
HAL Id: hal-01265218
https://hal.science/hal-01265218

Submitted on 31 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A splitting method for the isentropic Baer-Nunziato
two-phase flow model

Frédéric Coquel, Jean-Marc Hérard, Khaled Saleh

To cite this version:
Frédéric Coquel, Jean-Marc Hérard, Khaled Saleh. A splitting method for the isen-
tropic Baer-Nunziato two-phase flow model. ESAIM: Proceedings, 2012, 38, pp.241-256.
�10.1051/proc/201238013�. �hal-01265218�

https://hal.science/hal-01265218
https://hal.archives-ouvertes.fr


See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/247013430

A	splitting	method	for	the	isentropic	Baer-
Nunziato	two-phase	flow	model

ARTICLE		in		ESAIM	PROCEEDINGS	·	DECEMBER	2013

DOI:	10.1051/proc/201238013

CITATIONS

3

READS

31

3	AUTHORS:

Frederic	Coquel

École	Polytechnique

137	PUBLICATIONS			1,290	CITATIONS			

SEE	PROFILE

Jean-Marc	Hérard

Électricité	de	France	(EDF)

118	PUBLICATIONS			1,031	CITATIONS			

SEE	PROFILE

Khaled	Saleh

Claude	Bernard	University	Lyon	1

8	PUBLICATIONS			29	CITATIONS			

SEE	PROFILE

All	in-text	references	underlined	in	blue	are	linked	to	publications	on	ResearchGate,

letting	you	access	and	read	them	immediately.

Available	from:	Khaled	Saleh

Retrieved	on:	31	January	2016

https://www.researchgate.net/publication/247013430_A_splitting_method_for_the_isentropic_Baer-Nunziato_two-phase_flow_model?enrichId=rgreq-838c3f5a-b638-4d7b-bbca-a41ba9d7af27&enrichSource=Y292ZXJQYWdlOzI0NzAxMzQzMDtBUzoxMDI0MDgzMTUyMTE3NzdAMTQwMTQyNzQ1MzA5Ng%3D%3D&el=1_x_2
https://www.researchgate.net/publication/247013430_A_splitting_method_for_the_isentropic_Baer-Nunziato_two-phase_flow_model?enrichId=rgreq-838c3f5a-b638-4d7b-bbca-a41ba9d7af27&enrichSource=Y292ZXJQYWdlOzI0NzAxMzQzMDtBUzoxMDI0MDgzMTUyMTE3NzdAMTQwMTQyNzQ1MzA5Ng%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-838c3f5a-b638-4d7b-bbca-a41ba9d7af27&enrichSource=Y292ZXJQYWdlOzI0NzAxMzQzMDtBUzoxMDI0MDgzMTUyMTE3NzdAMTQwMTQyNzQ1MzA5Ng%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Frederic_Coquel?enrichId=rgreq-838c3f5a-b638-4d7b-bbca-a41ba9d7af27&enrichSource=Y292ZXJQYWdlOzI0NzAxMzQzMDtBUzoxMDI0MDgzMTUyMTE3NzdAMTQwMTQyNzQ1MzA5Ng%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Frederic_Coquel?enrichId=rgreq-838c3f5a-b638-4d7b-bbca-a41ba9d7af27&enrichSource=Y292ZXJQYWdlOzI0NzAxMzQzMDtBUzoxMDI0MDgzMTUyMTE3NzdAMTQwMTQyNzQ1MzA5Ng%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Ecole_Polytechnique?enrichId=rgreq-838c3f5a-b638-4d7b-bbca-a41ba9d7af27&enrichSource=Y292ZXJQYWdlOzI0NzAxMzQzMDtBUzoxMDI0MDgzMTUyMTE3NzdAMTQwMTQyNzQ1MzA5Ng%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Frederic_Coquel?enrichId=rgreq-838c3f5a-b638-4d7b-bbca-a41ba9d7af27&enrichSource=Y292ZXJQYWdlOzI0NzAxMzQzMDtBUzoxMDI0MDgzMTUyMTE3NzdAMTQwMTQyNzQ1MzA5Ng%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Jean-Marc_Herard?enrichId=rgreq-838c3f5a-b638-4d7b-bbca-a41ba9d7af27&enrichSource=Y292ZXJQYWdlOzI0NzAxMzQzMDtBUzoxMDI0MDgzMTUyMTE3NzdAMTQwMTQyNzQ1MzA5Ng%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Jean-Marc_Herard?enrichId=rgreq-838c3f5a-b638-4d7b-bbca-a41ba9d7af27&enrichSource=Y292ZXJQYWdlOzI0NzAxMzQzMDtBUzoxMDI0MDgzMTUyMTE3NzdAMTQwMTQyNzQ1MzA5Ng%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Electricite_de_France_EDF?enrichId=rgreq-838c3f5a-b638-4d7b-bbca-a41ba9d7af27&enrichSource=Y292ZXJQYWdlOzI0NzAxMzQzMDtBUzoxMDI0MDgzMTUyMTE3NzdAMTQwMTQyNzQ1MzA5Ng%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Jean-Marc_Herard?enrichId=rgreq-838c3f5a-b638-4d7b-bbca-a41ba9d7af27&enrichSource=Y292ZXJQYWdlOzI0NzAxMzQzMDtBUzoxMDI0MDgzMTUyMTE3NzdAMTQwMTQyNzQ1MzA5Ng%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Khaled_Saleh9?enrichId=rgreq-838c3f5a-b638-4d7b-bbca-a41ba9d7af27&enrichSource=Y292ZXJQYWdlOzI0NzAxMzQzMDtBUzoxMDI0MDgzMTUyMTE3NzdAMTQwMTQyNzQ1MzA5Ng%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Khaled_Saleh9?enrichId=rgreq-838c3f5a-b638-4d7b-bbca-a41ba9d7af27&enrichSource=Y292ZXJQYWdlOzI0NzAxMzQzMDtBUzoxMDI0MDgzMTUyMTE3NzdAMTQwMTQyNzQ1MzA5Ng%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Claude_Bernard_University_Lyon_1?enrichId=rgreq-838c3f5a-b638-4d7b-bbca-a41ba9d7af27&enrichSource=Y292ZXJQYWdlOzI0NzAxMzQzMDtBUzoxMDI0MDgzMTUyMTE3NzdAMTQwMTQyNzQ1MzA5Ng%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Khaled_Saleh9?enrichId=rgreq-838c3f5a-b638-4d7b-bbca-a41ba9d7af27&enrichSource=Y292ZXJQYWdlOzI0NzAxMzQzMDtBUzoxMDI0MDgzMTUyMTE3NzdAMTQwMTQyNzQ1MzA5Ng%3D%3D&el=1_x_7


