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Abstract

We propose a matrix analysis approach to analytically provide the cumulative distribution

function of the sum of independent Erlang random variables. This reduces to the characteri-

zation of the exponential of the involved generator matrix. We propose a particular basis of

vectors in which we write the generator matrix. We find, in the new basis, a Jordan-Chevalley

decomposition allowing to simplify the calculation of the exponential of the generator matrix.

This is a simpler alternative approach to the existing ones in the literature.

Keywords: Erlang random variables, reliability, queueing systems, cumulative distribution

function, Jordan-Chevalley decomposition, hypoexponential distribution.

1 Introduction

Many situations in service and manufacturing service systems involve the computation of the sum

of independent exponential random variables. Examples include healthcare or production systems

with different stages in series, system reliability with exponentially distributed components life-

times, and wireless mobile systems with cooperative diversity schemes. This summation arises also

in the transient analysis of Markovian queueing systems, and in general, semi-Markov processes.

We consider the general case of a hypoexponential distribution defined as the sum of n inde-

pendent Erlang distributions, for n ∈ N. An Erlang distribution is defined by two parameters,



a number of i.i.d. exponential stages and a rate per stage. Thus, the general hypoexponential

distribution is completely defined by the couples of parameters (λi, ki) for i = 1, ..., n. Each couple

(λi, ki) defines an Erlang distribution (λi ∈ R, ki ∈ N), and the rates λi for i = 1, ..., n are all

distinct. We denote by Ki = k1 + k2 + ...+ ki for i = 1, ..., n and use the convention K0 = k0 = 0.

The cumulative distribution function (cdf) of the hypoexponential distribution is then given by

F (x) = 1−αexM1, (1)

for x ≥ 0, where 1 is a column vector of size Kn with ones everywhere, α is a line vector of size

Kn and is given by α = (1, 0, . . . , 0), and e(.) denotes the exponential operator. The generator

square matrix M of size Kn ×Kn is defined by the coefficients mi,j for i, j ∈ {1, ...,Kn}. We have

mj,j = −λi and mj,j+1 = λi, for Ki−1 + 1 ≤ j ≤ Ki and i = 1, ..., n. All remaining coefficients of

M are zero. We thus may write

M =



−λ1 λ1 0 . . . 0 0 0 . . . 0

0 −λ1 λ1
. . . 0 0 0 . . . 0

...
. . .

. . .
. . .

. . .
...

...
. . . 0

0 0 . . . 0 −λ1 λ1 0 . . . 0

0 0 . . . 0 0 −λ2 λ2 . . . 0
...

...
...

...
...

...
...

. . .
...

0 . . . . . . . . . . . . . . . 0 −λn λn

0 . . . . . . . . . . . . . . . . . . . . . −λn



. (2)

Scheuer (1988) provides a formula for F (.) that involves high order derivatives of products of

multiple functions. The formula is however hard to compute numerically. Amari and Misra (1997)

propose a simplification of Scheuer (1988)’s formula using Laplace transforms and multi-function

generalization of the Lebnitz rule for higher order derivatives of products of two functions. For a

particular case with constraints on the values of the λis, Van Khuong and Kong (2006) provide

the probability distribution function by inverting its Fourier transform. Using the Wilk’s integral

representation of the distribution of the product of independent beta random variables, Favaro and

Walker (2010) provide an alternative formula for F (.). We also refer the reader for more details to

the review by Nadarajah (2008).

In this paper, we propose an alternative simple approach to analytically derive the cdf of F (.). It
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is based on a linear algebraic matrix analysis. The structure of the approach is as follows. We first

obtain some particular eigenvectors of the generator matrix M . These are next used to construct a

new basis of vectors. The new basis allows to find the Jordan-Chevalley decomposition of M into

a sum of two commutative linear operators, a diagonal one and a nilpotent one. The exponential

of the matrix M then simply follows by inverting the new basis matrix using the Cayley-Hamilton

theorem, which leads to the cdf of F (.).

2 The Result

Lemma 1 provides the eigenvalues of the matrix M , and one eigenvector associated to each eigen-

value.

Lemma 1 The eigenvalues of M are −λi for i = 1, ..., n. An eigenvector of size Kn associated to

−λi is the column vector ui, where the coefficients of ui, denoted by ui,l for 1 ≤ l ≤ Kn, are given

by 

ui,l = 1 , l = Ki−1 + 1,

ui,l = 0 , l > Ki−1 + 1,

ui,l =
(

λi−1

λi−1−λi

)Ki−1−l+1
, Ki−2 + 1 ≤ l ≤ Ki−1,

ui,l =
i−(m+1)∏

j=1

(
λi−j

λi−j−λi

)ki−j
(

λm
λm−λi

)Km−l+1
, Km−1 + 1 ≤ l ≤ Km and 0 ≤ m < i− 1.

