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Highlights

• We propose a multi-level model to predict the orthotropic behaviour of cracked masonry

• This model relies on the coupling between Griffith’s theory and homogenization methods

• Overall estimates of Cecchi & Taliercio model are softer than the Cecchi & Tralli’s ones

• The Modified Maxwell model is relevant for the mortar’s creep at short and long terms

• Both short and long terms, constant and time-dependent crack density were investigated
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Multi-level modeling of viscoelastic microcracked masonry

Amna Rekik1,∗, Thi Thu Nga Nguyen1, Alain Gasser1

1 Univ. Orléans, INSA-CVL, PRISME, EA4229, 45072 Orléans, France
amna.rekik@univ-orleans.fr

Abstract

This paper provides multi-level modeling of microcracked viscoelastic masonries generally present in

historical masonries or refractory linings. It is an extension of the Cecchi and Tralli [15] or Cecchi

& Barbieri [13] and Cecchi & Taliercio [12] works for the typical Burgers and Modified Maxwell

models followed by both undamaged and microcracked masonries. For the sake of simplicity and in

order to provide rigorous analytical global estimates, only the mortar is assumed to be viscoelastic

and microcracked. Bricks are assumed to be undamaged, elastic or quasi-rigid. The distribution

of microcracks is assumed to be isotropic. The effective behaviour of the viscoelastic microcracked

masonry is provided by two steps. The first one relies on the coupling between the Griffith’s brittle

fracture theory and linear mean-field homogenization scheme in order to account for the effect of

microcracks on the macroscopic deformation of the mortar and establishes a linear relation between

apparent macroscopic stress and strain. This step allows to easily and fast determine the effective

creep function of the microcracked mortar without recourse to ’complex’ or heavy numerical inversion

of the Laplace-Carson transform. The second step is based on the coupling between asymptotic

analysis and homogenization theory applied for a periodic masonry. The proposed models provide

analytical solutions - explicit functions of the crack density parameter - for the effective orthotropic

behaviour of a microcracked viscoelastic periodic masonry cell. This study proves that the Cecchi

& Tralli’s and Cecchi & Taliercio’s extension estimates are close and that the later are softer. Such

overall properties are used to perform finite element computations on a compressed masonry panel

as a first application. These models allow then the prediction of mostly stressed and deformed

areas in microcracked masonry structures. This study demonstrates that modeling a mortar (at its

undamaged or microcracked state) with this Burgers formulation is only suitable for a masonry with

too high values of the Maxwell’s relaxation time otherwise it yields to vanishing effective properties

with the increase of time and crack density leading thus to a premature collapse of the masonry. On

the other hand, the Modified Maxwell model permits the masonry to preserve a certain resistance

for every range value of Maxwell’s relaxation time. These conclusions are valid for masonry either
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with elastic or quasi-rigid undamaged bricks.

Keywords: Mean-field homogenization; Brittle fracture; Periodic homogenization; Viscoelasticity;

Laplace-Carson transform; Masonry

Nomenclature

C̃ effective or homogeneous stiffness tensor φ porosity volume fraction

Ap average of the strain localization tensor A strain localization tensor

Ωp pore space u local displacement field

E macroscopic strain εp average of the strain over the pore

SE Eshelby tensor of the cavity function ApDL dilute strain localization tensor Ap

w aspect ratio of an ellipsoidal cavity C̃∗ effective stiffness in the symbolic space

ε̇ local strain rate Ė macroscopic strain rate

α ratio between mortar’s and brick’s dimensions β ratio between brick’s and mortar’s stiffnesses

σ local stress field Σ macroscopic stress field

σ0 local stress field in pattern Yb ε0 macroscopic stress field in pattern Yb

[u0] displacement jump at interface ΣI ΣI mortar joint interface in pattern Yb

[u] displacement jump between crack’s two lips J mortar’s creep function

Y ∗ periodic cell of a running bond masonry Y topological transferred pattern of the cell Y ∗

Y b periodic masonry Y ∗ with cohesive joints K fourth-order stiffness tensor of cohesive joints

[u∗] symbolic crack displacement jump l radius of penny-shaped crack

dc crack density parameter ks bulk’s modulus of the undamaged matrix

µs shear’s modulus of the undamaged matrix νs undamaged matrix Poisson’s ratio

kl bulk’s modulus of the spring µl shear’s modulus of the spring (l = M or K)

ηs spherical bulk’s viscosity of the dashpot ηd deviatoric shear’s viscosity of the dashpot

τ s spherical relaxation time τ d deviatoric relaxation time

< . >r average over phase r of the quantity ”.” i second-order identity tensor

I fourth-order identity tensor J spherical fourth-order projector

K fourth-order stiffness tensor of mortar joint µm shear moduli of mortar

a length of the brick b height of the brick

eh thickness of the bed joint ev thickness of the head joint

λm Lame’s coefficient (plane stress) λ∗m Lame’s coefficient (plane strain)
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1. Introduction

Creep phenomenon and its effects are not only restricted to new structures but they involve also

historical monuments as postulated in [44] and confirmed later in [6, 35]. Indeed heavy persistent

compressive stresses added to the presence of aggressive environment (temperature/humidity con-

ditions) and the self-weight of historical monuments induce stress redistribution and creep strains

which can lead to damage accumulation and partial or total collapse of these monuments as it is the

case of several famous examples: the Civic Tower of Pavia (Italy), the St. Magdalena bell-tower in

Goch (Germany), the Noto and Monza Cathedrals (Italy) [35]. On the other hand, in the iron and

steel industry, the refractory lining of furnaces made up of masonry with bricks and either mortared

or dry (i.e. without mortar [1]) joints is often exposed to compressive (monotonic or cyclic) loads.

These compressive loads result from constrained thermal expansion since the temperature inside

these structures can reach 1650 degrees. This could induce creep behaviour and diffused damage due

to initiation and propagation of micro-cracks mainly in the joints [3]. Generally, viscous behaviour of

vitreous materials in gaz turbine engines has been modeled by temperature independently rheological

models like Maxwell and the generalized Maxwell models [24]. Models with a temperature parameter

have also been defined since the steady-state creep deformation of ceramics under sustained loading

conditions normally exhibits a power-law stress-dependent behaviour [26, 2, 25, 30]. Traditionally,

both tensile and compressive creep in ceramic materials have been characterized by an empirical

creep equation that takes on the form of the Norton-Bailey-Arrhenius equation. Note that a thick

mortar tends to decrease the stiffness of structure and increases the likelihood of the possible pene-

tration of process materials into the joints, resulting in the deterioration of the lining. So, the use of

thin mortar joint is appropriate and necessary in designing the refractory brick lining system.

Concerning the creep behaviour of traditional mortar, various rheological models namely the USBR,

Feng, Ross, typical and modified versions of the Burgers and Modified-Maxwell models may be in-

vestigated [17, 28]. On the other hand, there exist several approaches accounting for damage in

viscoelastic materials [28, 32]. Indeed, the approach presented in [32] is based on a coupling be-

tween continuum damage mechanics and viscoelasticity through the generalized Kelvin-Voigt model.

Accordingly, a three-dimensional phenomenological model was developed to describe the long-term

creep of gypsum rock. The main disadvantage of this model is that it requires experimental inves-

tigation [28] or computational efforts to resolve nonlinear equation [32] function of internal damage

variables. In the works of Nguyen et al. [36, 38], the effective behaviour of microcracked linear

viscoelastic concrete was derived from a combination of the Griffith’s theory [27] and the Eshelby-

based homogenization scheme [4]. The undamaged concrete was assumed to obey to the typical
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Burgers model. In [17], an experimental study was carried in order to investigate the creep of ma-

sonry. A number of rheological models (USBR, Feng, Ross, typical Burgers, Modified Maxwell) are

examined to assess their ability to predict the creep of masonry. It was proved that the Modified

Maxwell model is the most accurate. According to this result, the Burgers model, namely a Maxwell

system connected in series with a Kelvin-Voigt one, and the Modified Maxwell scheme (a parallel

combination of the Maxwell model and a spring) models are adopted in this paper to describe the

mortar joint’s creep. Moreover, in the literature, little attention is devoted to the prediction of the

macroscopic creep behaviour of masonry. In this context, Brooks, Cecchi & Tralli, Cecchi & Taliercio

and Taliercio [8, 15, 12, 45] proposed models to predict creep coefficients according to the properties

of each masonry constituent. These models are based on analytical or numerical homogenization

using the finite elements method (FEM) in order to deduce the macroscopic creep of undamaged

(without cracks) masonry. In the present study, the coupling between the Griffith’s theory and the

dilute scheme [4] will be applied to provide the effective behaviour of a micro-cracked mortar [36].

In a second step, the expressions proposed in [15, 12] are extended to determine the effective be-

haviour of a periodic microcracked viscoelastic masonry cell. It is worth noting that even the dilute

scheme is useful for dilute concentrations of cracks, it has been demonstrated in [23, 22] that its

estimates coincide with the Mori-Tanaka predictions and are close to the Ponte-Castañeda-Willis

(PCW) estimates for dc ≤ 0.15). This result is valid for open and closed frictionless cracks. These

global properties are used to compute the behaviour of a compressed wall as done in [15]. The main

hypothesis adopted in this work are explicited in section 2 for both first and second steps based re-

spectively on the approximation of the creep function of a microcracked non-aging linear viscoelastic

mortar and the determination of the effective stiffness of a regular masonry with undamaged bricks

and microcracked mortar joints with finite dimensions. The modified Maxwell and Burgers models

followed by the rheology of undamaged mortar are recalled in section 3. The steps allowing the de-

termination of the effective creep function of a microcracked linear viscoelastic mortar are explained

in section 4. Section 5 provides a first application of the proposed Cecchi & Tralli and Cecchi &

Taliercio extension models to a 2D masonry with microcracked viscoelastic hybrid mortar. This

section studies the effects of crack density parameter, time and ratio between the bricks and mortar

Young’s moduli on the evolutions of mortar’s creep function and masonry periodic cell’s stiffness.

At last, section 6 presents local and global mechanical fields predictions for a compressed masonry

panel studied in [15]. In addition to the crack density parameter and time, this section studies the

effects of the mortar’s rheology model and panel’s boundary conditions.

