitrary subset of Hd(κ,L,A) := Hd(κ,L) ∩ B(A), κ ∈
(0,1/d), with some special choice A =Aε → ∞, ε→ 0.

The following notation related to the functional class B(A) will be exploited in
the sequel. For any 
h ∈ B(A), define

N
∗
p(


h,A)=N
∗
p ∩ [rA(
h),∞), rA(
h)= inf

{
r ∈ N

∗
p : 
h ∈ Br (A)

}
.(2.1)

Obviously rA(
h) <∞ for any 
h ∈ B(A).
Assumptions imposed on the kernel K . Let a ≥ 1 and A> 0 be fixed.

ASSUMPTION 1. There exists K :R → R such that
∫
K = 1, supp(K) ⊂

[−a, a] and:

(i)
∣∣K(s)−K(t)

∣∣≤A|s − t | ∀s, t ∈R;

(ii) K(x)=
d∏
i=1

K(xi) ∀x = (x1, . . . , xd) ∈ R
d .

Throughout the paper we will consider only kernel estimators withK satisfying
Assumption 1.

2.2. Upper functions and the choice of parameters. Put

hε := e−
√∣∣ln(ε)∣∣, Aε := eln2(ε),(2.2)

and let Sd(hε)⊂ Sd consist of the functions 
h, taking values in Hd(hε) := Hd ∩
(0,hε]d .

Set C2(r)= C2(r, dκ, (2L)d), and define for any 
h ∈ B(Aε),

�̃ε,p(
h)= C1
∥∥√∣∣ln (εV
h)

∣∣V −1/2

h

∥∥
p, p ∈ [1,∞],

�ε,p(
h)= inf
r∈N∗

p(

h,Aε)

C2(r)
∥∥V −1/2


h
∥∥
rp/(r−p), p ∈ [1,∞).
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Introduce finally

�ε,p(
h)=
{
�̃ε,p(
h)∧�ε,p(
h), 
h ∈ B(Aε)∩Sd(hε),p ∈ [1,∞);
�̃ε,p(
h), 
h ∈ B(Aε) \Sd(hε),p ∈ [1,∞].

Some remarks are in order.
(1) The constant C1 depends on K, d,p and b, and its explicit expression

is given in Section 5.1. The explicit expression of the quantity C2(r, τ,L), r >
p, τ ∈ (0,1),L > 0, can be found in Lepski (2015), Section 3.2.2. Its defini-
tion is rather involved, and since it will not be exploited in the sequel, we omit
the definition of the latter quantity in the present paper. Here we only mention
that C2(·, τ,L) : (p,∞)→ R+ is bounded on each bounded interval. However,
C2(r, τ,L)→ ∞, r → ∞.

(2) The selection rule presented below exploits heavily the fact that {�ε,p(
h),

h ∈ H},p ∈ [1,∞] is the upper function for the collection {‖ξ
h‖p, 
h ∈ H}. Here
the random field ξ
h appeared in the decomposition (1.8) of the kernel estimator,
and H is an arbitrary countable subset of Hd(κ,L,Aε). The latter result was re-
cently proved in Lepski (2015), and it is presented in Proposition 1, Section 5.2 of
the present paper.

(3) The choice of hε and Aε is mostly dictated by the following simple obser-
vation, which will be used for proving adaptive results presented in Section 3:

lim
ε→0

ε−ahε = ∞, lim
ε→0

εaAε = ∞ ∀a > 0.(2.3)

The general relation between parameters hε and Aε can be found in Lepski (2015).

2.3. Selection rule. Let H be a countable subset of Hd(κ,L,Aε). Define

R̂H(
h)= sup

η∈H
[‖f̂
h∨
η − f̂
η‖p − ε�ε,p(
h∨ 
η)− ε�ε,p(
η)]+, 
h ∈ H.(2.4)

Our selection rule is given now by 
h0 = arg inf
h∈H{R̂H(
h)+ ε�ε,p(
h)}. Since 
h0

does not necessarily belong to H, we define finally 
h ∈ H from the relation

R̂H(
h)+ ε�ε,p(
h)≤ R̂H(
h0)+ ε�ε,p(
h0)+ ε,(2.5)

which leads to the estimator f̂
h.

REMARK 1. We restrict ourselves by consideration of countable subsets of
Hd(κ,L,Aε) in order not to discuss the measurability of f̂
h. Formally, the pro-
posed selection rule can be applied for any H ⊆ Hd(κ,L,Aε) for which final
estimator can be correctly defined.
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2.4. Lp-norm oracle inequality. For any 
h ∈ Sd define

S
h(x, f )=
∫
Rd
K
h(t − x)f (t)νd(dt), x ∈ R

d,

which is understood as kernel approximation (smoother) of the function f at a
point x.

For any 
h, 
η ∈ Sd introduce also

B
h,
η(x, f ) :=
∣∣S
h∨
η(x, f )− S
η(x, f )

∣∣,
(2.6)

B
h(x, f ) = ∣∣S
h(x, f )− f (x)
∣∣,

and define finally for any p ∈ [1,∞]
B(p)
h (f )= sup


η∈H
∥∥B
h,
η(·, f )

∥∥
p + ∥∥B
h(·, f )

∥∥
p.(2.7)

THEOREM 1. Let Assumption 1 be fulfilled, and let p ∈ [1,∞], q ≥ 1, κ ∈
(0,1/d) and L ≥ 1 be fixed. Then there exists ε(q) > 0 such that for any ε ≤ ε(q)
and H⊆ Hd(κ,L,Aε),

R(p)ε [f̂
h;f ] ≤ 5 inf

h∈H
{
B(p)
h (f )+ ε�ε,p(
h)

}+ 9(C3 +C4 + 2)ε

∀f ∈ Lp
(
R
d, νd

)∩L2
(
R
d, νd

)
.

The quantities C3 and C4 depend on K,p, q, b and d only, and their explicit
expressions are presented in the Section 5.1.

Some consequences. Selection rule (2.5) deals with the family of kernel estima-
tors with varying bandwidths. This allows, in particular, to apply Lp-norm oracle
inequality established in Theorem 1 to adaptive estimation over the collection of
inhomogeneous and anisotropic functional classes. However, in some cases it suf-
fices to select from much less “massive” set of bandwidths, namely from Sconst

d . In
this case one can speak about standard multi-bandwidth selection. In particular, in
the next section we will show that the selection from Sconst

d leads to an optimally
adaptive estimator over anisotropic Nikol’skii classes if p = {1,∞}. Moreover,
considering Sconst

d , we simplify considerably the “approximation error” B(p)
h (f )
as well as the upper function �ε,p(·). The following corollary of Theorem 1 will
be proved in Section 5.2.

Set C2,p = (2b)d/p infr∈N∗
p
C2(r), and define for any 
h ∈ Sconst

d (hε) := Sconst
d ∩

Sd(hε),

�(const)
ε,p (
h)= C2,pV

−1/2

h , p ∈ [1,∞),

(2.8)
�(const)
ε,∞ (
h)= C1

√∣∣ln (εV
h)
∣∣V −1/2


h .



GLOBAL CHOICE 1191

Let {e1, . . . , ed} be the canonical basis in R
d . For any 
h ∈ Sconst

d introduce

b
h,j (x)= sup
s : hs≤hj

∣∣∣∣∫
R

K(u)f (x + uhsej )ν1(du)− f (x)
∣∣∣∣,

(2.9)
j = 1, . . . , d.

Define finally H
const
ε = Sconst

d (hε)∩ {
h :V
h ≥ (2b)d/pA−2
ε }, and let f̂ (const)


h be the

estimator obtained by selection rule (2.5) with H = H
const
ε and �ε,p(
h) replaced

by �(const)
ε,p (
h) given in (2.8).

COROLLARY 1. Let Assumption 1 be fulfilled, and let p ∈ [1,∞] and q ≥ 1
be fixed. Then there exists ε(q) > 0 such that for any ε ≤ ε(q), H ⊆ H

const
ε and

f ∈ Lp(R
d, νd)∩L2(R

d, νd)

R(p)ε
[
f̂
(const)

h ;f ]≤ 5 inf


h∈H

{
3‖K‖d1,R

d∑
j=1

‖b
h,j‖p + ε�(const)
ε,p (
h)

}

+ 9(C3 +C4 + 2)ε.

We remark that since H
const
ε is finite a selected multi-bandwidth, 
h ∈ H is given

by


h = arg inf

h∈H
{
R̂H(
h)+ ε�(const)

ε,p (
h)}.
3. Adaptive estimation. In this section we study properties of the estimator

defined in Section 2.3. The Lp-norm oracle inequalities obtained Theorem 1 and
Corollary 1 can be viewed as the initial step in bounding the Lp-risk of this esti-
mator on the anisotropic Nikol’skii classes.

3.1. Anisotropic Nikol’skii classes. Recall that (e1, . . . , ed) denotes the canon-
ical basis of Rd . For the function g :Rd → R

1 and real number u ∈ R, define the
first order difference operator with step size u in direction of the variable xj by

�u,jg(x)= g(x + uej )− g(x), j = 1, . . . , d.

By induction, the kth order difference operator with step size u in direction of the
variable xj is defined as

�ku,jg(x)=�u,j�k−1
u,j g(x)=

k∑
l=1

(−1)l+k
(
k

l

)
�ul,j g(x).(3.1)

DEFINITION 1. For given vectors 
r = (r1, . . . , rd), rj ∈ [1,∞], 
β = (β1, . . . ,

βd), βj > 0, and 
L = (L1, . . . ,Ld), Lj > 0, j = 1, . . . , d , we say that function
g :Rd →R

1 belongs to the anisotropic Nikol’skii class N̄
r,d( 
β, 
L) if:
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(i) ‖g‖rj ,Rd ≤ Lj for all j = 1, . . . , d;
(ii) for every j = 1, . . . , d there exists natural number kj > βj such that∥∥�kju,j g∥∥rj ,Rd ≤Lj |u|βj ∀u ∈ R,∀j = 1, . . . , d.(3.2)

Recall that the consideration of white Gaussian noise model requires f ∈
L2(R

d) that is not always guaranteed by f ∈ N̄
r,d( 
β, 
L). So, later on we will
study the functional classes N
r,d( 
β, 
L)= N̄
r,d( 
β, 
L)∩L2(R

d), which we will also
call anisotropic Nikol’skii classes. Some conditions with guaranteed N
r,d( 
β, 
L)=
N̄
r,d( 
β, 
L) can be found in Section 7.1.

3.2. Main results. Let N
r,d( 
β, 
L) be the anisotropic Nikol’skii functional
class. Put

1

β
:=

d∑
j=1

1

βj
,

1

ω
:=

d∑
j=1

1

βj rj
, Lβ :=

d∏
j=1

L
1/βj
j ,

and define for any 1 ≤ s ≤ ∞,

τ(s)= 1 − 1/ω+ 1/(sβ), κ(s)= ω(2 + 1/β)− s.
The following obvious relation will be useful in the sequel:

κ(s)

ωs
= 2 − s

s
+ τ(s).(3.3)

Set finally p∗ = [maxj=1,...,d rl] ∨ p, and introduce

a =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β

2β + 1
, κ(p) > 0;

τ(p)

2τ(2)
, κ(p)≤ 0, τ

(
p∗)> 0;

ω(p∗ − p)
p(p∗ −ω(2 + 1/β))

, κ(p)≤ 0, τ
(
p∗)≤ 0,p∗ >p;

0, κ(p)≤ 0, τ
(
p∗)≤ 0;p∗ = p.

δε =

⎧⎪⎪⎨⎪⎪⎩
Lβε

2, κ(p) > 0;
Lβε

2
∣∣ln(ε)∣∣, κ(p)≤ 0, τ

(
p∗)≤ 0;

L
(1−2/p)/τ(p)
β ε2

∣∣ln(ε)∣∣, κ(p)≤ 0, τ
(
p∗)> 0.

3.2.1. Lower bound of minimax risk.

THEOREM 2. Let q ≥ 1, L0 > 0 and 1 ≤ p ≤ ∞ be fixed. Then for any 
β ∈
(0,∞)d, 
r ∈ [1,∞]d and 
L ∈ [L0,∞)d , there exists c > 0 independent of 
L such
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that

lim inf
ε→0

inf
f̃ε

sup
f∈N
r,d ( 
β, 
L)

δ−a
ε R(p)ε [f̃ε;f ] ≥ c,

where infimum is taken over all possible estimators.

Let us make several remarks.
10. Case p∗ = p. Taking into account (3.3) we note that there is no uniformly

consistent estimator over N
r,d( 
β, 
L) if

τ(p)1[2,∞)(p)+κ(p)1[1,2)(p)≤ 0,(3.4)

and this result seems to be new. As it will follow from the next theorem the latter
condition is necessary and sufficient for nonexistence of uniformly consistent es-
timators over N
r,d( 
β, 
L) under Lp-loss, 1 ≤ p ≤ ∞. In the case of L∞-loss, (3.4)
is reduced to ω ≤ 1, and a similar result was recently proved in Goldenshluger and
Lepski (2014) for the density model.

It is worth noting that the assumption τ(p) > 0 in the considered case p =
p∗ is the sufficient condition for the compact embedding of the corresponding
Nikol’skii class to another class which is a compact in Lp(R

d). Recall that there
exists the compliance between the existence of a uniform consistence estimator
and the compactness of the class on which the maximal risk is considered. In this
context, the discussed result of the theorem perhaps implies that τ(p) > 0,p ≥ 2
is also the necessary condition for the latter embedding. However, this problem
lies beyond the scope of the present paper.

20. Case κ(p) ≤ 0, τ (p∗) ≤ 0,p∗ > p. The lower bound for minimax risk,
given in this case by (

Lβε
2∣∣ln(ε)∣∣)(ω(p∗−p))/(p(p∗−ω(2+1/β))

,

is new. It is interesting that the latter case does not appear in dimension 1 or, more
generally, when isotropic Nikol’skii classes are considered. Indeed, if rl = r for all
l = 1, . . . , d , then p∗ > p means r > p that, in its turn, implies τ(p∗) = τ(r) =
1> 0. It is worth mentioning that we improve in order the lower bound, recently
found in Goldenshluger and Lepski (2014), which corresponds formally to our
case p∗ = ∞.

30. Case κ(p)≤ 0, τ (p∗) > 0. For the first time the same result was proved in
Kerkyacharian, Lepski and Picard (2008) but under more restrictive assumption
κ(p) ≤ 0, τ (∞) > 0. Moreover, the dependence of the asymptotics of the mini-
max risk on 
L was not optimal.

40. Case κ(p) > 0. The presented lower bound of minimax risk became the
statistical folklore since it is the minimax rate of convergence over anisotropic
Hölder class (rl = ∞, l = 1, . . . , d). If so, the required result can be easily deduced
from the embedding of a Hölder class to N
r,d( 
β, 
L), whatever the value of 
r .
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However, the author was unable to find exact references and derived the announced
result from the general construction used in the proof of Theorem 2. Moreover
we are interested in finding not only the optimal decay of the minimax risk with
respect to ε→ 0, but also its correct dependence on the radii 
L.

3.2.2. Upper bound for minimax risk. Optimally-adaptive estimator. The re-
sults of this section will be derived from Lp-norm oracle inequalities proved in
Theorem 1 and Corollary 1.

Construction of kernel K . We will use the following specific kernel K [see, e.g.,
Kerkyacharian, Lepski and Picard (2001) or Goldenshluger and Lepski (2011)] in
the definition of the estimator’s family (1.7).

Let � be an integer number, and let w : [−1/(2�),1/(2�)] → R
1 be a function

satisfying
∫
w(y)dy = 1 and w ∈ C

1(R1). Put

w�(y)=
�∑
i=1

(
�

i

)
(−1)i+1 1

i
w

(
y

i

)
,

(3.5)

K(t)=
d∏
j=1

w�(tj ), t = (t1, . . . , td).

Set of bandwidths. Set tk,n = −(b + 1)+ (b + 1)k21−n, k = 0, . . . ,2n, n ∈ N
∗,

and let �k,n = [tk,n, tk+1,n), k = 0, . . . ,2n−1, �k,n = (tk,n, tk+1,n], k = 2n−1 +
1, . . . ,2n − 1. Thus {�k,n, k = 0, . . . ,2n} forms the partition of (−b − 1, b + 1)
whatever n ∈ N

∗.
For any n ∈ N

∗, set also Kn = {0, . . . ,2n}d , and define

�d(n)= {�(d)k,n =�k1,n × · · · ×�kd,n,k = (k1, . . . , kd) ∈ Kn
}
.(3.6)

For any n ∈ N
∗ the collection of cubs �d(n) determines the partition of (−b −

1, b+ 1)d .
Denote by S

(n)
d , n ∈ N

∗ the set of all step functions defined on (−b, b)d with
the steps belonging to �d(n)∩ (−b, b)d and taking values in Hd .

Introduce finally for any R > 0,

Hε(R)=Hd
(
1/(2d),R,Aε

)∩ { ⋃
n∈N∗

S
(n)
d

}
,

where Aε is given in (2.2).
Let f̂ (R)
h ,R > 0 denote the estimator obtained by the selection rule (2.4)–(2.5)

from the family of kernel estimators F(Hε(R)) and f̂ (const)

h denote the estimator

constructed in Corollary 1. Both constructions are made with the kernel K satisfy-
ing (3.5).
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Adaptive upper bound. For any � ∈ N
∗ and L0 > 0, set �= (0, �]d × [1,∞]d ×

[L0,∞)d , and later on we will use the notation ϑ ∈ � for the triplet ( 
β, 
r, 
L).
Denote P =�× [1,∞], and introduce

Pconsist = {(ϑ,p) ∈ P : τ(p)1[2,∞)(p)+κ(p)1[1,2)(p) > 0
}

∪ {(ϑ,p) ∈P :p∗ >p
}
.