Proof. Since M is a triangular matrix, its eigenvalues are its diagonal coefficients, i.e., −λi for

i = 0, ..., n. For 0 ≤ i = 0, ..., n, consider the column vector ui defined with its coefficients ui,l

(1 ≤ l ≤ Kn), where ui,Ki−1+1 = 1, ui,l = 0 for l > Ki−1 + 1, ui,l =
(

λi−1

λi−1−λi

)Ki−1−l+1
for

Ki−2 + 1 ≤ l ≤ Ki−1, and ui,l =
i−(m+1)∏

j=1

(
λi−j

λi−j−λi

)ki−j
(

λm
λm−λi

)Km−l+1
, for Km−1 + 1 ≤ l ≤ Km

and 0 ≤ m < i−1. We now define, for 0 ≤ i = 0, ..., n, vi as vi = Mui and we denote its coefficients

by vi,l, for 1 ≤ l ≤ Kn. Consider 1 ≤ j ≤ n. For Kj−1 + 1 ≤ l ≤ Kj and l ̸= Kn, we have

vi,l = −λjui,l + λjui,l+1, (3)

and vi,Kn = −λnui,Kn . Since ui,l = 0 and ui,Ki−1+1 = 1 for l > Ki−1 + 1, we deduce from

Equation (3) that vi,l = 0 for l > Ki−1 + 1 and vi,Ki−1+1 = −λi. For Ki−2 + 1 ≤ l ≤ Ki−1 we
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have ui,l =
(

λi−1

λi−1−λi

)Ki−1−l+1
, and for Km−1 + 1 ≤ l ≤ Km and 0 ≤ m < i − 1 we have ui,l =

i−(m+1)∏
j=1

(
λi−j

λi−j−λi

)ki−j
(

λm
λm−λi

)Km−l+1
. Equation (3) therefore leads to vi,l = −λi−1

(
λi−1

λi−1−λi

)Ki−1−l+1
+

λi−1

(
λi−1

λi−1−λi

)Ki−1−(l+1)+1
= −λi

(
λi−1

λi−1−λi

)Ki−1−l+1
, for Ki−2 + 1 ≤ l ≤ Ki−1. We also obtain

vi,l = −λi

i−(m+1)∏
j=1

(
λi−j

λi−j−λi

)ki−j
(

λm
λm−λi

)Km−l+1
, for Km−1 + 1 ≤ l ≤ Km and 0 ≤ m < i− 1. This

proves that u is an eigenvector associated to the eigenvalue −λi, for i = 1, ..., n, and finishes the

proof of the lemma. �

Let us denote by B the standard basis composed by the family of column vectors el, for 1 ≤ l ≤

Kn. The coefficients of el (1 ≤ l ≤ Kn) are all zero except the coefficient in line l which is equal

to one. Consider now a new family of vectors denoted by B′ and composed by the vectors e′l for

1 ≤ l ≤ Kn, where e′Ki−1+1 = ui, and e′l = el for l ̸= Ki−1 + 1 and i = 1, ...n. In Theorem 1, we

prove that B′ is a basis.

Theorem 1 The family of vectors B′ is a basis.

Proof. The number of vectors in B′ is equal to the space dimension, Kn. It thus remains to prove

that the family of vectors B′ is linearly independent. The proof is done by contradiction. Suppose

that the family B′ is linearly dependent. Therefore, there exists some values a1, a2, ..., aKn ∈ R,

non all zero, such that a1e
′
1 + a2e

′
2 + · · · aKne

′
Kn

= 0. We have e′1 = u1 = e1, e′K1+1 = u2 =

b2,1e1 + b2,2e2 + · · ·+ b2,K1+1eK1+1 , · · · , e′Kn−1+1 = un = bn,1e1 + bn,2e2 + · · ·+ bn,Kn−1+1eKn−1+1,

where the coefficients bs,t (1 ≤ s ≤ t ≤ Kn−1+1), given by Lemma 1, are all strictly positive. Then

a1e
′
1 + a2e

′
2 + · · · aKne

′
Kn

(4)

= a1(1 + b2,1 + b3,1 + · · · bn,1)e1 + a2(1 + b2,2 + b3,2 + · · ·+ bn,2)