5
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2. Main objective and hypothesis

The objective of this study is to evaluate the effective and local behaviour of masonries exhibiting

nonlinear behaviours mainly viscoelastic at short and/or long times especially when they are sub-

jected to severe or long term loading such as historical monuments or refractory masonry linings

working under high temperatures. For undamaged state, this work enlarges the applications - USBR

and Feng models - treated in the Cecchi & Tralli paper and the Generalized Maxwell model in the

Cecchi & Taliercio work to the Modified Maxwell and typical Burgers rheological models. Moreover

it is an extension of these models to microcracked viscoelastic masonries which considers apart the

spherical and deviatoric parts of the creep behaviour unlike applications in [15]. Since this model

provides stress distribution throughout studied masonry wall or structure with low computational

efforts, it allows to predict cracked areas or failure zones mainly if compressive, tensile and shear

masonry’s strengths are beforehand known. For first applications and for the sake of simplicity, it

can be assumed that only the mortar is a micro-cracked viscoelastic material [41, 31]. Its behaviour

(at the undamaged state) obeys to the Modified Maxwell or typical Burgers models. The blocks or

bricks are assumed to be undamaged and to have either a rigid or elastic isotropic behaviour. In

the mortar, the cracks are assumed to be penny-shaped and to have an isotropic distribution. The

proposed approach is based on two main steps. Firstly, the homogenization technique is applied in

order to assess the effective behaviour of the micro-cracked mortar. The results of brittle fracture

mechanics - the Griffith’s theory - could be useful if we move from the real temporal space to the

symbolic one due the Laplace-Carson (LC) transform. In the later space, the apparent behaviour of

the mortar is linear elastic. This procedure allows the use of expressions available in the literature

for the displacement’s jump induced by the crack [36]. Assuming again that the displacement jump

field depends linearly on the macroscopic stress, it is possible to define an effective linear behaviour

for the micro-cracked mortar in the symbolic space. To determine the global behaviour in the real

space time, it is possible to apply the inverse of the LC transform in some simple cases. It is then

interesting to approach in the symbolic space, at least in short and long terms, the symbolic effective

stiffness (or compliance) by an existing rheological model. For example, if the undamaged mortar

behaves as the Modified Maxwell model, we try to approach the symbolic effective behaviour of

the corresponding microcracked mortar by the same model. After validation of this approximation

at short and long terms, the inversion of the apparent effective stiffness will be straightforward.

Therefore, the effective behaviour of the micro-cracked viscoelastic mortar could be expressed in the

real space time. In a second step, the global behaviour proposed for undamaged linear viscoelastic

periodic masonries [15, 13, 12] is extended in this study for similar masonry cell with microcracks.
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Basic steps followed by the proposed models - extension of the Cecchi & Tralli [15] and Cecchi &

Taliercio [12] models to microcracked viscoelastic masonries - are summarized in Figure (1). Here-

after, it is proposed to explicit the main hypothesis adopted to carry out and perform the principle

steps ((s1) and (s2)) of the proposed model.

Figure 1: Main steps of the proposed model: (s1) - approximation of the effective creep function knowing the effective

properties of the homogeneous material MHE-1 (c) equivalent to the non-aging linear viscoelastic mortar (b) joints

with isotropic distribution of cracks present in the periodic masonry cell (a) - and (s2) based on two techniques:

periodic homogenization (if dimensions of joints are finite [15, 13]) and asymptotic analysis (if these dimensions tend

to 0 [14, 12]) in order to provide the effective stiffness of the homogeneous material MHE-2 (e) equivalent to the

masonry’s cell (d). The rheology of the mortar with penny-shaped micro-cracks follows either the Modified Maxwell

(j) or typical Burgers (f) model.

2.1. Homogenization of a microcracked viscoelastic mortar: coupling between Griffith’s theory and

mean-field homogenization in the Laplace-Carson space

Let us firstly recall that the effective stiffness of an elastic porous medium with a homogeneous solid

phase tensor Cs is:

C̃ = Cs : (I − φAp) (1)

where Ap is the average of the strain localisation tensor A(z) over the pore space Ωp and φ is the

porosity volume fraction. Classical estimates of Ap are based on the solution of the Eshelby single
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ellipsoidal inhomogeneity problem. Indeed this inhomogeneity Ωp is assumed to be embedded in

an infinite homogeneous medium made up of an elastic material subjected to linear displacement

boundary conditions of the form:

u(z) = E.z where z →∞ (2)

In that case, the strain εp in the inhomogeneity proves to be uniform. In the particular case of a

cavity embedded in an infinite solid medium, εp is given by:

εp = (I − SE)−1 : E (3)

where SE is the Eshelby tensor of the cavity function of the cavity’s geometry and the bulk elasticity

tensor Cs. According to equation (3), the dilute scheme’s estimate of the localization tensor Ap

reads:

ApDL = (I − SE)−1 (4)

For a flat spheroid - usual 3D crack model - of aspect ratio w << 1, the Eshelby tensor SE is a

function of w. Accordingly the components Apiikl and Apikik of the tensor (4) are of the order of 1/w

and therefore is the ratio of the normal strain εnn to the macroscopic strain E. Possible nonenegligible

variations of 1/w is in contradiction with the assumption of linearity of the localization relationship

(3). To overcome this difficulty, Deudé et al. [21] have proposed to consider the rate-type formulation

of the problem i.e. the strain localisation tensor (3) should be replaced by a strain rate localization

as in the following:

ε̇(z) = A(z) : Ė

Similarly, the rate-type formulation of the Eshelby problem (3) for a spheroidal cavity reads:

ε̇p = (I − SE(w))−1 : Ė (5)

Recall that w here refers to the aspect ratio in the current configuration of the spheroidal cavity.

Such hypothesis implies that the use of Ap in the homogenized stiffness (1) leads to an estimate of

the tangent effective stiffness. Moreover, since the crack porosity φ is proportional to w [21], the

tangent effective stiffness is mathematically independent of w. This renders the effective behaviour

linear elastic. Note that the rate-type hypothesis is indispensable [21] to also avoid troubles related

to possible large strain in the direction normal to the crack.

On the other hand, the extension of the linear homogenization schemes to non-aging viscoelasticity is

based on the Laplace-Carson (LC) transform [42, 40]. The effective stiffness C̃ =< C : A > becomes

C̃∗ =< C∗ : A > (6)

8
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in the LC space where C∗ is the apparent elastic stiffness. The presence of microcracks implies

the existence of nonlinearity at the local scale in the relationship between the crack strain and the

macroscopic strain. Accordingly the homogenization of a viscoelastic cracked medium is not as

straightforward as (6). The basic idea consists in anticipating that both the microscopic strain field

and the displacement discontinuity vectors [u]i linearly depend on the macroscopic stress. Such an

hypothesis, confirmed by [36], justifies the use of the LC transform which can be applied to the

macroscopic strain related to the microscopic strain and the displacement discontinuity vectors [u]i

between two lips of crack.

2.2. Homogenization of regular masonry with viscoelastic mortar joints: coupling between asymptotic

analysis and periodic homogenization in the real temporal space

Since the procedure explained in the previous paragraph (see section (2.1)) provides the apparent

creep function J∗ of the microcracked viscoelastic mortar, it is possible to derive the real creep func-

tion using an appropriate (analytical due to the Bromwich integral defined in the complex plane by

f(t) =
1

2π

∫ f ∗(p)
p

eptdp [5] or numerical as the collocation [40] or multi-data [18] methods) inversion

procedure of the LC transform.

2.2.1. Linear elastic case

Classically, to determine the global behaviour of regular masonry with linear elastic constituents, it is

useful to apply periodic homogenization technique. For that purpose, Cecchi and Rizzi [11], De Felice

[19, 20] and Cecchi and Sab [14] have proposed to apply asymptotic homogenization technique with

a perturbative analysis as a function of several parameters: ε0 that defines the relationship between

the overall dimensions of the element and those of the characteristic pattern, α which defines the

relationship between the dimension of the mortar joint and that of the characteristic pattern and

β defining the ratio of the mortar stiffness to the brick stiffness in order to provide constitutive

functions depending on the said parameters. Besides these authors have investigated the obtained

solutions as these parameters tend towards zero which is frequently the case for the bed joints. These

studies are motivated by the fact that a mortar in historical masonry is much more deformable than

the block and that its thickness is often negligible compared to the dimensions of the blocks. The

homogenized stiffness tensor Ai, j is computed on Y ∗ by solving the following auxiliary problem on

the periodic linear elastic masonry pattern Y ∗ (see Figure (2)-a).
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Figure 2: Running bond masonry: finite element discretization (d) and topological transformations (patterns Y (b),

Y B with mortar joints assimilated to interfaces or surface discontinuities (c)) of the characteristic elementary pattern

Y ∗ (a) followed by Cecchi and Sab in [14].





div(σ∗) = 0

ε∗(y∗) = E + sym(grad u∗per)

σ∗ = ai, j : ε(y∗)

σ∗.n anti-periodic on ∂Y ∗

u∗per periodic on ∂Y ∗

where ai, j(y∗) =

{
ab for y∗ ∈ block

am for y∗ ∈ mortar
(7)

Here ab and am are respectively the elastic constitutive functions pertaining to the blocks and mortar.

σ∗ and ε∗ are respectively the local stress and strain in the cell Y ∗. n is a unit vector normal to the

boundary ∂Y ∗ of this cell and u∗ is the local displacement field of a point M pertaining to this cell.

For a macroscopic strain E, it follows that: Σ = 〈σ∗〉Y ∗ = Aα,β : E.

After topological transformation of periodic pattern Y ∗ (see pattern Y in Figure (2)-b)) and assuming

that limα(β)β−1 = w0 6= 0, that means for periodic masonry with cohesive joints, the authors have

shown that the auxiliary problem (7) can be rewritten as follows with reference to the pattern Y b

10
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(see Figure (2)-c)





div(σ0) = 0

ε0(y) = E +∇su0

σ0 = Ab : ε0(y)

with boundary conditions





σ0.n anti-periodic on ∂Y b

u0 periodic on ∂Y b

[u0] 6= 0 discontinuous on ΣI

[σ0.n] = 0 continuous on ΣI

σ0.n = K [u0] constitutive relation on ΣI

(8)

where σ0 and ε0 are local stress and strain fields in the pattern Yb. n is the unit vector in the y1 and

y2 middle planes of the Y−REV, ΣI is the interface and [u0] is the jump in displacement field at ΣI

and the fourth-order tensor K is given by

Kh ≈
1

eh
(µMI + (µM + λM)n⊗ n), Kv ≈

1

ev
(µMI + (µM + λM)n⊗ n) (9)

assuming isotropic behaviour of mortar [29]. The resolution of the auxiliary problem (8) in terms

of the variables (σ0, u0) allows to determine the homogenized stiffness Ã in the following form by

reference to the patternYb [14]

Ã1111 =

(
K
′
Cb

1111 +B
eh
a

)(
4K ′

eh
a

+
b

a
K
′′ ev
a

)

4
(eh
a

)2 ev
b
B + Cb

1111

eh
a
C +K ′D

, Ã2222 = K
′

K
′
Cb

2222 +B
ev
b

ev
b

eh
a
B +K ′Cb

2222

(eh
a

+
ev
b

)
+K ′2

Ã1122 = K
′
Cb

1122

(
4K

′ eh
a

+
b

a
K
′′ ev
a

)

4
(eh
a

)2 ev
b
B + Cb

1111

eh
a
C +K ′D

, Ã1212 = Cb
1212K

′′

(
K
′ ev
b

+ 4
a

b
K
′′ eh
b

)

