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Abstract: This paper aims at assessing the accuracy of different solar forecasting methods in the
case of an insular context. Two sites of La Réunion Island, Le Tampon and Saint-Pierre, are chosen
to do the benchmarking exercise. Réunion Island is a tropical island with a complex orography
where cloud processes are mainly governed by local dynamics. As a consequence, Réunion Island
exhibits numerous micro-climates. The two aforementioned sites are quite representative of the
challenging character of solar forecasting in the case of a tropical island with complex orography.
Hence, although distant from only 10 km, these two sites exhibit very different sky conditions.
This work focuses on day-ahead and intra-day solar forecasting. Day-ahead solar forecasts are
provided by the European Center for Medium-Range Weather Forecast (ECMWF). This organization
maintains and runs the Numerical Weather Prediction (NWP) model named Integrated Forecast
System (IFS). In this work, post-processing techniques are applied to refine the output of the IFS
model for day-ahead forecasting. Statistical models like a recursive linear model or a nonlinear model
such as an artificial neural network are used to produce the intra-day solar forecasts. It is shown
that a combination of the IFS model and the neural network model further improves the accuracy of
the forecasts.

Keywords: solar forecasting; statistical models; NWP model; model output statistics

1. Introduction

Accurate solar forecasts at various time steps are needed in order to increase the integration of
renewables into electricity grids [1]. This statement is reinforced in the case of insular grids. The
fluctuating character of the solar energy together with the fact that the island electricity grid is isolated
may put in danger the stability of the grid and consequently the balance between supply and demand.

In addition, solar forecasting may be very challenging in an insular context as islands (like
Réunion Island for instance) may usually experience a high spatial and temporal variability of the
solar resource [2]. Previous works regarding irradiance forecasting for the power PV prediction of
grid-connected systems were mainly done for large-scale continental grids [3–5]. Due to the small scale
of the climatic phenomena, forecasting the solar irradiance in insular territories addresses new issues.

In order to cope with specific plant operations, solar forecasts must be provided with different
granularities and horizons [6]. In addition, the recent development of grid-connected storages
associated with intermittent renewables (solar, wind and wave) also requires power PV forecasts
in order to optimize their operational management [7,8]. PV power output is directly related to the
level of received global solar irradiance. Thus, forecasting the global solar irradiance is the key feature
for power PV forecasting. In this work, we will focus on day-ahead and intra-day solar irradiance
forecasts with an hourly granularity.
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For day ahead forecasting, the most accurate forecasting methods are based on Numerical
Weather Prediction (NWP) models [1,9]. For forecast horizons up to several hours, models based on
cloud-motion vectors (CMVs) from satellite images are the most suitable [10,11]. In addition, finally,
for very short-term horizons, from few minutes up to six hours, the literature is dominated by statistical
approaches based on linear or nonlinear models [12–16].

NWP models may exhibit (large) biases [9]. Post-processing methods like Model Output Statistics
(MOS) are frequently applied to reduce these biases or to refine the output of NWP models, as detailed
local weather features are generally not resolved by NWP predictions [3]. In addition, spatial averaging
can contribute to reduce forecast errors, particularly in situations with variable clouds, that are difficult
to predict ([4,17]). To our best knowledge, these post-processing techniques have been only tested
in a continental context ([3–5]) and it appears interesting to assess in this survey the performances
of these techniques in the case of an insular environment. In this work, day-ahead forecasts are
provided by the European Center for Medium-Range Weather Forecast (ECMWF). This organization
maintains and runs the global Numerical Weather Prediction (NWP) model Integrated Forecast System
(IFS). Two post-processing techniques will be used to refine the IFS forecasts for the insular sites of
Saint-Pierre and Le Tampon in Réunion Island.

Regarding the intra-day solar forecasting, two statistical models namely an Artificial Neural
Network (ANN) and a recursive linear technique (ARMA.RLS) will be evaluated. Furthermore, some
day-ahead parameters produced by ECMWF will be used as exogenous inputs of the ANN model.
It will be shown that the combination of the IFS model and the ANN model further improves the
accuracy of the forecasts.

The remainder of this paper is organized as follows: Section 2 is devoted to the sites’ description
and data preprocessing. Section 3 sets out an in-depth analysis of the sky conditions experienced
by each site while Section 4 will detail the errors metrics used to assess the forecasting accuracy of
the different methods. Section 5 describes the day-ahead solar forecasts with a special emphasis on
the MOS post-processing techniques. Section 6 presents the results of the intra-day solar forecasting
techniques. Finally, Section 7 gives some concluding remarks.

2. Sites Description and Data Preprocessing

2.1. Sites Description

Réunion Island exhibits a particular meteorological context dominated by a large diversity of
micro-climates. Two main regimes of cloudiness are superposed: the clouds driven by synoptic
conditions over the Indian Ocean and the orographic cloud layer generated by the local reliefs [2].
The data used to build the models are Global Horizontal Irradiance (GHI) measured by the PIMENT
laboratory at the meteorological stations of Saint-Pierre and Le Tampon located in the southern part of
Réunion Island (see Figure 1). Saint-Pierre is a coastal site while Le Tampon is an inland site. Table 1
gives the sites’ characteristics.
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Table 1. Sites characteristics, input parameters for the BIRD model and performance of the BIRD
model. rRMSE and rMBE are normalized to mean measured irradiance (705 W/m2 for Saint-Pierre and
649 W/m2 for Le Tampon).