ESAIM: PROCEEDINGS, December 2012, Vol. 38, p. 241-256

F. Coquel, M. Gutnic, P. Helluy, F. Lagoutière, C. Rohde, N. Seguin, Editors

A SPLITTING METHOD FOR THE ISENTROPIC BAER-NUNZIATO

TWO-PHASE FLOW MODEL

Frédéric Coquel1, Jean-Marc Hérard2 and Khaled Saleh2, 3

Abstract. In the present work, we propose a fractional step method for computing approximate

solutions of the isentropic Baer-Nunziato two-phase flow model. The scheme relies on an operator

splitting method corresponding to a separate treatment of fast propagation phenomena due to the

acoustic waves on the one hand and slow propagation phenomena due to the fluid motion on the

other. The scheme is proved to preserve positive values of the statistical fractions and densities.

We also provide two test-cases that assess the convergence of the method.

Résumé. Nous proposons ici une méthode à pas fractionnaires pour le calcul de solutions ap-

prochées pour la version isentropique du modèle diphasique de Baer-Nunziato. Le schéma s’appuie

sur un splitting de l’opérateur temporel correspondant à la prise en compte différenciée des phéno-

mènes de propagation rapide dus aux ondes acoustiques et des phénomènes de propagation lente

dus aux ondes matérielles. On prouve que le schéma permet de préserver des valeurs positives pour

les taux statistiques de présence des phases ainsi que pour les densités. Deux cas tests numériques

permettent d’illustrer la convergence de la méthode.

Introduction

The two-fluid approach is useful for a detailed investigation of some patterns occurring in gas-solid two-
phase flows, or alternatively in water-vapour flows such as those encountered in pressurised water reactors.
In the latter framework, a classical situation corresponds to the prediction of the boiling crisis, where the
flow is initially dominated by the liquid phase while the vapour phase is dilute. Actually, the two-fluid model
proposed in [2,6,8,9,11] is one suitable candidate that enables the computation of two-phase flows in which
few bubbles are statistically present in a liquid phase. For other approaches relying on different assumptions,
see [4, 14]. Several schemes have already been proposed in the literature in order to build consistent and
stable approximations of the Baer-Nunziato model, among which we may cite those relying on interface
Riemann solvers (see for instance [12, 15–17]) and other schemes relying on relaxation techniques (see for
instance [1]).

However, one difficulty -among others- that immediately arises when computing approximations of the
Baer-Nunziato model is due to the fact that the convective effects in this non-conservative model require
accurate enough schemes ; otherwise, the numerical approximations provided by standard solvers seem to
be useless, and one reason for that failure is that the mix of ”fast” waves corresponding with acoustic waves
and ”slow” waves associated with material velocities requires the development of schemes which should be
accurate for quantities governed by either fast or slow waves. We suggest here a possible way to tackle this
difficult problem, which is grounded on the use of a fractional step method. Before going further on, we recall
that this idea has already been used earlier within the framework of Euler equations (see for instance [3]),
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but also for the Baer-Nunziato model (see [5]). Roughly speaking, a two-step algorithm is introduced in
order to account for acoustic waves in the two-phase medium within the first step, while the second step
handles material waves. In order to simplify the presentation, we will restrict in this paper to the barotropic
version of the BN model, but the extension to the standard BN model is straightforward. Moreover, the
numerical treatment of source terms will be disregarded, and we refer to relevant references for that topic [10].

Actually, the paper is organized as follows. In Section 1, we present the set of partial differential equations
of the Baer-Nunziato two-phase flow model in the isentropic framework, and we recall its main mathematical
properties. In Section 2, we propose an operator splitting method for this model, and we describe the
numerical treatment of each step. Finally, Section 3 is devoted to the numerical experiments, where two test
cases have been implemented with a mesh refinement procedure that proves the convergence of the method.

1. The Baer-Nunziato two-phase flow model and its mathematical

properties

In the present work, we consider a model formulated in Eulerian coordinates where balance equations
account for the evolution of mass and momentum of each phase. For compressible isentropic one-dimensional
flows there are five unknowns that describe the evolution of the two-phase flow: the velocities of each phase
uk (where k ∈ {1, 2}), the densities of each phase ρk and the phase fractions αk (knowing that α1+α2 = 1).
The isentropic version of the model –firstly introduced by Baer & Nunziato– reads

∂tα1 + vI∂xα1 = Θp(p1 − p2),

∂t(α1ρ1) + ∂x(α1ρ1u1) = 0,

∂t(α1ρ1u1) + ∂x(α1ρ1u
2
1 + α1p1)− pI∂xα1 = Θu(u2 − u1),

∂t(α2ρ2) + ∂x(α2ρ2u2) = 0,

∂t(α2ρ2u2) + ∂x(α2ρ2u
2
2 + α2p2)− pI∂xα2 = Θu(u1 − u2),

(1)

where vI and pI are the interfacial velocity and pressure for which one must provide closure laws as well as
for the relaxation coefficients Θu and Θp. One classical choice in the existing literature (see [10]) is