Cb
1212

eh
a
F +K ′′G

(10)

where B =
(
Cb

1111

)2 −
(
Cb

1122

)2
, C = 4K

′ eh
a

+
ev
a
K
′′ b

a
+ 4K

′ ev
b

, D = 4K
′ eh
a

+
ev
a
K
′′ b

a
,

F = K
′ ev
b

+ 4K
′′
(
eh
b

a

b
+
(a
b

)2 ev
b

)
, G = K

′ ev
b

+ 4
eh
b
K
′′ a

b
, K

′
= 2µm + λm (plane strain)

or K
′

= 2µm + λ∗m (plane stress) and K
′′

= µm or equivalently

K
′
h =

Em

(1− (νmh )2)
, K

′
v =

Em

(1− (νmv )2)
(plane stress)

K
′
h =

(1− νmh )Em

(1 + νmh )(1− 2νmh )
, K

′
v =

(1− νmv )Em

(1 + νmv )(1− 2νmh )
(plane strain)

K
′′
h =

Em

2(1 + νmh )
, K

′′
v =

Em

2(1 + νmv )

(11)

since µ =
E

2(1 + ν)
, λ =

ν E

(1 + ν)(1− 2ν)
and λ∗ =

ν E

(1− ν2)
. a and b are respectively the height and

length of the brick in Y b. eh and ev are thicknesses of the mortar joints in the horizontal and vertical
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directions, respectively. These results are, in the limit, perfectly consistent with those obtained by

De Felice [20] in the case of rigid blocks and joints modeled as an elastic interface. The analytical

solution (10) is accurate when ratios between bricks and joints mortar dimensions tend toward 0

which is generally the case for bed joints. It is less accurate in the vertical direction since ev/hb is

generally not negligible compared to eh/lb. Motivated by this reason, Cecchi & Barbieri and Cecchi

& Tralli have proposed an alternative analytical solution valid for finite joint thickness. Indeed,

following the procedure of Cecchi and Tralli [15], it is noted that the homogenized moduli for an

elastic brick and joint are obtained in the pattern Y , and not in Yb as done in Cecchi and Sab [14].

The joint thickness is taken into account in the following mathematical procedure

E.(ãH E) ≤ E.(Ã E) ≤ min
{
E.(ÃH E), E.(ÃR E)

}
(12)

where ãH is the homogenized 2D elasticity tensor obtained with plane stress in the bricks and 2D

restriction of K at the plane strain interface in the mortar. ÃH is the homogenized plane strain

elasticity tensor i.e. with plane strain hypothesis in both blocks and mortar. ÃR is the homogenized

in-plane tensor defined by:

(ÃR)−1 = (Ab∗)−1 + (AF )−1 (13)

where Ab∗ is the plane stress elasticity tensor of blocks and AF is the homogenized membrane tensor

for rigid blocks connected by elastic interfaces. The homogenized tensor ÃR reads [15]

ÃR1111 =

(
K ′hC

b
1111 +B

eh
a+ eh

)(
4K ′v

eh
a+ eh

+
b+ ev
a+ eh

K
′′
h

ev
a+ eh

)

4

(
eh

a+ eh

)2
ev

b+ ev
B + Cb

1111

eh
a+ eh

C +K
′
hD

,

ÃR2222 = K
′
h

(
4K

′
v

eh
a+ eh

+
b+ ev
a+ eh

K
′′
h

ev
a+ eh

)
Cb

1111 +B
eh

a+ eh

ev
a+ ev

4

(
eh

a+ eh

)2
ev

b+ ev
B + Cb

1111

eh
a+ eh

C +K
′
hD

ÃR1122 = K
′
hC

b
1122

(
4K

′
v

eh
a+ eh

+
b+ ev
a+ eh

K
′′
h

ev
a+ eh

)

4

(
eh

a+ eh

)2
ev

b+ ev
B + Cb

1111

eh
a+ eh

C +K
′
hD

,

ÃR1212 = Cb
1212K

′′
h

(
K
′
h

ev
b+ ev

+ 4
a+ eh
b+ ev

K
′′
h

eh
b+ ev

)

Cb
1212

eh
a+ eh

F + 4K
′′
hG

(14)

where, here C = 4K
′
v

eh
a+ eh

+
ev

a+ eh
K
′′
h

b+ ev
a+ eh

+4K
′
h

a

a+ eh

ev
b+ ev

. The differences between equations

(14) and those obtained by Cecchi and Sab [14] (see equations (10)) lie in the ratio
ev
b

and
eh
a

, which

12
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are substituted respectively by
ev

b+ ev
and

eh
a+ eh

, in the components ÃR2222, ÃR1212 and the coefficients

C (mentionned above) andD. In the Cecchi & Barbieri’s paper: D = a
a+eh

(
4K

′ eh
a+eh

+ (b+ev)
(a+eh)

K
′′ ev
a+eh

)
,

ÃR2222 = K
′

K
′
Cb

2222 +B
ev

b+ ev
ev

b+ ev

eh
a+ eh

B +K ′Cb
2222

(
eh

a+ eh
+

ev
b+ ev

)
+K ′2

,

ÃR1212 = Cb
1212K

′′

(
K
′ ev
b+ ev

+ 4
a+ eh
b+ ev

K
′′ eh
b+ ev

)

Cb
1212

eh
a+ eh

F + 2K ′′G
.

(15)

2.2.2. Extension to viscoelatic case

For the viscoelastic periodic problem, the auxiliary problem (7) related to the elastic constituents

can be rewritten as follows by reference to the periodic pattern Y ∗





Ė + ε(u̇per) = ε(u̇)

div(σ(t)) = 0

σ(t).n anti-periodic on ∂Y

uper periodic on ∂Y

〈σ(t)〉 = Σ(t)

(16)

Here, σ(t) is the microscopic stress tensor state; ε(u̇(y)) is the microscopic strain tensor state; uper

is the periodic displacement field and Ė is the macroscopic in-plane strain tensor rate.

Since in the Cecchi & Tralli work, the hypothesis of cohesive joints was also adopted, an asymptotic

auxiliary problem (similar to equations (8)) can be written with reference to the pattern Y b. The

mortar appears merely as a boundary condition. In that case, assuming also that the viscoelastic

mortar is isotropic, then the K tensor can be rewritten as function of the viscous function of the

mortar, i.e.:

Kh(t) =
1

eh

(
Em
h (1 + φmh (t))

2(1 + νm)
I +

(
Em
h (1 + φmh (t))

2(1 + νm)
+
νmE

m
h (1 + φmh (t))

(1 + νm)(1− 2νm)

)
(n⊗ n)

)
Kv(t)

=
1

ev

(
Em
v (1 + φmv (t))

2(1 + νm)
I +

(
Em
v (1 + φmv (t))

2(1 + νm)
+
νmE

m
v (1 + φmv (t))

(1 + νm)(1− 2νm)

)
(n⊗ n)

) (17)

where the K tensor has a diagonal form in this case. K = Kh for the horizontal interface and K = Kv

for the vertical interface.

If only the mortar is assumed to be viscoelastic such that its stiffness tensor reads Am(t) = Am(1 +

13
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φm(t)), the periodic constitutive function Ai,j is similar to that shown in (14) but by substituting

the Young’s modulus Em by the inverse creep function J−1
m (t) = Em(1+φm(t)). It is noted that here

only the Young’s modulus is assumed to be a function of viscosity; the only characteristic parameters

for mortar are the bulk modulus and shear modulus, rather than the Poisson’s ratio.

For a microcracked mortar, it is proposed in step (s2) (see Figure (1)) to estimate the effective

moduli of the homogeneous equivalent material MHE−2 (see Figure (1)-e). These properties could

be deduced from the macroscopic plane stress law Σ = C̃ : ε̄ or equivalently ε̄ = S̃ : Σ which reads




ε̄nn

ε̄tt

2ε̄nt


 =




1

Ẽn
− ν̃nt
Ẽn

0

− ν̃tn
Ẽt

1

Ẽt
0

0 0
1

µ̃nt







Σnn

Σtt

Σnt


 (18)

where S̃ and C̃ are respectively the effective compliance and stiffness of the masonry periodic cell.

Accordingly

1

Ẽt(t, dc)
=

C̃nn

C̃nnC̃tt − C̃ttnnC̃nntt
, ν̃nt(t, dc) =

C̃nntt

C̃tt
, ν̃tn(t, dc) =

C̃ttnn

C̃nn
1

Ẽn(t, dc)
=

C̃tt

C̃nnC̃tt − C̃ttnnC̃nntt
, µ̃nt(t, dc) = C̃ntnt

(19)

where, in the case of undamaged elastic bricks, the stiffness components C̃ijkl are provided by the

extension of the Cecchi and Tralli expressions (10) to the cracked state of the mortar joints. Accord-

ingly viscous Young’s modulus ’Em(1 + φm(t))’ or equivalently the inverse creep function J−1
m (t) is

simply substituted by J−1
m (t, dc) which accounts for the crack density parameter.

Similarly to the undamaged elastic case, the proposed solution is expected to be an upper bound

for the masonry stiffness. Recently, based on the works of Cecchi & Sab, Cecchi & Barbieri [13] and

Cecchi & Tralli, Cecchi & Taliercio [12] have proposed a homogenized compliance for viscoelastic

undamaged masonry with mortar joints assimilated to interfaces. In this paper we propose to extend

also this model to microcracked masonry with finite dimensions of microcracked mortar joints. The

14
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effective compliance of the damaged viscoelastic masonry reads then:

S̃R1111(t, dc) =

Sb1111

ev
a+ eh

J ′v(t, dc) + 4Sb1111

eh
b+ ev

J
′
h(t, dc) + 4

eveh
(b+ ev)2

J
′
v(t, dc)J

′′
h (t, dc)

4
eh

b+ ev
J
′′
h (t, dc) +

eh
a+ eh

J ′v(t, dc)

S̃R2222(t, dc) = Sb2222 +
eh

a+ eh
J
′
h(t, dc)

S̃R1212(t, dc) = Sb1212 +
eh

a+ eh
J
′′
h (t, dc) +

ev
b+ ev

J
′′
v (t, dc)−

e2
v

(b+ ev)(a+ eh)
J
′′2
v (t, dc)

4
eh

b+ ev
J
′
h(t, dc) +

ev
a+ eh

J ′′v (t, dc)

S̃R1122(t, dc) = Sb1122

(20)

The damaged masonry’s effective moduli are then the following: Ẽ11(t, dc) =
1

S̃R1111(t, dc)
, Ẽ22(t, dc) =

1

S̃R2222(t, dc)
, µ̃12(t, dc) =

1

S̃R1212(t, dc)
, ν̃ij(t, dc) = −Ẽii(t, dc)S̃Riijj(t, dc), where (i, j) ∈ {1, 2} . These

properties are explicit function of the crack density - damage parameter -, time and ratios
eh

a+ eh
,

ev
b+ ev

instead of respectively
eh
a

and
ev
b

. It is worth noting, that for the case of undamaged mortar

interfaces, Cecchi & Taliercio have proven that this solution is more consistent with a numerically

homogenized solution based on the finite elements method for ratios Eb/Em ≥ 20 when the mortar

follows a Generalized Maxwell model. In the following, we assume that this condition ensuring the

accuracy of the Cecchi & Taliercio’s analytical model with the additional assumption of finite joints

dimensions is also available for damaged mortars.