The latter set consists of the class parameters and norm indexes for which a uni-
form consistent estimation is possible.

Let Vp( 
L) be the quantity whose presentation is postponed to Section 7.4 since
its expression is rather cumbersome. Put L∗ = minj : rj=p∗ Lj , and introduce

δε =

⎧⎪⎪⎨⎪⎪⎩
Lβε

2, κ(p)≥ 0;
Lβ
(
L∗)1/aε2

∣∣ln(ε)∣∣, κ(p)≤ 0, τ
(
p∗)≤ 0;

Vp( 
L)ε2
∣∣ln(ε)∣∣, κ(p)≤ 0, τ

(
p∗)> 0.

THEOREM 3. Let q ≥ 1, L0 > 0 and � ∈ N
∗ be fixed, and let R = 3 + √

2b:
(1) For any (ϑ,p) ∈ Pconsist such that p ∈ (1,∞), 
r ∈ (1,∞]d and κ(p) �= 0,

there exists C > 0 independent of 
L for which

lim sup
ε→0

sup
f∈N
r,d ( 
β, 
L)

δ−a
ε R(p)ε

[
f̂
(R)

h ;f ]≤ C.

(2) For any (ϑ,p) ∈ Pconsist, p ∈ {1,∞}, there exists C > 0 independent of 
L
for which

lim sup
ε→0

sup
f∈N
r,d ( 
β, 
L)

δ−a
ε R(p)ε

[
f̂
(const)

h ;f ]≤ C.

(3) For any (ϑ,p) ∈ Pconsist such that p ∈ (1,∞), 
r ∈ (1,∞]d and κ(p) = 0,
there exists C > 0 independent of 
L for which

lim sup
ε→0

sup
f∈N
r,d ( 
β, 
L)

δ−a
ε

(∣∣ln(ε)∣∣)1/pR(p)ε [f̂ (R)
h ;f ]≤ C.
Some remarks are in order.
10. Combining the results of Theorems 2 and 3, we conclude that optimally-

adaptive estimators under Lp-loss exist over all parameter sets Pconsist if p ∈
{1,∞}. If p ∈ (1,∞), such estimators exist as well, except the boundary cases
κ(p) = 0 and minj=1,...,d rj = 1. Note also that the adaptation is with respect to
the parameter 
β is restricted on (0, �]d . Hence we want to fix this parameter as
large as possible but it should be done a priori since it is involved in our procedure.

20. We remark that the upper and lower bounds for minimax risk differ each
other on the boundary κ(p) = 0 only by (| ln(ε)|)1/p-factor. Using (1,1)-weak
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type inequality for strong maximal operator [de Guzmán (1975)], one can prove
adaptive upper bound on the boundary minj=1,...,d rj = 1 containing an additional
(| ln(ε)|)(d−1)/p-factor. Note, nevertheless, that exact asymptotics of minimax risk
on both boundaries remains an open problem.

30. We obtain full classification of minimax rates over anisotropic Nikol’skii
classes if p ∈ {1,∞} and “almost” full one (except the boundaries mentioned
above) if p ∈ (1,∞). We can assert that δaε is minimax rate of convergence on
N
r,d( 
β, 
L) for any 
β ∈ (0,∞)d, 
r ∈ (1,∞]d and 
L ∈ (0,∞)d . Indeed, for given

β and 
L one can choose L0 = minj=1,...,d Lj and the number �, used in the kernel
construction (3.5), as an any integer strictly larger than maxj=1,...,d βj .

40. We remark that the dependence of minimax rate on 
L is correct (δε = δε) if
κ(p) ≥ 0. In spite of the cumbersome expression of the quantity Vp( 
L), one can
easily check that

Vp( 
L)=L(1−2/p)/(τ (p))
β

if Lj = L for any j = 1, . . . , d . Hence, under this restriction, δε = δε if κ(p) ≤
0, τ (p∗) > 0 as well.

4. Open problems in adaptive estimation. The goal of this section is to dis-
cuss the directions in which adaptive multivariate function estimation will be de-
veloped. We do not pretend here to cover the whole spectrum of existing problems
and mostly restrict ourselves by consideration of the adaptation over the scale of
anisotropic classes. Moreover, we will concentrate on principal difficulties and the
mathematical aspect of the problem, and we will not pay much attention to the
technical details and practical applications. Although we will speak about adap-
tive estimation, it is important to realize that for the majority of problems discussed
below, very little is known about the minimax approach.

4.1. Abstract statistical model. Let (Y(n),A(n),P(n)f , f ∈ F) be the sequence

of statistical experiments generated by observation Y (n), n ∈ N
∗. Let  be a set

and ρ : × → R+ be a loss functional. The goal is to estimate the mapping
G :F→, and as an estimator we understand an Y (n)-measurable -valued map.

The quality of an estimation procedure G̃n on F is measured by the maximal
risk

Rn[G̃n;F] =
{

sup
f∈F

E
(n)
f ρ

q(G̃n,G(f ))}1/q
, q ≥ 1,

and as previously, φn(F)= inf
G̃n

Rn[G̃n;F] denotes the minimax risk.
Assume that F ⊃⋃ϑ∈� Fϑ , where {Fϑ,ϑ ∈�} is a given collection of sets.

PROBLEM I (Fundamental). Find necessary and sufficient conditions of exis-
tence of optimally-adaptive estimators, that is, the existence of an estimator Ĝn
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satisfying

Rn[Ĝn;Fϑ ] ∼ φn(Fϑ) ∀ϑ ∈�.

It is well known that optimally-adaptive estimators do not always exist; see
Lepskiı̆ (1990, 1992a), Efromovich and Low (1994), Cai and Low (2005). Hence
the goal is to understand how the answer to the aforementioned question depends
on the statistical model, underlying estimation problem (mapping G) and the col-
lection of considered classes. The attempt to provide such classification was under-
taken in Lepskiı̆ (1992a), but we found there that sufficient conditions of existence
as well as of nonexistence of optimally-adaptive estimators are too restrictive.

It is important to realize that the answers to the formulated problem may be
different, even if the statistical model and the collection of functional classes are
the same, and estimation problems are similar in nature. Indeed, consider univari-
ate model (1.1), and let Fϑ = N∞,1(β,L),ϑ = (β,L), be the collection of Hölder
classes. Set

G∞(f )= ‖f ‖∞, G2(f )= ‖f ‖2.

As we know the optimally-adaptive estimator of f , say f̂n, under L∞-loss was
constructed in Lepskiı̆ (1991). Moreover the asymptotics of minimax risk under
L∞-loss on N∞,1(β,L) coincides with asymptotics corresponding to the estima-
tion of G∞(·). Therefore, Ĝn := G∞(f̂n) is an optimally-adaptive estimator for
G∞(·). On the other hand, there is no optimally-adaptive estimator for G2(·); see
Cai and Low (2006).

4.2. White Gaussian noise model. Let us return to the problems studied in the
present paper. Looking at the optimally-adaptive estimator proposed in Theorem 3,
we conclude that its construction is not feasible. Indeed, it is based on the selection
from very huge set of parameters, sometimes even infinite.

PROBLEM II (Feasible estimator). Find an optimally-adaptive estimator
whose construction would be computationally reasonable.

At first glance, the interest in this problem is not related to the “practical ap-
plications” since the pointwise bandwidths selection rule from Goldenshluger and
Lepski (2014) will do the job, although it is not theoretically optimal. We think
that a “feasible solution” could bring new ideas and approaches to the construction
of estimation procedures. One very interesting remark (prompted to the author by
one of the referees) is that a solution being simultaneously statistically optimal
and computationally feasible may not exist. In this context the negative answer on
Problem II would be of big interest as well.
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Another source of problems is structural adaptation. Let us consider one of the
possible directions. Denote by E the set of all d × s real matrices, 1 ≤ s < d .
Introduce the following collection of functional classes:

Fϑ = S
r,d( 
β, 
L,E) := {f :Rd →R :f (x)= g(Ex), g ∈ N
r,p( 
β, 
L),E ∈ E
}
,

ϑ = ( 
β, 
r, 
L,E).
PROBLEM III (Structural adaptation). Prove or disprove the existence of

optimally-adaptive estimators over the collection S
r,d( 
β, 
L,E) under Lp-loss.

Note that if 
r = (∞, . . . ,∞) (Hölder case), an optimally adaptive estimator was
constructed in Goldenshluger and Lepski (2009). A nearly adaptive estimator in
the case s = 1 (single index constraint) and d = 2 was proposed in Lepski and
Serdyukova (2014). Many other structural models like additive, projection pursuit
or their generalization [see Goldenshluger and Lepski (2009)] can be studied as
well.

4.3. Density model. Let Xi, i = 1, . . . , n, be i.i.d. d-dimensional random vec-
tors with common probability density f . The goal is to estimate f under Lp-loss
on R

d .

PROBLEM IV. Prove or disprove the existence of optimally-adaptive estima-
tors over the collection of anisotropic Nikol’skii classes N
r,d( 
β, 
L) under Lp-loss.

The last advances in this task were made in Goldenshluger and Lepski (2014).
However, as was conjectured in this paper, their local approach cannot lead to the
construction of optimally-adaptive estimators. On the other hand it is not clear
how to adapt the approach developed in the present paper to the density estimation
on R

d . Indeed, the key element of our procedure are the upper functions for Lp-
norm of random fields found in Lepski (2015). These results are heavily based on
the fact that the corresponding norm is defined on a bounded interval of Rd .

The same problem can be formulated for the more complicated deconvolution
model. Recent advances in the estimation under L2-loss in this model can be found
in Comte and Lacour (2013).

4.4. Regression model. Let ξi, i ∈ N
∗, be i.i.d. symmetric random variables

with common probability density �, and let Xi, i ∈ N
∗, be i.i.d. d-dimensional

random vectors with common probability density g. Suppose that we observe the
pairs (X1, Y1), . . . , (Xn,Yn) satisfying

Yi = f (Xi)+ ξi, i = 1, . . . , n.

The goal is to estimate function f under Lp-loss on (−b, b)d , where b > 0 is a
given number.
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We will suppose that the sequences ξi, i ∈ N
∗ and Xi, i ∈N

∗ are mutually inde-
pendent and that the design density g (known or unknown) is separated away from
zero on (−b, b)d .

Regular noise. Suppose that there exists a > 0 and A > 0 such that for any
u, v ∈ [−a, a] ∫

R

�(y + u)�(y + v)
�(y)

dy ≤ 1 +A|uv|.(4.1)

Assume also that E|ξ1|α <∞ for some α ≥ 2.

PROBLEM V. Prove or disprove the existence of optimally-adaptive estimators
over the collection of anisotropic Nikol’skii classes N
r,d( 
β, 
L) under Lp-loss.

The interesting question arising in this context is what is the minimal value of
α under which the formulated problem can be solved. In particular, is it or is it not
related to the norm index p?

Cauchy noise. Let �(x)= {π(1 + x2)}−1. In this case the noise is of course reg-
ular; that is, (4.1) holds, but the moment assumption fails. To our knowledge, there
are no minimax or minimax adaptive results in the multivariate regression model
with noise “without moments” when anisotropic functional classes are considered.

PROBLEM VI. Propose the construction of optimally-adaptive estimators over
the scale of anisotropic Hölder classes N 
∞,d( 
β, 
L) under Lp-loss.

The same problem can be of course formulated over the scale of anisotropic
Nikol’skii classes, but it seems that nowadays neither probabilistic nor the tools
from functional analysis are sufficiently developed in order to proceed to this task.

Irregular noise. Consider the following two particular examples:

�(x)= 2−11[−1,1](x), �γ (x)= Cγ e−|x|γ , γ ∈ (0,1/2).
In both cases, condition (4.1) is not fulfilled. In the parametric case f (·) ≡ f ∈
R, the minimax rate of convergence is faster than n−1/2; see Ibragimov and
Has’minskiı̆ (1981).

PROBLEM VII. Find minimax rate of convergence on anisotropic Hölder class
N 
∞,d( 
β, 
L) under Lp-loss. Propose an aggregation scheme for these estimators
that leads to the construction of optimally-adaptive estimators.

One of the possible approaches to solving Problems VI and VII could be an Lp-
aggregation of locally-Bayesian or M-estimators. Some recent advances in this
direction can be found in Chichignoud (2012), Chichignoud and Lederer (2014).

Unknown distribution of the noise. Suppose now that the density � is unknown
or even does not exist. The goal is to consider simultaneously the noises with and
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without moments, regular or irregular etc. Even if the regression function belong
to known functional class, the different noises may lead to different minimax rates
of convergence.

PROBLEM VIII. Build an estimator which would simultaneously adapt to a
given scale of functional classes and to the noise distribution.

We do not precise here the collection of classes since the formulated problem
seems extremely complicated. Any solution, even in dimension 1, can be consid-
ered as a great progress. In this context let us mention some very promising results
recently obtained in Baraud, Birgé and Sart (2014).

We finish this section with following remarks. The regression model is very rich,
and many other problems can be formulated from its framework. For instance, the
discussed problems can be mixed with imposing structural assumptions on the
model. On the other hand aforementioned problems are not directly related to the
concrete statistical model. In particular, almost all of them can be postulated in the
inverse problem estimation context or in nonparametric auto-regression.

5. Proof of Theorem 1 and Corollary 1. We start this section by presenting
the constants appearing in the assertion of Theorem 1.

5.1. Important quantities. Put

C1 = 2
(
q ∨ [p1{p <∞} + 1{p = ∞}])

+ 2
√

2d
[√
π + ‖K‖2

(√∣∣ln (4bA‖K‖2
)∣∣+ 1

)];
C3 = C3(q̃,p)1{p <∞} +C3(q,1)1{p = ∞}, q̃ = (q/p)∨ 1;

C4 =
(
γ q+1

√
(π/2)

[
1 ∨ (2b)qd] ∑

r∈N∗
p

e−er
[
(r

√
e)d‖K‖d2r/(r+2)

]q/2)1/q

,

where γ q+1 is the (q + 1)th absolute moment of the standard normal distribution
and

C3(u, v)= (4b)d/v
[
2u
∫ ∞

0
zu−1 exp

(
− z2/v

8‖K‖2
2

)
dz
]1/(uv)

, u, v ≥ 1.

5.2. Auxiliary results. As we have mentioned, the main ingredient of the proof
of Theorem 1 is the fact that {�ε(
h), 
h ∈H} is the upper function for the collection
{‖ξ
h‖p, 
h ∈ H}. The corresponding result is formulated below for citation conve-
nience, as Proposition 1 is proved in Theorem 1 and in Corollary 2 of Theorem 2,
Lepski (2015).

Set for any p ∈ [1,∞), τ ∈ (0,1) and L> 0,

ψε(
h)= �̃ε,p(
h)∧
(

inf
r∈N∗

p(

h,Aε)

C2(r, τ,L)
∥∥V −1/2


h
∥∥
rp/(r−p)

)
, 
h ∈ B(Aε).
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PROPOSITION 1. Let L > 0 be fixed, and let hε and Aε be defined in (2.2).
Suppose also that K satisfies Assumption 1.

Then for any q ≥ 1 and τ ∈ (0,1) one can find ε(τ, q) such that:
(1) for any p ∈ [1,∞), ε ≤ ε(τ, q) and any countable H ⊂ Sd(hε) ∩ Hd(τ,L,

Aε), one has

E

{
sup

h∈H

[‖ξ
h‖p −ψε(
h)]+}q ≤ {(C3 +C4)ε
}q;

(2) for any p ∈ [1,∞], ε ≤ ε(τ, q) and any countable H ⊂ Sd ,

E

{
sup

h∈H

[‖ξ
h‖p − �̃ε,p(
h)]+}q ≤ {C3ε}q .

We will need also the following technical result.

LEMMA 1. For any d ≥ 1, κ ∈ (0,1/d), L> 0 and A ≥ ed :

(i) Hd(κ,L,A)⊆ Hd
(
dκ,Ld,A

);
(ii) 
h∨ 
η ∈ Hd

(
dκ, (2L)d,A

) ∀
h, 
η ∈ Hd(κ,L,A).

The first statement of the lemma is obvious, and the second will be proved in
the Appendix.