Θp =
α1α2

τpΠ0

, (2)

Θp =
1

τu

(α1ρ1)(α2ρ2)

α1ρ1 + α2ρ2
, (3)

where Π0 has the dimension of a pressure, and τp and τu are two characteristic times of the pressure and
velocity relaxation processes. For liquid-vapor applications, where the vapor phase is assumed to be dilute
(we also refer to [2] where one of the phases is dilute), a meaningful choice for the pair of interfacial velocity
and pressure is

(vI , pI) = (u2, p1). (4)

In this case, the index 1 refers to the liquid phase while the index 2 refers to the vapor phase. We also assume
a barotropic pressure law for each phase ρk 7→ pk(ρk), k ∈ {1, 2} that can be deduced from the complete
set of equations of the Baer-Nunziato model when assuming formally a constant entropy sk for each phase.
We only consider a smooth dependence of pk(ρk) such that pk(ρk) > 0, p′k(ρk) > 0, p′′k(ρk) +

2

ρk
p′k(ρk) > 0,

lim
ρk→0

pk(ρk) = 0, and lim
ρk→+∞

pk(ρk) = +∞. We denote

U = (α1, α1ρ1, α1ρ1u1, α2ρ2, α2ρ2u2) (5)

the unknown vector which is expected to belong to the natural physical space

Ω = {U = (α1, α1ρ1, α1ρ1u1, α2ρ2, α2ρ2u2) ∈ R
5, 0 < αk < 1, ρk > 0, k ∈ {1, 2}, α1 + α2 = 1}. (6)
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System (1) takes the following condensed form

∂tU+ ∂xF(U) +C(U)∂xU = S(U), x ∈ R, t > 0, (7)

where

F(U) =













0
α1ρ1u1

α1ρ1u
2
1 + α1p1(ρ1)
α2ρ2u2

α2ρ2u
2
2 + α2p2(ρ2)













, C(U)∂xU =













u2∂xα1

0
−p1∂xα1

0
−p1∂xα2













, S(U) =













Θp (p1(ρ1)− p2(ρ2))
0

Θu(u2 − u1)
0

Θu(u1 − u2)













. (8)

The following proposition holds:

Proposition 1.1. For every state vector U in Ω, the convective part of system (7) admits the following real
eigenvalues:

σ1(U) = u2, σ2(U) = u1 − c1, σ3(U) = u1 + c1, σ4(U) = u2 − c2, σ5(U) = u2 + c2, (9)

where

c1 =
√

p′1(ρ1), c2 =
√

p′2(ρ2), (10)

are the speeds of sound is each phase. The system is hyperbolic (i.e. the corresponding family of right
eigenvectors spans R

5) if and only if u2 6= u1 + c1 and u2 6= u1 − c1. In addition, the fields associated with
the eigenvalues {σi}i=2..5 are genuinely non linear while the field associated with σ1 is linearly degenerate.

Proof. The proof follows from classical calculations that are left to the reader. �

2. A Splitting method for the Baer-Nunziato model

Let us introduce the following operator splitting method for the Baer-Nunziato equations. It consists in
separating the wave propagation phenomena according to their respective propagation speed.

The first step corresponds to the propagation of acoustic waves due to pressure and phase fraction dise-
quilibrium:

∂tα1 = 0,

(S1) ∂tαkρk = 0, k ∈ {1, 2}

∂tαkρkuk + ∂xαkpk − p1∂xαk = 0.

The second step considers the propagation of material waves due to the fluid motion:

∂tα1 + u2∂xα1 = 0,

(S2) ∂tαkρk + ∂xαkρkuk = 0, k ∈ {1, 2}

∂tαkρkuk + ∂xαkρku
2
k = 0.

Finally, the third step takes into account the relaxation terms

∂tα1 = Θp(p1 − p2),

(S3) ∂tαkρk = 0, k ∈ {1, 2}

∂tαkρkuk = Θu(u3−k − uk).

Observe that the splitting steps (S1) and (S2) are an extension to the two-phase flow model of the work
performed in [3] in the framework of Euler’s equations. In the present work, we focus on physical configura-
tions for which the characteristic times τp and τu of the relaxation terms are much larger than the simulation
time T . As a consequence, we do not treat this last step (S3) in the present paper, and we refer to [10] for
the numerical treatment of these terms. From this point, we assume that S(U) = 0.
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2.1. Numerical approximation

In this section, we use the operator splitting method in order to derive a fractional-step numerical scheme,
the aim being to approximate the weak solutions of a Cauchy problem associated with the homogeneous
part of system (7):

{

∂tU+ ∂xF(U) +C(U)∂xU = 0, x ∈ R, t > 0,
U(x, 0) = U0(x).

(11)

Let ∆t be the time step and ∆x the space step, which we assume here to be constant for simplicity in the
notations. The space is partitioned into cells

R =
⋃

j∈Z

Cj with Cj = [xj− 1

2

, xj+ 1

2

[, ∀j ∈ Z,

where xj+ 1

2

= (j + 1

2
)∆x are the cell interfaces. At the discrete times tn = n∆t, the solution of (11) is

approximated on each cell Cj by a constant value denoted by

U
n
j =

(

(α1)
n
j , (α1ρ1)

n
j , (α1ρ1u1)

n
j , (α2ρ2)

n
j , (α2ρ2u2)

n
j

)T
.