Hereafter mortar will follow typical Burgers and Modified Maxwell models. Moreover, the effective

moduli of masonry proposed by Cecchi & Tralli and Cecchi & Taliercio will be extended to the

damaged case of masonry with finite dimensions of joints without any recourse to numerical inversion

of the Laplace Carson method. The yet proven accuracy of the Cecchi & Taliercio’s analytical model

for ratios Eb/Em ≥ 20 will be useful to assess the accuracy of the Cecchi & Tralli’s extension model

to damaged mortars.

3. Rheological models for undamaged mortar

The rate-dependent mechanical behaviour of mortar is often approximated by a linear viscoelastic

model [17, 28]. For the sake of simplicity, only non-aging formulation will be considered in this work.

The practical interest of this simple formulation is that it allows to transform a time-dependent

boundary value problem into a linear elastic one using the well-known correspondence theorem based

on the Laplace-Carson transform. Among the simplest formulations used to model the non-aging
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linear viscoelastic mortar’s behaviour, it is possible to quote the USBR, Ross, Feng, Burgers and

Modified Maxwell models [17, 15] mainly based on connections in parallel and/or in series of Maxwell

and Kelvin-Voigt parts. Each element (spring and dashpot) of the Maxwell (M) or Kelvin-Voigt (KV)

model is characterized by an isotropic fourth-order tensor related to its elasticity or viscosity

Ce
K = 3keKJ + 2µeKK, Cv

K = ηsKJ + ηdKK,

Ce
M = 3keMJ + 2µeMK, Cv

M = ηsMJ + ηdMK
(21)

where kα and µα (α = K or M) denote the bulk and shear moduli. ηsα and ηdα represent respectively

the bulk and shear viscosity. In the following, only rheological MM’s model is presented.

Modified Maxwell model (MM). The constitutive law of the MM’s model (see Figure (1)-j) is given

by

SvMσ + SeM σ̇ = SvMC
e
Rε+ (I + SeMC

e
R)ε̇ (22)

where, for isotropic mortar material, the elastic and viscous compliances of the Maxwell part are

given respectively by SeM =
1

3keM
J +

1

2µeM
K and SvM =

1

ηsM
J +

1

ηdM
K. The elastic stiffness of the

spring reads Ce
R = 3keRJ + 2µeRK.

The Laplace-Carson transform applied to the behaviour law (22) leads to

(SvM + pSeM)σ∗ = (SvMC
e
R + p(I + SeMC

e
R))ε∗ (23)

and allows the definition of the following symbolic Modified Maxwell elastic compliance

S∗MM = (SvMC
e
R + p(I + SeMC

e
R))−1(SvM + pSeM) (24)

Assuming the isotropy of the mortar behaviour, the symbolic compliance (24) reads

S∗MM =
1

3k∗s
J +

1

2µ∗s
K (25)

The associated apparent creep function is then given by

J∗MM =
1

E∗MM

=
1

9k∗s
+

1

3µ∗s
=

1

9

(
kR +

pkMη
s
M/3

kM + pηsM/3

) +
1

3

(
µR +

pµMη
d
M/2

µM + pηdM/2

) (26)

since
1

k∗s
=

1(
kR +

pkMη
s
M/3

kM + pηsM/3

) , 1

µ∗s
=

1(
µR +

pµMη
d
M/2

µM + pηdM/2

) . (27)
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The analytical direct inversion of (26) leads to the MM’s real creep function

JMM(t) =
1

9kR
+

1

3µR
− kM

9kR(kR + kM)
e−t/τ

s
MM − µM

3µR(µR + µM)
e−t/τ

d
MM (28)

with the characteristic times τ sMM =
ηsM(kR + kM)

3kRkM
and τ dMM =

ηdM(µR + µM)

2µRµM
for respectively the

spherical and deviatoric parts of the MM’s viscous behaviour.

4. Creep function of microcracked non-aging linear viscoelastic mortar

We consider a RVE Ω made up of non-aging linear viscoelastic material and a network of plane

penny-shaped cracks. In contrast to 3D ellipsoidal crack model considered in the Eshelby-type

approach, the mathematical penny-shaped crack is a 2D problem in nature which does not refer

to an aspect ratio w. During the time period of loading, assuming that the displacement u(z, t)

prescribed on the boundary ∂Ω is given by u(z, t) = ε̄(t).z where the macroscopic strain ε̄(t) is the

sum of the contribution of the elastic solid and of the fractures as follows

ε̄ =
1

V

(∫

Ωs

εdV +
∑

i

∫

Ci

[u]i ⊗s nidS
)

(29)

where Ωs is the domain of the undamaged matrix and a⊗s b =
a⊗t b+ b⊗t a

2
for the vectors a and

b. Ci and ni denote respectively the boundary of the crack i and the vector normal to its plane. For

empty cracks, the overall stress reads Σ =< σ >Ω=
1

V

∫
Ωs
σdV = C̃ : ε̄ since the local stress in the

voids is null.

4.1. Symbolic space: coupling between homogenization and Griffith’s theory

The Laplace-Carson transform of the macroscopic strain (29) reads:

ε̄∗ =
1

V

(∫

Ωs

ε∗dV +
∑

i

∫

Ci

[u]∗i ⊗s nidS
)
ε̄∗ = C∗−1 : Σ∗ +

1

V

∑

i

∫

Ci

[u]∗i ⊗s nidS (30)

In the framework of the stress-based dilute scheme [22], the displacement jump [u]i is linearly related

to Σ. Indeed, the normal displacement jump (mode I) at the lips of a crack in an infinite matrix

submitted to an isotropic asymptotic macroscopic stress Σ∗ = Σ∗ i can be written:

[un]∗ =
4(1− ν∗s )

π

Σ∗

µ∗s

√
l2 − ρ2. (31)
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where l is the crack’s radius and ρ is the position of a point M pertaining to the crack’s plane.

The tangential displacement jump (mode II) under an asymptotic shear stress Σ∗ = Σ∗n⊗s t where

t is parallel to the crack’s plane reads:

[ut]
∗ =

4(1− ν∗s )

π(2− ν∗s )

Σ∗

µ∗s

√
l2 − ρ2. (32)

Effective dilute symbolic bulk moduli. Under an isotropic loading (Σ∗ = Σ : i), the elementary

contribution of a crack to the macroscopic strain is purely normal ([u]∗ = [un]∗n) as shown in (31)

and reads: ∫

Ci

[un]∗i ⊗s nidS =
8l3

3

Σ∗(1− ν∗s )

µ∗s
n⊗ n (33)

Assuming that all cracks have the same radius l, an integration over all orientations on the unit

sphere yields the total crack contribution:

1

V

∑

i

∫

Ci

[un]∗ ⊗s ndS =
8l3

3

Σ∗(1− ν∗s )

µ∗s

∫

|n|=1

n⊗ ndS
4π

=
8Nl3

9

Σ∗(1− ν∗s )

µ∗s
i (34)

where N denotes the number of cracks per unit volume. Combining (30) and (34) defines the effective

state equation under isotropic loading:

ε̄∗ = C∗−1 : (Σ∗ : i) +
8dc
9

Σ∗(1− ν∗s )

µ∗s
i (35)

for the damage parameter dc = N l3 [10, 23]. At last, since

trace(ε̄∗) =
Σ∗

k̃∗DL
=

(
1

k∗s
+

8dc
3

(1− ν∗s )

µ∗s

)
Σ∗ (36)

then
1

k̃∗DL
=

1

k∗s
+

8dc
3

(1− ν∗s )

µ∗s
, or equivalently

1

k̃∗DL
=

1 + dcQ
∗

k∗s
where Q∗ =

16

9

(1− ν∗2s )

(1− 2ν∗s )
(37)

in which the symbolic Poisson’s ratio of the undamaged matrix reads: ν∗s =
3k∗s − 2µ∗s
6k∗s + 2µ∗s

.

Effective dilute symbolic shear moduli. Under a deviatoric loading in which the macroscopic

stress reads Σ∗ = Σ∗(e1 ⊗ e1 − e3 ⊗ e3), the elementary contribution of a crack to the macroscopic

strain is derived from (31) and (32) according to its orientation. In the polar coordinates system (r,

θ, Φ), the displacement jump is given by

[u]∗ =
Σ∗(1− ν∗)

πµ∗

(
Xrer +

2

2− ν∗ (Xθeθ +XΦeΦ)

)√
a2 − ρ2 (38)
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if the normal vector n coincides with the radial unit vector er. Integration over all crack orientations

on the unit sphere yields

1

V

∑

i

∫

Ci

[u]∗i ⊗s nidS =
dcM

∗

2µ∗
Σ∗ where M∗ =

32

45

(1− ν∗s )(5− ν∗s )

2− ν∗s
(39)

Accordingly and due to (30), the apparent effective shear modulus reads

1

µ̃∗DL
=

1 + dcM
∗

2µ∗s
(40)

4.2. Creep function: identification of existent rheological models at short and long times

Since the expressions (37) and (40) can not be satisfied rigorously, it was proposed in [36] to identify

the best approximation of the effective behaviour in the class of Burgers’ (Modified Maxwell’s) model

if the mortar in its undamaged state follows the Burgers’ (Modified Maxwell’s) model. The idea is

to satisfy the series expansion of the dilute estimates of the bulk’s (37) and shear (40) moduli to the

first order at p = 0 and p→∞ such that

lim
t→∞

f(t) = lim
p→0

f ∗(p) and lim
t→0

f(t) = lim
p→∞

f ∗(p) (41)

Hereafter, only the identification of the MM’s creep parameters function will be detailed. Parameters

related to the Burgers creep function at damaged state [37, 33] are reported in Appendix (A).

4.2.1. Expansions of the mortar’s effective dilute apparent moduli

At the vicinity of p = 0, the expansions in series of
1

k∗s
=

1

ksR
+ O(p) (see equation (27)-a) and

1

µ∗s
=

1

µsR
+O(p) (equation (27)-b) provide the following approximations

1

k̃∗DL
=

(1 + dcQ
0
0)

ksR
+O(p),

1

µ̃∗DL
=

(1 + dcM
0
0 )

µsR
+O(p) (42)

where the coefficients Q0
0, Q1

0, M0
0 and M1

0 are given by

Q0
0 =

4ksR(3kR + 4µR)

3µR(3kR + µR)
, Q1

0 =
2

9

(2ηsMµR − 3kRη
d
M)(9k2

R + 4µ2
R + 6kRµR)

µ2
R(3kR + µR)2

M0
0 =

16

45

(3kR + 4µR)(9kR + 4µR)

(3kR + µR)(3kR + 2µR)
, M1

0 =
8

45

(3kRη
d
M − 2ηsMµR)(63k2

R + 60kRµR + 16µ2
R)

(3kR + µR)2(3kR + 2µR)2
.