5.3. Proof of Theorem 1. Let 
h ∈ H be fixed. We have in view of the triangle
inequality

‖f̂
h − f ‖p ≤ ‖f̂
h∨
h − f̂
h‖p + ‖f̂
h∨
h − f̂
h‖p + ‖f̂
h − f ‖p.(5.1)

First, note that f̂
h∨
h ≡ f̂
h∨
h and, therefore,

‖f̂
h∨
h − f̂
h‖p = ‖f̂
h∨
h − f̂
h‖p ≤ R̂H(
h)+ ε�ε,p(
h∨ 
h)+ ε�ε,p(
h)
(5.2)

≤ R̂H(
h)+ 2ε�ε,p(
h).
Here we used first 
h ∈ H and then that V
h∨
η ≥ V
h ∨ V
η implies �ε,p(
h ∨ 
η) ≤
�ε,p(
h)∧�ε,p(
η) for any 
h and 
η. Similarly we have

‖f̂
h∨
h − f̂
h‖p ≤ R̂H(
h)+ ε�ε,p(
h∨ 
h)+ ε�ε,p(
h)
(5.3)

≤ R̂H(
h)+ 2ε�ε,p(
h).
The definition of 
h implies

R̂H(
h)+ 2ε�ε,p(
h)+ R̂H(
h)+ 2ε�ε,p(
h)≤ 4R̂H(
h)+ 4ε�ε,p(
h)+ 2ε,

and we get from (5.1), (5.2) and (5.3)

‖f̂
h − f ‖p ≤ 4R̂H(
h)+ 4ε�ε,p(
h)+ ‖f̂
h − f ‖p + 2ε.(5.4)
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We obviously have for any 
h, 
η ∈ H,

‖f̂
h∨
η − f̂
η‖p ≤ ‖B
h,
η‖p + ε‖ξ
h,
η‖p + ε‖ξ
η‖p.
Denote H

∗ = {
v : 
v = 
h ∨ 
η, 
h, 
η ∈ H}, and remark that H ⊆ H
∗ ⊆ H(dκ, (2L)d,

Aε). The latter inclusion follows from assertions of Lemma 1. Moreover since H

is countable, H∗ is countable as well. Putting ζ = sup
v∈H∗[‖ξ
v‖p−�ε,p(
v)]+, we
obtain

R̂H(
h)≤ sup

η∈H
∥∥B
h,
η(·, f )

∥∥
p + 2εζ

and therefore, in view of (5.4),

‖f̂
h − f ‖p ≤ 4 sup

η∈H
∥∥B
h,
η(·, f )

∥∥
p + 4ε�ε,p(
h)+ 8εζ + ‖f̂
h − f ‖p + 2ε.

Taking into account that ‖f̂
h − f ‖p ≤ ‖B
h‖p + ε‖ξ
h‖p , we obtain

‖f̂
h − f ‖p ≤ 5B(p)
h (f )+ 5ε�ε,p(
h)+ 9εζ + 2ε.

It remains to note that if p ∈ [1,∞) in view of the definition of �ε,p(·),
ζ =

(
sup


v∈H∗∩Sd (hε)
[‖ξ
v‖p −�ε,p(
v)]+)∨

(
sup


v∈H∗\Sd (hε)
[‖ξ
v‖p − �̃ε,p(
v)]+).

Applying the first and the second assertions of Proposition 1 with τ = dκ, L =
(2L)d , H = H

∗ ∩Sd(hε) and H = H
∗ \Sd(hε), respectively, we obtain

R(p)ε [f̃
h;f ] ≤ 5B(p)
h (f )+ 5ε�ε,p(
h)+ 18(C3 +C4 + 2)ε.

It remains to note that the left-hand side of the obtained inequality is independent
of 
h, and we come to the assertion of the theorem with ϒ = 18(C3 + C4 + 2),
where, recall, C3 and C4 are given in Section 5.1.

If p = ∞, the second assertion of Proposition 1 with H = H
∗ is directly applied

to the random variable ζ , and the statement of the theorem follows.

5.4. Proof of Corollary 1. The proof of the corollary consists mostly of bound-
ing from above the quantity B(p)
h (f ). This, in its turn, is based on the technical re-
sult presented in Lemma 2 below, which will be used in the proof of Proposition 2,
Section 7.3.1, as well.

5.4.1. Auxiliary lemma. The following notation will be exploited in the se-
quel:

For any J ⊆ {1, . . . , d} and y ∈ R
d , set yJ = {yj , j ∈ J } ∈ R

|J |, and we will
write y = (yJ , yJ̄ ), where as usual J̄ = {1, . . . , d} \ J .

For any j = 1, . . . , d , introduce Ej = (0, . . . , ej , . . . ,0), and set E[J ] =∑
j∈J Ej . Later on E0 = E[∅] denotes the matrix with zero entries.
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To any J ⊆ {1, . . . , d} and any λ :Rd → R+ such that λ ∈ Lp(R
d), associate

the function

λ(yJ , zJ̄ )= λ
(
z+ E[J ](y − z)), y, z ∈R

d,

with the obvious agreement λJ ≡ λ if J = {1, . . . , d}, which is always the case if
d = 1.

At last for any 
h = (h1, . . . ,hd) ∈ Sconst
d and J ⊆ {1, . . . , d}, set K
h,J (uJ ) =∏

j∈J h−1
j K(uj/hj ), and define for any y ∈ R

d ,

[K
h � λ]J (y)=
∫
R|J̄ |
K
h,J̄ (uJ̄ − yJ̄ )λ(yJ , uJ̄ )ν|J̄ |(duJ̄ ).

The following result is a trivial consequence of the Young inequality and Fubini’s
theorem. For any J ⊆ {1, . . . , d} and p ∈ [1,∞],∥∥[K
h � λ]J

∥∥
p ≤ ‖K‖d−|J |

1,R ‖λ‖p,AJ ∀
h ∈ Sconst
d ,(5.5)

where we have denoted AJ = (−b, b)|J | ×R
|J̄ |.

LEMMA 2. For any 
h, 
η ∈ Sconst
d , one can find k = 1, . . . , d , and the collection

of indexes {j1 < j2 < · · · < jk} ∈ {1, . . . , d} such that for any x ∈ R
d and any

f :Rd →R,

B
h,
η(x, f )≤
k∑
l=1

([|K
h∨
η| � b
h,jl
]
Jl (x)+

[|K
η| � b
h,jl
]
Jl (x)

);
B
h(x, f )≤

k∑
l=1

[|K
h| � b
h,jl
]
Jl (x), Jl = {j1, . . . , jl}.

The proof of the lemma is postponed to the Appendix.

5.4.2. Proof of the corollary. We obtain in view of the first assertion of
Lemma 2 and (5.5),

∥∥B
h,
η(·, f )
∥∥
p ≤ 2

k∑
l=1

‖K‖d−l1,R‖b
h,jl‖p,AJl = 2
k∑
l=1

‖K‖d−l1,R‖b
h,jl‖p.

The latter equality follows from the fact that f is compactly supported on (−b, b)d ,
which implies that b
h,jl (xJl , ·) is compactly supported on (−b, b)d−l . Taking into
account that ‖K‖1,R ≥ 1, we get

∥∥B
h,
η(·, f )
∥∥
p ≤ 2‖K‖d1,R

k∑
l=1

‖b
h,jl‖p ≤ 2‖K‖d1,R
d∑
j=1

‖b
h,j‖p ∀
h, 
η ∈Sconst
d .
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Since the right-hand side of the latter inequality is independent of 
η, we obtain

sup

η∈Sconst

d

∥∥B
h,
η(·, f )
∥∥
p ≤ 2‖K‖d1,R

d∑
j=1

‖b
h,j‖p.

Repeating previous computations and using the second assertion of Lemma 2, we
have ∥∥B
h(·, f )

∥∥
p ≤ ‖K‖d1,R

d∑
j=1

‖b
h,j‖p(5.6)

for any 
h ∈Sconst
d and any p ≥ 1. We obtain finally

B(p)
h (f )≤ 3‖K‖d1,R
d∑
j=1

‖b
h,j‖p.(5.7)

30. We obviously have rA(
h)= �p� + 1 for any 
h ∈ Hε , and therefore, for any
p ∈ [1,∞),

�ε,p(
h)≤ (2b)d/pV −1/2

h inf

r∈N∗
p

C2(r)=�(const)
ε,p (
h).

It is also obvious that

�ε,∞(
h)=�(const)
ε,∞ (
h) ∀
h ∈ Hε.

As we previously mentioned Sconst
d ⊂Hd(κ,L) for any κ ∈ (0,1) and L = (2b)κ .

Thus, choosing, for example, κ = (2d)−1, we get that H
const
ε ⊂ Hd((2d)−1,

(2b)1/(2d),Aε), and, moreover, Hconst
ε is obviously finite set.

The assertion of the corollary follows now from (5.7) and Theorem 1.

6. Proof of Theorem 2. The proof is organized as follows. First, we formu-
late two auxiliary statements, Lemmas 3 and 4. Second, we present a general con-
struction of a finite set of functions employed in the proof of lower bounds. Then
we specialize the constructed set of functions in different regimes and derive the
announced lower bounds.

6.1. Proof of Theorem 2. Auxiliary lemmas. The first statement given in
Lemma 3 is a simple consequence of Theorem 2.4 from Tsybakov (2009). Let
F be a given set of real functions defined on (−b, b)d .

LEMMA 3. Assume that for any sufficiently small ε > 0, one can find a positive
real number ρε and a finite subset of functions {f (0), f (j), j ∈ Jε} ⊂ F such that∥∥f (i) − f (j)∥∥p ≥ 2ρε ∀i, j ∈ Jε ∪ {0} : i �= j ;(6.1)

lim sup
ε→0

1

|Jε|2
∑
j∈Jε

Ef (0)

{dPf (j)

dPf (0)

(
X(ε)

)}2

=: C <∞.(6.2)
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Then for any q ≥ 1,

lim inf
ε→0

inf
f̃

sup
f∈F

ρ−1
ε

(
Ef ‖f̃ − f ‖qp

)1/q ≥ (√C + √
C + 1)−2/q,

where infimum on the left-hand side is taken over all possible estimators.

We will apply Lemma 3 with F = N
r,d( 
β, 
L,M).
Next, we will need the result to be a generalization of the Varshamov–Gilbert

lemma. It can be found in Rigollet and Tsybakov (2011), Lemma A3. In the version
established in Lemma 4 below, we only provide a particular choice of the constants
appearing in the latter result.

Let �n be the Hamming distance on {0,1}n, n ∈ N
∗, that is,

�n(a, b)=
n∑
j=1

1{aj �= bj } =
n∑
j=1

|aj − bj |, a, b ∈ {0,1}n.

LEMMA 4. For any m≥ 4 there exist a subset Pm,n of {0,1}n such that

|Pm,n| ≥ 2−m(n/m− 1)m/2,
n∑
k=1

ak =m, �m
(
a, a′)≥m/2

∀a, a′ ∈ Pm,n.

6.2. Proof of Theorem 2. General construction of a finite set of functions. This
part of the proof is mostly based on the constructions and computations made in
Goldenshluger and Lepski (2014), proof of Theorem 3. For any t ∈ R, set

g(t)= e−1/(1−t2)1[−1,1](t).

For any l = 1, . . . , d let b/2 > σl = σl(ε) → 0, ε → 0 be the sequences to be
specified later. Let Ml = σ−1

l , and without loss of generality assume that Ml , l =
1, . . . , d are integer numbers.

Define also

xj,l = −b+ 2jσl, j = 1, . . . ,Ml, l = 1, . . . , d,

and let M = {1, . . . ,M1} × · · · × {1, . . . ,Md}. For any m = (m1, . . . ,md) ∈ M,
define

π(m)=
d−1∑
j=1

(mj − 1)

(
d∏

l=j+1

Ml

)
+md,

Gm(x)=
d∏
l=1

g

(
xl − xml ,l
σl

)
, x ∈ R

d .
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Let W be a subset of {0,1}|M|. Define a family of functions {fw,w ∈W } by

fw(x)=A
∑
m∈M

wπ(m)Gm(x), x ∈ R
d,

where wj , j = 1, . . . , |M| are the coordinates of w, and A is a parameter to be
specified.

Suppose that the set W is chosen so that

�|M|
(
w,w′)≥ B ∀w,w′ ∈W,(6.3)

where we remind the reader that �|M| is the Hamming distance on {0,1}|M|. Here
B = B(ε)≥ 1 is a parameter to be specified. Let also SW := supw∈W |{j :wj �= 0}|.
Note finally that fw,w ∈W , are compactly supported on (−b, b)d .

Repeating the computations made in Goldenshluger and Lepski (2014), proof
of Theorem 3, we assert first that if

Aσ
−βl
l

(
SW

d∏
j=1

σj

)1/rl

≤ C−1
1 Ll ∀l = 1, . . . , d,(6.4)

then fw ∈ N
r,d( 
β, 
L) for any w ∈W . Here C1 as well as C2 and C3 defined below
are the numerical constants completely determined by the function g.

Next the condition (6.1) of Lemma 3 is fulfilled with

ρε = C2A

(
B

d∏
j=1

σj

)1/p

,(6.5)

which remains true if p = ∞ as well. At last, we have ‖fw‖2
2 ≤ C3A

2SW
∏d
j=1 σj .

Set f (0) ≡ 0, and let us verify condition (6.2) of Lemma 3. First observe that in
view of Girsanov’s formulas,

dPfw
dPf (0)

(
X(ε)

)= exp
{
ε−1
∫
fwb(dt)− (2ε2)−1‖fw‖2

2

}
.

This yields that for any w ∈W ,

Ef (0)

{
dPfw
dPf (0)

(
X(ε)

)}2

= exp
{
ε−2‖fw‖2

2
}≤ exp

{
ε−2C3A

2SW

d∏
j=1

σj

}
.

The right-hand side of the latter inequality does not depend on w; hence we have

1

|W |2
∑
w∈W

Ef (0)

{
dPfw
dPf (0)

(
X(ε)

)}2

≤ exp

{
C3ε

−2A2SW

(
d∏
j=1

σj

)
− ln

(|W |)}.
Therefore, condition (6.2) of Lemma 3 is fulfilled with C = 1 if

C3ε
−2A2SW

d∏
j=1

σj ≤ ln
(|W |).(6.6)
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In order to apply Lemma 3 it remains to specify the parameters A, σl , l =
1, . . . , d and the set W so that relationships (6.3), (6.4) and (6.6) are simultane-
ously fulfilled. According to Lemma 3, under these conditions the lower bound is
given by ρε in (6.5).

6.3. Proof of Theorem 2. Choice of the parameters. We begin with the con-
struction of the set W . Let m ≥ 4 be an integer number whose choice will be
made later, and, without loss of generality, assume that |M|/m≥ 9 is integer. Let
Pm,|M| be a subset of {0,1}|M| defined in Lemma 4, where we put n= |M|.

SetW = Pm,|M| ∪ 0, where 0 is the zero sequence of the size |M|. With such a
set W ,

SW ≤m, ln
(|W |)≥ (m/2)[ln2

(|M|/m− 1
)− 2

]
,

and, therefore, condition (6.6) holds true if

A2ε−2
d∏
j=1

σj ≤ (2C3)
−1[ln2

(|M|/m− 1
)− 2

]
.(6.7)

We also note that condition (6.4) is fulfilled if we require

Aσ
−βl
l

(
m

d∏
j=1

σj

)1/rl

≤ C−1
1 Ll ∀l = 1, . . . , d.(6.8)

In addition, (6.3) holds with B =m/2, and therefore,

ρε = 2−1/pC2A

(
m

d∏
j=1

σj

)1/p

.(6.9)

6.4. Proof of Theorem 2. Derivation of lower bounds in different zones. Let
ci , i = 1, . . . ,6, be constants; the choice will be made later.

Case: κ(p)≤ 0, τ (p∗)≤ 0. Set

�ε =
{(
Lβε

2
∣∣ln(ε)∣∣)ω/(κ(p∗))

, κ
(
p∗)< 0;

Lβe
−ε−2

, κ
(
p∗)= 0,

and note that �ε → ∞, ε→ 0. In view of the latter remark we will assume that ε
is small enough, provided �ε > 1. We start our considerations with the following
remark. The case κ(p∗) = 0 is possible only if p∗ = p since κ(·) is strictly de-
creasing. Moreover, in view of relation (3.3), κ(p∗)= 0 is possible only if p ≤ 2
since τ(p∗)≤ 0. Choose

A= c1�ε, m= c2Lβ�
−p∗τ(p∗)
ε , σl = c3L

−1/βl
l � (rl−p∗)/(βlrl)

ε .



1208 O. LEPSKI

With this choice, we have |M|
m

= m−1∏d
j=1 σ

−1
j = c−1

2 c−d
3 �

p∗
ε → ∞, ε → 0.

Hence, for any ε small enough, one has

[
ln2
(|M|/m− 1

)− 2
]≥Q1

{ ∣∣ln(ε)∣∣, κ
(
p∗)< 0;

ε−2, κ
(
p∗)= 0,

whereQ1 is independent of ε and 
L. This yields that (6.7) and (6.8) will be fulfilled
if

c2
1cd3 ≤ (2C3)

−1Q1, c1c1/rl
2 cd/rl−βl3 ≤ C−1

1 .(6.10)

Some remarks are in order. First, since rl ≤ p∗ for any l = 1, . . . , d and κ(p∗) <
0, we have

σl ≤ c3L
−1/βl
l ≤ c3

[
min

l=1,...,d
L

−1/βl
0

]
.

Here we also used �ε > 1. Thus choosing c3 small enough we can guarantee that
σl ≤ b/2 for any l = 1, . . . , d , which was the unique restriction imposed on the
choice of the latter sequence.

Next τ(p∗) ≤ 0, �ε > 1 and p∗τ(p∗) = 2 − p∗, when κ(p∗) = 0, imply that
m≥ c2L

1/β
0 , and therefore, choosing c2 large enough we guarantee that m≥ 4. At

last, choosing c1 small enough we can assert that (6.10) is satisfied.
Thus it remains to compute ρε . We get from (6.9)

ρε = C22−1/pc1
(
c2cd3

)1/p
� 1−p∗/p
ε

(6.11)
=: 1(p,∞]

(
p∗)Q2

(
Lβε

2∣∣ln(ε)∣∣)ω(p∗−p)/(p(p∗−ω(2+1/β)))
.