+ · · ·+ aKn−1+1bn,Kn−1+1eKn−1+1 + aKn−1+2eKn−1+2 + · · ·+ aKneKn

= 0

Since the coefficients bs,t (1 ≤ s ≤ t ≤ Kn−1 + 1) are all strictly positive and (e1, e2, ..., eKn) is the

Basis B, we should have a1 = a2 = ... = aKn = 0, which is absurd. Thus B′ is a basis. �

Let us now proceed to a change of basis from B to B′. We want to write M in the new basis B′,

which leads to a matrix denoted by M ′. We denote by P the new basis matrix allowing to move
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from B to basis B′. This means that P is given by the vectors of the old basis B but written in the

new basis B′. We have M = PM ′P−1. We next give P and P ′. We have

P =



Ik1 P1,2 P1,3 . . . P1,n

O2,1 Ik2 P2,3 . . . P2,n

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . Pn−1,n

On,1 . . . . . . On,n−1 Ikn


, (5)

where Pi,j , for i, j = 1, · · · , n and i < j, is a matrix of size ki × kj with 0 everywhere except in the

first column. The coefficient of line k (1 ≤ k ≤ ki) of the first column of Pi,j is

j−1∏
l=i+1

(
λl

λl − λj

)kl
(

λi

λi − λj

)ki−k+1

. (6)

The matrix Iki , for i = 1, ..., n, is the identity matrix of size ki × ki, and the matrix Oi,j , for

i, j = 1, · · · , n, of size ki × kj has zero coefficients everywhere. We now compute P−1 using the

Cayley-Hamilton theorem (see for example Gourdon (1994)). Since (IKn − P )n = OKn , we deduce

using the binomial theorem that
n∑

k=0

(
n
k

)
(−1)kP k = OKn , where

(
n
k

)
= n!

k!(n−k)! for n ≥ 0 and 0 ≤

k ≤ n. Thus IKn = −
n∑

k=1

(
n
k

)
(−1)kP k = P

(
−

n∑
k=1

(
n
k

)
(−1)kP k−1

)
. The matrix −

n∑
k=1

(
n
k

)
(−1)kP k−1

commutes with P . We therefore obtain P−1 = −
n∑

k=1

(
n
k

)
(−1)kP k−1.

In the basis B′, the generator matrix is

M ′ =



E1 O1,2 O1,3 . . . O1,n

O2,1 E2 O2,3 . . . O2,n

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . On−1,n

On,1 . . . . . . On,n−1 En


, (7)

where Ei (i = 1, · · · , n) is a sub-matrix of size ki × ki. It is given by

Ei =



−λi λi 0 . . . 0 0

0 −λi λi
. . . 0 0

...
. . .

. . .
. . .

. . .
...

0 0
. . . −λi λi 0

0 0 . . . 0 −λi λi

0 0 . . . 0 0 −λi


. (8)
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For i = 1, · · · , n, Ei may be written as Ei = Di +Ni with

Di =



−λi 0 0 . . . 0 0

0 −λi 0
. . . 0 0

...
. . .

. . .
. . .

. . .
...

0 0
. . . −λi 0 0

0 0 . . . 0 −λi 0

0 0 . . . 0 0 −λi


, and Ni =



0 λi 0 . . . 0 0

0 0 λi
. . . 0 0

...
. . .

. . .
. . .

. . .
...

0 0
. . . 0 λi 0

0 0 . . . 0 0 λi

0 0 . . . 0 0 0


. (9)

Using the sub-matrices Di and Ni, we define the matrices D and N as

D =



D1 O1,2 O1,3 . . . O1,n

O2,1 D2 O2,3 . . . O2,n

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . On−1,n

On,1 . . . . . . On,n−1 Dn


, and N =



N1 O1,2 O1,3 . . . O1,n

O2,1 N2 O2,3 . . . O2,n

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . On−1,n

On,1 . . . . . . On,n−1 Nn


.

(10)

Therefore M ′ = D +N . Since Nmax(k1,k2,··· ,kn) = OKn,Kn , the matrix N is nilpotent. Note that D

is a diagonal matrix. Then, D commutes with any other matrix, in particular N . Therefore the

decomposition of M ′ into M ′ = N +D is the unique Jordan-Chevalley decomposition of M ′ into a

summation of two commutative matrices, a nilpotent one and a diagonalisable one. Using the new

basis matrix P , we have M = PM ′P−1 = P (N +D)P−1, so, exM = Pex(N+D)P−1 (see Gourdon

(1994)). Since N and D commute, we deduce that ex(N+D) = exD× exN . Because xD is a diagonal

matrix we have

exD =



exD1 O1,2 O1,3 . . . O1,n

O2,1 exD2 O2,3 . . . O2,n

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . On−1,n

On,1 . . . . . . On,n−1 exDn


, (11)

with

exDi =


e−xλi 0 . . . 0

0 e−xλi
. . . 0

...
. . .