Site Saint-Pierre Le Tampon

Period of record 01/01/2012–31/12/2013 01/01/2012–31/12/2013
Longitude 55.491˝E 55.506˝E
Latitude 21.340˝S 21.269˝S

Elevation (m) 75 550
Annual solar irradiance (MWh/m2) 2.053 1.712

Average Pressure (Pa) 100,427 94,890
Ozone (cm) 0.2655 0.2655

Water vapor (cm) 2.933 2.933
AOD 500 nm (cm) 0.072 0.072
AOD 380 nm (cm) 0.090 0.090

Asymmetry factor Ba (see [20] for details) 0.84 0.84
Site variability (see Equation (2)) 0.19 0.24

Nb. of clear sky hours 2614 1022
Bird clear sky model accuracy by

Ineichen method [24] rRMSE 3.26% 4.52%

Bird clear sky model accuracy by
Ineichen method [23] rMBE 1.7% ´1.9%

2.2. Solar Radiation Data

Measurements are available on an hourly basis and two years of data (2012 and 2013) are used
respectively for the building and appraisal of the models. The stations measure the GHI every
six seconds and the 1-min averages are recorded. The hourly data correspond to the average of
the previous 60 min of measurements. The solar irradiance is measured with a secondary standard
pyranometer (CMP 11 from Kipp and Zonen). The uncertainty of the pyranometers is ˘3.0% for
the daily sum of GHI. Measurement quality is an essential asset in any solar resource forecasting
study. The sites of Saint-Pierre and Le Tampon are well maintained and have followed the radiometric
techniques regarding calibration, maintenance and quality control. Each data point has been processed
with SERI-QC quality control procedure [18].

In this work, for comparison purposes, we also include two continental US sites namely Desert
Rock (36.6N; 116.0W; 1007 m¨ a.s.l) and Fort Peck (48.3N; 105.1W; 634 m¨ a.s.l). These two stations are
part of the NOAA’s SURFRAD network [19].

2.3. Clear Sky Index

Solar irradiance is characterized by diurnal and seasonal variations. A clear sky model is
commonly used to remove this deterministic component in the GHI time series then leading to
the definition and use of the clear sky index kt˚:

kt˚ “
GHI

GHIClear
(1)

It corresponds to the ratio of the measured GHI to the theoretical GHI observed under clear sky
conditions pGHIClearq. With this methodology, the models designed in this work are dedicated to the
forecasting of the stochastic part of the global radiation due to the cloud cover, leaving the geometric
and the deterministic part to be modeled by the clear sky model.

The clear sky irradiance is generated with the BIRD model [20]. This simple model calculates
estimates of GHIClear with acceptable accuracy and with only few inputs [21]. For this study, the
Aerosol Optical Depths (AODs) and the water vapor column parameters were retrieved from the
AERONET site REUNION_ST_DENIS (20˝52’S; 55˝28’) [22] located in the north of the island. 4.5 years
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were used to compute the climatological means of these atmospheric input parameters. The latter
were used as inputs of the BIRD model. Similarly, the ozone atmospheric content was retrieved from
the World Ozone Monitoring Mapping provided by the Canadian government [23]. The values of the
input parameters of the BIRD model used for the two studied sites are given in Table 1.

The forecasting accuracy of the models proposed in this work depends on the accuracy of the
clear sky model used to derive the clear sky index. In order to evaluate this error induced by the BIRD
model, only the clear sky periods are considered. The clear sky hours were detected using the Ineichen
method [24] applied to the two years of hourly-measured global irradiance. The last three lines of
Table 1 give the number of clear sky hours detected, the relative Root Mean Square Error (rRMSE) and
the relative Mean Bias Error (rMBE)—see the definition of these metrics below of the corresponding
clear sky irradiance produced by the BIRD model. The performances of the BIRD model in this work
are consistent with previous results [25]. Notice also that the site of Le Tampon experiences fewer
occurrences of clear sky hours (see Table 1).

2.4. Filtering Methodology

Low solar elevations induce complex reflection phenomena that are not properly taken into
account by the pyranometer. As a consequence, the values of the measured GHI are often not reliable.
Furthermore, the amount of solar energy received at ground level in this condition is very small.
As a consequence, data corresponding to a solar zenith angle (ΘZ) larger than to 85˝ are removed.
This filtering removes less than 1% of the total annual sum of solar energy. Put in other words,
night times and low solar elevations were not taken into account for the building and the test of the
models. In addition, this filtering process allows to discard data with less precision as measurement
uncertainties associated to pyranometers are typically much higher than ˘3.0% for ΘZ > 85˝.

3. Sites Analysis

This section aims at analyzing the sky conditions experienced by each site. Figure 2 plots the
distribution of the clear sky index for each site. In Table 2, based on the previous work done by [26],
we define thresholds to distinguish different sky conditions.