We remark that there are no uniformly consistent estimators if p∗ = p.
Case: κ(p)≤ 0, τ (p∗) > 0. First note that the case κ(p)≤ 0, τ (p∗) > 0 is pos-

sible only if p > 2. It follows from (3.3) and τ(p∗)≤ τ(p) since τ(·) is decreasing.
It implies τ(2) > 0 and τ(rl) > 0 for any l = 1, . . . , d , since rl ≤ p∗.

Set �ε = ε2| ln(ε)|, and choose

A= c4L
1/(2τ(2))
β �(1−1/ω)/(2τ(2))

ε , m= 4,

σl = L−1/βl
l L

(rl−2)/(2βlrlτ (2))
β �τ(rl)/(2βlτ (2))

ε .

We remark first that

σl → 0, ε→ 0 ∀l = 1, . . . , d,

and, therefore, σl ≤ b/2 for all ε > 0 small enough.
Next, |M|/m = 4−1L

1/(τ(2))
β �

−1/(2βτ(2))
ε ≥ 4−1L

1/(βτ(2))
0 �

−1/(2βτ(2))
ε , and

hence for any ε small enough,[
ln2
(|M|/m− 1

)− 2
]≥Q3

∣∣ln(ε)∣∣,
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whereQ3 is independent of ε and 
L. This yields that (6.7) and (6.8) will be fulfilled
if

c2
4 ≤ (2C3)

−1Q3, c441/rl ≤ C−1
1 .

Choosing c4 small enough we satisfy the latter restrictions. Thus it remains to
compute ρε . We get from (6.9)

ρε = C221/pc4L
(1−2/p)/(2τ(2))
β �τ(p)/(2τ(2))

ε
(6.12)

=:Q4
(
L
(1−2/p)/(τ (p))
β ε2∣∣ln(ε)∣∣)(1−1/ω+1/(βp))/(2−2/ω+1/β)

.

Case: κ(p) > 0. Choose

A= c6
(
Lβε

2)β/(2β+1)
, m= 9−1Lβ

(
Lβε

2)−β/(2β+1)
,

σl = L−1/βl
l

(
Lβε

2)β/(βl(2β+1))
.

We remark that |M|/m= 9 and m→ ∞, ε→ 0; hence m> 4. Moreover

σl → 0, ε→ 0 ∀l = 1, . . . , d,

and therefore, σl ≤ b/2 for all ε > 0 small enough.
We obviously get that (6.7) and (6.8) will be fulfilled if

c2
6 ≤ (2C3)

−1, c6 ≤ (9C1)
−1.

Choosing c6 small enough we satisfy the latter restrictions. Finally, we get
from (6.9),

ρε =C2c418−1/p(Lβε2)β/(2β+1)
.

7. Proof of Theorem 3. Later on ci , i = 1,2, . . . , denote numerical constants
independent of 
L. Moreover without further mentioning we will assume that all
quantities whose definitions involve the kernel K are defined with K =w�.

7.1. Preliminary facts. Embedding of Nikol’skii classes. For any 
β ∈ (0,∞)d ,

r ∈ [1,∞]d and s ≥ 1, define

γ j (s)=
βjτ(s)

τ (rj )
, j = 1, . . . , d,

(7.1)

γ (s)= (γ 1(s)∧ β1, . . . ,γ d(s)∧ βd

);
r∗(s)=

[
max

j=1,...,d
rj

]
∨ s, 
r(s)= (r1 ∨ s, . . . , rd ∨ s).(7.2)

LEMMA 5. For any s ≥ 1, provided τ(r∗(s)) > 0,

N
r,d( 
β, 
L)⊆N
r(s),d
(
γ (s), c 
L),

where the constant c> 0 is independent of 
L, 
r and 
β .
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The statement of the lemma is a generalization of the embedding theorem for
anisotropic Nikol’skii classes N̄
r,d( 
β, 
L). Indeed, if r∗(s)= s the assertion of the
lemma can be found in Nikol’skiı̆ (1977), Section 6.9. The proof of this lemma as
well as that of Lemma 6 below is postponed to the Appendix.

Define J± = {j = 1, . . . , d : rj �= ∞}, p± = [supj∈J± rj ] ∨ p, and introduce

qj =
{
p±, j ∈ J±,
∞, j �= J±,

γj =
{

γ j (p±), j ∈ J±,
βj , j �= J±.

(7.3)

Note that p∗ ≥ p±, and therefore if τ(p∗) > 0, we have in view of Lemma 5 with
s = p±

N
r,d( 
β, 
L)⊆ N
q,d( 
γ , c 
L).(7.4)

LEMMA 6. Let f ∈ N
r,d( 
β, 
M), and let � >maxj=1,...,d βj . Then for any 
h ∈
Sconst
d , ∥∥b
h,j (·, f )

∥∥
r,Rd ≤ (2b+ 1)d‖w�‖1,Rd

(
1 − e−βj )−1

Mjh
βj
j

(7.5)
∀r ∈ [1, rj ], j = 1, . . . , d.

Moreover, if τ(p∗) > 0, then for any p ≥ 1,∥∥b
h,j (·, f )
∥∥
qj ,R

d ≤ (2b+ 1)d‖w�‖1,Rd
(
1 − e−γj )−1

Mjh
γj
j

(7.6)
∀j = 1, . . . , d,

where 
γ and 
q are defined in (7.3).

7.2. Preliminary facts. Maximal operator. Let λ :Rm →R,m≥ 1 be a locally
integrable function. We define the strong maximal function M[λ] of λ by the for-
mula

M[λ](x) := sup
Km

1

νm(Km)

∫
Km

λ(t)νm(dt), x ∈ R
m,(7.7)

where the supremum is taken over all possible hyper-rectangles Km in R
m with

sides parallel to the coordinate axes, containing point x. It is worth noting that the
Hardy–Littlewood maximal function is defined by (7.7) with the supremum taken
over all cubes with sides parallel to the coordinate axes, centered at x.

It is well known that the strong maximal operator λ �→M[λ] is of the strong
(r, r)-type for all 1< r ≤ ∞; that is, if λ ∈ Lr (R

m), thenM[λ] ∈ Lr (R
m), and for

any r > 1, there exists a constant C̄(r) depending on r only such that∥∥M[λ]∥∥r,Rd ≤ C̄(r)‖λ‖r,Rd .(7.8)
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Using the notation from Section 5.4, to any J ⊆ {1, . . . , d} ∪ ∅ and locally inte-
grable function λ :Rd →R+, we associate the operator

MJ [λ](x)= sup
K|J̄ |

1

ν|J̄ |(K|J̄ |)

∫
K|J̄ |
λ
(
t + E[J ][x − t])ν|J̄ |(dtJ̄ ),

where the supremum is taken over all hyper-rectangles in R
|J̄ | with center xJ̄ =

(xj , j ∈ J̄ ) and with sides parallel to the axis.
As we see, M[λ] is the strong maximal operator applied to the function ob-

tained by λ by fixing by coordinates whose indices belong to J . It is obvious that
M∅[λ] ≡M[λ] andM{1,...,d}[λ] ≡ λ.

The following result is the direct consequence of (7.8) and Fubuni’s theorem.
For any r > 1, there exists Cr such that for any d ≥ 1, λ, J ⊆ {1, . . . , d} ∪ ∅ and
y ∈ (0,∞], ∥∥MJ [λ]∥∥r,(−y,y)d ≤ Cr‖λ‖r,TJ (y),(7.9)

where we have denoted TJ (y)= (−y,y)|J | ×R
|J̄ |. Note also that C∞ = 1.

7.3. Preliminary facts. Key proposition. The result presented in Proposition 2
below is the milestone for the proof of Theorem 3. For any (ϑ,p) ∈ Pconsist, define

ϕ := ϕε(ϑ,p)=
{(
Lβε

2)β/(2β+1)
, κ(p) > 0;(

Lβε
2
∣∣ln(ε)∣∣)β/(2β+1)

, κ(p)≤ 0.

Special set of bandwidths. For any (ϑ,p) ∈ Pconsist, m ∈ N and any j = 1, . . . , d ,
set

η̃j (m)= e−2(L−1
j ϕ
)1/βj e2dm(1/βj−ω(2+1/β)/(βj rj )).(7.10)

η̂j (m)= e−2(L−1
j ϕ
)1/γj e2dm(1/γj−υ(2+1/γ )/(γj qj ))

[
Lγ ϕ

1/β

Lβϕ1/γ

]υ/(γj qj )
,(7.11)

where γj , qj are defined in (7.3), and γ , υ and Lγ are given by

1

γ
:=

d∑
j=1

1

γj
,

1

υ
:=

d∑
j=1

1

γjqj
, Lγ :=

d∏
j=1

L
1/γj
j .(7.12)

Introduce the integer m̂ = m̂(ϑ,p), (ϑ,p) ∈Pconsist, satisfying

e−2d[(Lγ /Lβ)1/(1/γ−1/β)ϕ−1]1/(2βωτ(2))
≤ e2dm̂ ≤ [(Lγ /Lβ)1/(1/γ−1/β)ϕ−1]1/(2βωτ(2)).

Later on, m̂ will be used only if κ(p) < 0 and τ(p∗) > 0. Note that in this case
m̂ ≥ 1 for all ε > 0 small enough since τ(2) > 0; see, for example, the proof of
Theorem 2.
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Introduce also the integer m̃ = m̃(ϑ,p), (ϑ,p) ∈Pconsist as follows:
Case κ(p) > 0,κ(p∗)≥ 0: m̃ = +∞.
Case κ(p) > 0,κ(p∗) < 0: e−2d(h−�

ε L
−1
0 ϕ)

p∗/(κ(p∗)) ≤ e2dm̃ ≤
(h−�
ε L

−1
0 ϕ)

p∗/(κ(p∗)).
Case κ(p)≤ 0, τ (p∗)≤ 0: e−2d(L−1

0 ϕ)
p∗/(κ(p∗)) ≤ e2dm̃ ≤ (L−1

0 ϕ)
p∗/(κ(p∗)).

Case κ(p)≤ 0, τ (p∗) > 0: m̃ = m̂+1 if p∗ = p; m̃ = m̂+m if p∗ >p, where

e−2dϕ−(1+(1/γ−1/β)υ(1/p−1/p∗))/((2+1/γ )υ(1/p−1/p∗))

≤ e2dm ≤ ϕ−(1+(1/γ−1/β)υ(1/p−1/p∗))/((2+1/γ )υ(1/p−1/p∗)), p∗ >p.

Some remarks are in order. First we note that m̃ ≥ 1 for all ε > 0 small enough.
Indeed, ϕ → 0, ε → 0, and κ(p) ≤ 0 implies κ(p∗) < 0 if p∗ > p. Moreover,
since (ϑ,p) ∈ Pconsist the case κ(p) ≤ 0, τ (p∗) ≤ 0 is possible only if p∗ > p
that, in its turn, implies κ(p∗) < 0.

For any (ϑ,p) ∈ Pconsist and any 0 ≤m≤ m̃, introduce

η̄j (m)=
{

η̃j (m)1{m≤m̂} + η̂j (m)1{m>m̂}, κ(p)≤ 0, τ
(
p∗)> 0;

η̃j (m), otherwise,
(7.13)

and define 
η(m)= (η1(m), . . . ,ηd(m)) as follows.
For any m ∈ N set ηj (m)= hsj (m) ∈ H, where s(m)= (s1(m), . . . , sd(m)) ∈ N

d

is given by

sj (m)= min
{
s ∈ N :hs ≤ η̄j (m)

}
.(7.14)

Introduce finally the set of bandwidths Hε(ϑ,p)= {
η(m),m= 0, . . . , m̃}.

LEMMA 7. For any (ϑ,p) ∈ Pconsist and any ε > 0 small enough, one has

Hε(ϑ,p)⊂
{
Hd(hε), κ(p) > 0;
Hd, otherwise.

Moreover, s(m) �= s(n),∀m �= n,m,n= 0, . . . , m̃.

Result formulation. For any 
h ∈ Sd and any x ∈ R
d , put

 ε
(
V
h(x)

)=
⎧⎨⎩V

−1/2

h (x), κ(p) > 0;[
V −1


h (x)
∣∣ln(εV
h(x)

)∣∣]1/2, κ(p)≤ 0.

For any g :Rd → R and any 
h ∈ Sconst
d , introduce

B∗

h(x, g)= sup

η∈Sconst
d

B
h,
η(x, g)+B
h(x, g);

b∗

h(x, g)= sup

J∈J
sup

j=1,...,d
MJ [b
h,j ](x).
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Here B
h,
η and B
h are defined in (2.6), and b
h,j is defined in (2.9), where f is
replaced by g.

Let CK(R
d) denote the set of continuous functions on R

d compactly supported
on K = (−b − 1, b + 1)d , and let N∗


r,d( 
β, 
L) = N
r,d( 
β, 
L) ∩ CK(R
d). Note that

N
r,d( 
β, 
L)⊂ C(Rd) if ω > 1 in view of (7.4).
For any 
β ∈ (0,∞)d and 
r ∈ (1,∞]d , set β∗ = minj=1,...,d βj , C(
r) =

maxj=1,...,d Crj , and define

ϒ1 = 3d
(
1 ∨ ‖w�‖∞,Rd

)d
, ϒ2 = 4ϒ1C(
r)(2b+ 1)d‖w�‖1,Rd

(
1 − e−β∗)−1

.

PROPOSITION 2. For any a ≥ 1, � ∈ N
∗, L0 > 0, any (ϑ,p) ∈ Pconsist and

ε > 0, one can find S∗
ε(ϑ,p)= {
h : (−b, b)d → Hε(ϑ,p)} such that for any ε > 0

small enough:
(1) S∗

ε(ϑ,p)⊂ Hε(3 + √
2b);

(2) for any g ∈N
∗

r,d( 
β,a 
L), there exists 
hg ∈ S∗

ε(ϑ,p) such that:

(i)

B∗

hg (x, g)+ aϒ2ε ε

(
V
hg (x)

)
≤ inf


h∈Hε(ϑ,p)
[
ϒ1b

∗

h(x, g)+ aϒ2ε ε(V
h)

]+ ε ∀x ∈ (−b, b)d;

(ii) if κ(p) > 0 there exists r ∈ N
∗
p such that κ( rp

r−p ) > 0 and r ∈ N
∗
p(


hg,Aε).

7.3.1. Proof of Proposition 2. We break the proof into several steps.
10. The condition g ∈ CK(R

d) implies that g is uniformly continuous on R
d ,

and therefore, for any ε > 0, there exists δ(ε) such that∣∣g(y)− g(y′)∣∣≤ ε2 ∀y, y′ ∈ R
d :
∣∣y − y′∣∣≤ δ(ε).(7.15)

Let xk,n,k ∈ Kn, n ∈ N
∗ denote the center of the cube �(d)k,n defined in (3.6). Intro-

duce for any 
h ∈ Sconst
d ,

B̃∗

h(x, g)=

∑
k∈Kñ

B∗

h(xk,ñ, g)1�(d)k,ñ

(x),

where ñ is chosen from the relation 2−ñ < δ(ε)≤ 2−ñ+1.
Our first goal is to prove that

sup

h∈Sconst

d

∥∥B∗

h(·, g)− B̃∗


h(·, g)
∥∥∞,Rd ≤ c1ε

2.(7.16)

Indeed, for any 
h ∈ Sconst
d , since g is compactly supported on K, one has∥∥B∗


h(·, g)− B̃∗

h(·, g)

∥∥∞,Rd = sup
k∈Kñ

sup
x∈�(d)k,ñ

∣∣B∗

h(x, g)−B∗


h(xk,ñ, g)
∣∣.(7.17)
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In view of the definition of B∗

h(·, g), we have for any x ∈�(d)k,ñ,∣∣B∗


h(x, g)−B∗

h(xk,ñ, g)

∣∣≤ 3 sup

h∈Sconst

d

∣∣S
h(x, g)− S
h(xk,ñ, g)
∣∣+ ∣∣g(x)− g(xk,ñ)

∣∣
≤ 3 sup


h∈Sconst
d

∣∣S
h(x, g)− S
h(xk,ñ, g)
∣∣+ ε2.

The last inequality follows from (7.15) and the definition of ñ.
Recall that K is given in (3.5) and

S
h(x, g)=
∫
Rd
K
h(t − x)g(t)νd(dt)=

∫
Rd
K(u)g(x + u
h)νd(du).

Hence, for any 
h ∈ Sconst
d and any x ∈�(d)k,ñ,

∣∣S
h(x, g)− S
h(xk,ñ, g)
∣∣≤ ∫

Rd

∣∣K(u)∣∣∣∣g(x + u
h)− g(xk,ñ + u
h)∣∣νd(du)
≤ ‖K‖1,Rd ε

2

in view of (7.15) and the definition of ñ.
Since the latter bound is independent of 
h, we obtain for any 
h ∈ Sconst

d and any

x ∈�(d)k,ñ, ∣∣B∗

h(x, g)−B∗


h(xk,ñ, g)
∣∣≤ (1 + 3‖K‖1,Rd

)
ε2.

Taking into account that the right-hand side of the latter inequality is independent
of 
h, k and x, we deduce (7.16) from (7.17).