(43)
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On the other hand, at the vicinity of p = ∞,
1

k∗s
=

1

keK + keM
+

3k2
M

(keM + ksR)2ηsM p
+ O(p−2) and

1

µ∗s
=

1

µeK + µeM
+

2µ2
M

(µeM + µsR)2ηdM p
+O(p−2), accordingly





1

k̃∗DL
=

1 + dcQ
∞
0

keM + ksR
+

1

p

(3k2
M(1 + dcQ

∞
0 ) + dc(k

e
M + ksR)Q∞1 η

s
M)

ηsM(kM + ksR)2
+O(1/p2)

1

µ̃∗DL
=

1 + dcM
∞
0

µeM + µsR
+

1

p

(
2µ2

M(1 + dcM
∞
0 ) + dc(µ

e
M + µsR)M∞

1 ηdM
)

ηdM(µM + µsR)2
+O(1/p2)

(44)

where the coefficients Q0
∞, Q−1

∞ and M0
∞ are given by

Q0
∞ =

4

3
(kM + kR)(

1

µM + µR
+

3

3(kM + kR) + (µM + µR)
),

M0
∞ =

16

45

(
8− 9(kM + kR)

3(kM + kR) + (µM + µR)
− 6(kM + kR)

3(kM + kR) + 2(µM + µR)

) (45)

4.2.2. Identification of an existent rheological model for the cracked mortar’s creep function

The dilute symbolic bulk’s (37) and shear’s (40) moduli of a non-aging linear viscoelastic (n.a.l.v.)

microcracked mortar following the MM’s model can be approached by expressions similar respectively

to (27)-a and (27)-b available for a mortar with a matrix following the MM’s rheological model

k∗MM = kR(dc) +
pkM(dc)η

s
M(dc)/3

kM(dc) + pηsM(dc)/3
, µ∗MM = µR(dc) +

pµM(dc)η
d
M(dc)/2

µM(dc) + pηdM(dc)/2
(46)

The series expansion of the dilute symbolic estimate of the bulk’s modulus
1

k̃∗DL
(respectively shear

modulus
1

µ̃∗DL
) and its approximation

1

k̃∗MM

(respectively
1

µ̃∗MM

) at the vicinity of 0

1

k̃∗MM

=
1

kR(dc)
− p η

s
M(dc)

3k2
R(dc)

+O(p2),
1

µ̃∗MM

=
1

µR(dc)
− p η

d
M(dc)

2µ2
R(dc)

+O(p2) (47)

and ∞ 



1

k̃∗MM

=
1

kR(dc) + kM(dc)
+

1

p

3k2
M(dc)

ηsM(dc)(kM(dc) + kR(dc))2
+O(

1

p2
)

1

µ̃∗MM

=
1

µR(dc) + µM(dc)
+

1

p

2µ2
M(dc)

ηdM(dc)(µM(dc) + µR(dc))2
+O(

1

p2
)

(48)

added to the equalities
1

k∗DL
≈ 1

k∗MM

and
1

µ∗DL
≈ 1

µ∗MM

allow the identification of the following six

MM’s parameters

kR(dc) =
kR

1 + dcQ0
0

, µR(dc) =
µR

1 + dcM0
0

keM(dc) =
kM + kR
1 + dcQ∞0

− kR
1 + dcQ0

0

, ηsM(dc) =
(ηsM + dc(η

s
MQ

0
0 − 3keRQ

1
0))

(1 + dcQ0
0)2

µM(dc) =
µM + µR

1 + dcM∞
0

− µR
1 + dcM0

0

, ηdM(dc) =
ηdM + dc(η

d
MM

0
0 − 2µRM

1
0 )

(1 + dcM0
0 )2

(49)
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The characteristic times of the spherical and deviatoric parts of the Modified Maxwell model followed

by the microcracked viscoelastic mortar are respectively

τ sMM(dc) =
ηsM(dc)(kR(dc) + kM(dc))

3kR(dc)kM(dc)
, τ dMM =

ηdM(dc)(µR(dc) + µM(dc))

2µR(dc)µM(dc)
(50)

At last, the approximate creep function of a microcracked mortar which matrix follows the MM’s

model reads

JappMM(t, dc) =
1

9kR(dc)

(
1− kM(dc)

(kR(dc) + kM(dc))
e−t/τ

s
MM (dc)

)
+

1

3µR(dc)

(
1− µM(dc)

(µR(dc) + µM(dc))
e−t/τ

d
MM (dc)

)

(51)

5. Application for a 2D masonry with microcracked viscoelastic hybrid mortar

To assess the reliability of the Cecchi & Tralli extension model presented in this paper, it is proposed,

in a first step (s1) (see Figure (1)), to implement the creep functions (53) and (51) and to study the

effects of the crack density dc, time t and geometrical parameter β = Eb/Em on the trends of the creep

of the mortar. As mentioned previously (see section (2.2.2)), the estimates of the Cecchi & Taliercio

extension model are useful as reference solution since the accuracy of this model at undamaged

case has been yet proven in [12] by comparison with more accurate finite element solution. Based

on this result, only elastic bricks with Young’s moduli Eb ≥ 20Em(t0) (here the initial time t0 is

set equal to 0) will be considered in the following. For these evaluations, the adopted mortar’s

data are given in table-1. The properties of the undamaged bricks are the following: νb = νm and

Eb = 100Em(t0) where for this hybrid mortar Em(t0) = J−1
MM(t0, 0) = 6150 MPa for the MM’s

model and J−1
Bu(t0, 0) = 4038 MPa for the Burgers’ one. Recall here that J−1

MM(0, 0) = ER + EM

and J−1
Bu(0, 0) = EM . Bricks are of dimensions 250x55 mm2 and mortar’s joints thicknesses are

eh = ev = 10 mm. Effective masonry’s moduli for cases Eb = 40Em(t0) and 20Em(t0) allowing to

study the effect of the parameter β are reported in Appendix (B). Note that the characteristic times

EM (MPa) τM (s) ER (MPa) τR (s) νm

4038 46490 2112 90866 0.22

Table 1: Elastic and viscous moduli of hybrid mortar [28]

for the spherical and deviatoric hybrid mortar’s behaviour are assumed to be equal τ s = τ d = τ for

the MM’s and Burgers’ models. The Young’s modulus ER and Poisson’s ratio νR coincide respectively

with EK and νK , properties of the Kelvin-Voigt’s spring.
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For damaged state, to validate the step (s1), comparisons with results provided by Nguyen et al. [36]

for concrete material following the typical Burgers model were carried out. Moreover the evolutions

of the MM’s model parameters identified in section (4.2.2) versus the crack density dc depicted in

Figure (13) in Appendix (7) validate this identification step since these parameters decrease with

the increase of the damage parameter. Similar validation procedure was carried out for the Burgers

parameters but is not reported in this paper for the sake of brevity.

In this work, the validity of the step (s2) was ensured by comparisons with Cecchi & Sab [14]

effective stiffnesses available for elastic undamaged masonry either with plane strain or plane stress

hypothesis (see table-2 in [14]). When accounting for the creep effects, this model was validated by

making comparisons with Cecchi & Tralli results available for periodic masonry with undamaged

(dc = 0) mortar following the USBR rheology model (see Figure (7) in [15]). Note that in this

paper, the implemented effective stiffness components Ã2222 and Ã1212 are similar to those proposed

by Cecchi & Sab [14] (see equation (10)) but accounting for creep and finite dimensions of mortar

joints.

5.1. Evolutions of the normalized inverse dilute creep functions JMM−1

DL and JBu
−1

DL of the mortar

joints

Figure (3) and (4) illustrate the evolutions of normalized inverse dilute creep functions of respectively

the MM’s and Burgers’ models with respect to the damage parameter dc and the time t. When the

(a) (b)

Figure 3: Mortar following the MM’s model: Variation of J−1
MM (t, dc)/J

−1
MM (0, 0) versus time (b) for undamaged mortar

(dc = 0) and microcracked mortars (dc = 0.1, dc = 0.2) and (a) versus the damage parameter dc at different times

t = 0, 1 day and t ≥ 5 days.
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(a) (b)

Figure 4: Mortar following the Burgers’s model: Variation of J−1
Bu(t, dc)/J

−1
Bu(0, 0) versus time (b) for undamaged

mortar (dc = 0) and microcracked mortars (dc = 0.1, dc = 0.2) and (a) versus the damage parameter dc at different

times t = 0, 1, 5 days and t ≥ 10 days.

damage parameter dc increases, Figure(3)-a (respectively (4)-a) shows that the normalized inverse

creep function J−1(t, dc)/J
−1(0, 0) does not evolve beyond t ≥ 5 days for the MM’s (respectively, 10

days for the Burgers’) model. Moreover, unlike the Burgers’ model, the MM’s one predicts a slower

decrease of the normalized creep function versus the damage parameter dc. Indeed, for the considered

mortar with properties gathered by means of short term compressive tests on masonry wallets [28],

this function vanishes for times exceeding 10 days according to this version of the Burgers model

whereas the MM’s estimates tend towards non-zero asymptotic limits for t ≥ 5 days.

For a given crack density parameter dc = 0, 0.1 or 0.2, Figure (3)-b demonstrates that the MM’s

model yields to a constant function J−1(t, dc)/J
−1(0, 0) with variation of the time beyond t = 106(s)

(i.e. almost 11 days). As expected, the increase of dc decreases the level of the asymptotic limits

reached by this function. The difference between the MM’s curves for different dc is not negligible

(around 15%) unlike that observed for the Burgers curves which are very close especially at short

and long terms. Figure (4)-b shows again that the Burgers model leads to vanishing inverse creep

functions for t ≥ 3 108 (s) i.e. 1157 days for every crack density value dc ≥ 0.