Table 2. kt˚ Values and related sky conditions.

kt* Values Sky Conditions

kt˚ ą 0.8 Clear
0.35 ă kt˚ ă 0.8 Cloudy/intermediate

kt˚ ă 0.35 Overcast

We also include in Figure 2, the kt˚ distribution of the two continental sites namely Desert Rock
and Fort Peck. The site of Desert Rock is representative of an arid climate dominated by clear skies.
One may also notice that the kt˚ distributions of the sites of Fort Peck and Saint-Pierre are quite similar.
Indeed, as mentioned above, Saint-Pierre is a coastal site with rather high occurrences of clear skies.
Conversely, the site of Le Tampon exhibits higher occurrences of cloudy/intermediate skies.

The characterization of the variability regime of solar irradiation at a particular site is a key factor
to understand the level of error of a solar forecasting method. Put in other words, the variability
experienced by a site has an impact on the forecasting accuracy of the different forecasting methods.

Table 1 gives a metric that characterizes the annual solar variability of a site. This metric proposed
by [27] is the standard deviation of the change in the clear sky index defined by:

σ p∆kt˚∆tq “

b

Var
“

∆kt˚∆t
‰

(2)
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The values of solar variability in Table 1 have been calculated for a time scale ∆t “ 1 h (as we
deal with hourly GHI records) and for a time span that corresponds to two years of hourly data. A site
with variability above 0.2 is considered as experiencing very unstable conditions [27,28].

As seen, the variability of the site of Le Tampon is above this threshold. Conversely, the variability
of Desert Rock and Fort Peck are respectively 0.14 and 0.18. One may also notice that the variability of
Saint-Pierre is close to that of Fort-Peck. Sub-Section 6.5.2 below will discuss the impact of the sky
conditions on the forecasting accuracy of the different methods.

4. Error Metrics

In the realm of the solar forecasting community, the commonly used error metrics for point
forecasts are: the Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Bias Error
(MBE). These error metrics are defined by the following equations:

RMSE “

g

f

f

e

1
N

N
ÿ

i“1

´

GHI f orecast.i ´ GHImeasured.i

¯2
(3)

MAE “
1
N

N
ÿ

i“1

ˇ

ˇ

ˇ
GHI f orecast.i ´ GHImeasured.i

ˇ

ˇ

ˇ
(4)

MBE “
1
N

N
ÿ

i“1

´

GHI f orecast.i ´ GHImeasured.i

¯

(5)

where N is the number of points in the dataset for the considered period.
Relative values of these metrics (rRMSE, rMAE and rMBE) are obtained by normalization to the

mean ground measured irradiance of the considered period. As noted by Lorenz in [1], the MAE is
appropriate for applications with linear cost functions, that is, where the costs that are caused by a
wrong forecast are proportional to the forecast error. The RMSE is more sensitive to large forecast
errors, and hence is suitable for applications where small errors are more tolerable and larger errors
cause disproportionately high costs. In the following, we provide the standard set of error metrics but
with a special emphasis on the rRMSE.

In this work, we also include an additional metric: the forecast skill parameter s. The latter

proposed by [29] is given by s p%q “
ˆ

1´
RMSEmethod
RMSEpers

˙

ˆ 100 where RMSEmethod stands for the
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RMSE of each new proposed forecasting method and RMSEpers is the RMSE of the persistence model.
With this definition, the persistence model has a forecast skill s = 0% and a value of s = 100% denotes
a perfect forecast. Negative values of s indicate that the forecasting model fails to outperform the
persistence model while positive values of s means that the forecasting method improves on persistence.
Further, the higher the s-skill score is, the better the improvement is.

5. Day-Ahead Forecasting

5.1. Initial ECMWF Forecast

The European Center for Medium-Range Weather Forecast (ECMWF) is an intergovernmental
organization that provides operational forecasts. It maintains and runs the numerical weather
prediction (NWP) model Integrated Forecast System (IFS). NWP models outperform forecasts based
on satellite data or ground measurements (only) for horizons longer than 5 h [1,11]. In order to
supply forecasts that can be used by the grid operator for day-ahead scheduling, we retrieved the
data generated by the IFS at 12 h 00 UTC (16 h 00 in Réunion Island). The forecasts correspond to
hourly data with a spatial resolution of 0.125˝ ˆ 0.125˝ (approximately 14 kmˆ 14 km in Réunion—see
Figure 3).
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5.2. Post-Processing the IFS Model

In order to obtain an optimized local prediction, post-processing techniques are used to refine
the output of NWP models. More precisely, post-processing the NWP model output consists in using
a statistical method (also called Model Output Statics (MOS)) to correct systematic deviations due
to either model errors or local influences not resolved by the NWP model. Indeed, although spatial
resolution has increased during the last years, the NWP models still do not resolve the local weather
details [1]. Therefore, there is room for improvement as regards the original NWP forecasts.

For the case study of Germany, Lorenz et al. [3] showed that the ECMWF forecasts could be
refined with a MOS technique that consisted of a bias correction. In this work, a prior step to this bias
correction was to apply a spatial averaging procedure on the original ECWMF forecasts.