. . .
...

0 0 . . . e−xλi

 , (12)
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for i = 1, · · · , n. Recall that exN is given by an infinite summation, exN =
+∞∑
j=0

(xN)j

j! . However,

since N is nilpotent (for i = 1, · · · , n, we have Nki
i = Oki,ki), the evaluation of

+∞∑
j=0

(xN)j

j! is done

within a finite number of calculations. We have exN =
max(k1,k2,··· ,kn)−1∑

j=0

(xN)j

j! . Then,

N j =



N j
1 O1,2 O1,3 . . . O1,n

O2,1 N j
2 O2,3 . . . O2,n

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . On−1,n

On,1 . . . . . . On,n−1 N j
n


, (13)

for j ∈ N, where the matrix N j
i is of size ki × ki (i = 1, · · · , n). The N j

i ’s coefficients of line s and

column t are all zero except if t− s = j and j = 0, · · · ki where the coefficients are all equal to λj
i .

As a consequence

exN =



exN1 O1,2 O1,3 . . . O1,n

O2,1 exN2 O2,3 . . . O2,n

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . On−1,n

On,1 . . . . . . On,n−1 exNn


, (14)

where

exNi =



1 xλi
x2

2 λ
2
i . . . xki−2

(ki−2)!λ
ki−2
i

xki−1

(ki−1)!λ
ki−1
i

0 1 xλi
. . . xki−3

(ki−3)!λ
ki−3
i

xki−2

(ki−2)!λ
ki−2
i

...
. . .

. . .
. . .

. . .
...

0 0
. . . 1 xλi

x2

2 λ
2
i

0 0 . . . 0 1 xλi

0 0 . . . 0 0 1


, (15)

for i = 1, · · · , n. Finally, we may write

ex(N+D) =



exN1exD1 O1,2 O1,3 . . . O1,n

O2,1 exN2exD2 O2,3 . . . O2,n

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . On−1,n

On,1 . . . . . . On,n−1 exNnexDn


, (16)
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where

exNiexDi =



e−xλi e−xλixλi e−xλi x
2

2 λ
2
i . . . e−xλi xki−2

(ki−2)!λ
ki−2
i e−xλi xki−1

(ki−1)!λ
ki−1
i

0 e−xλi e−xλixλi
. . . e−xλi xki−3

(ki−3)!λ
ki−3
i e−xλi xki−2

(ki−2)!λ
ki−2
i

...
. . .

. . .
. . .

. . .
...

0 0
. . . e−xλi e−xλixλi e−xλi x

2

2 λ
2
i

0 0 . . . 0 e−xλi e−xλixλi

0 0 . . . 0 0 e−xλi


, (17)

for i = 1, · · · , n.

In order to obtain the cdf of the hypoexponential distribution we only need to evaluate the

sum of the coefficients of the first line of the matrix exM . Note that in the particular case of an

Erlang distribution (k2 = k3 = · · · = kn = 0) we have P = P−1 = Ik1 . We then easily obtain the

well-known expression F (x) = 1− e−xλ1

k=k1−1∑
k=0

(λ1x)k

k! , for x ≥ 0, by summing the coefficients of the

first line of exN1exD1 .

We have

Pex(D+N) =



ex(N1+D1) P1,2e
x(N2+D2) P1,3e

x(N3+D3) . . . P1,ne
x(Nn+Dn)

O2,1 ex(N2+D2) P2,3e
x(N3+D3) . . . P2,ne

x(Nn+Dn)

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . Pn−1,ne
x(Nn+Dn)

On,1 . . . . . . On,n−1 ex(Nn+Dn)


, (18)

where

Pi,je
x(Nj+Dj) =

e−xλj

j−1∏
l=i+1

(
λl

λl − λj

)kl



(
λi

λi−λj

)ki
xλj

(
λi

λi−λj

)ki
. . . xkj−1

(kj−1)!λ
kj−1
j

(
λi

λi−λj

)ki(
λi

λi−λj

)ki−1
xλj

(
λi

λi−λj

)ki−1
. . . xkj−1

(kj−1)!λ
kj−1
j

(
λi

λi−λj

)ki−1

...
. . .