Recall here that this version of the Burgers model is different from the modified or adapted ones

proposed in [34, 46, 47]. Parameters of these modified Burgers models - generally up to 15 - need

experimental investigations to be identified so as experimental creep curves coincide with modified

Burgers predictions.
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5.2. Effective behaviour of periodic microcracked viscoelastic masonry cell

5.2.1. Constant crack density dc

In this part, it is assumed that crack does not propagate following the Nguyen et al. [37, 39] re-

searches. Tables (2) and (3) provide the effective properties of a periodic masonry cell with hybrid

viscoelastic mortar at its undamaged and microcracked states with quasi-rigid (Eb = 100Em(t0))

bricks. Tables (4) to (7) reported in Appendix (7) give the effective properties of a periodic vis-

coelastic masonry cell with respectively Eb = 20Em and Eb = 40Em. For the considered hybrid

mortar, these tables demonstrate that the effective properties of a masonry cell with a microcracked

mortar following the Burgers model vanish of about 99% by reference to the undamaged state for

any range of the stiffnesses ratio β =
Eb
Em
∈ [20, 100]. The evaluation of the absolute error Er

between masonry cell’s effective properties at undamaged and damaged (t = 1000 days, dc = 0.1)

states for the MM’s model shows that this error increases with the increase of the ratio β to reach

a maximum of about 71% which is an asymptotic limit for Er attained in the case of quasi-rigid

bricks (Eb = 100Em). This result demonstrates that the MM’s model allows the masonry to pre-

serve a certain resistance for β ≥ 20 unlike this version of the Burgers model for which the masonry

seems to fail. Figures (5) and (6) depict the evolutions of the effective properties of the periodic

Mortar: rheological model t (days) dc Ẽtt (MPa) Ẽnn (MPa) ν̃tn ν̃nt µ̃tn (MPa)

Burgers 0 0 111223. 11792.8 0.037 0.004 8087.07

25 0 3082.32 142.66 0.002 0 202.6

25 0.1 2620.62 120.77 0.0016 0 172.17

100 0 810.81 36.74 0 0 53.18

100 0.1 688.77 31.17 0 0 45.17

1000 0 82.37 3.70 0 0 5.4

1000 0.1 69.95 3.15 0 0 4.58

Modified Maxwell 0 0 169277 39314.9 0.060 0.0140 14432.7

≥ 100 0 70955.6 14095.1 0.025 0.005 5150.

≥ 100 0.1 61324.4 12011.6 0.022 0.004 4387.1

Absolute error Er (%) 63.7 69.4 63.5 71.4 69.6

Table 2: Cecchi & Tralli’s extension model: effective properties of a periodic masonry cell with quasi-rigid bricks

(Eb = 100Em) and hybrid viscoelastic mortar [28]

masonry cell as functions of the crack density parameter dc and time t. As expected, the normal-
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Mortar: rheological model t (days) dc Ẽtt (MPa) Ẽnn (MPa) ν̃tn ν̃nt µ̃tn (MPa)

Modified Maxwell 0 0 164964. 37535.2 0.060 0.0134 14400.6

≥ 100 0 68761.2 13428.3 0.0245 0.0050 5138.13

≥ 100 0.1 59395.3 11441.3 0.0212 0.004 4376.9

Maxi. absolute error E
′
r (%) 3.24 4.98 3.3 5 0.023

Table 3: Cecchi & Taliercio’s extension model: effective properties of a periodic masonry cell with quasi-rigid bricks

(Eb = 100Em) and hybrid viscoelastic mortar [28]

(a) (b)

(c) (d)

Figure 5: MM’s model: Evolutions of the effective properties of the periodic masonry cell as function of time for

different crack density parameters dc = 0, 0.1 and 0.2
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(a) (b)

(c) (d)

Figure 6: Burgers’ model: Evolutions of the effective properties of the periodic masonry cell as function of the time

for different crack density parameters dc = 0, 0.1 and 0.2

ized effective moduli Ẽxx(t, dc)/Ẽxx(0, 0), Ẽyy(t, dc)/Ẽyy(0, 0), µ̃xy(t, dc)/µ̃xy(0, 0) and Poisson’s ratio

ν̃xy(t, dc)/ν̃xy(0, 0) decrease with the two parameters: t and dc for both models MM and Burgers.

For the considered mortar, similarly to the evolutions of the normalized inverse creep functions (see

figures (3)), the evolutions of the periodic unit cell’s effective properties with a mortar following

the MM’s rheological model decrease at the short time to reach a non-zero asymptotic limit at the

medium and long terms unlike the predictions of the Burgers’ model which vanish at short and long

term for any value of dc ≥ 0. It is worth noting that time or duration highly softens the MM’s

effective properties of masonry (even without damage). For Eb = 100Em, this can reach 65% for Ẽyy

and 55% for the Ẽxx moduli (see Figure (5)) from the undamaged state after at least 100 days (see
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Table-3). The crack density dc accelerates this softening with an additional reduction of moduli of

about 10% (Eb = 20Em) and 13% (Eb = 100Em) for Ẽtt. These results are consistent with those

provided by Choi et al. [17]. Indeed, unlike the typical Maxwell model, the additional spring in this

model’s chain provides resistance after full relaxation which makes the long-term creep rate decrease

continuously to better represent the realistic long-term behaviour of masonry. Moreover, it has been

proven in [17] and confirmed by Shrive et al. [43] that the basic Burgers model only gives good

results for the first few days (up to 100 days) and then exaggerates the creep strain. Similarly to

the USBR model, the Burgers model represents continuously increasing creep deformation unlike the

Ross, Feng and Modified Maxwell models which predict finite creep deformation at t =∞. Indeed,

for the MM model, the asymptotic infinite limit is JMM(t→∞, dc) =
1

ER(dc)
for every crack density

dc (see equation (51)). Moreover, it has been shown that the Burgers model [17] exhibits a seri-

ous convergence problem when identifying the creep parameters of a number of testd experimental

specimens. Accordingly, it has been concluded [17] that in most cases the MM’s model can more

accurately predict masonry creep compared with the Feng, Ross, USBR and even basic Burgers

rheological models since when the MM’s model, USBR and Ross models were applied to test data

reported by Brooks and Bingel [9] and Shrive et al. [43], it provided the lowest prediction errors.

Note that disadvantages presented by creep predictions provided by the basic Burgers model for

masonry - but not for concrete materials - have motivated some researchers to insert in this model

a ’frictional’ (or Bingham) element between the spring and the dashpot of the Maxwell element

in order to prevent the activation of secondary creep at low stresses. Moreover they have added

(static and viscous) damage parameters respectively in first and second Maxwell’s components as

proposed by Papa & Taliercio [34]. Other authors simply added viscous damage parameter as done

by Verstrynge et al. For this damage variable (Dv), often evolution laws for brittle materials are

used, such as for rock salt [16]. The main disadvantage of the modified Burgers models is their prac-

tical applicability since they involve significant number of parameters - up to 15 parameters for the

global version - which need to be estimated according to experimental data. Moreover, they require

a postulation or experimental investigation of the damage variables evolution laws. Although these

disadvantages, modified Burgers models are more accurate and able to reproduce creep behaviour of

masonry structures compared to the basic version of this model. Note that by analogy to the simple

modified Burgers version (without the Bingham element) proposed by Verstrynge et al., it will be

interesting to postulate a damage evolution law (similar to equation (5) in [46, 47]) - function of

stress and time - and a damage rate formulation (as equation (6) [46, 47]) - function of stress - so as

there is correlation between this version of the Burgers model and experimental creep tests provided

in [34, 46, 47].

27



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

At last, as shown in tables (3), (6) and (8), for undamaged and damaged states, Cecchi & Talier-

cio’s extension effective estimates are close to the Cecchi & Tralli’s extension ones when the mortar

behaves following the MM’s model. The absolute error E
′
r between the two models estimates in-

creases with time and damage to reach a maximum of 5%. Recall that the MM’s model leads to

finite asymptotic limits for global moduli of damaged masonry (see Figures (5)). It is worth noting

that the Cecchi & Taliercio estimates are softer than the Cecchi & Tralli ones for undamaged and

damaged masonry’s states. Accordingly, the Cecchi & Taliercio extension model seems to be more

accurate than the Cecchi & Tralli’s extension one. In this context, recall that the Cecchi & Tralli’s

estimate is expected to be upper bound for the exact overall solution [15].

5.2.2. Time-dependent crack density dc

In this part, for the sake of simplicity, it is assumed that the crack density dc is set equal to zero at

the initial time t0 = 0 and evolves linearly with time t as follows

dc = ḋc t (52)

where, here, the rate of the crack density ḋc is assumed to be a positive constant lower than 0.002/day

(i.e. if t = 100 days, then dc reaches a maximum of 0.2). Indeed, beyond this limit, the dilute estimate

will not be appropriate. Of course, as well known, the increase of the damage rate reduces the stiffness

of the masonry cell. Table−4 provides time evolution of the effective moduli of a damaged masonry

Rheological model t (days) dc Ẽtt (MPa) Ẽnn (MPa) ν̃tn ν̃nt µ̃tn (MPa)

Modified Maxwell 0 0 164964. 37535.2 0.060 0.013 14400.6

1 1.5 10−4 99349.4 20317.3 0.035 0.007 7780.04

5 7 10−4 70366.6 13774.4 0.025 0.0049 5270.76

40 6 10−3 68119 13290.3 0.024 0.0047 5085.25

100 1.5 10−2 67177.8 13088.5 0.024 0.0047 5007.94

500 7.4 10−2 61512. 11885.7 0.022 0.00425 4547.1

1000 0.15 55645.6 10661. 0.02 0.004 4078.01

1200 0.2 52163.2 9943.73 0.018 0.003 3803.36

Table 4: Exension of the Cecchi & Taliercio’s model: effective properties of a periodic masonry cell with elastic

bricks (Eb = 100Em) and hybrid viscoelastic mortar accounting for time-dependent dc with a constant rate ḋc =

1.5x10−4/day.

cell when considering a linear time-dependent crack density (52) with ḋc = 1.5x10−4/day. It can
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be remarked that the effective moduli decrease quickly for t ≥ 5 days. Beyond this limit, these

moduli decrease slightly with time even if dc increases. As proven previously, this table shows that

effective properties of damaged masonry following the MM’s model do not vanish for dc ≤ 0.2.

For the considered mortar (see Table-1), similar evaluation of the effective properties of damaged

masonry with a linear time-dependent crack density were carried out for the proposed extension

to the Burgers model. This result showing vanishing effective moduli within about 20 days is not

reported here for brevity. Owing to results depicted on Table−13, similar trends are obtained for

mortar with long-term characteristic times (see Table-11 depicting elastic and viscous properties of

tested specimens from the Pavia Tower [35]) but with effective properties tending towards 0 within

higher duration (beyond 500 days). These trends change (see Table-14) when considering mortar

with too high (τM ≥ 107(s)) values of the Maxwell’s relaxation time τM (see Table-12) as it is the case

of hybrid mortar with long-term characteristic times [47]. Indeed, in this case, the masonry’s Burgers

predictions, even though lower than MM’s overall estimates, do not vanish after 1200 days with a

crack density dc = 0.2 (see Table-14). This demonstrates the relevance of the proposed Burgers

model for the prediction of the long-term creep with very high values of the Maxwell’s relaxation

time τM ≥ 108 (s). Tables-15 and -16 related to mortars with long-term characteristic times with

properties of respectively hybrid mortar [47] or similar to tested specimens from the Pavia Tower

[35] confirm trends previously mentioned for the MM’s model when dealing with mortar’s properties

gathered by means of short term compressive tests on masonry wallets [28]. The trends of the MM’s

model are then independent from the values of the Maxwell’s relaxation time, short or long-term

gathered properties of the mortar. At last, it is worth noting that similar stress and time dependent

evolution law and damage rate to those proposed in [34, 46, 47] should be considered similarly in a

future work.