5.2.1. Spatial Averaging

Spatial averaging of irradiance forecasts can lead to improved forecasts (notably in terms of
RMSE) by smoothing the variations in variable sky conditions (due to changing cloud cover) [3,17].
For the site of Saint-Pierre and Le Tampon, we applied the spatial averaging technique (i.e., arithmetic
average of surrounding pixels) to potentially improve the accuracy of the day-ahead forecasts. As
shown by Figure 4, the spatial averaging technique did not improve the forecast accuracy. Unlike [3]
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which obtained the lowest RMSE by averaging over 4 ˆ 4 pixels, here, the lowest RMSE is obtained for
the nearest pixel. This result may come from the small scale of the island or also because the average
predictions for land and surrounding ocean are mixed. Therefore, we can conjecture that the spatial
averaging of the global IFS forecasts may be irrelevant in the case of small insular territories.
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In order to further illustrate the challenging character of solar forecasting in the case of a small
tropical island with complex orography, Figure 5a plots the ground observations of Saint-Pierre vs.
the ground observations of Le Tampon. As seen, although there is a small distance between the two
sites, the discrepancy between the two ground measurements is relatively important. A correlation
coefficient of 0.64 calculated between the two kt˚ time series of each site reinforces this statement.
As shown by Figure 5b, it is not the case for the ECMWF forecasts. A correlation coefficient of 0.96
confirms that the ECMWF forecasts are rather similar for the two sites as a consequence of the coarse
spatial resolution of ECMWF for a territory like Réunion Island.
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5.2.2. Bias Correction with An Artificial Neural Network

Consistent error patterns allow for MOS to be used to produce a bias reduction function for
future forecasts. In the case of Germany, as the original ECMWF forecasts showed a considerable
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overestimation of irradiance for intermediate sky conditions, Lorenz et al. [3] modeled the bias
correction function by a polynomial function of fourth order in the variables xk˚t (predicted ECMWF
clear sky index) and the cosine of the solar zenith angle (cosΘZ). The corrected forecast is then obtained
by subtracting the modeled bias from the original predicted values. This approach eliminated bias and
reduced root mean square error (RMSE) of hourly forecasts by 5% for 24 h forecasts. Similarly to [3],
we implement a bias correction, but based on an Artificial Neural Network (ANN) model instead of a
polynomial model, which allows considering additional input variables

ANNs are data driven approaches capable of performing a non-linear mapping between sets of
input and output variables. An ANN with d inputs, m hidden neurons and a single linear output unit
defines a non-linear parameterized mapping from an input vector x “ px1, x2, ¨ ¨ ¨ , xdq to an output y
given by the following relationship:

y px; wq “
m
ÿ

j“1

wj f

˜

d
ÿ

i“1

wjixi ` b1

¸

` b2 (6)

Each of the m hidden units are related to the tangent hyperbolic function f pxq “
`

ex ´ e´x˘ {
`

ex ` e´x˘. The parameter vector w “
` 

wj
(

,
 

wji
(

, b1, b2
˘

governs the non-linear
mapping and is estimated during a phase called the training or learning phase. During this phase,
the ANN is trained by the scaled conjugate gradient algorithm using a dataset (called training set)
of N input and output examples. The second phase, called the generalization phase, consists of
evaluating the ability of the ANN to generalize, that is to say, to give correct outputs when it is
confronted with examples that were not seen during the training phase. Careful attention must be
put on the building of the model, as a too complex ANN will easily overfit the training data. Several
techniques like pruning [30], Bayesian regularization [31] or multi-objective genetic algorithm [32] can
be employed to control the ANN complexity. In this work, we used the Bayesian Technique in order
to automatically control the ANN complexity and therefore improve the generalization capability of
the model [31]. The Bayesian approach offers significant advantages over the classical ANN learning
process. Among others, one can cite the optimization of the ANN model using only the training dataset
(i.e., no independent or validation dataset is needed). In addition, the Bayesian method offers a means
to select the optimal number of hidden nodes by performing a model comparison. The interested
reader is referred to [31] for details regarding the Bayesian approach.

In our application, we used a feed-forward ANN with only one hidden layer as it was theoretically
proven that only one layer is sufficient to approximate any continuous function [33]. The ANN
output y (i.e., the modeled bias) is related to three input variables namely the predicted clear sky
index (xk˚t ), the cosine of the zenith angle (cosΘZ) and the predicted total cloud cover (zTCC). The
MOS-corrected ECWMF forecasts are then obtained by subtracting the modeled bias from the original
ECMWF forecasts.

5.3. Results of Day-Ahead Solar Forecasting and Discussion

An operational experimental set-up was used to implement the bias correction over the year 2012.
More precisely, a sliding window of 90 days was used to train the ANN model and the bias correction
was tested on the next day following the sliding window. In addition, let us recall that this MOS
correction is not applied for ΘZ > 85˝. We compare our approach with the MOS technique employed
by [3]. Let us recall that, in this previous work, the bias correction function was a polynomial of fourth
order in the variables clear sky index (xk˚t ) and the cosine of the zenith angle (cosΘZ). Table 3 lists the
values of the error metrics.