One of the immediate consequences of (7.16) is that for any x ∈ R
d ,∣∣∣ inf


h∈Hε(ϑ,p)
[
B∗


h(x, g)+ aϒ2ε ε
(
V
h(x)

)]
(7.18)

− inf

h∈Hε(ϑ,p)

[
B̃∗


h(x, g)+ aϒ2ε ε
(
V
h(x)

)]∣∣∣≤ c1ε
2.

20. For any x ∈ (−b, b)d , introduce


hg(x)= arg inf

h∈Hε(ϑ,p)

[
B̃∗


h (x, g)+ aϒ2ε ε
(
V
h(x)

)]
,(7.19)

and define S∗
ε(ϑ,p)= {
hg, g ∈N

∗

r,d( 
β,a 
L)}.

First, we deduce from (7.16) and (7.18) that for any x ∈ (−b, b)d ,

B∗

hg (x, g)+ aϒ2ε ε

(
V
hg (x)

)
(7.20)

≤ inf

h∈Hε(ϑ,p)

[
B∗


h(x, g)+ aϒ2ε ε
(
V
h(x)

)]+ 2c1ε
2.
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Next, since B̃∗

h (·, g) is a piecewise constant on {�(d)k,ñ ∩ (−b, b)d,k ∈ Kñ}, one has


hg ∈ Sεñ and, hence we can assert that


hg ∈ ⋃
n∈N∗

Sεn ∀g ∈ CK

(
R
d).(7.21)

Our goal now is to prove that for any (ϑ,p) ∈ Pconsist, one can find ε(ϑ,p) > 0
such that for any ε < ε(ϑ,p),


hg ∈ Hd
(
1/(2d),3 + √

2b,Aε
) ∀g ∈N

∗

r,d( 
β, 
L).(7.22)

30a. Note that the definition of the functionw� together with the assumption g ∈
CK(R

d) implies that supx∈Rd |B∗

h(x, g)| <∞, which implies, in view of (7.16),

supx∈Rd |B̃∗

h(x, g)|<∞.

Hence, hj,g(x) <∞ for any x ∈ (−b, b)d and any j = 1, . . . , d , where hj,g(·) is
j th coordinate of the vector-function 
hg . It implies, in particular, that the infimum
in (7.19) is achievable, and therefore, for any x ∈ (−b, b)d ,


hg(x) ∈Hε(ϑ,p) ∀g ∈ N
∗

r,d( 
β,a 
L).(7.23)

By the same reasoning, B∗

h(·, g) as well as B̃∗


h(·, g) are Borel functions, and since

Hε(ϑ,p) is countable, we assert in view of (7.23) that for any s ∈ N
d such that


hs := (hs1, . . . ,hsd ) ∈ Hε(ϑ,p),

s[
hg] ∈ B
(
R
d) ∀g ∈ CK

(
R
d).(7.24)

This implies, in particular, that 
hg is Borel function.
30b. Taking into account that w� is compactly supported on [−1/2,1/2]d , we

easily deduce from the assertions of Lemma 2 that for any 
h, 
η ∈Sconst
d ,

B
h,
η(x, g)≤ 2d
(
1 ∨ ‖w�‖∞,Rd

)d sup
J∈J

sup
j=1,...,d

MJ [b
h,j ](x);

B
h(x, g)≤ d
(
1 ∨ ‖w�‖∞,Rd

)d sup
J∈J

sup
j=1,...,d

MJ [b
h,j ](x).

Since the right-hand side of the first inequality is independent of 
η, we obtain for
any 
h ∈ Sconst

d ,

B∗

h(x, g)≤ϒ1 sup

J∈J
sup

j=1,...,d
MJ [b
h,j ](x) ∀x ∈ R

d .(7.25)

In particular, this yields, together with (7.20), that for any x ∈R
d ,

B∗

hg (x, g)+ aϒ2ε ε

(
V
hg (x)

)
(7.26)

≤ inf

h∈Hε(ϑ,p)

[
ϒ1b

∗

h(x, g)+ aϒ2ε ε

(
V
h(x)

)]+ 2c1ε
2.
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40. To get (7.22) let us first prove that for any (ϑ,p) ∈ Pconsist, one can find
ε(ϑ,p) > 0 such that for any ε < ε(ϑ,p),


hg ∈Hd
(
1/(2d),3 + √

2b
) ∀g ∈N

∗

r,d( 
β,a 
L).(7.27)

For any s ∈ N
∗ recall that 
hs = (hs1, . . . ,hsd ) and Vs = ∏dj=1 hsj . Denote Sd =

{s(m),m= 0, . . . , m̃}, and remark that s[
hg] := {x ∈ (−b, b)d : 
hg(x)= 
hs} =∅

for any s ∈ N
d, s �= Sd , in view of the definition of 
hg .

Taking into account (7.24) we have for any 1 ≤m≤ m̃ in view of the definition
hg and the second assertion of Lemma 7,

s(m)[
hg]
⊆ {x ∈ (−b, b)d :

B̃∗

hs(m−1)

(x, g)+ aϒ2ε ε(Vs(m−1))≥ B̃∗

hs(m)

(x, g)+ aϒ2ε ε(Vs(m))
}

⊆ {x ∈ (−b, b)d :

c3ε
2 +B∗


hs(m−1)
(x, g)≥ aϒ2

[
ε ε(Vs(m))− ε ε(Vs(m−1))

]}
.

To get the last inclusion we have taken into account (7.16). The definition of s(m)
implies that

e−d
d∏
j=1

hsj (m) ≤
d∏
j=1

η̄j (m)= e−2dL−1
β ϕ

1/βe−4dm ≤
d∏
j=1

hsj (m)

(7.28) ∀m= 0, . . . , m̃

and therefore, V −1
s(m−1)Vs(m) ≤ e−3d . It yields

 ε(Vs(m))− ε(Vs(m−1))≥ 2−1 ε(Vs)

for any ε > 0 small enough.
Putting c2 = a(2b+ 1)C(
r)‖w‖1,Rd (1 − e−β∗)−1 and using (7.25), we have for

any ε > 0, provided ε < c−1
1 c2,

s(m)[
hg] ⊆ {x ∈ (−b, b)d : c1ε
2 +B∗


hs(m−1)
(x, g)≥ 2−1aϒ2ε ε(Vs)

}
(7.29)

⊆ ⋃
J∈J

d⋃
j=1

{
x ∈ (−b, b)d : ε−1 −1

ε (Vs)MJ [b
hs(m−1),j
](x) > c2

}
.

Here we have also used that ϒ1 ≥ 1 as well as  ε(Vs) > 1 for any s ∈ Sd .
Introduce J∞ = {j = 1, . . . , d : rj = ∞}, and recall that J± = {1, . . . , d} \J∞.

In view of (7.9) and the bound (7.5) of Lemma 6 with r = ∞ and 
M = a 
L, we
obtain for any j ∈ J∞ and any J ∈ J,∥∥MJ [b
hs(m−1),j

]∥∥∞,Rd ≤ c2Ljh
βj
sj (m−1)

(7.30)
≤ c2Lj η̄

βj
j (m− 1)≤ c2ϕe

2d(m−1).
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Here we have used that η̄
βj
j (m− 1)= e−2(L−1

j ϕ)
1/βj e2d(m−1) if rj = ∞.

Set με = 1 if κ(p) > 0 and με = √| ln(ε)| if κ(p) ≤ 0. We obtain for any
m= 0, . . . , m̃ in view of (7.28) and the definition of ϕ,

(εμε)
−1
√
Vs(m)ϕe

2d(m−1) ≤ e−5d/2.

Moreover, we obviously have that (Vs)≥ V −1/2
s με for any s ∈ N

d . Thus we have

ε−1 −1
ε (Vs(m))ϕe

2d(m−1) ≤ e−5d/2,(7.31)

and therefore, for any j ∈ J∞ and any J ∈ J,∥∥MJ [b
hs(m−1),j
]∥∥∞,Rd ≤ c2e

−5d/2 < c2.

This yields, together with (7.29),

s(m)[
hg]
(7.32)

⊆ ⋃
J∈J

d⋃
j∈J±

{
x ∈ (−b, b)d : ε−1 −1

ε (Vs)MJ [b
hs(m−1),j
](x) > c2

}
.

We remark also that if J± = ∅, then only s(0)[
hg] �= ∅. Let us consider now
separately two cases.

40a. Suppose that either κ(p) > 0 or κ(p) ≤ 0, τ (p∗) ≤ 0, and recall that
η̄j (m)= η̃(m), j = 1, . . . , d , for all values of m.

Applying the Markov inequality, we get for any m= 1, . . . , m̃, in view of (7.9)
and the bound (7.5) of Lemma 6 with r = rj and 
M = a 
L,

2−dνd
(
s(m)[
hg])≤ d∑

j∈J±

[
c2ε ε(Vs)

]−rj ‖b
hs(m−1),j
‖rj
rj ,R

d

≤
d∑

j∈J±

[
c2ε ε(Vs)

]−rj (c2Ljh
βj
sj (m−1)

)rj
(7.33)

≤
d∑

j∈J±

[
ε−1 −1

ε (Vs)Lj η̃
βj
j (m− 1)

]rj

≤
d∑

j∈J±

[
ε−1 −1

ε (Vs)ϕe
2d(m−1)]rj e−2dω(2+1/β)(m−1).

Taking into account that ω ≥ β , we obtain in view of (7.31) that for any ε <
c−1

1 c2,

νd
(
s(m)[
hg])≤ de−d/2e−2dω(2+1/β)(m−1) ≤ de−d/2e−2d(m−1)

(7.34)
∀m= 1, . . . , m̃.
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Remembering thats[
hg] =∅ for any s /∈ Sd and that νd(s(0)[
hg])≤ (2b)d , tak-
ing into account the second assertion of Lemma 7, we obtain, putting τ = (2d)−1

for any ε < c−1
1 c2,

∑
s∈Nd

ντd
(
s[
hg])= m̃∑

m=1

ντd
(
s(m)[
hg])+ (2b)dτ ≤ d1/(2d)(1 − e−1)−1 + √

2b

≤ 2 + √
2b.

Here we have used that supd≥1 d
1/(2d)(1 − e−1)−1 < 2.

Thus we assert that (7.27) is established if either κ(p) > 0 or κ(p) ≤
0, τ (p∗)≤ 0.

40b. Let now κ(p) ≤ 0, τ (p∗) > 0. Since η̄j (m)= η̃(m), j = 1, . . . , d , if m=
0, . . . , m̂, (7.34) remains true for any m= 0, . . . , m̂. Similarly to (7.33) we obtain
for any m> m̂ in view of (7.9) and bound (7.6) of Lemma 6 with 
M = a 
L,

2−dνd
(
s(m)[
hg])≤ d∑

j∈J±

[
c2ε ε(Vs)

]−qj ‖b
hs(m−1),j
‖qj
qj ,R

d

≤
d∑

j∈J±

[
c2ε ε(Vs)

]−qj (c3
(
1 − e−γj )−1

Ljh
γj
sj (m−1)

)qj(7.35)

≤
d∑

j∈J±

[
c4
(
1 − e−γj )−1

ε−1 −1
ε (Vs)Lj η̂

γj
j (m− 1)

]qj ,
where we have put c3 = (1 − eβ∗)c2 and c4 = (1 − eβ∗).

Using (7.31) we get

[
ε−1 −1

ε (Vs)Lj η̂
γj
j (m− 1)

]qj ≤ e−3dp±/2e−2dυ(2+1/γ )(m−1)
[
Lγ ϕ

1/β

Lβϕ1/γ

]υ
.

Moreover, the definition of m̂ implies that

e−2dυ(2+1/γ )m̂ϕ(1/β−1/γ )υ

≤ ed(Lβ/Lγ )−υ(2+1/γ )(2βωτ(2)(1/γ−1/β))ϕυ(2+1/γ )/(2βωτ(2))−υ(1/γ−1/β).

Below we prove [see formula (A.20)] that υ(2 + 1/γ ) − ω(2 + 1/β) =
2βτ(2)ωυ(1/γ − 1/β), and we obtain [recall that τ(2) > 0 in the considered
case; see, e.g., the proof of Theorem 2]

e−2dυ(2+1/γ )m̂ϕ(1/β−1/γ )υ

≤ ed(Lβ/Lγ )−υ(2+1/γ )/(2βωτ(2)(1/γ−1/β))ϕ(2+1/β)/(2βτ(2)) → 0, ε→ 0.
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The latter bound together with (7.35) yields that for any m≥ m̂ + 1,

νd
(
s(m)[
hg])

≤ e−3d/2(Lβ/Lγ )
(2+1/β)/(2(β/γ−1)τ (2))ϕ(2+1/β)/(2βτ(2))(7.36)

× e−2dυ(2+1/γ )(m−m̂−1),

and therefore, putting τ = (2d)−1, we can assert that one can find ε(ϑ,p) > 0 such
that for any ε < ε(ϑ,p),

m̃∑
m=m̂+1

ντd
(
s(m)[
hg])≤ 1.

This yields, together with (7.34), for all ε <min{c−1
1 c2, ε(ϑ,p)},

∑
s∈Nd

ντd
(
s[
hg])≤ m̃∑

m=1

ντd
(
s(m)[
hg])+ (2b)dτ + 1 ≤ 3 + √

2b.

Thus we assert that (7.27) is established in the case κ(p)≤ 0, τ (p∗) > 0 as well.
50. To get (7.22) it remains to prove that for any (ϑ,p) ∈ Pconsist, one can find

ε(ϑ,p) > 0 such that for any ε < ε(ϑ,p),


hg ∈ B(Aε) ∀g ∈ N
∗

r,d( 
β,a 
L).(7.37)

The proof of (7.37) is mostly based on the choice of Aε given in (2.2) which, in
turn, guarantees (2.3). We will consider separately 2 cases.

50a. Let κ(p) > 0. Obviously we can find r ∈ N
∗
p such that p := pr

r−p satisfies
κ(p) > 0, and we have in view of (7.28),

∥∥V −1/2

hg

∥∥p
p
≤ edpLp/2

β ϕ−p/(2β)

[
(2b)d +

m∑
m=1

e2pdmνd
(
s(m)[
hg])

]
.(7.38)

Using the first bound established in (7.34), we obtain∥∥V −1/2

hg

∥∥p
p

(7.39)

≤ edpLp/2
β ϕ−p/(2β)

[
(2b)d + d2−d/2e−2dω(2+1/β)

m∑
m=1

e2(p−ω(2+1/β))dm

]
.

Remembering that p − ω(2 + 1/β) =: −κ(p) < 0 and that ϕp/(2β)Aε → ∞, we
assert that there exists ε(θ,p) > 0 such that ‖V −1/2


hg ‖pp ≤ Aε for any ε < ε(θ,p).

Thus (7.37) is proved if κ(p) > 0. Moreover, since the right-hand side of in-
equality (7.39) as well as the choice of r are independent of g, we can assert that
for all ε < ε(θ,p),

r ∈N
∗
p(


hg,Aε) ∀g ∈ N
∗

r,d( 
β,a 
L),
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and assertion 2(ii) of the proposition follows.
50b. In all other cases the set Hε(ϑ,p) is finite, and we obviously have in view

of (7.28), ∥∥V −1/2

hg

∥∥
t ≤ (2b)dedL1/2

β ϕ−1/(2β)e2dm̃ ∀t ≥ 1.(7.40)

This, together with the definitions of m̃ and ϕ, imply that the right-hand side of
the latter inequality increases to infinity polynomially in ε−1. Thus there exists
ε(θ,p) > 0 such that ‖V −1/2


hg ‖pp ≤ Aε for any ε < ε(θ,p), and (7.37) follows.

60. Thus (7.22) follows from (7.27) and (7.37), and it yields, together with
(7.21), that S∗

ε(ϑ,p)⊂ Hε(R) for all ε > 0 small enough, and therefore, the first
assertion of the proposition is proved. We note that assertion 2(i) of the proposition
follows from (7.26) for any ε > 0 such that 2c1ε ≤ 1. Recall, at last, that in view
of (7.23) any 
h ∈ S∗

ε(ϑ,p) takes values in Hε(ϑ,p).

7.4. Proof of the theorem. Case p ∈ (1,∞). We will need some technical re-
sults presented in Lemmas 8 and 9 whose proofs are postponed to the Appendix.

Recall that the quantity B(p)
h (·) is defined in (2.7) with K given in (3.5). Fur-

thermore, a = ‖K‖1,Rd = ‖w�‖d1,R.

LEMMA 8. For any (ϑ,p) ∈ Pconsist and any H⊆ Sd ,

sup
f∈N
r,d ( 
β, 
L)

inf

h∈H
[
B(p)
h (f )+ ε�ε,p(
h)

]≤ sup
g∈N∗


r,d ( 
β,a 
L)
inf

h∈H
[
B(p)
h (g)+ ε�ε,p(
h)

]
.

For any x ∈ (−b, b)d and any g ∈N
∗

r,d( 
β,a 
L), define

Uϑ,p(x, g)= inf

h∈Hε(ϑ,p)

[
b∗


h(x, g)+�εV
−1/2

h

]
,

where �ε = ε if κ(p) > 0 and �ε = ε√| ln(ε)| if κ(p)≤ 0.