6. Computation of the proposed model to the case of a compressed masonry panel

In this part, only the Cecchi & Taliercio extension estimates will be considered. In order to evaluate

the relevance of the proposed extension model, we treat the case of a masonry panel of dimensions

L = 1560mm (length) and H = 1040mm (height) studied in [15] subjected to boundary conditions

BC−1 with three distributed loads at the top and two lateral edges (see Figure (7)-a) or BC−2

with an additional concentrated load F applied on the top as shown on Figure (7)-b. Bricks are

assumed to be elastic or quasi-rigid. The mortar inside the joints is assumed to be microcracked

with a matrix which obeys to linear viscoelastic behaviour following the Modified Maxwell’s model.

As the arrangement of the bricks is regular, the effective behaviour of the panel is assumed to be
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well estimated by that of a periodic cell (see Figure 1-a). The panel can then be modeled as a

homogeneous material which properties coincide with those of the equivalent material MHE-2 (see

Figure (7)-c). The mortar’s data used to compute this problem are provided in Table-1.

To validate this computation, it was checked that, under boundary condition BC−1, stress field

Figure 7: Equivalent problem (c) for the masonry panel submitted to boundary conditions BC−1 (a) or BC−2 (b).

σyy is ’almost’ constant and each component of the stress field coincides for different times t = 0

and t = 1000 days. Recall that only local fields results derived from the MM’s model are reported.

Local mechanical estimates related to the Burgers model are commented but not reported here for

concision purpose.

Qualitatively, under BC-1 and BC-2, distribution of the stress field σyy is symmetric (Figures (8)-b

and (9)-b) by reference to the axis of symmetry of the panel x = L/2 unlike that of the stress

σxy which is anti-symmetric (Figures (8)-a and (9)-a). Similar qualitative aspects are observed

for snapshots of the strains εyy (symmetric, see (Figure (11)-b)) and εxy (anti-symmetric owing to

Figure (11)-a). In this context, note that snapshot of the strain field εyy (εxy) induced in the wall

by boundary conditions BC-1 is not illustrated here since qualitatively it presents similar trend to

the σyy (σxy) stress map. Strain and stress fields show similar localization areas in both left and

right higher corners of the wall (at the vicinity of the application’s point of the concentrated load F )

under conditions BC-1 (BC-2).

Quantitatively, similarly to boundary conditions BC-1, stress components are almost coincident under

BC-2 for t = 0 and t = 1000 days independently of the damage state: dc = 0 or dc = 0.15. This

quantitative aspect is confirmed by Figures (10) showing the evolutions of stress components along

the x axis located at the middle height of the wall (x = H/2). On the other hand, the absolute values

of the strain fields components increase with the increase of damage (Figures (12)). Moreover, under

BC-1, strain values are lower than those attained under BC-2. Indeed, for a same damaged state

dc = 0.15, ratios between maximum absolute values of εyy reached under BC-2 and BC-1 at time
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t = 1000 days is about 8. This ratio is around 2 for the strain εxy. Even lower than εyy, the strain

εxy is more sensitive to the boundary condition BC-2. Quantitatively, for the considered mortar with

sort-term gathered data, while stresses do not change throughout the wall between the two states

(t = 0, dc = 0) and (t = 1000 days, dc = 0.15) for the MM’s model, this field is amplified according

to this version of the Burgers model under the boundary conditions BC−2. At last, under these

boundary conditions, it is observed that the MM’s model predicts small strains unlike those provided

by this version of the Burgers model. For the later, there are great differences between the magnitudes

of strain fields at undamaged (t = 0, dc = 0) and damaged (t = 100 days, dc = 0.1) states. Such

results motivate to avoid modeling traditional mortars with short-term gathered properties using the

Burgers model since it leads to vanishing masonry’s stiffnesses and large strains increasing thus the

risk of failure. These trends for the Burgers model are not valid if the Maxwell’s relaxation time of

the mortar is too high (τM ≥ 107(s)) as it is the case f hybrid mortar with long-term characteristic

times (Table-12). In the later case, the Burgers model is expected to provide local fields predictions

similar to the MM’s estimates. The boundary conditions BC−1 are preferable to BC−2 since the

later increases the stress and strain levels throughout the wall. Owing to Figures (8) and (9), at

t = 1000 days, while failure occurs in the wall’s area located around the application’s point of the

concentrated load F under BC-2, there is no failure in the wall submitted to conditions BC-1.

(a) (b)

Figure 8: BC−1 boundary conditions: MM’s model predictions of σxy (a) and σyy (b) maps for dc = 0.15 at t = 1000

days. Here crack density dc = ḋct where ḋc = 1.5 10−4/day.
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(a) (b)

Figure 9: BC−2 boundary conditions: MM’s model predictions for the maps of stresses σxy (a) and σyy (b) for

dc = 0.15 at t = 1000 days. Here crack density dc = ḋct where ḋc = 1.5 10−4/day.

(a) (b)

Figure 10: Boundary condition BC−1 or BC−2: trends in σxy (a) and σyy (b) at the panel section A-A for the

Modified Maxwell’s model at time t = 0 with dc = 0 and t = 1000 days with dc = 0.15. Here crack density dc = ḋct

where ḋc = 1.5 10−4/day.

7. Conclusions and perspectives

In this paper extensions of the Cecchi & Tralli [15] and the Cecchi & Taliercio [12] models were

proposed for microcracked non-aging viscoelastic masonry using the MM’s and basic Burgers models.

These extensions are based in a first step on the coupling between the Griffith’s theory and the

dilute mean-field homogenization scheme in order to derive easily and with low computational effort

- without recourse to numerical inversion of the Laplace transform - the effective creep function

of a microcracked non-aging viscoelastic mortar. In a second step, the proposed model is based

on periodic homogenization accounting for finite thickness of the mortar joints in order to express
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(a) (b)

Figure 11: BC−2 boundary conditions: MM’s model predictions for the map of the strain εxy (a) and εyy (b) for:

dc = 0.15 and 1000 days. Here crack density dc = ḋct where ḋc = 1.5 10−4/day.

(c) (d)

Figure 12: Boundary condition BC−1 or BC−2: trends in εxy (a) and εyy (b) at the panel section A-A for the

Modified Maxwell’s model at times t = 0 with dc = 0 and t = 1000 days with dc = 0.15. Here crack density dc = ḋct

where ḋc = 1.5 10−4/day.

explicitly the effective orthotropic behaviour of the microcracked viscoelastic masonry cell as function

of the damage parameter. As a first application, these properties are used to simulate the local

behaviour of a viscoelastic loaded (compressed) masonry wall with linear elastic or quasi-rigid bricks.

This model allows then the prediction and localization of mostly stressed and deformed areas in a

loaded masonry wall or structure. Moreover, the effects of the damage parameter - crack density dc

- and the ratio between the mortar’s and bricks stiffness at short and long terms can be assessed. At

this stage, this study demonstrates that unlike the proposed MM’s model which estimates well the

creep of masonry at short to long terms, the relevance of this version of the Burgers model is limited

to mortars with too high Maxwell’s relaxation times (τM ≥ 107(s)) otherwise it predicts vanishing
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stiffness at short and medium terms and exaggerated local strains. At last, this study should be

improved on by accounting for creep of bricks which often occurs under high temperatures. More

complex loadings and/or a masonry structure (an assembly of walls) could also be considered and

simulated using the proposed model. It could be more rigorous to account for interactions between

microcracks using the Mori-Tanaka or Ponte-Castañeda & Willis (PCW) homogenization models, to

include crack density evolution law and damage rate similar to those proposed in [34, 46, 35, 47].

These perspectives will be investigated in future works.
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mésofissuré. Comptes Rendus Mécanique (2002) 330 (8), 587–592.

[22] Dormieux L., Kondo D., Stress-based estimates and bounds of effective elastic properties: the

case of cracked media with unilateral effects. Computational Materials Science (2009) 46 (1),

173–179.

[23] Dormieux L., Kondo D., Ulm F.-J., MicroporoMechanics, John Wiley & Sons, 2006.

[24] Dufferene L., Gy R., Viscoelastic constants of a soda-lime silica glass, J. Non-Cryst. Solids 211

(1–2) (1997) 30–38

[25] Ferber M. K., Weresczak A. A., Hemrick J. G., Compressive creep and thermo-physical perfor-

mance of refractory materials. In: Final Technical Report of Oak Ridge National Laboratory

(2006)

[26] Jin S., Harmuth H., Gruber D., Compressive creep testing of refractories at elevated loads -

Device, material law and evaluation techniques, Journal of the European Ceramic Society, 34,

4037–4042 (2014)
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A. Burgers model (Bu): microcracked state

An approximation of the Burgers’ type for the creep function of a microcracked non-aging linear

viscoelastic mortar with a matrix following the Burgers’ rheology is

JappBu (t, dc) =
1

9kM(dc)
+

1

3µM(dc)
+

(
1

3ηsM(dc)
+

2

3ηdM(dc)

)
t+

(1− e−t/τsK(dc))

9kK(dc)
+

(1− e−t/τdK(dc))

3µK(dc)
(53)

where
1

µM(dc)
=

1 +M e
Mdc

µeM
,

1

µK(dc)
=

1 +M e
Kdc

µeK
1

ηdM(dc)
=

1 +M v
Mdc

ηdM
,

1

ηdK(dc)
=

1 +M v
Kdc

ηdK

(54)

with M e
M = M∞

0 , M v
M = M0

0 , M e
K = M0

0 +
2µK
ηdM

M0
1 −

µK
µM

(M e
M −M0

0 ) and M v
K = M0

∞ +
ηdK

2µM
M−1
∞ −

ηdK
ηdM

(M v
M −M0

∞), and

1

kM(dc)
=

1 +Qe
Mdc

kM
,

1

kK(dc)
=

1 +Qe
Kdc

kK
,

1

ηsM(dc)
=

1 +Qv
Mdc

ηsM
,

1

ηsK(dc)
=

1 +Qv
Kdc

ηsK

(55)

with Qe
M = Q∞0 , Qv

M = Q0
0, Qe

K = Q0
0 + 3

kK
ηsM

Q1
0 −

kK
kM

(Qe
M − Q0

0) and Qv
K = Q∞0 +

ηsK
3kM

Q−1
∞ −

ηsK
ηsM

(Qv
M −Q∞0 )

where the identified parameters of the Burgers model at the vicinity of 0 and ∞ are respectively the
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following

Q0
0 =

16ηsM(2ηdM + ηsM)

9ηdM(ηdM + 2ηsM)
,

Q1
0 =

16(ηsM(ηd
2

M+ηsMη
d
M + ηs

2

M)(−2ηsM(kK + keM)µKµ
e
M + 3ηdMkKk

e
M(µK + µeM))

27ηdM(ηdM + 2ηsM)2kKkeMµKµ
e
M

M0
0 =

32(2ηdM + ηsM)(2ηdM + 3ηsM)

45(ηdM + ηsM)(ηdM + 2ηsM)

M1
0 =

16(ηsMη
d
M(4ηdM

2 + 10ηdMη
s
M + 7ηs

2

M)(2ηsM(kK + keM)µKµ
e
M−3ηdMkKkM(µK + µM)))

135((ηdM + ηsM)2(ηdM + 2ηsM)2)kKkMµkµM

(56)

and
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∞ =
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keM
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µeM
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3keM + µeM
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(57)

If spherical and deviatoric relaxtation times are equal (τ si = τ di = τi where i = M or K), then the

effective creep function (53) reads

JBu(t) =
1

EM(dc)
+

t

EM(dc)τM(dc)
+

1

EK(dc)
(1− e

−
t

τK(dc) ) (58)

where
1

EM(dc)
=

1

9kM(dc)
+

1

3µM(dc)
=

1

9kM
+

1

3µM
+ (

Qe
M

9kM
+
M e

M

3µM
)dc and τ sM(dc) = τ sM

1 +Qe
Mdc

1 +Qv
Mdc

.