Before giving the precise description of the fractional step method, we state the following result which
summarizes the main properties of the scheme:

Theorem 2.1. Under some natural CFL restriction (see (35) and (49)), the fractional step numerical
scheme presented in this paper has the following properties:

(i) It preserves the maximum principle on the phase fractions αk, in the sense that

∀n ∈ N,
(

0 < αn
k,j < 1, ∀j ∈ Z

)

=⇒
(

0 < αn+1

k,j < 1, ∀j ∈ Z

)

,

(ii) It preserves positive values of the densities in the sense that

∀n ∈ N,
(

ρnk,j > 0, ∀j ∈ Z

)

=⇒
(

ρn+1

k,j > 0, ∀j ∈ Z

)

,

(iii) The discretization of the partial masses αkρk is conservative,
(iv) The discretization of the total momentum α1ρ1u1 + α2ρ2u2 is conservative.

Proof. The result follows from Propositions 2.4 and 2.5 stated in sections 2.2 and 2.3 below. �

In the following two sections, we describe the fractional-step procedure associated with the time operator
-splitting method in order to calculate the values of the approximate solution at time tn+1, (Un+1

j )j∈Z from

those at time tn. Section 2.2 displays the numerical treatment of the Lagrangian step (S1) while section 2.3
deals with the material transport step (S2).

2.2. Treatment of the first step

In this section, we consider the numerical treatment of the following set of PDE’s.

∂tα1 = 0,

(S1) ∂tαkρk = 0,

∂tαkρkuk + ∂xαkpk − p1∂xαk = 0.

One can check that all the eigenvalues of this non conservative system are zero, which implies that no
numerical method relying on the spectral radius of the Jacobian matrix (such as Rusanov’s scheme) can be
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applied in the present case. Therefore we choose to treat this first step with a relaxation scheme. For this
purpose, we introduce the following relaxation system which relaxes towards (S1) in the limit ε→ 0:

∂tα1 = 0, (12)

∂tαkρk = 0, (13)

∂tαkρkuk + ∂xαkπk − π1∂xαk = 0, (14)

∂tαkρkπk + a2k∂xαkuk − a2ku2∂xαk =
1

ε
αkρk(pk − πk). (15)

πk is an additional unknown which relaxes towards the actual pressure pk as ε → 0 and whose evolution is
governed by the additional PDE (15). The numbers ak > 0 are two numerical parameters that need to be
taken large enough so as to ensure the stability of the relaxation approximation in the regime of small ε.
Typically, ak must follow the so-called Whitham condition:

a2k > max
τk

(

−
∂pk
∂τk

(τk)

)

, k = 1, 2, (16)

where the max is taken over all the specific volumes τk in the solution of (12)-(15). We refer to [1] and [7]
for a related framework.

Let us now focus on the convective part of this relaxation system which reads:

∂tα1 = 0, (17)

∂tαkρk = 0, (18)

(S1R) ∂tαkρkuk + ∂xαkπk − π1∂xαk = 0, (19)

∂tαkρkπk + a2k∂xαkuk − a2ku2∂xαk = 0. (20)

We have the following property on the characteristic fields of the relaxation system.

Proposition 2.2. For all state vector W = (α1, α1ρ1, α1ρ1u1, α1ρ1π1, α2ρ2, α2ρ2u2, α2ρ2π2) such that ρ1 > 0
and ρ2 > 0, system (S1R) has the following eigenvalues:

−akτk, 0, akτk, k ∈ {1, 2},

where τk = ρ−1

k is the specific volume of phase k. Moreover, all the characteristic fields are linearly degenerate
and system (S1R) is hyperbolic in the sense that the corresponding family of eigenvectors spans the whole
space R

7.

Proof. The proof is left to the reader. �

Thus, the solution of a Riemann problem for (S1R) consists in six constant states separated by five con-
tact discontinuities. The calculation of such a solution is easy since the jump relations across each contact
discontinuity are given by the Riemann invariants of the corresponding wave. In the following array, we
display the Riemann invariants for each wave:

Wave’s velocity Riemann invariants
−a1τ1 α1, ρ1, ρ2, u2, π2, π1 + a1u1
−a2τ2 α1, ρ1, ρ2, u1, π1, π2 + a2u2

0 α1u1 + α2u2, α1π1 + α2π2, u2, π1
a2τ2 α1, ρ1, ρ2, u1, π1, π2 − a2u2
a1τ1 α1, ρ1, ρ2, u2, π2, π1 − a1u1

And we have the following proposition:
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Proposition 2.3. Let be given two initial states WL and WR such that ρ1 > 0 and ρ2 > 0. Then the
Riemann problem for (S1R) where the initial condition is given by

W0(x) =

{

WL if x < 0,
WR if x > 0

(21)

has a unique solution with positive densities ρk for every intermediate state. The states W
− and W

+

respectively on the left and on the right of the standing wave are given in Appendix A.

Proof. We only sketch the proof. First of all, let us notice that from equations (17) and (18), we deduce that
the densities are constant in time ∂tρk = 0. As ρk > 0 at time t = 0, we get ρk > 0 for every time t > 0.
The solution is composed of constant states separated by contact discontinuities:

x

t

−a1τ1,L

−a2τ2,L 0
a2τ2,R

a1τ1,R

WL

W
∗

L

W
−

W
+

W
∗

R

WR

Note that the relative order of the acoustic waves (a1τ1 < a2τ2 or a1τ1 > a2τ2 ) is of no importance here
since it does not change the values of the intermediate states. The solution is calculated by solving a linear
system of eight equations where the eight unknowns are the values of (αkuk)

−, and (αkπk)
− evaluated on

the left of the standing wave as well as (αkuk)
+, and (αkπk)

+ evaluated on the right of the standing wave.
In order to ease the notation, we define xk := (αkuk) and yk := (αkπk). These quantities are linked together
through the Riemann invariants of the standing wave:

y−1 = φy+1 , with φ = α−
1 /α

+
1 , (22)

x−2 = ψx+2 , with ψ = α−
2 /α

+
2 , (23)

y−1 + y−2 = y+1 + y+2 , (24)

x−1 + x−2 = x+1 + x+2 . (25)