LEMMA 9. For any (ϑ,p) ∈ P , provided p∗ >p and any ε > 0 small enough,

sup
g∈N∗


r,d ( 
β,a 
L)

∥∥Uϑ,p(·, g)∥∥p∗ ≤ϒ3L
∗,

where, recall, L∗ = minj : rj=p∗ Lj and ϒ3 = ad2dCp∗(Cp∗‖w�‖∞,Rd + 1)+ 1.

Let (ϑ,p) ∈ Pconsist be fixed. Later on R = 3 + √
2b, and without further men-

tioning we will assume that ε > 0 is sufficiently small in order to provide the
results of Proposition 2, Lemmas 7 and 9. Set also

Vp( 
L)= (Lγ /Lβ)(p−ω(2+1/β))/(2pβωτ(2)(1/γ−1/β))L
τ(p)/(2τ(2))
β ,

p <∞;V∞( 
L)=Lγ .
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7.4.1. Proof of the theorem. Preliminaries. We deduce from Theorem 1 and
Lemma 8

R := c−1
5 sup
f∈N
r,d ( 
β, 
L)

R(p)ε
[
f̂
(R)

h ;f ]

≤ sup
g∈N∗


r,d ( 
β,a 
L)
inf


h∈Hε(R)
{
B(p)
h (g)+ ε�ε,p(
h)

}+ ε.
In view of the first assertion of Proposition 2, S∗

ε(θ,p)⊂ Hε(R).

R ≤ sup
g∈N∗


r,d ( 
β,a 
L)
inf


h∈S∗
ε (θ,p)

{
B(p)
h (g)+ ε�ε,p(
h)

}+ ε.(7.41)

Note also the following obvious inequality: for any p ≥ 1 and any g :Rd →R,

sup

η∈Sd

∥∥B
h,
η(·, g)
∥∥
p ≤ ∥∥ sup

η∈Sconst
d

B
h,
η(·, g)
∥∥
p ∀
h ∈ Sd .

This yields, in particular, for any 
h ∈ Sd and any g :Rd →R,

B(p)
h (g)≤ 2
∥∥B∗


h(·, g)
∥∥
p.(7.42)

Combining (7.41) and (7.42) we get

R ≤ sup
g∈N∗


r,d ( 
β,a 
L)

{
2
∥∥B∗


hg (·, g)
∥∥
p + ε�ε,p(
hg)}+ ε,(7.43)

where 
hg satisfies the second assertion of Proposition 2. Consider separately two
cases.

Case κ(p) > 0. Recall that 
hg(x) takes values in Hε(ϑ,p) for any g ∈
N

∗

r,d( 
β,a 
L) and x ∈ (−b, b)d . Additionally, Hε(ϑ,p) ⊂ Hd(hε) in view of the

first assertion of Lemma 7 since κ(p) > 0.
This implies 
hg ∈Sd(hε), and we can assert that

�ε,p(
hg)≤ inf
r∈N∗

p(

hg,Aε)

C2(r)
∥∥V −1/2


hg
∥∥
rp/(r−p) ∀g ∈ N

∗

r,d( 
β,a 
L).

Applying assertion 2(ii) of Proposition 2, we can state that for some r, provided
κ(

rp
r−p ) > 0,

�ε,p(
hg)≤ C2(r)
∥∥V −1/2


h
∥∥
rp/(r−p) ∀g ∈ N

∗

r,d( 
β,a 
L).

Denote p = rp
r−p . Since p > p in view of Hölder’s inequality, ‖B∗


hg (·, g)‖p ≤
(2b)d‖B∗


hg (·, g)‖p, and we deduce from (7.43) (remembering that we consider here
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the norms of positive functions) that

R ≤ c6 sup
g∈N∗


r,d ( 
β,a 
L)

{∥∥B∗

hg (·, g)

∥∥
p
+ ε∥∥V −1/2


hg
∥∥
p

}+ ε
(7.44)

≤ c7 sup
g∈N∗


r,d ( 
β,a 
L)

∥∥B∗

hg (·, g)+ aϒ2εV

−1/2

hg (·)∥∥

p
+ ε.

Applying assertion 2(i) of Proposition 2 we obtain

R ≤ c8 sup
g∈N∗


r,d ( 
β,a 
L)

∥∥∥ inf

h∈Hε(ϑ,p)

[
b∗


h(·, g)+ ε ε(V
h)
]∥∥∥

p
+ ε.(7.45)

Case κ(p)≤ 0. Since�ε,p(
h)≤ (C1‖
√

| ln (εV
h)|V −1/2

h ‖p) for any 
h ∈ B(Aε),

we deduce from, similarly to (7.44),

R ≤ c9 sup
g∈N∗


r,d ( 
β,a 
L)

∥∥B∗

hg (·, g)+ aϒ2ε

√∣∣ln (εV
hg (·)
)∣∣V −1/2


hg (·)∥∥p + ε.

Applying the first assertion 2(i) of Proposition 2 we have

R ≤ c10 sup
g∈N∗


r,d ( 
β,a 
L)

∥∥∥ inf

h∈Hε(ϑ,p)

[
b∗


h(·, g)+ ε ε(V
h)
]∥∥∥
p

+ ε.

This together with (7.45) allows us to assert that

R ≤ c11 sup
g∈N∗


r,d ( 
β,a 
L)

∥∥∥ inf

h∈Hε(ϑ,p)

[
b∗


h(·, g)+ ε ε(V
h)
]∥∥∥

p
+ ε,(7.46)

where we have denoted p = p if κ(p) > 0 and p = p if κ(p)≤ 0.
The definition of m̃ allows us to assert that if κ(p)≤ 0,

 ε(V
h)≤ c12

√∣∣ln (ε)∣∣V −1/2

h ∀
h ∈ Hε(ϑ,p).

Hence we get from (7.46),

R ≤ c13 sup
g∈N∗


r,d ( 
β,a 
L)

∥∥∥ inf

h∈Hε(ϑ,p)

[
b∗


h(·, g)+�εV
−1/2

h

]∥∥∥
p
+ ε

(7.47)
= c13 sup

g∈N∗

r,d ( 
β,a 
L)

∥∥Uϑ,p(·, g)∥∥p + ε =: c13 sup
g∈N∗


r,d ( 
β,a 
L)
Rp(g)+ ε,

where we recall that �ε = ε if κ(p) > 0 and �ε = ε√| ln(ε)| if κ(p)≤ 0.
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7.4.2. Proof of the theorem. Slicing. For any g ∈ N
∗

r,d( 
β,a 
L) we have

Rp
p(g) ≤ (2b)d(Qϕ)p +

m̃∑
m=0

(
Qe2d(m+1)ϕ

)p
νd(�m)

+
∫
�m

∣∣Uϑ,p(x, g)∣∣pνd(dx)(7.48)

=: (2b)d(Qϕ)p + (Qe2dϕ
)p m̃∑
m=1

e2dmpνd(�m)+ Tm̃.

Here we have put �m = {x ∈ (b, b)d :Uϑ,p(x, g) ≥Qe2dmϕ} and Q = 2c2 + ed ,
where we recall that c2 = a(2b+ 1)C(
r)‖w‖1,Rd (1 − e−β∗)−1. Moreover, if m̃ =
∞, we set T∞ = 0.

We have, in view of the definition of Uϑ,p ,

�m ⊂ {x ∈ (b, b)d :b∗

hs(m)

(·, g)+�εV −1/2
s(m) ≥Qe2dmϕ

}
.

Recall that in view of (7.28) e−dVs(m) ≤ e−2dL−1
β ϕ

1/βe−4dm ≤ Vs(m) for any m=
0, . . . , m̃.

Hence �εV
−1/2
s(m) ≤ edϕe2dm, and we get

�m ⊂ {x ∈ (b, b)d :b∗

hs(m)

(·, g)≥ 2c2e
2dmϕ

}=: �∗
m.(7.49)

Note also that�εV
−1/2
s(m) ≤ edϕe2dm < edc2e

2dmϕ < edb∗

hs(m)

(x, g) for any x ∈ �∗
m,

which yields ∣∣Uϑ,p(x, g)∣∣≤ (ed + 1
)
b∗


hs(m)
(x, g) ∀x ∈ �∗

m.(7.50)

The latter inequality allows us to bound from above Tm̃ if m̃<∞. Indeed, in view
of (7.50),

Tm̃ ≤ (ed + 1
)p∥∥b∗


hs(m̃)
(·, g)∥∥p

p.(7.51)

Another bound can be obtained in the case p∗ > p. Applying Hölder’s inequal-
ity, the assertion of Lemma 9 and (7.4.2),

Tm̃ ≤ (L∗ϒ3
)p[
νd
(
�∗̃

m
)]1−p/p∗

.(7.52)

The definition of b∗

hs(m)

(·, g) implies that for any m= 1, . . . , m̃,

�∗
m ⊂ ⋃

J∈J

d⋃
j=1

{
x ∈ (b, b)d :MJ [b
hs(m),j

](x)≥ 2c2e
2dmϕ

}
.



1224 O. LEPSKI

Since in view of (7.30) ‖MJ [b
hs(m),j
]‖∞,Rd ≤ c2ϕe

2dm for any j ∈ J∞ and any
J ∈ J, we obtain

�∗
m ⊂ ⋃

J∈J

⋃
j∈J±

{
x ∈ (b, b)d :MJ [b
hs(m),j

](x)≥ c2e
2dmϕ

}
(7.53)

∀m= 1, . . . , m̃.

If either κ(p) > 0 or κ(p)≤ 0, τ (p∗)≤ 0, the following bound is true:

νd
(
�∗
m

)≤ c14e
−2dmω(2+1/β) ∀m= 1, . . . , m̃.(7.54)

Indeed, applying the Markov inequality, we get for any m = 1, . . . , m̃, in view
of (7.9) and the bound (7.5) of Lemma 6 with r = rj and 
M = a 
L,

2−dνd
(
�∗
m

)≤ d∑
j∈J±

[
c2e

2dmϕ
]−rj ‖b
hs(m),j

‖rj
rj ,R

d ≤
d∑

j∈J±

[
e2dmϕ

]−rj (Ljhβjsj (m))rj

≤
d∑

j∈J±

[
e−2dmϕ−1Lj η̃

βj
j (m)

]rj ≤ de−2dmω(2+1/β).

If κ(p)≤ 0, τ (p∗) > 0, we have for any m̂<m≤ m̃,

νd
(
�∗
m

)≤ c16(Lγ /Lβ)
υϕ(1/β−1/γ )υe−2dmυ(2+1/γ ).(7.55)

Indeed, we obtain for any m> m̂ in view of (7.9) and the bound (7.6) of Lemma 6
with 
M = a 
L,

2−dνd
(
�∗
m

)≤ d∑
j∈J±

[
c2e

2dmϕ
]−qj ‖b
hs(m),j

‖qj
qj ,R

d

≤ c15

d∑
j∈J±

[
e2dmϕ

]−qj (Ljhγjsj (m))qj

≤ c15

d∑
j∈J±

[
e−2dmϕ−1Lj η̂

γj
j (m)

]qj
≤ c16(Lγ /Lβ)

υϕ(1/β−1/γ )υe−2dmυ(2+1/γ ).

7.4.3. Proof of the theorem. Derivation of rates. We will now proceed differ-
ently depending to which zone the pair (ϑ,p) ∈ Pconsist belongs.

Dense zone: κ(p) > 0. Case κ(p∗) ≥ 0. Recall that m̃ = ∞ in this case, and
therefore Tm̃ = 0. Moreover p = p. We get from (7.48) and (7.54),

Rp
p(g)≤ c17ϕ

p
∞∑
m=0

e2dm(p−ω(2+1/β)) ≤ c18ϕ
p = c18δ

ap
ε(7.56)
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since p − ω(2 + 1/β) = −κ(p) < 0 in view of the definition of p. Taking into
account that the right-hand side of the latter inequality is independent of g, we
obtain in view of (7.47),

R ≤ c19(δε)
a.(7.57)

Dense zone: κ(p) > 0. Case κ(p∗) < 0. Note first that κ(p∗) < 0 and κ(p) > 0
implies p<p∗ since κ(·) is decreasing. We get in view of (7.52) and (7.54),

Tm̃ ≤ c20
(
L∗)pe−2dm̃ω(2+1/β)(1−p/p∗)

(7.58)
≤ c21

(
L∗)p(hε)�p∗/(κ(p∗))ϕ−ω(2+1/β)(1−p/p∗)/(κ(p∗)/p∗).

Noting that p + ω(2+1/β)(1−p/p∗)
κ(p∗)/p∗ = p∗

κ(p)
κ(p∗) < 0 and taking into account (2.3), we

obtain that

ϕ−p(hε)
�p∗/(κ(p∗))Tm̃ → 0, ε→ 0.

Since (7.56) holds, we assert finally that (7.57) remains true if κ(p∗) < 0 as well.
Thus the theorem is proved in the case κ(p) > 0.

New zone: κ(p)≤ 0, τ(p∗)≤ 0. Recall that p = p and necessarily p∗ >p since
we consider (ϑ,p) ∈ Pconsist.

Noting that the first inequality in (7.58) remains true, we deduce from (7.48)
and (7.54),

Rpp(g)≤ c22ϕ
p

m̃∑
m=0

e2dm(p−ω(2+1/β))

(7.59)
+ c20

(
L∗)pe−2dm̃ω(2+1/β)(1−p/p∗).

If κ(p) < 0, we have

Rpp(g) ≤ c23ϕ
pe2dm̃(p−ω(2+1/β)) + c20

(
L∗)pe−2dm̃ω(2+1/β)(1−p/p∗)

≤ c24
(
1 +L∗)pϕ(pp∗ω(2+1/β)(1/p−1/p∗))/(p∗−ω(2+1/β))(7.60)

= c24
(
1 +L∗)pδ(pp∗ω(1/p−1/p∗))/(p∗−ω(2+1/β))

ε

in view of the definition of m̃. Taking into account that the right-hand side of the
latter inequality is independent of g, we obtain in view of (7.47) that

R ≤ c19
(
1 +L∗)(δε)a.(7.61)

If κ(p)= 0, we deduce from (7.59) and the definition of m̃ that

Rpp(g)≤ c23ϕ
pm̃ + (L∗)pϕ(pp∗ω(2+1/β)(1/p−1/p∗))/(p∗−ω(2+1/β))

≤ c24ϕ
p
∣∣ln(ε)∣∣+ (L∗)pϕp.
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Here we have used that p
∗ω(2+1/β)(1/p−1/p∗)
p∗−ω(2+1/β) = β

2β+1 if κ(p) = 0. Thus we con-
clude

R ≤ c25(δε)
a
∣∣ln(ε)∣∣1/p.(7.62)

Thus the theorem is proved in the case κ(p)≤ 0.
Sparse zone: κ(p) ≤ 0, τ(p∗) > 0. If p∗ = p, taking into account that m̃ =

m̂ + 1, we deduce from (7.48), (7.51), (7.54) and (7.55) that

Rpp(g)≤ c18ϕ
p

m̂∑
m=0

e2dm(p−ω(2+1/β)) + (ed + 1
)p∥∥b∗


hs(m̂+1)
(·, g)∥∥pp.

Using (7.51), (7.9) and the triangle inequality, we have

∥∥b∗

hs(m̂+1)

(·, g)∥∥p ≤∑
J∈J

d∑
j=1

∥∥MJ [b
hs(m̂+1),j

∥∥
p ≤ c26

d∑
j=1

∥∥b
hs(m̂+1),j

∥∥
p,Rd .

Note that p∗ = p implies p± = p, and therefore, qj = p for any j = 1, . . . , d ,
where we recall that qj are given in (7.3). Hence we obtain, using the bound (7.6)
of Lemma 6 with 
M = a 
L,∥∥b∗


hs(m̂+1)
(·, g)∥∥p

≤ c27

d∑
j=1

Ljh
γj
sj (m̂+1) ≤ c27

d∑
j=1

Lj η̂
γj
j (m̂ + 1)

≤ c28(Lγ /Lβ)
υ/pϕ1+(1/β−1/γ )(υ/p)e2dm̂(1−(υ/p)(2+1/γ ))

≤ c28(Lγ /Lβ)
(ω(2+1/β)−p)/(2pβωτ(2)(1/γ−1/β))ϕ((2+1/β)τ(p))/(2τ(2))(7.63)

= c28(Lγ /Lβ)
(ω(2+1/β)−p)/(2pβωτ(2)(1/γ−1/β))

×Lτ(p)/(2τ(2))β

(
ε2∣∣ln(ε)∣∣)τ(p)/(2τ(2))

= c28δ
a
ε.

We get, in view of the definition of m̂,

ϕp
m̂∑
m=0

e2dm(p−ω(2+1/β)) ≤ c29ϕ
pe2dm̂(p−ω(2+1/β))

(7.64)
≤ c30δ

ap
ε , κ(p) < 0;

ϕp
m̂∑
m=0

e2dm(p−ω(2+1/β)) ≤ c29ϕ
p(m̂ + 1)

(7.65)
≤ c29ϕ

p
∣∣ln(ε)∣∣, κ(p)= 0.
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Therefore, if κ(p) < 0,

Rpp(g)≤ c31δ
ap
ε .(7.66)

If κ(p)= 0, we can easily check that τ(p)
2τ(2) = β

2β+1 , which yields, in view of the
definition of m̂,

Rpp(g)≤ c32ϕ
p
∣∣ln(ε)∣∣= c33δ

ap
ε

∣∣ln(ε)∣∣.(7.67)

Taking into account that the right-hand sides in (7.66) and (7.67) are independent
of g, we obtain, in view of (7.47),

R ≤ c34δ
a
ε, κ(p) < 0;

(7.68)
R ≤ c29δ

a
ε

∣∣ln(ε)∣∣, κ(p)= 0.