Recall that relaxation times at undamaged state are the following: τ sM =
ηsM
3kM

, τ dM =
ηdM

2µM
, τ sK =

ηsK
3kK

and τ dK =
ηdK

2µK
.
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B. Elastic bricks: effect of the material parameter β and the crack density

B.1. Constant crack density

Mortar t (days) dc Ẽtt (MPa) Ẽnn (MPa) ν̃tn ν̃nt µ̃tn (MPa)

Burgers model 0 0 53286. 15351.7 0.0545 0.0157 4538.53

25 0.1 2554.32 129.099 0.007 0 169.355

100 0.1 684.108 31.76 0.002 0.0 44.978

1000 0 82.304 3.715 0 0 5.396

1000 0.1 69.90 3.15 0 0 4.583

Modified Maxwell 0 0 80569.6 31283.2 0.144 0.056 11743

1000 0 48549.8 12906.9 0.0868 0.0230 4760.92

1000 0.1 43838.88 11138. 0.0784 0.0199 4101.52

Absolute error Er (%) 45.6 64.4 45.5 64.4 65

Table 5: Cecchi & Tralli’s extension model: effective properties of a periodic masonry cell with elastic bricks (Eb =

20Em) and hybrid viscoelastic mortar [28]

Mortar t (days) dc Ẽtt (MPa) Ẽnn (MPa) ν̃tn ν̃nt µ̃tn (MPa)

Modified Maxwell model 0 0 79579.9 30169.8 0.142 0.054 11721.8

≥ 100 0 47512.4 12349.7 0.085 0.0220 4750.74

≥ 100 0.1 42844.1 10648.9 0.0766 0.0190 4092.63

Maxi. absolute error E
′
r(%) 2.32 4.6 2.35 4.7 0.02

Table 6: Cecchi & Taliercio’s extension model: effective properties of a periodic masonry cell with elastic bricks

(Eb = 20Em) and hybrid viscoelastic mortar [28]
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Burgers model 0 0 78902.7 14538.9 0.048 0.009 6253.53

25 0.1 2595.3 123.957 0.00378 0.0001 171.106

1000 0 82.346 3.709 0 0 5.398

1000 0.1 69.936 3.149 0 0 4.584

Modified Maxwell 0 0 119811 35860.3 0.107 0.032 13291.1

≥ 100 0 60487.5 13625. 0.0540 0.012 4996.888

≥ 1000 0.1 53345.43 11668.6 0.0477 0.0104 4275.45

Absolute error Er (%) 55.5 67.5 55.4 67.5 67.8

Table 7: Cecchi & Tralli’s extension model: effective properties of a periodic masonry cell with elastic bricks (Eb =

40Em) and hybrid viscoelastic mortar [28]

Mortar t (days) dc Ẽtt (MPa) Ẽnn (MPa) ν̃tn ν̃nt µ̃tn (MPa)

Modified Maxwell model 0 0 117634. 34387.1 0.105 0.030 13263.9

≥ 100 0 58885.5 13002.4 0.052 0.0116 4985.678

≥ 100 0.1 51879.7 11130.7 0.046 0.010 4265.79

Maxi. absolute error E
′
r (%) 2.82 4.83 2.17 4 0.02

Table 8: Cecchi & Taliercio’s extension model: effective properties of a periodic masonry cell with elastic bricks

(Eb = 40Em) and hybrid viscoelastic mortar [28]
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B.2. Time-dependent crack density

Mortar t (days) dc Ẽtt (MPa) Ẽnn (MPa) ν̃tn ν̃nt µ̃tn (MPa)

Modified Maxwell model 0 0 79579.9 30169.8 0.142 0.054 11721.8

1 1.5 10−4 60351.7 17945.9 0.107 0.032 6925.02

5 7 10−4 48273.4 12641.8 0.086 0.0226 4863.91

40 6 10−3 47204.8 12232.8 0.0844 0.021 4705.5

100 1.5 10−2 46751. 12061.7 0.0836 0.0215 4639.23

500 7.4 10−2 43934.7 11032.8 0.078 0.019 4241.05

1000 0.15 40858.1 9969.66 0.073 0.0178 3830.13

1200 0.2 39744.9 9599.65 0.071 0.017 3687.23

Table 9: Cecchi & Taliercio’s extension model: effective properties of a periodic masonry cell with elastic bricks

(Eb = 20Em) and hybrid viscoelastic mortar accounting for time-dependent dc with a constant rate ḋc = 1.5x10−4/day.

Mortar t (days) dc Ẽtt (MPa) Ẽnn (MPa) ν̃tn ν̃nt µ̃tn (MPa)

Modified Maxwell model 0 0 117634. 34387.1 0.105 0.030 13263.9

1 1.5 10−4 60058.9 13326.6 0.053 0.012 13326.6

5 7 10−4 58413.9 12873. 0.052 0.0116 4935.87

40 6 10−3 58413.9 12873. 0.052 0.052 4935.87

100 1.5 10−2 57720.4 12683.6 0.0516 0.0113 4863.01

500 7.4 10−2 53487.4 11550.8 0.0478 0.010 4427.29

1000 0.15 48995.8 10390.8 0.043 0 3981.39

1200 0.2 47403.6 9989.47 0.042 0 3827.2

Table 10: Cecchi & Taliercio’s extension model: effective properties of a periodic masonry cell with elastic bricks

(Eb = 40Em) and hybrid viscoelastic mortar accounting for time-dependent dc with a constant rate ḋc = 1.5x10−4/day.
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C. Long-term characteristic times and corresponding effective properties

EM (MPa) τM (s) ER (MPa) τR (s) νm

3500 690000 30000 7500 0.2

Table 11: Elastic and viscous moduli of tested specimens from Pavia Tower [35]

EM (MPa) τM (s) ER (MPa) τR (s) νm

4000 2x108 2112 300000 0.29

Table 12: Elastic and viscous moduli of hybrid mortar at long-term [47]

Mortar: rheological model t (days) dc Ẽtt (MPa) Ẽnn (MPa) ν̃tn ν̃nt µ̃tn (MPa)

Burgers 0 0 66946.1 19569.9 0.105 0.030 7548.55

1 1.5 10−4 59434.2 16195.5 0.093 0.025 6236.67

5 7 10−4 48204.6 11926.1 0.075 0.0118 4583.06

40 6 10−3 18051.84 3580.9 0.028 0.0056 1370.53

100 1.5 10−2 8599.9 1606.15 0.0135 0.002 614.14

500 7.4 10−2 1754.31 314.32 0.0027 0 120.11

1000 0.15 797.30 142. 0.0012 0 54.27

Table 13: Cecchi & Taliercio’s extension model: effective properties of a periodic masonry cell with elastic bricks

(Eb = 40Em) and long-term characteristic time viscoelastic mortar (similar to those of tested specimens from the

Pavia Tower [35]) accounting for time-dependent dc with a constant rate ḋc = 1.5x10−4/day.
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Mortar t (days) dc Ẽtt (MPa) Ẽnn (MPa) ν̃tn ν̃nt µ̃tn (MPa)

Burgers model 0 0 75875.3 22365.6 0.137 0.040 8177.6

1 1.5 10−4 60718.9 15880.3 0.11 0.028 5790.89

5 7 10−4 43045.6 9950.05 0.078 0.018 3619.56

40 6 10−3 37547.5 8376.39 0.068 0.015 3045.14

100 1.5 10−2 36856.9 8186.47 0.066 0.0148 2975.87

500 7.4 10−2 32678.9 7071.83 0.06 0.013 2569.51

1000 0.15 28339.1 5973.14 0.05 0.01 2169.34

1200 0.2 26831. 5604.61 0.038 0.01 2035.19

Table 14: Cecchi & Taliercio’s extension model: effective properties of a periodic masonry cell with elastic bricks

(Eb = 40Em) and long-term characteristic time viscoelastic hybrid mortar [47] accounting for time-dependent dc with

a constant rate ḋc = 1.5x10−4/day.

Mortar t (days) dc Ẽtt (MPa) Ẽnn (MPa) ν̃tn ν̃nt µ̃tn (MPa)

Modified Maxwell model 0 0 117202. 34174.6 0.096 0.028 13392.3

1 1.5 10−4 117169. 34158.7 0.096 0.028 13386.

5 7 10−4 117036. 34095. 0.095 0.027 13360.8

40 6 10−3 115886. 33545.1 0.094 0.027 13143.3

100 1.5 10−2 113942. 32632. 0.093 0.026 12782.2

500 7.4 10−2 101894. 27378.5 0.083 0.022 10708.5

1000 0.15 88940. 22408.9 0.072 0.018 8752.45

1200 0.2 84363.4 20798. 0.069 0.017 8119.59

Table 15: Cecchi & Taliercio’s extension model: effective properties of a periodic masonry cell with elastic bricks

(Eb = 40Em) and long-term characteristic time viscoelastic hybrid mortar [47] accounting for time-dependent dc with

a constant rate ḋc = 1.5x10−4/day.
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Mortar t (days) dc Ẽtt (MPa) Ẽnn (MPa) ν̃tn ν̃nt µ̃tn (MPa)

Modified Maxwell model 0 0 642386. 187312. 0.096 0.028 73403.7

1 1.5 10−4 638185. 184770. 0.095 0.027 72398.1

5 7 10−4 625619. 179369.. 0.093 0.026 70262.2

40 6 10−3 602474. 168831. 0.09 0.025 66098.4

100 1.5 10−2 596888. 166359. 0.09 0.024 65122.3

500 7.4 10−2 564396. 152494. 0.084 0.022 59652.

1000 0.15 528439. 138106. 0.078 0.02 53983.9

1200 0.2 515307. 133083. 0.077 0.02 52007.2

Table 16: Cecchi & Taliercio’s extension model: effective properties of a periodic masonry cell with elastic bricks

(Eb = 40Em) and long-term characteristic time viscoelastic mortar (similar to those of tested specimens from Pavia

Tower [35]) accounting for time-dependent dc with a constant rate ḋc = 1.5x10−4/day.
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D. Validation step for a hybrid mortar

(a) (b)

(c) (d)

Figure 13: Mortar following the MM’s model: Variation of MM’s parameters versus the crack density dc.
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