Note that (α−
i , α

+
i ) = (αi,L, αi,R) since αi only jumps through the standing wave. We get four additional

equations by linking these unknowns with the left and right data xk,L, yk,L, and xk,R, yk,R. For example,
since u1 and π1 are invariants of the {−a2τ2}-wave, we have π

−
1 +a1u

−
1 = π∗

1,L+a1u
∗
1,L. Moreover, π1+a1u1

is a Riemann invariant of the {−a1τ1}-wave which yields π−
1 + a1u

−
1 = π∗

1,L + a1u
∗
1,L = π1,L + a1u1,L. Now,

knowing that α1 = α1,L on the left side of the standing wave, we multiply this equation by α1,L and we get
y−1 + a1x

−
1 = y1,L + a1x1,L. By proceeding similarly, we get the three last equations of our system:

y−1 + a1x
−
1 = y1,L + a1x1,L, (26)

y−2 + a2x
−
2 = y2,L + a2x2,L, (27)

y+1 − a1x
+
1 = y1,R − a1x1,R, (28)

y+2 − a2x
+
2 = y2,R − a2x2,R. (29)

Then, we can prove (see Appendix A) that up to a nonzero multiplicative constant K, the determinant of
this linear system is equal to

Det = K
a1
a2

(

(1− φ)(1− ψ)

(1 + φ)(1 + ψ)

a1
a2

− 1

)

. (30)
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This determinant vanishes if and only if
(1− φ)(1− ψ)

(1 + φ)(1 + ψ)

a1
a2

− 1 = 0, which is impossible since

(1− φ)(1− ψ)

(1 + φ)(1 + ψ)
= −

α+
1 + α−

1

α+
2 + α−

2

(α+
1 − α−

1 )
2 ≤ 0.

Hence, the linear system is an invertible Cramer system which yields the existence and uniqueness of the
solution. �

Numerical scheme

Let us now describe the numerical treatment of the first step resulting from the relaxation approximation
of (S1). Starting from the given data at time tn: Un

j , the updated data at the fictive intermediate time t♯:

U
♯
j are computed as follows:

(1) Define W
n
j by taking the additional variables (πk)

n
j equal to pk(ρ

n
k,j).

(2) Apply the exact Godunov scheme to the relaxation system (S1R) with the initial data W
n
j . At

this level, the numerical parameters ak should be chosen, interface by interface, so as to satisfy
Whitham’s condition. In practice, Whitham’s condition is replaced for simplicity by the following
Whitham-like condition:

a2k > max

(

−
∂pk
∂τk

(τnk,j),−
∂pk
∂τk

(τnk,j+1)

)

, k = 1, 2. (31)

This condition is less restrictive than the classical Whitham condition stated in (16) but it appears

that in practice, no instabilities pop up in the scheme. This step yields the updated value of W♯
j .

(3) Drop the additional variable πk by taking U
♯
j =

(

(α1)
♯
j , (α1ρ1)

♯
j , (α1ρ1u1)

♯
j , (α2ρ2)

♯
j , (α2ρ2u2)

♯
j

)

.

Points (1) to (3) provide the following finite volume scheme with non conservative numerical fluxes at the
interfaces:

α♯
1,j = αn

1,j , (32)

(αkρk)
♯
j = (αkρk)

n
j , (33)

(αkρkuk)
♯
j = (αkρkuk)

n
j −

∆t

∆x

(

(αkπk)
−
j+ 1

2

− (αkπk)
+

j− 1

2

)

, (34)

where (αkπk)
−
j+ 1

2

(resp. (αkπk)
+

j+ 1

2

) are the values of (αkπk) on the left (resp. on the right) of the standing

wave in the Riemann problem defined by W
n
j and W

n
j+1 (see Appendix A for their formulae). Or course,

when applying Godunov’s scheme to the relaxation system, one has to restrict the time step to a classical
CFL condition which reads:

∆t

∆x
max
j∈Z

max
k∈{1,2}

|(akτk)
n
j | <

1

2
. (35)

We have the following proposition that summarizes the properties of the relaxation numerical scheme
designed for (S1):

Proposition 2.4. Under Whitham’s condition (31) and the CFL restriction (35), equations (32)-(33)-(34)
provide a numerical scheme for the first step (S1) of the splitting method which has the following properties:

(i) It preserves the maximum principle for the phase fractions : 0 < αk < 1, on the time step tn → t♯,
(ii) It preserves positive values of the densities ρk > 0, on the time step tn → t♯,
(iii) The discretization of the partial masses αkρk is conservative,
(iv) The discretization of the total momentum α1ρ1u1 + α2ρ2u2 is conservative.

Proof. The only property which is not straightforward is the conservative discretization of the total momen-
tum. Summing equations (34) over k yields:

(α1ρ1u1 + α2ρ2u2)
♯
j = (α1ρ1u1 + α1ρ1u2)

n
j −

∆t

∆x

(

(α1π1 + α2π2)
−
j+ 1

2

− (α1π1 + α2π2)
+

j− 1

2

)

.
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As α1π1+α2π2 is a Riemann invariant of the standing wave for system (S1R), we have (α1π1+α2π2)
−
j+ 1

2

=

(α1π1 + α2π2)
+

j+ 1

2

, which preserves the conservative form. �

2.3. Treatment of the second step

We now consider the numerical treatment of the time evolution corresponding to the second step. Starting

from the output data of the first step, U♯
j , we want to compute the updated data at time tn+1: Un+1

j .