This completes the proof of the theorem in the case κ(p)≤ 0, τ(p∗) > 0, p∗ = p.
If p∗ >p, we deduce from (7.48), (7.54) and (7.55) that

Rpp(g)≤ c18ϕ
p

m̂∑
m=0

e2dm(p−ω(2+1/β))

+ c16(Lγ /Lβ)
υϕp+(1/β−1/γ )υ

m̃∑
m=m̂+1

e2dm(p−υ(2+1/γ )) + Tm̃

≤ c35

[
ϕp

m̂∑
m=0

e2dm(p−ω(2+1/β))

+ (Lγ /Lβ)υϕp+(1/β−1/γ )υe2dm̂(p−υ(2+1/γ ))

]
+ Tm̃.

Here we have used that p ≤ p± < υ(2 + 1/γ ) < 0 in view of (A.18).
Using (A.20) and the definition of m̂ we compute that

(Lγ /Lβ)
υϕp+(1/β−1/γ )υe2dm̂(p−υ(2+1/γ ))

≤ c36(Lγ /Lβ)
(ω(2+1/β)−p)/(2βωτ(2)(1/γ−1/β))ϕp(2+1/β)τ(p)/(2τ(2))

= c36V
p
p (


L)(ε2∣∣ln(ε)∣∣)pτ(p)/(2τ(2)) = c36δ
ap
ε .

This yields, together with (7.64) and (7.65),

Rpp(g)≤ c37δ
ap
ε + Tm̃, κ(p) < 0;

Rpp(g)≤ c29δ
ap
ε

∣∣ln(ε)∣∣+ Tm̃, κ(p)= 0.

Using (7.52) and (7.55),

Tm̃ ≤ c38Aϕ
(1/β−1/γ )υ(1−p/p∗)e−2dm̃υ(2+1/γ )(1−p/p∗)

≤ c38Aϕ
(1/β−1/γ )υ(1−p/p∗)e−2dmυ(2+1/γ )(1−p/p∗) = c38Aϕ

p
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in view of the definition of m̃ and m. Here A = A(Lβ,Lγ ,L∗) can be easily
computed.

Thus we can assert that (7.68) holds in the case p∗ >p as well, which completes
the proof of the theorem.

7.5. Proof of the theorem. Case p ∈ {1,∞}. Note that p± = ∞ if p = ∞ and
therefore 
γ = 
γ (∞). The proof of the theorem in this case is the straightforward
consequence of Corollary 1.

Introduce the vectors 
u= (u1, . . . , ud) and 
v = (v1, . . . , vd) as follows:

uj = L−1/βj
j

(
Lβε

2)β/(βj (2β+1))
, vj = L−1/γj

j

(
Lγ ε

2∣∣ln(ε)∣∣)γ /(γj (2γ+1))
.

It is obvious that both vectors belong to H
const
ε , and without loss of generality we

can assume that 
u, 
v ∈ Hd . Moreover,

ε�(const)
ε,∞ (
v)≤ c38ε

√∣∣ln (ε)∣∣V −1/2

v = c38

(
Lγ ε

2∣∣ln(ε)∣∣)γ /(2γ+1)
.

Note that 1/γ =∑dj=1
τ(rj )

βj τ (∞) = 1
βτ(∞) ⇒ γ

2γ+1 = τ(∞)
2τ(2) and therefore,

ε�(const)
ε,∞ (
v)= c38δ

a.

Additionally, we easily compute

ε�
(const)
ε,1 (
v)≤ c39εV

−1/2

v = c38

(
Lβε

2)β/(2β+1) = c39δ
a.

Applying the assertions of Lemma 6, we obtain

d∑
j=1

‖b
u,j‖1 ≤ c40

d∑
j=1

Lju
βj
j = c40δ

a;
d∑
j=1

‖b
v,j‖∞ ≤ c41

d∑
j=1

Ljv
γj
j = c41δ

a.

The assertion of the theorem follows now from Corollary 1.

APPENDIX

A.1. Proof of the assertion (ii) of Lemma 1. For any given s ∈ N
d and any


h ∈ Sd , define

sj [hj ] = {x ∈ (−b, b)d : hj (x)= sj }, j = 1, . . . , d.

Then s[
h] =⋂dj=1sj [hj ] and we get putting sj = (s1, . . . , sj−1, sj+1, . . . , d)

νd
(
sj [hj ]

)= ∑
sj∈Nd−1

νd
(
s[
h]), j = 1, . . . , d.

This yields, for any α ∈ (0,1), that we have for any 
h ∈ Sd ,
∞∑
sj=1

ν
α/d
d

(
sj [hj ]

)≤ ∑
s∈Nd

ν
α/d
d

(
s[
h]).
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Since obviously 
h∨ 
η ∈ Sd for any 
h, 
η ∈ Sd , we have

∞∑
sj=1

ν
α/d
d

(
sj [hj ∨ ηj ])≤ ∞∑

sj=1

{
ν
α/d
d

(
sj [hj ]

)+ να/dd (
sj [ηj ]

)}
.

Hence, for any α ∈ (0,1) and any 
h, 
η ∈Hd(d
−1α,2−1L1/d),L > 0, we get

∞∑
sj=1

ν
α/d
d

(
sj [hj ∨ ηj ])≤ ∑

s∈Nd
ν
α/d
d

(
s[
h])+ ∑

s∈Nd
ν
α/d
d

(
s[
η])≤ L1/d .(A.1)

Note that s[
h] =⋂dj=1sj [hj ] implies that for any 
h ∈ Sd and α ∈ (0,1),

ναd
(
s[
h])≤ d∏

j=1

ν
α/d
d

(
sj [hj ]

)
.(A.2)

Therefore, we deduce from (A.1) and (A.2) that

∑
s∈Nd

ναd
(
s[
h∨ 
η])≤ ∑

s∈Nd

d∏
j=1

ν
α/d
d

(
sj [hj ∨ ηj ])

≤
d∏
j=1

∞∑
sj=1

ν
α/d
d

(
sj [hj ∨ ηj ])≤ L.

Thus we obtain that 
h, 
η ∈ Hd(d
−1α,2−1L1/d) implies 
h∨ 
η ∈ Hd(α,L). Putting

κ = α/d and L = 2−1L1/d we come to the assertion of the lemma since 
h, 
η ∈
B(A) implies 
h∨ 
η ∈ B(A).

A.2. Proof of Lemma 2. Let 
h, 
η ∈ Sconst
d be fixed. Denote by J = {j =

1, . . . , d :hj ∨ ηj = hj }, and suppose first that J �= ∅. Let J = {j1 < j2 < · · ·<
jk}, k = |J |, and put Jl = {j1 < j2 < · · · < jl}, l = 1, . . . , k. Note that for any
x ∈ R

d ,

B
h,
η(x, f )=
∣∣∣∣∫

Rd
K
h∨
η(t − x)

[
f (t)− f (t + E[J ](x − t))]νd(dt)

−
∫
Rd
K
η(t − x)

[
f (t)− f (t + E[J ](x − t))]νd(dt)∣∣∣∣.

Here we have used Assumption 1(ii) and
∫
K = 1. Note also that

f (t)− f (t + E[J ](x − t))
(A.3)

=
k∑
l=1

f
(
t + E[Jl−1](x − t))− f (t + E[Jl](x − t)),
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where we have put J0 = ∅. Thus we have for any x ∈ R
d ,

B
h,
η(x, f )≤
k∑
l=1

∣∣∣∣∫
Rd
K
h∨
η(t − x)

[
f
(
t + E[Jl−1](x − t))

− f (t + E[Jl](x − t))]νd(dt)∣∣∣∣
(A.4)

+
k∑
l=1

∣∣∣∣∫
Rd
K
η(t − x)

[
f
(
t + E[Jl−1](x − t))

− f (t + E[Jl](x − t))]νd(dt)∣∣∣∣.
Noting that hjl ∨ ηjl = hjl for any l = 1, . . . , k, in view of the definition of J , we
have ∣∣∣∣∫

Rd
K
h∨
η(t − x)

[
f
(
t + E[Jl−1](x − t))− f (t + E[Jl](x − t))]νd(dt)∣∣∣∣

≤
∫
R

|J̄l |
∣∣K
h∨
η,J̄l (tJ̄l − xJ̄l )

∣∣b
h,jl (xJl , tJ̄l )ν|J̄l |(dtJ̄l )

= [|K
h∨
η| � b
h,jl
]
Jl (x),(A.5) ∣∣∣∣∫

Rd
K
η(t − x)

[
f
(
t + E[Jl−1](x − t))− f (t + E[Jl](x − t))]νd(dt)∣∣∣∣

≤
∫
R

|J̄l |
∣∣K
η,J̄l (tJ̄l − xJ̄l )

∣∣b
h,jl (xJl , tJ̄l )ν|J̄l |(dtJ̄l )

= [|K
η| � b
h,jl
]
Jl (x).

Here we have used once again Assumption 1(ii) and
∫
K = 1.

Thus, for any 
h, 
η ∈ Sconst
d for which J �= ∅, the first assertion of the lemma

follows from (A.4), (A.5) and (A.6). It remains to note that B
h,
η(·, f ) ≡ 0
if J = ∅, and therefore, the first assertion is true with an arbitrary choice
of {j1, . . . , jk}. In particular, one can choose k = d , which corresponds to
{j1, . . . , jk} = {1, . . . , d}.

To get the second assertion we choose J := {j1, . . . , jk} = {1, . . . , d}, which
yields Jl = {1, . . . , l}, and we note that (A.3) remains true. Repeating these com-
putations leads to (A.6), with 
η replaced by 
h, and we come to the second assertion
of the lemma.

A.3. Proof of Lemma 5. As previously mentioned, if r∗(s)= s, the assertion
of the lemma is proved in Nikol’skiı̆ (1977), Section 6.9. Thus it remains to study
the case r∗ > s, where we put r∗ = maxj=1,...,d rj . Set also 
r∗ = (r∗, . . . , r∗), and
denote J+ = {j : rj ≥ s} and J− = {1, . . . , d} \ J+.
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The assumption τ(r∗(s)) = τ(r∗) > 0, together with rj ≤ r∗ for any j =
1, . . . , d , makes possible the application of the theorem of Section 6.9 in Nikol’skiı̆
(1977), which yields

N
r,d( 
β, 
L)⊆ N
r∗,d
(
γ (r∗), c 
L).(A.6)

Note that for any j ∈ J− we have ‖f ‖rj ≤ Lj since f ∈ N
r,d( 
β, 
L) and ‖f ‖r∗ ≤
cLj in view of (A.6). Noting that rj < s = rj (s) < r∗ we have ‖f ‖rj (s) ≤ c1Lj
for any j ∈ J− in view of Hölder’s inequality. It remains to note that rj (s) = rj
for any j ∈ J+, and we assert that

‖f ‖rj (s) ≤ c1Lj ∀j = 1, . . . , d.(A.7)

Since f ∈ N
r,d( 
β, 
L) and γ j (s)= βj , rj (s)= rj , j ∈ J+, one has∥∥�kju,j g∥∥rj (s),Rd = ∥∥�kju,j g∥∥rj ,Rd ≤ Lj |u|βj = Lj |u|γ j (s)
(A.8)

∀u ∈ R,∀j ∈ J+.
Let now j ∈ J−. If r∗ = ∞, we have∥∥�kju,j g∥∥ss,Rd ≤ ∥∥�kju,j g∥∥rjrj ,Rd∥∥�kju,j g∥∥s−rj∞,Rd
(A.9)

≤ cs−rj Lsj |u|rj βj+(s−rj )βj τ (∞)τ
−1(rj ),

in view of (A.6). If r∗ <∞, writing

s = rj (r
∗ − s)

r∗ − rj + r∗(s − rj )
r∗ − rj

and applying the Hölder inequality with exponents r
∗−rj
r∗−s and r∗−rj

s−rj , we obtain∥∥�kju,j g∥∥ss,Rd ≤ (∥∥�kju,j g∥∥rj ,Rd )(r∗−s)rj /(r∗−rj )(∥∥�kju,j g∥∥r∗,Rd )(s−rj )r∗/(r∗−rj )
(A.10)

≤ c
(s−rj )r∗/(r∗−rj )
1 Lsj |u|aj ∀u ∈ R,

in view of (A.6) with

aj = (r∗ − s)βj rj
r∗ − rj + γ j (r

∗)(s − rj )r∗
r∗ − rj = (r∗ − s)βj rj

(r∗ − rj ) + τ(r∗)(s − rj )βj r∗
τ(rj )(r∗ − rj ) .

Note that (A.9) is a particular case of (A.10).
We easily compute that bj := τ(rj )(r

∗ − s)βj rj + τ(r∗)(s − rj )βj r
∗ =

sβj τ (s)(r
∗ − rj ) and therefore,

aj := bj

τ (rj )(r∗ − rj ) = sτ (s)βj

τ (rj )
= sγ j (s).

Thus we obtain from (A.6) that∥∥�kju,j g∥∥s,Rd ≤ c1L
s
j |u|γ j (s) ∀u ∈R,∀j ∈ J−.(A.11)

The required embedding follows now from (A.7), (A.8) and (A.11).
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A.4. Proof of Lemma 6. We obviously have

b
h,j (x)= sup
η≤hj ,η∈H

∣∣∣∣∫
R

w�(z)
[
f (x + zηej )− f (x)]ν1(dz)

∣∣∣∣
= sup
η≤hj ,η∈H

∣∣∣∣∫
R

w�(z)
[
�zη,j f (x)

]
ν1(dz)

∣∣∣∣.
For j = 1, . . . , d we have∫

R

w�(z)�zη,jf (x)ν1(dz)

=
∫
R

�∑
i=1

(
�

i

)
(−1)i+1 1

i
w

(
z

i

)[
�ηz,j f (x)

]
ν1(dz)

= (−1)�−1
∫
R

w(z)

�∑
i=1

(
�

i

)
(−1)i+�

[
�izη,jf (x)

]
ν1(dz)

= (−1)�−1
∫
R

w(z)
[
��zη,jf (x)

]
ν1(dz).

The last equality follows from the definition of �th order difference operator (3.1).
Thus, for any j = 1, . . . , d and any x ∈ (−b, b)d ,

b
h,j (x, f )= sup
η≤hj ,η∈H

∣∣∣∣∫
R

w(z)
[
��zη,jf (x)

]
ν1(dz)

∣∣∣∣
(A.12)

≤ ∑
η≤hj

∣∣∣∣∫
R

w(z)
[
��zη,jf (x)

]
ν1(dz)

∣∣∣∣,
since H is a discrete set. Therefore, by the Minkowski inequality for integrals [see,
e.g., Folland (1999), Section 6.3] and the triangle inequality, choosing s from the
relation e−s−2 = hj (recall that hj ∈H), we obtain

∥∥b
h,j (·, f )
∥∥

r,Rd ≤
∞∑
s=s

∫ 1/(2�)

−1/(2�)

∣∣w(z)∣∣∥∥��
ze−s−2,j

f
∥∥

r,Rd ν1(dz).

Here we have also used that w is compactly supported on [−1/(2�),1/(2�)].
Note that ��

ze−s−2,j
f is supported on Y := (−b − 1/2, b + 1/2)d for any z ∈

[−1/(2�),1/(2�)]. Hence, taking into account that r ≤ rj , we get∥∥��
ze−s−2,j

f
∥∥

r,Rd = ∥∥��
ze−s−2,j

f
∥∥

r,Y ≤ (2b+ 1)d(1/r−1/rj )
∥∥��

ze−s−2,j
f
∥∥
rj ,Y

≤ (2b+ 1)d
∥∥��

ze−s−2,j
f
∥∥
rj ,R

d ≤ (2b+ 1)Mj
(
ze−s−2)βj ,
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since f ∈N
r,d( 
β, 
M). Hence, for any r ∈ [1, rj ],
∥∥b
h,j (·, f )

∥∥
r,Rd ≤ (2b+ 1)dMj

∫ 1/(2�)

−1/(2�)

∣∣w(z)∣∣|z|βj ν1(dz)
∞∑
s=s

(
e−s−2)βj

≤ (2b+ 1)d‖w‖1,Rd
(
1 − e−βj )−1

Mjh
βj
j .

This proves (7.5).
The inequality in (7.6) follows by the same reasoning, with rj replaced by qj ,

βj replaced by γj and with the use of embedding (7.4).

A.5. Proof of Lemma 7. We will analyze the set Hε(ϑ,p) separately for dif-
ferent values of (ϑ,p).

10. Case κ(p) > 0. If κ(p∗) ≥ 0, we have rj ≤ p∗ ≤ ω(2 + 1/β) for all j =
1, . . . , d . Therefore, for any m≥ 0,

η̃j (m)≤ e−2(L−1
j ϕ
)1/βj ∀j = 1, . . . , d.