. . .
...(

λi
λi−λj

)2
xλj

(
λi

λi−λj

)2
. . . xkj−1

(kj−1)!λ
kj−1
j

(
λi

λi−λj

)2(
λi

λi−λj

)1
xλj

(
λi

λi−λj

)1
. . . xkj−1

(kj−1)!λ
kj−1
j

(
λi

λi−λj

)1


,

for i, j = 1, ...n and i < j.

We then have to evaluate Pex(D+N)P−1 =
n∑

k=1

(
n
k

)
(−1)k−1Pex(D+N)P k−1. Note again that P

can be written as P = IKn + P − IKn . The matrices IKn and P − IKn commute, IKn is diagonal
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and P − IKn is nilpotent. This implies

Pex(D+N)P−1 =

n∑
k=1

(
n

k

)
(−1)k−1Pex(D+N)(IKn + P − IKn)

k−1

=
n∑

k=1

(
n

k

)
(−1)k−1Pex(D+N)

k−1∑
l=0

(
k − 1

l

)
(P − IKn)

l,

or equivalently

Pex(D+N)P−1 =

n∑
k=1

k−1∑
l=0

(−1)k−1

(
n

k

)(
k − 1

l

)
Pex(D+N)(P − IKn)

l.

We have (P − IKn)
0 = IKn , and for 1 ≤ l ≤ n− 1

(P − IKn)
l =



O1,1 A1,2 A1,3 . . . A1,n

O2,1 O2,2 A2,3 . . . A2,n

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . An−1,n

On,1 . . . . . . On,n−1 On,n


, (19)

whereAi,j = Oi,j for j−i < l, i, j = 1, ..., n, otherwiseAi,j =
∑

i<a1<a2<···<al−1<j
Pi,a1Pa1,a2 · · ·Pal−2,al−1

Pal−1,j .

The matrix Pi,a1Pa1,a2 · · ·Pal−2,al−1
Pal−1,j is a matrix of dimension ki× kj where all coefficients are

zero except the ones on the first column. The coefficient of line k (for 1 ≤ k ≤ ki) of the first

column is equal to(
λi

λi − λa1

)ki−k+1 a1−1∏
m=i+1

(
λm

λm − λa1

)km a2−1∏
n=a1

(
λn

λn − λa2

)kn

· · ·
j−1∏

r=al−1

(
λr

λr − λaj

)kr

.

We are only interested in the sum of the coefficients of the first line of exM . We thus evaluate the

terms in the first line of Pex(D+N)(P − IKn)
l, for 0 ≤ l ≤ n− 1. For l = 0, Pex(D+N)(P − IKn)

0 =

Pex(D+N). Then, using Equation (18) we compute the terms in the first line of Pex(D+N). For

1 ≤ l ≤ n− 1, we have

Pex(D+N)(P − IKn)
l =



O1,1 B1,2 B1,3 . . . B1,n

O2,1 O2,2 B2,3 . . . B2,n

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . Bn−1,n

On,1 . . . . . . On,n−1 On,n


, (20)

where Bi,j = Oi,j for j − i < l, i, j = 1, ..., n, otherwise for i = 1 and 1 < j < n, B1,j =
j−1∑
s=1

P1,se
x(Ns+Ds)

∑
s<a1<a2<···<al−1<j

Ps,a1Pa1,a2 · · ·Pal−2,al−1
Pal−1,j with the convention that P1,1 =

Ik1 . Therefore, the cdf of the hypoexponential distribution is given by
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F (x) = 1−
n∑

k=1

k−1∑
l=0

(−1)k−1

(
n

k

)(
k − 1

l

) n∑
j=1

j−1∑
s=1

e−xλs

s−1∏
l=1

(
λl

λl − λs

)ks

×
∑

s<a1<···<al−1<j

(
λs

λs − λa1

)ks a1−1∏
m=s+1

(
λm

λm − λa1

)km a2−1∏
n=a1

(
λn

λn − λa2

)kn

· · ·
j−1∏

r=al−1

(
λr

λr − λaj

)kr ks−1∑
q=0

((λs − λa1)x)
q

q!
,

for x ≥ 0.

3 Conclusion

This paper proposes a new approach based on linear algebraic matrix analysis for the computation

of the cumulative distribution function of the sum of independent Erlang random variables. This is

a simpler alternative approach to the existing ones in the literature. However, direct computation

of the involved expressions may lead to numerical difficulties. As a future research, it would be

interesting to develop an efficient numerical method to avoid numerical round of errors.
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