∂tα1 + u2∂xα1 = 0, (36)

(S2) ∂tαkρk + ∂xαkρkuk = 0, (37)

∂tαkρkuk + ∂xαkρku
2
k = 0. (38)

Equations (37) and (38) can be written in the form of two decoupled systems, each one corresponding to the
material convection of mass and momentum in one of the two phases:

∂tαkρk + ∂xαkρkuk = 0,

∂tαkρkuk + ∂xαkρku
2
k = 0,

for k = 1 or 2. Each one of these two systems takes the following generic form:

∂tθ + ∂xθv = 0,

∂tθΘ+ ∂xθΘv = 0,
(39)

where Θ is a vector of Rn, n ≥ 1 (here Θ = uk ∈ R) and θ is a scalar unknown that is assumed to be positive
(here θ = αkρk) and for which one has to provide a scheme which preserves its positivity. Finally, v is a
velocity field that is assumed to depend only on the space variable: v(x) (here v(x) = uk(t

♯, x)). System
(39) is only weakly hyperbolic, thus the numerical approximation of such a system is a priori not classical.

A positive scheme for (39)

In order to easily handle the lack of hyperbolicity, we discretize (39) with a two-step splitting operator
method motivated by the following calculation:

∂tθ + {θ∂xv}+ {v∂xθ} = 0,

{∂tθ + ∂xvθ}Θ+ θ {∂tΘ+ v∂xΘ} = 0.
(40)

The proposed splitting method consists in solving at first the ODE:

dtθ = −θ
d

dx
v(x), (41)

followed by
∂tθ + v(x)∂xθ = 0,

θ {∂tΘ+ v(x)∂xΘ} = 0,
(42)

which can be re-written as n+ 1 decoupled transport equations:

∂tθ + v(x)∂xθ = 0,

∂tθΘ+ v(x)∂xθΘ = 0.
(43)

The objective here is to design a time explicit discretization of (41)-(43) which is conservative for both
quantities θ and θΘ and which preserves the positivity of θ under some natural CFL restriction. The ODE
(41) is discretized with an implicit scheme as follows:

θ
1/2
j − θ♯j
∆t

= −θ
1/2
j

vj+ 1

2

− vj− 1

2

∆x
⇐⇒ θ

1/2
j =

θ♯j

1 + ∆t
∆x

(

vj+ 1

2

− vj− 1

2

) . (44)
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Hence, preserving the positivity of θ in this step amounts to imposing the following CFL-like condition:

1 +
∆t

∆x

(

vj+ 1

2

− vj− 1

2

)

> 0. (45)

As for the second step (43), it is discretized using the classical first order upwind scheme:

θn+1
j = θ

1/2
j −

∆t

∆x

(

(vj+ 1

2

)−
(

θ
1/2
j+1 − θ

1/2
j

)

+ (vj− 1

2

)+
(

θ
1/2
j − θ

1/2
j−1

))

, (46)

(θΘ)n+1
j = θ

1/2
j Θ♯

j −
∆t

∆x

(

(vj+ 1

2

)−
(

θ
1/2
j+1Θ

♯
j+1 − θ

1/2
j Θ♯

j

)

+ (vj− 1

2

)+
(

θ
1/2
j Θ♯

j − θ
1/2
j−1Θ

♯
j−1

))

, (47)

where for any real value X, we denoted (X)− = min(0, X) and (X)+ = max(0, X). Re-writing equation
(46) as

θn+1
j = −

∆t

∆x
(vj+ 1

2

)−θ
1/2
j+1 +

(

1 +
∆t

∆x

(

(vj+ 1

2

)− − (vj− 1

2

)+
)

)

θ
1/2
j +

∆t

∆x
(vj− 1

2

)+θ
1/2
j−1, (48)

we can see that this second step also preserves positive values of θ provided the following CFL condition

1 +
∆t

∆x

(

(vj+ 1

2

)− − (vj− 1

2

)+
)

> 0. (49)

Note that this last CFL condition may be more restrictive than (45).

We can now show that this two-step splitting operation provides a conservative discretization of (39).
Injecting the result of the first step (44) in equation (46), one gets

θn+1
j = θ♯j −

∆t

∆x
θ
1/2
j

(

vj+ 1

2

− vj− 1

2

)

−
∆t

∆x

(

(vj+ 1

2

)−
(

θ
1/2
j+1 − θ

1/2
j

)

+ (vj− 1

2

)+
(

θ
1/2
j − θ

1/2
j−1

))

= θ♯j −
∆t

∆x

(

(vj+ 1

2

)+θ
1/2
j + (vj+ 1

2

)−θ
1/2
j+1

)

+
∆t

∆x

(

(vj− 1

2

)+θ
1/2
j−1 + (vj− 1

2

)−θ
1/2
j

)

.

This can be re-written in the following conservative form:

θn+1
j = θ♯j −

∆t

∆x

(

vj+ 1

2

θ
1/2

j+ 1

2

− vj− 1

2

θ
1/2

j− 1

2

)

, (50)

where for all j in Z,

θ
1/2

j+ 1

2

=

{

θ
1/2
j if vj+ 1

2

≥ 0,

θ
1/2
j+1 otherwise.

(51)

Similar calculations lead to

(θΘ)n+1
j = θ♯jΘ

♯
j −

∆t

∆x

(

vj+ 1

2

θ
1/2

j+ 1

2

Θ♯

j+ 1

2

− vj− 1

2

θ
1/2

j− 1

2

Θ♯

j− 1

2

)

, (52)

where for all j in Z,

Θ♯

j+ 1

2

=

{

Θ♯
j if vj+ 1

2

≥ 0,

Θ♯
j+1 otherwise.