As shown by Table 3, post-processing of the day-ahead forecasts produced by ECMWF allows
improving their quality. Indeed, the bias of the corrected ECMWF forecasts is efficiently reduced.
However, a relatively small improvement is observed for the quadratic error (rRMSE), which is in
agreement with [3]. Overall, the ANN technique performs slightly better than the polynomial model.
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This improvement may come from the adding of the Total Cloud Cover (TCC) as a third input variable.
Further, the MOS technique based on the 4th order polynomial model is a linear parameterized model
while the ANN model is able to reproduce more complex non-linear relationships between the inputs
and the output.

Table 3. Relative errors of the day-ahead forecasts.

Location Saint-Pierre Le Tampon

Year 2012 2013
Mean GHI (W¨m´2) 490 429

Relative error (%) rMBE rRMSE rMAE rMBE rRMSE rMAE
Original ECMWF forecasts ´5.3% 29.2% 21.2% 5.6% 41.9% 29.8%

ECMWF + Polynomial bias correction ´1.1% 28.9% 20.6% ´0.6% 39.9% 29.9%
ECMWF + ANN bias correction ´1.0% 28.1% 19.6% ´1.0% 39.0% 28.8%

In addition, we analyze the capability of the different models to distinguish between different
sky conditions: clear sky, cloudy sky and overcast sky, defined by the thresholds given in Table 2.
A forecast correctly predicting the sky conditions, i.e., falling in the same range of the measured clear
sky index according to Table 2 is labeled as “good” forecast in the following. In other words, a “good”
forecast corresponds to a correctly predicted event or state.

Figure 6 shows the percentage of “good” forecasts for the initial ECMWF model and for the
two post-processing methods. In this figure, the percent value is the number of correctly predicted
states over the number of states as measured. As shown by Figure 6, according to the site under
study, the behavior of the post-processing techniques is different. For the site of Saint-Pierre, the MOS
techniques increase the rate of “good” forecasts in case of clear sky. However, the MOS techniques also
reduced the percentage of “good” forecasts in case of cloudy or overcast skies. For Le Tampon, the bias
correction method increases the rate of “good” forecasts in case of cloudy or overcast skies but decreases
this rate in case of clear skies. Figure 6 gives also the number of correct forecasts for all-sky conditions.
For Saint-Pierre, the overall share of correctly predicted events by the post-techniques is increasing.
However, for le Tampon, no improvement is observed. Overall, regarding the two post-processing
techniques, it appears again that ANN performs slightly better than the polynomial model.

Finally, while the MOS correction method led to a significant bias reduction, it appears that more
work must be done in order to improve the results. As a bias correction can only correct systematic
deviations, some original “good” forecasts have been unnecessarily corrected. Future work may
consist in carrying an in-depth study of the error analysis that could pinpoint in detail the origin of the
errors. This detailed bias analysis may lead (in addition to the clear sky index, TCC and cosΘZ) to the
identification of another relevant input variables for the ANN.
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Figure 6. Rate of “good” forecasts before and after the post-processing for three different sky conditions.
(a) Saint-Pierre; (b) Le Tampon.
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6. Intra-Day Forecasting

6.1. Reference Models

Following Perez et al. [11], we propose to test our forecasting methods against reference models
like persistence, smart persistence and climatology.

The persistence (Pers) model is expressed as follows:

xkt˚ pt` hq “ kt˚ ptq (7)

Notice that in all the following equations describing the forecasting models, we used the following
notations: a variable with a hat (ˆ) is a forecasted variable, h = 1,2,3, . . . 6 is the forecasting time horizon
also called the lead time and t denotes the time when the forecasts are generated.

This model assumes that the clear sky index for each time horizon h depends only on the previous
measured value kt˚ ptq, which means that the sky conditions remain invariant between time ‘t’ and
time ‘t + h’. The next model represents an easy way to improve the persistence model and it is called
Smart Persistence (Smart-Pers). It consists in forecasting the clear sky index for each time horizon ‘h’
as the mean of the ‘h’ previous measured clear sky values. Smart-persistence model is defined by the
following equation:

xkt˚ pt` hq “ mean
”

kt˚ptq. . . . .kt˚pt´hq

ı

(8)

Finally, we propose the climatological mean model, which is independent of the forecasting time
horizon. More precisely, this model performs a constant forecast of the clear sky index that corresponds
to its mean historical value:

xkt˚ pt` hq “ mean pkt˚q (9)

Unlike persistence, it presents a limit in terms of accuracy for longer horizons. In our case, we
used the average clear sky index of the year 2012 in order to forecast the clear sky index of the year 2013.

6.2. Intra-Day Solar Forecasts with A Linear Recursive Model (ARMA.RLS Model)

The Auto Regressive Moving Average (ARMA) model is a popular linear technique in the realm
of solar forecasting. In particular, it has been extensively studied in renewable energy forecasting and,
owing to its parsimony, it has turned out to be a very tough competitor to beat. Applications include,
among others, forecasting of wind power generation [34], online power forecasting [35] and wave
energy flux [36].