Thus, for all ε > 0 small enough, η̄j (m) := η̃j (m) < hε . This yields

hsj (m) ≤ η̄j (m) < ehsj (m), j = 1, . . . , d.(A.13)

If κ(p∗) < 0, which is possible only if p∗ > p in view of κ(p) > 0, we have
for any 0 ≤m≤ m̃ and any j = 1, . . . , d ,

η̃j (m)≤ e−2(L−1
j ϕ
)1/βj e2dm(1/βj−ω(2+1/β)/(βjp∗))

≤ e−2(L−1
j ϕe

2dm̃(−κ(p∗)/p∗))1/βj .
The definition of m̃ implies L−1

j ϕe
2dm̃(−κ(p∗)/p∗) ≤ h�ε , and we assert that for all

ε > 0 small enough,

η̄j (m) := η̃j (m) < h
�/βj
ε ≤ hε

since βj ≤ � and hε < 1. Thus we conclude that for any (ϑ,p) ∈ Pconsist provided
κ(p) > 0 and for all ε > 0 small enough,

Hε(ϑ,p)⊂ Hd(hε).(A.14)

This implies, in particular, that (A.13) takes place when κ(p∗) < 0 as well. Hence
we obtain

e−d
d∏
j=1

hsj (m) ≤
d∏
j=1

η̄j (m)= e−2dL−1
β ϕ

1/βe−4dm ≤
d∏
j=1

hsj (m).(A.15)

This yields

s(m) �= s(n) ∀m �= n,m,n= 0, . . . , m̃.(A.16)
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20. Case κ(p)≤ 0, τ (p∗)≤ 0. Since we consider (ϑ,p) ∈ Pconsist, the later case
is possible only if p∗ >p. This implies κ(p∗) < 0, and as previously we have

η̃j (m)≤ e−2(L−1
j ϕe

2dm̃(1−ω(2+1/β)/p∗))1/βj .
This yields, in view of the definition of m̃,

η̃j (m)≤ e−2((L−1
0 ϕ
)
e−2dm̃(κ(p∗)/p∗))1/βj ≤ e−2.

We conclude that for any (ϑ,p) ∈ Pconsist such that κ(p) ≤ 0 and τ(p∗) ≤ 0 for
all ε > 0,

Hε(ϑ,p)⊂ Hd,(A.17)

and that (A.13) holds. Hence, in view of (A.15) we assert that (A.16) is also ful-
filled.

30. Case κ(p) ≤ 0, τ (p∗) > 0. Recall that this case is possible only if p > 2,
which implies in particular that τ(2) > 0.

We start with presenting some relations between the parameters β,γ,ω and υ
whose proofs are given in Section A.8.

γ < β, υ(2 + 1/γ ) > p±;(A.18)

1/ω− 1/υ = β(1/γ − 1/β)(1 − 1/ω).(A.19)

We deduce from equality (A.19) that

υ(2 + 1/γ )−ω(2 + 1/β)

= ωυ[(2 + 1/β)(1/ω− 1/υ)+ (1/γ − 1/β)ω−1](A.20)

= 2βτ(2)ωυ(1/γ − 1/β).

Using (A.20) we easily get that for any r> 0,

1 − r − υ(2 + 1/γ )

2rβωτ(2)
− (1/γ − 1/β)υ

r
= (2 + 1/β)τ(r)

2τ(2)
.(A.21)

Since υ(2 + 1/γ )≥ p±, m̃> m̂, in view of the definition of m̃ and qj ≤ p±, j ∈
J± and qj = ∞, j ∈ J∞, we get

η̄j (m)= η̃j (m)≤ e−2(L−1
j ϕ
)1/βj e2dm̂(1/βj−ω(2+1/β)/(βjp∗)), m≤ m̂;

η̄j (m)= η̂j (m)≤ e−2(L−1
j ϕ
)1/γj e2dm̂(1/γj−υ(2+1/γ )/(γj qj ))

[
Lγ ϕ

1/β

Lβϕ1/γ

]υ/(γj qj )
,

(A.22)
m> m̂.
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We obtain, in view of the definition of m̂,{
η̄j (m)

}βj ≤ e−2βj L−1
j ϕ

(2+1/β)τ(p∗)/(2τ(2)), m≤ m̂;{
η̄j (m)

}γj ≤ e−2γj T1L
−1
j ϕ

1−(qj−υ(2+1/γ ))/(2qj βωτ(2))−(1/γ−1/β)υ/qj ,

m > m̂, j ∈ J±;{
η̄j (m)

}γj ≤ e−2γj L−1
j T2ϕ

(2+1/β)(1−1/ω)/(2τ(2)), m > m̂, j ∈ J∞,
where T1 = T1(Lγ /Lβ) and T2 = T2(Lγ /Lβ) can be easily deduced.

Thus we assert that for any j = 1, . . . , d and any ε > 0 small enough,

η̄j (m)≤ hε ∀m≤ m̂.(A.23)

Moreover, if j ∈ J±, we have in view of (A.21),{
η̄j (m)

}γj ≤ e−2γj T1L
−1
j ϕ

(2+1/β)τ(qj )/(2τ(2)) → 0, ε→ 0,

since τ(qj ) > 0 for any j = 1, . . . , d in view of τ(p∗) > 0.
Note also that if J∞ �= ∅, then p∗ = ∞, and therefore, τ(∞) = 1 − 1/ω > 0

and

e−2γj T2L
−1
j ϕ

(2+1/β)(1−1/ω)/(2τ(2)) → 0, ε→ 0.

Hence, for all ε > 0 small enough η̄j (m) ≤ hε,∀m > m̂. Taking into account
(A.23), we conclude that (A.13) and (A.14) hold in the case κ(p)≤ 0, τ (p∗) > 0.
Moreover, (A.16) is fulfilled if m≤ m̂ as well in view of (A.15).

On the other hand, in view of (A.13),

e−d
d∏
j=1

hsj (m) ≤
d∏
j=1

η̄j (m)= e−2dL−1
β ϕ

1/βe−4dm ≤
d∏
j=1

hsj (m)

(A.24)
∀m> m̂,

and therefore, (A.16) is fulfilled for any m≥ 0.

A.6. Proof of Lemma 8. Let μ ∈ (0,1) be the number we will choose later,
and put 
μ= (μ, . . . ,μ). Without loss of generality one can assume that 
μ ∈ Sconst

d .
For any f ∈ N
r,d( 
β, 
L) introduce

S 
μ(x, f )=
∫
Rd
K 
μ(t − x)f (t)νd(dt), x ∈ R

d,

where we recall that K is given in (3.5).
10. Let us prove that for any μ ∈ (0,1),

S 
μ(·, f ) ∈ N
∗

r,d( 
β,a 
L) ∀f ∈ N
r,d( 
β, 
L).(A.25)

First, we note that S 
μ(·, f ) is compactly supported on (−b − 1, b + 1)d in view
of the definition of the kernel K , since μ ∈ (0,1). Next, taking into account
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that K is Lipschitz-continuous and compactly supported as well as f ∈ Lr∗(Rd),
r∗ = maxl=1,...,d rl , since f ∈ N
r,d( 
β, 
L), and applying Hölder’s inequality, we
can assert that S 
μ(·, f ) ∈ C(Rd) and moreover

S 
μ(·, f ) ∈ Lq
(
R
d) ∀q ≥ 1.(A.26)

Thus S 
μ(·, f ) ∈ CK(R
d). It remains to prove that S 
μ(·, f ) ∈ N
r,d( 
β,a 
L). Indeed,

applying the Young inequality we obtain for any j = 1, . . . , d ,∥∥S 
μ(·, f )
∥∥
rj ,R

d ≤ ‖K‖1,Rd‖f ‖rj ,Rd ≤ Lj‖K‖1,Rd ,

since f ∈ N
r,d( 
β, 
L). Moreover, for any j = 1, . . . , d , k ∈ N
∗ and any u ∈ R,

�ku,jS 
μ(x, f ) :=�ku,j
{∫

Rd
K 
μ(z)f (x + z)νd(dz)

}
=
∫
Rd
K 
μ(z)

{
�ku,jf (x + z)}νd(dz)

=
∫
Rd
K 
μ(t − x)

{
�ku,jf (t)

}
νd(dt).

Thus, applying the Young inequality, we have for any integer kj > βj ,∥∥�kju,jS 
μ(·, f )
∥∥
rj ,R

d ≤ ‖K‖1,Rd
∥∥�kju,j f ∥∥rj ,Rd ≤ Lj‖K‖1,Rd |u|βj ∀u ∈ R,

since f ∈ N
r,d( 
β, 
L). Moreover, S 
μ(·, f ) ∈ L2(R
d) in view of (A.26).

We conclude that S 
μ(·, f ) ∈ N
r,d( 
β,a 
L), and therefore, (A.25) is established.
20. We will need the following auxiliary result. For any (ϑ,p) ∈ Pconsist there

exists p>p such that

f ∈ N
r,d( 
β, 
L) ⇒ f ∈ Lp
(
R
d).(A.27)

Indeed, if p∗ >p, we can choose p = p∗ in view of the definition of an anisotropic
Nikol’skii class. If p < 2, one can choose p = 2 since the definition of N
r,d( 
β, 
L)
implies that f ∈ L2(R

d).
It remains to consider the cases p∗ = p and p ≥ 2. Since (ϑ,p) ∈ Pconsist nec-

essarily in this case τ(p) > 0, and therefore, one can find p>p such that τ(p) > 0.
In view of p∗ = p < p and τ(p) > 0, the assertion of Lemma 5 holds with s = p
and 
r(s) = (p, . . . ,p), and therefore, f ∈ Lp(R

d) in view of the definition of an
anisotropic Nikol’skii class. Thus (A.27) is established.

30. Let f,g ∈ Lp(R
d) be arbitrary functions. We obviously have

sup

h∈Sd

∣∣B(p)
h (g)−B(p)
h (f )
∣∣≤ 3 sup


h∈Sd

∥∥S
h(·, g− f )∥∥p + ‖g − f ‖p.

Since K is compactly supported on [−1/2,1/2]d , we obviously have that∣∣S
h(x, g− f )∣∣≤ ‖K‖∞,RdM
[|g − f |](x), x ∈ R

d .
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Applying (p,p)-strong maximal inequality (7.8), we obtain for any p > 1,∥∥S
h(·, g− f )∥∥p ≤ C̄(p)‖K‖∞,Rd‖g − f ‖p,Rd .

Noting that the right-hand side of the latter inequality is independent of 
h, we
obtain finally

sup

h∈Sd

∣∣B(p)
h (g)−B(p)
h (f )
∣∣≤ (3C̄(p)‖K‖∞,Rd + 1

)‖g− f ‖p,Rd .

Choosing g = S 
μ(·, f ) and noting that |S 
μ(·, f )− f (·)| =: B 
μ(·, f ), we get

sup

h∈Sd

∣∣B(p)
h
(
S 
μ(·, f )

)−B(p)
h (f )
∣∣

(A.28)
≤ (3C̄(p)‖K‖∞,Rd + 1

)∥∥B 
μ(·, f )
∥∥
p,Rd .

40. Some remarks are in order. First, B 
μ(·, f ) is compactly supported on K

for any μ ∈ (0,1). Next, B 
μ(·, f ) ∈ Lp(R
d) in view of (A.26) and (A.27). Finally,

in view of (5.6) and the first assertion of Lemma 6, we have
lim supμ→0 ‖B 
μ(·, f )‖1,Rd = 0.

The above allows us to assert that lim supμ→0 ‖B 
μ(·, f )‖p,Rd = 0. This yields,

together with (A.28), that for any κ > 0 and any f ∈ N
r,d( 
β, 
L), one can find
μ = μ(κ, f ) such that

sup

h∈Sd

∣∣B(p)
h
(
S
μ(·, f )

)−B(p)
h (f )
∣∣≤ κ,

where as previously 
μ = (μ, . . . ,μ).
This obviously implies, for any f ∈N
r,d( 
β, 
L) and any H ⊆Sd ,

inf

h∈H
[
B(p)
h (f )+ ε�ε,p(
h)

]≤ inf

h∈H
[
B(p)
h

(
S
μ(·, f )

)+ ε�ε,p(
h)]+κ

≤ sup
g∈N∗


r,d ( 
β,a 
L)
inf

h∈H
[
B(p)
h (g)+ ε�ε,p(
h)

]+κ,

where to get the last inequality we have used (A.25). Since the right-hand side of
the latter inequality is independent of f , one gets

sup
f∈N
r,d ( 
β, 
L)

inf

h∈H
[
B(p)
h (f )+ ε�ε,p(
h)

]≤ sup
g∈N∗


r,d ( 
β,a 
L)
inf

h∈H
[
B(p)
h (g)+ ε�ε,p(
h)

]+κ,

and the assertion of the lemma follows since κ is an arbitrary number.
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A.7. Proof of Lemma 9. We obviously have Uϑ,p(x, g) ≤ b∗

hs(0)
(x, g) +

�εV
−1/2
s(0) and therefore,

U := sup
g∈N∗


r,d ( 
β,a 
L)

∥∥Uϑ,p(·, g)∥∥p∗ ≤ sup
g∈N∗


r,d ( 
β,a 
L)

∥∥b∗

hs(0)
(x, g)

∥∥
p∗ + (2b)d/p�εV −1/2

s(0) .

Note that in view of (7.28)�εV
−1/2
s(0) → 0, ε→ 0 and therefore, for all ε > 0 small

enough,

U ≤ϒ1 sup
g∈N∗


r,d ( 
β,a 
L)

∥∥b∗

hs(0)
(x, g)

∥∥
p∗ +L∗.(A.29)

Recall that b∗

h(x, g) = supJ∈J supj=1,...,d MJ [b
h,j ](x), and therefore, we obtain

first, applying (7.9),

∥∥b∗

hs(0)
(·, g)∥∥p∗ ≤ 2dCp∗

d∑
j=1

‖b
hs(0),j
‖p∗ .(A.30)

Next, we have for any j = 1, . . . , d and any x ∈ R
d ,

b
hs(0),j
(x) := sup

k : hk≤hsj (0)

∣∣∣∣∫
R

w�(u)g(x + uhkej )ν1(du)− g(x)
∣∣∣∣

≤ ‖w�‖∞,RdMJj [g](x)+
∣∣g(x)∣∣,

where we have denoted Jj = {1, . . . , d} \ {j}. Thus, applying once again (7.9) we
obtain

‖b
hs(0),j
‖p∗ ≤ (Cp∗‖w�‖∞,Rd + 1

)‖g‖p∗ .

Noting that in view of the definition of the Nikol’skii class, ‖g‖p∗ ≤ aL∗ for any
g ∈ N

∗

r,d( 
β,a 
L), and the assertion of the lemma follows from (A.29) and (A.30).

A.8. Proof of formulas (A.18) and (A.19). In view of the definition of 
γ we
have

1

γ
= ∑
j∈J±

τ(rj )

τ (p±)βj
+ ∑
j∈J∞

1

βj
≥ 1

β

since τ(rj )≥ τ(p±). In view of the definition υ ,

p±
υ

= ∑
j∈J±

1

γj
≤ ∑
j∈J±

1

γj
+ ∑
j∈J∞

1

βj
= 1

γ

and therefore, p± ≤ υ/γ < υ(2 + 1/γ ).
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Proof of (A.19). First, we remark that

p±
(

1

ω
− 1

υ

)
+ 1

γ
− 1

β
= ∑
j∈J±

([
p±
rjβj

− 1

γj

]
+
[

1

γj
− 1

βj

])

= p±
∑
j∈J±

(
1

rjβj
− 1

p±βj

)
=:Ap±.

Next, ∑
j∈J±

1

γj
= ∑
j∈J±

τj

τ (p±)βj
= 1

τ(p±)
∑
j∈J±

1 − 1/ω+ 1/(rjβ)

βj

= 1 − 1/ω

τ(p±)
∑
j∈J±

1

βj
+ 1

τ(p±)β
∑
j∈J±

(
1

rjβj
− 1

p±βj

)

+ 1

τ(p±)βp±
∑
j∈J±

1

βj

= ∑
j∈J±

1

βj
+ A

τ(p±)β
.

This yields 1
γ

− 1
β

=∑j∈J±( 1
γj

− 1
βj
)= A

τ(p±)β and therefore,

p±(1/ω− 1/υ)= (1/γ − 1/β)
(
τ(p±)βp± − 1

)= (1/γ − 1/β)βp±(1 − 1/ω).

Relation (A.19) is proved.
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LEPSKIĬ, O. V. (1990). A problem of adaptive estimation in Gaussian white noise. Theory Probab.
Appl. 35 459–470.

http://www.ams.org/mathscinet-getitem?mr=3201652
http://www.ams.org/mathscinet-getitem?mr=3230001
http://www.ams.org/mathscinet-getitem?mr=1062695
http://www.ams.org/mathscinet-getitem?mr=2382659
http://www.ams.org/mathscinet-getitem?mr=1891738
http://www.ams.org/mathscinet-getitem?mr=0620321
http://www.ams.org/mathscinet-getitem?mr=2166560
http://www.ams.org/mathscinet-getitem?mr=1456644
http://www.ams.org/mathscinet-getitem?mr=2046772
http://www.ams.org/mathscinet-getitem?mr=2509077
http://www.ams.org/mathscinet-getitem?mr=1792783
http://www.ams.org/mathscinet-getitem?mr=1863916
http://www.ams.org/mathscinet-getitem?mr=2925578
http://www.ams.org/mathscinet-getitem?mr=3099129
http://arxiv.org/abs/arXiv:1311.4996v1
http://www.ams.org/mathscinet-getitem?mr=1643256
http://www.ams.org/mathscinet-getitem?mr=1447734
http://www.ams.org/mathscinet-getitem?mr=3161459


1242 O. LEPSKI
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