(53)

Application to equations (37) and (38)

Now, in order to apply this positive scheme to equations (37) and (38), one has to define the values of
the interface velocities at the initial time: uk,j+ 1

2

:= uk(t
♯, xj+ 1

2

). Concerning phase number 2, the velocity

u2 is a Riemann invariant of the standing wave in the first step (S1). Thus, a natural choice for u2,j+ 1

2

is

u−2 = u+2 the constant value of the velocity of phase 2 across the standing wave in (S1). One could also take
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any other consistent choice for u2,j+ 1

2

as for instance a convex combination of u♯2,j and u♯2,j+1 at the end of

the first step:

u2,j+ 1

2

= βu♯2,j + (1− β)u♯2,j+1, β ∈ [0, 1]. (54)

As for phase 1, whose velocity is not a Riemann invariant of the standing wave in (S1), we decide to take:

u1,j+ 1

2

= ηu♯1,j + (1− η)u♯1,j+1, η ∈ [0, 1]. (55)

In practice, we take β = η = 1/2.

Finally, with this definition of u2,j+ 1

2

, the advection equation on α1 is discretized thanks to the first order

upwind scheme:

αn+1
1,j = α♯

1,j −
∆t

∆x

(

(u2,j+ 1

2

)−
(

α♯
1,j+1 − α♯

1,j

)

+ (u2,j− 1

2

)+
(

α♯
1,j − α♯

1,j−1

))

. (56)

This discretization ensures the maximum principle on α1 if the CFL condition (49) with v = u2 is imposed.

We have the following proposition that summarizes the properties of the relaxation numerical scheme
designed for (S2):

Proposition 2.5. Under the CFL restriction (49), equations (44)-(46)-(47) applied to each one of the
phase systems (2.3) provide a numerical scheme for the second step (S2) of the splitting method which has
the following properties:

(i) It preserves the maximum principle for the phase fractions : 0 < αk < 1, on the time step t♯ → tn+1,
(ii) It preserves positive values of the densities ρk > 0, on the time step t♯ → tn+1,
(iii) The discretization of the partial masses αkρk is conservative,
(iv) The discretization of the total momentum α1ρ1u1 + α2ρ2u2 is conservative.

Proof. The proposition directly follows from the above discussion. �

3. Numerical experiments

In this section, we present two test cases in which we compare the approximate solution, computed with
our fractional step numerical scheme, with the exact solution of a Riemann problem. In these two cases, the
phase equations of state are given by the following ideal gas pressure laws:

p1(ρ1) = κ1ρ
γ1

1 , with κ1 = 1 and γ1 = 3,

p2(ρ2) = κ2ρ
γ2

2 , with κ2 = 1 and γ2 = 1.5.
(57)

The solutions are computed on the domain [−0.5, 0.5] of the x-space. For both tests 1 and 2, a mesh
refinement process is implemented in order to numerically check the convergence of the method. For this
purpose, we compute the discrete L1-error between the approximate solution and the exact one at the final
time T , normalized by the discrete L1-norm of the exact solution:

error(∆x) =

∑

cellsj |U
n
j − Uex(xj , T )|∆x

∑

cellsj |Uex(xj , T )|∆x
, (58)

where U denotes the state vector in non conservative variables:

U = (α1, ρ1, u1, ρ2, u2).

The calculations have been implemented on several meshes. The coarser mesh is composed of 100 cells and
the more refined one contains 200000 cells. The error error(∆x) is then plotted against ∆x in a log − log
scale.

Notations:
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• Rσi
(U−,U+) stands for a σi-rarefaction wave, i = 2, 3, 4, 5, connecting the left-hand state U− to the

right-hand state U+.
• Sσi

(U−,U+) stands for a σi-shock, i = 2, 3, 4, 5, connecting the left-hand state U− to the right-hand
state U+.

• Cσ1
(U−,U+) stands for a σ1-contact discontinuity connecting the left-hand state U− to the right-hand

state U+.

Finally, a σi-wave connecting a state U1 to a state U2 followed by a σj-wave connecting U2 to U3 will be
denoted Wσi

(U1,U2) −→ Wσj
(U2,U3), W = R,S, C.

3.1. Test case 1: a contact discontinuity

The first test case is a Riemann problem with only a σ1 = u2 contact discontinuity. In the exact solution,
all the physical quantities are transported with the constant velocity u2 = 0.1, except u2 which is constant.
The initial data in non conservative variables is defined as

UL = (0.3, 1., 0.2, 0.8, 0.1) for x < 0,

UR = (0.6, 1.0012502584, 0.1499375651, 0.6302289018, 0.1) for x > 0.
(59)

x

t
u2

UL UR

Wave structure of the exact Riemann solution

Figure 1 shows that the moving contact is not exactly captured by our scheme. However, when the exact
solution of a Riemann problem contains a contact discontinuity, the expected order of convergence in L1-norm
is ∆x1/2 for a first order scheme. In Figure 1, we can see that our splitting method provides convergence
towards the exact solution with the expected order of ∆x1/2. Note that, to our knowledge, there exists
no solver that is able to capture exactly a moving contact discontinuity on coarse meshes, and our scheme
compares rather well with other schemes (see [13]). Nevertheless, the method proposed in [16] exactly
captures stationary contacts, i.e. contacts with u2 = 0.
The strange behavior of the scheme on the density variable of phase 1 is due to the present choice of initial
conditions on ρ1 in which the left and right values are very close. This makes the jump more difficult to be
captured on this variable, and it is all the more difficult for coarse meshes.
Finally, we would like the reader to be aware that the number of visible points in the figure for the 50000-cell
mesh (especially in the contact wave) is not the real one since some points have been dropped for the clarity
of the graph.

3.2. Test case 2: a complete case with all the waves

The second test case is a complete case with the contact discontinuity and all the acoustic waves. The
initial data in non conservative variables is set to

UL = (0.1, 0.85, 0.4609513139, 0.96, 0.0839315299) for x < 0,

UR = (0.6, 1.2520240113, 0.7170741165, 0.2505659851,−0.3764790609) for x > 0.
(60)
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Figure 1. Test 1: space variations of the physical variables at the final time T = 0.3, and
L1-norm of the error for several mesh sizes.