A general formulation of an ARMA (p,q) model with p autoregressive (AR) terms and q moving
average (MA) terms is given by [37]:

xkt˚ pt` hq “ θ0 `

p
ÿ

i“1

θikt˚ pt´ i` 1q ` ε ptq `
q
ÿ

j“1

φjε pt´ jq (10)

ε ptq is an independent and identically distributed random variable with a zero mean. The vector
Θ “

`

θ0.θ1. ¨ ¨ ¨ .θp.Φ1.. ¨ ¨ ¨ .Φq
˘

contains the set of parameters to be estimated. A classic setting based
on a least-squares method and a training data set can be used to estimate the set of parameters [37].

However, in this work, to estimate the model’s parameters, we chose a variation of the
least squares method, namely the Recursive Least Square (RLS) method (see [38] for details of
implementation). This method offers the advantage of reducing the computational cost for estimating
the model’s parameters. In addition, the parameters are updated in real-time as new data become
available. This contrasts with more intensive estimation methods operating on a sliding window where
the estimation process is being carried out at each time step. Hence, the RLS method is particularly
well suited in an operational context where forecasts have to be timely delivered. In addition, it must
be stressed that contrary to non-linear models like ANNs, no training set is necessary here.
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Regarding the structure of the ARMA model, the use of the classical ACF (Auto Correlation
Function) and PACF (Partial Auto Correlation Function) techniques [37] led to the selection of the
following orders p “ 6 and q “ 2.

6.3. Intra-Day Solar Forecasts with An ANN Model

In this work, two versions of the ANN approach are proposed. The first one consists in designing
an ANN to predict next values of solar irradiance from only past measured values of the irradiance
kt˚ pt´ iq i.e., no exogenous variables are used. This first model is given by the following equation:

xkt˚ pt` hq “
m
ÿ

j“1

wj f

˜ p
ÿ

i“0

wjikt˚ pt´ iq ` b1

¸

` b2 (11)

The number of past input values p is calculated with the auto mutual information factor (see [14]
for details of implementation of the auto mutual information factor).

6.4. ECWMF Forecasts as A Means to Improve Intra-Day Solar Forecasting

In addition to the past ground measurements kt˚ pt´ iq , the second ANN takes additional
exogenous inputs provided by the day-head ECMWF forecasts i.e., the forecasted clear sky index
( {kt˚ECMWF), the total cloud cover ( {TCCECMWF) and the cosine of the solar zenith angle (cosθzq for the
considered forecast horizon h. This second model, denoted by the acronym ANN+ECMWF, has the
following form:

xkt˚ pt` hq “
m
ÿ

j“1

wj f

˜ p
ÿ

i“0

wjikt˚ pt´ iq `w˚j {kt˚ECMWF pt` hq `w˚˚j
{TCCECMWF pt` hq

`w˚˚˚j cosθz pt` hq ` b1

¯

` b2

(12)

Again, in both cases (Equations (11) and (12)), we used an ANN with only one hidden layer whose
complexity was automatically controlled through the use of a Bayesian regularization technique [31]
and year 2012 was chosen as the training dataset.

Finally, regarding the implementation of the ARMA.RLS and ANN models, we chose to create one
model per forecasting time horizon in order to avoid the propagation of error that is usually observed
while running the same model iteratively.

6.5. Results for Intra-Day Solar Forecasting and Discussion

6.5.1. Models with Only Past Input Measurements

This section evaluates the accuracy of the different methods in the case of only past on-site
measurements data as inputs for the models. Tables 4–6 give (on the one-year testing period i.e.,
year 2013) the rMBE, rRMSE and rMAE values of the different methods for forecasting time horizon
ranging from 1h to 6h. Mean GHI is given for each site from which one can infer the absolute values
from the relative values.

First, Table 4 shows also a slight improvement of the rMBE brought by the ANN and ARMA.RLS
models compared to the Pers and Smart-Pers models.

Second, regarding the rRMSE and rMAE metrics, Tables 5 and 6 and Figure 7 show that the ANN
and ARMA.RLS methods perform better than the reference models (Pers, Smart-pers and Climatology)
for forecasting time horizons greater than one hour. Further, the gain in rRMSE or rMAE increases
with the forecasting horizon.

Interestingly, Table 5 and Figure 7 show that the simple linear recursive ARMA.RLS model
performs equally well than the nonlinear ANN model in terms of rRMSE. It even produces slightly
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better forecasts in the case of Saint-Pierre. However, in terms of rMAE, it appears that the ANN
produces slightly better forecasts.

Table 4. rMBE values for the two insular sites. The corresponding MBE values can be obtained from
the mean GHI of each site.

Site Model 1 h Ahead 2 h Ahead 3 h Ahead 4 h Ahead 5 h Ahead 6 h Ahead

Le Tampon
mean GHI:
427 W.m´2

Pers 2.1% 3.3% 3.5% 2.7% 0.7% ´1.8%
Smart-Pers 2.1% 3.4% 2.3% ´0.6% ´3.1% ´3.5%

Climatology 0.8% 0.8% 0.8% 0.8% 0.8% 0.8%
ARMA.RLS 0.8% 0.4% ´0.4% ´1.2% ´1.0% ´1.0%

ANN 0.7% 1.0% 0.4% ´0.1% ´0.3% ´0.1%
ANN + ECMWF ´1.9% ´2.6% ´2.7% ´2.4% ´2.6% ´2.2%

Saint-Pierre
mean GHI:
498 W.m´2

Pers 1.1% 0.9% ´0.3% ´2.3% ´4.3% ´5.9%
Smart-Pers 1.1% 0.3% ´2.3% ´4.8% ´5.7% ´4.8%

Climatology ´1.7% ´1.7% ´1.7% ´1.7% ´1.7% ´1.7%
ARMA.RLS ´0.01% ´0.1% ´1.8% ´2.8% ´2.9% ´3.1%

ANN 0.5% 0.06% ´0.5% ´1.2% ´1.5% ´1.8%
ANN + ECMWF 0.2% 0.7% 0.8% 0.3% ´0.04% ´0.8%

Table 5. rRMSE values for the three sites. The corresponding RMSE values can be obtained from the
mean GHI of each site.