Observe that this is a hard case to run since the difference between the left and right values of the phase
fraction α1 is quite large. The intermediate states (also in non conservative variables) are given by:

U1 = (0.1, 1., 0.2, 0.96, 0.0839315299),

U2 = (0.1, 1., 0.2, 0.8, 0.3),

U3 = (0.6, 1.0016192090, 0.2833602765, 0.5011319701, 0.3),

U4 = (0.6, 1.0016192090, 0.2833602765, 0.2505659851,−0.3764790609).252



The Riemann solution is a {u1 − c1}-shock wave from UL to U1, followed by a {u2 − c2}-rarefaction wave
from U1 to U2, followed by a u2-contact discontinuity from U2 to U3, followed by a {u2 + c2}-shock from U3

to U4 and finally followed by a {u1 + c1}-rarefaction wave from U4 to UR:

Sσ2
(UL,U1) −→ Rσ4

(U1,U2) −→ Cσ1
(U2,U3) −→ Sσ5

(U3,U4) −→ Rσ3
(U4,UR).

x

t

Cσ1

Sσ5

Sσ2

UL UR

U1

U2 U3

U4

Rσ3

Rσ4

Wave structure of the exact Riemann solution

In Figure 2, we can see that the intermediate states are correctly captured by the method even for a quite
coarse mesh of 100 cells. Figure 2 also shows that the approximate solution computed thanks to the splitting
method converges towards the exact solution. Only the error on the phase fraction α1 converges towards zero
with the expected order of ∆x1/2, while the other variables seem to converge with a higher rate. However,
the expected order of ∆x1/2 is only an asymptotic order of convergence, and in this particular case, one
would have to implement the calculation on much more refined meshes in order to recover this expected
order ∆x1/2.
Here again, we warn the reader that the number of visible points in the figure for the 50000-mesh (especially
in the contact wave and in the shocks) is not the real one since some points have been dropped for the clarity
of the graph.

4. Conclusion

The explicit scheme presented here provides convergent approximations of discontinuous solutions of the
barotropic Baer-Nunziato model, while preserving the maximum principle on the values of the statistical
fractions αk and positive values of the densities ρk. A sequel of this work consists in using the same fractional
step strategy in order to derive an implicit version of the first step, and thus to get rid of a rather constraining
CFL condition due to the propagation of fast acoustic waves.

A. Proof of Proposition 2.3 and formulae of the intermediate states W
−

and W
+

We prove here that the determinant of the system composed of equations (22) to (29) has the following
expression

Det = K
a1
a2

(

(1− φ)(1− ψ)

(1 + φ)(1 + ψ)

a1
a2

− 1

)

, (61)

for some constant K 6= 0. We first ease the notations by denoting the data in the right hand side part of
equations (26) to (29) as follows:

A := y1,L + a1x1,L, (62)

B := y2,L + a2x2,L, (63)

C := y1,R − a1x1,R, (64)

D := y2,R − a2x2,R. (65)
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Figure 2. Test 2: space variations of the physical variables at the final time T = 0.14, and
L1-norm of the error for several mesh sizes.

We also denote u = x−1 and v = x+1 . We express all the other unknowns in terms of u and v in order to bring
this eight equation linear system to a system of two linear equations on u and v. We note that provided that
a2 6= 0, equations (24), (25), (62), (63), (64) and (65) form an autonomous system that can be solved with
respect to u and v and whose solution is
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y−1 = A− a1u, (66)

y+1 = C + a1v, (67)

y−2 =
a1 + a2

2
u+

a1 − a2
2

v +
B + C +D −A

2
, (68)

y+2 =
a2 − a1

2
u−

a1 + a2
2

v +
A+B +D − C

2
, (69)

x−2 = −
1

2

(

1 +
a1
a2

)

u+
1

2

(

1−
a1
a2

)

v +
A+B − C −D

2a2
, (70)

x+2 =
1

2

(

1−
a1
a2

)

u−
1

2

(

1 +
a1
a2

)

v +
A+B − C −D

2a2
. (71)

Denoting X = a1/a2 and injecting these expressions in equation (22) and (23), we get

A

a2
−Xu = φ

(

C

a2
+Xv

)

⇐⇒ Xu+ φXv =
A− φC

a2
, (72)

and

− (1 +X)u+ (1−X)v +
A+B − C −D

a2
= ψ

(

(1−X)u− (1 +X)v +
A+B − C −D

a2

)

⇐⇒ (ψ(1−X) + 1 +X)u+ (X − 1− ψ(1 +X)) v = (1− ψ)
A+B − C −D

a2
.

(73)

Equations (72) and (73) form a 2× 2 linear system whose determinant is

Det = X(X − 1− ψ(1 +X))− φX(ψ(1−X) + 1 +X)

= (1− φ)(1− ψ)X2 − (1 + φ)(1 + ψ)X

= (1 + φ)(1 + ψ)X

(

(1− φ)(1− ψ)

(1 + φ)(1 + ψ)
X − 1

)

,

(74)

which proves the expression of the determinant given in equation (30). Hence, using Cramer formulae, we
deduce the expressions of u and v:

u =
1

Det

(

A− φC

a2
(X − 1− ψ(1 +X))− (1− ψ)

A+B − C −D

a2
φX

)

, (75)

v =
1

Det

(

X(1− ψ)
A+B − C −D

a2
−
A− φC

a2
(ψ(1−X) + 1 +X)

)

, (76)

which yields x−1 = u, x+1 = v. The formulae of y−1 , y
+
1 , y

−
2 , y

+
2 , x

−
2 and x+2 are given in equations (66) to

(71).
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