Site Model 1 h Ahead 2 h Ahead 3 h Ahead 4 h Ahead 5 h Ahead 6 h Ahead

Le Tampo
Mean GHI:
427 W.m´2

Pers 31.5% 44.2% 54.1% 60.4% 63.8% 65.1%
Smart-Pers 31.5% 45.7% 53.4% 55.6% 54.9% 52.1%

Climatology 47.5% 47.5% 47.5% 47.5% 47.5% 47.5%
ARMA.RLS 30.7% 39.7% 43.9% 45.2% 45.3% 44.3%

ANN 30.7% 39.5% 44.3% 44.4% 45.0% 44.2%
ANN + ECMWF 28.3% 35.1% 39.9% 41.2% 41.0% 40.6%

Saint-Pierre
mean GHI:
498 W.m´2

Pers 22.2% 29.8% 35.3% 40.2% 44.2% 46.4%
Smart-Pers 22.2% 30.5% 36.3% 39.3% 39.0% 37.5%

Climatology 33.9% 33.9% 33.9% 33.9% 33.9% 33.9%
ARMA.RLS 21.3% 27.0% 29.9% 31.5% 32.3% 32.3%

ANN 21.4% 27.1% 30.0% 31.9% 32.8% 33.0%
ANN + ECMWF 20.4% 24.8% 27.2% 28.5% 29.0% 28.7%

Table 6. rMAE values for the two sites. The corresponding MAE values can be obtained from the mean
GHI of each site.

Site Model 1 h Ahead 2 h Ahead 3 h Ahead 4 h Ahead 5 h Ahead 6 h Ahead

Le Tampon
mean GHI:
427 W.m´2

Pers 21.5% 31.1% 38.1% 42.9% 45.8% 47.1%
Smart-Pers 21.5% 32.7% 38.5% 40.7% 40.2% 37.8%

Climatology 37.0% 37.0% 37.0% 37.0% 37.0% 37.0%
ARMA.RLS 23.5% 30.8% 34.0% 35.2% 35.0% 34.0%

ANN 23.4% 30.3% 34.1% 34.5% 34.7% 33.6%
ANN + ECMWF 20.4% 26.1% 29.3% 30.0% 30.0% 29.7%

Saint-Pierre
mean GHI:
498 W.m´2

Pers 13.6% 19.2% 23.4% 27.1% 29.8% 31.2%
Smart-Pers 13.6% 20.2% 25.1% 27.3% 26.6% 24.9%

Climatology 25.2% 25.2% 25.2% 25.2% 25.2% 25.2%
ARMA.RLS 15.0% 20.0% 22.6% 23.7% 24.3% 24.7%

ANN 15.1% 19.7% 22.0% 23.7% 24.3% 24.4%
ANN + ECMWF 13.7% 16.9% 18.9% 19.8% 20.2% 20.1%

One may also notice (see Figure 7) that the performances of the linear ARMA.RLS and nonlinear
ANN models tend towards that of the climatological mean. This behavior is consistent, as these
methods tend to asymptotically model the mean of the data.
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Table 7 lists the s-skill scores of the different forecasting techniques for each forecasting time
horizon. As shown by Table 7, the s-skill scores of the methods increase with the forecasting time
horizon. The proposed models (ARMA.RLS, ANN) exhibit positive scores and therefore perform better
than the persistence model.

Table 7. s-Skill scores (in %) for the four sites.

Site Model 1 h Ahead 2 h Ahead 3 h Ahead 4 h Ahead 5 h Ahead 6 h Ahead

Le Tampon

Smart-Pers 0.0 ´3.5 1.3 7.9 14.0 19.8
Climatology ´50.8 ´7.4 12.2 21.4 25.6 27.0
ARMA.RLS 2.4 10.2 18.8 25.2 29.0 31.8

ANN 2.4 10.7 18.2 26.5 29.5 32.0
ANN + ECMWF 10.3 20.6 26.2 31.8 35.7 37.6

Saint-Pierre

Smart-Pers 0.0 ´2.3 ´2.7 2.4 11.7 19.1
Climatology ´52.8 ´13.5 4.1 15.8 23.4 27.0
ARMA.RLS 3.7 9.4 15.5 21.6 27.0 30.3

ANN 3.3 9.1 15.0 20.7 25.8 28.9
ANN + ECMWF 7.8 16.9 22.9 29.1 34.4 38.2

Desert Rock

Smart-Pers 0.0 ´0.1 1.8 7.3 10.7 14.0
Climatology ´47.9 ´9.5 5.8 16.1 20.9 24.0
ARMA.RLS 3.8 9.9 15.3 20.7 23.9 26.0

ANN 3.7 10.0 15.5 19.7 23.1 25.8

Fort Peck

Smart-Pers 0.0 ´0.4 0.8 ´21.7 7.2 9.6
Climatology ´60.8 ´17.4 ´1.6 ´15.9 14.8 18.5
ARMA.RLS 5.0 10.4 14.0 ´4.5 19.9 21.2

ANN 4.5 10.4 13.0 ´6.0 19.7 21.5

6.5.2. Impact of the Sky Conditions on the Forecasts Accuracy

This section aims at assessing the impact of the sky conditions on the forecasting performance
of the different methods. Figure 7 plots the performance of the different models (except the
ANN + ECMWF model for the sites of Desert Rock and Fort Peck). Let us recall that the site of
Desert Rock experiences high occurrences of clear skies and possesses a low annual variability. Fort
Peck exhibits a somewhat less but still high occurrence of clear sky conditions with an annual variability
similar to that of Saint-Pierre.
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The performance of the models is obviously the best for the site of Desert Rock. At the opposite,
more variable sky conditions lead to worse forecasting performances (case of Le Tampon).

As mentioned above, the s-skill scores of the ARMA.RLS and ANN methods demonstrate that
these techniques outperform the references models (Persistence and Climatology) whatever the site
under study. In other words, we can argue that the ARMA.RLS and ANN models offer a significant
improvement over Persistence and Climatology by an amount that is fairly independent of the sky
conditions experienced by a site.

It is interesting to note that the sites of Saint-Pierre and Fort Peck, which exhibit almost the same
variability and kt˚ distributions, display almost the same rRMSE values. At a first glance, one can
conjecture a link between variability and forecastability. Some recent works [39,40] have shown that the
type of climate and the associate cloud patterns have a profound impact in the forecasting performance.
The authors of these works ([39,40]) also went further by proposing some metrics, which were related
to solar variability to a priori assess the accuracy of solar forecasting models (i.e., to estimate the
forecasting performance before any forecasts are produced). In addition, [17] showed increasing RMSE
values with increasing variability.

6.5.3. Models with Exogenous Inputs Provided by ECMWF (ANN+ECMWF Model)

Tables 4–6 and Figure 7 clearly demonstrate the improvement (at each forecast horizon) of the
forecasting accuracy obtained from the combination of day-ahead ECMWF forecasts with on-site
measured irradiance. One may also notice that higher values of s-skill scores (Table 7) are obtained
with the ANN+ECMWF model.

Figure 7 also confirms that the rRMSE values of the ANN+ECMWF model tend towards that of
the initial day-ahead ECMWF forecasts for Le Tampon and Saint-Pierre when the forecast horizon
increases. The proposed combination of different type of forecasting models through the use of an
ANN may be a viable alternative to the standard linear combination of forecasting models currently
implemented by the solar forecasting community.

7. Main Conclusions

This work proposed to evaluate the accuracy of day-ahead and intra-day forecasts in a particular
insular context. Two sites of Réunion Island, which are geographically close, but with very different
sky conditions, were chosen for the benchmarking exercise.

Day-ahead forecasts were provided by the ECMWF. Model output statistics (MOS) methods were
applied in an attempt to refine the ECMWF forecasts. It was shown that, due to the small scale of the
island, a technique like spatial averaging was inefficient for the case of insular sites like Saint-Pierre
and Le Tampon.

As the original day-ahead forecasts were biased, a bias correction method based on two techniques
was tested. While the MOS correction method led to a significant bias reduction, it appears that more
work must be done in order to improve the results. For instance, future work may consist in finding
systematic dependencies of the bias in dependence on new parameters that could better describe the
meteorological situation.

Intraday solar forecasts (from 1 h to 6 h ahead) were produced by two statistical models: a simple
linear technique with recursive estimation of the model’s parameters and a non-linear artificial neural
network. A first experimental set-up that consists in using only past on-site irradiance measurements
was proposed. It was shown that the proposed models clearly outperformed the reference models like
persistence or smart persistence for forecasting horizon greater that 1h. Interestingly, it was found that
a linear recursive technique like ARMA.RLS performed equally well or slightly better than a non-linear
method such as an artificial neural network. This finding if confirmed may favor in the future the use
of such linear recursive model for short-term solar forecasting. In addition, the recursive estimation of
the model’s parameters makes the method very well suited to online forecasting.
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The second experimental set-up proposed the combination of day-ahead ECMWF forecasts with
past ground measurements. It was demonstrated that the incorporation of additional exogenous inputs
into the ANN model clearly improved the accuracy of the intra-day forecasts.

A future and interesting step could be the comparison of the proposed methods with
satellite-based forecasts produced by the cloud motion vector (CMV) technique in the case of an
insular context.

Finally, preliminary results showed an impact of the sky conditions on the forecasting accuracy
of the different methods. Insular sites like Le Tampon, which exhibits higher solar variability due to
clouds that are formed locally, are prone to have the worse forecasting performance than less variable
(continental or insular) sites.
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