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Abstract

We propose a matrix analysis approach to analytically provide the cumulative distribution
function of the sum of independent Erlang random variables. This reduces to the characteri-
zation of the exponential of the involved generator matrix. We propose a particular basis of
vectors in which we write the generator matrix. We find, in the new basis, a Jordan-Chevalley
decomposition allowing to simplify the calculation of the exponential of the generator matrix.

This is a simpler alternative approach to the existing ones in the literature.

Keywords: FErlang random variables, reliability, queueing systems, cumulative distribution

function, Jordan-Chevalley decomposition, hypoexponential distribution.

1 Introduction

Many situations in service and manufacturing service systems involve the computation of the sum
of independent exponential random variables. Examples include healthcare or production systems
with different stages in series, system reliability with exponentially distributed components life-
times, and wireless mobile systems with cooperative diversity schemes. This summation arises also
in the transient analysis of Markovian queueing systems, and in general, semi-Markov processes.
We consider the general case of a hypoexponential distribution defined as the sum of n inde-

pendent Erlang distributions, for n € N. An Erlang distribution is defined by two parameters,



a number of i.i.d. exponential stages and a rate per stage. Thus, the general hypoexponential
distribution is completely defined by the couples of parameters (\;, k;) for i = 1,...,n. Each couple
(N\i, ki) defines an Erlang distribution (\; € R, k; € N), and the rates A; for i = 1,...,n are all
distinct. We denote by K; = k1 + ko + ... + k; for i = 1,...,n and use the convention Kg = kg = 0.

The cumulative distribution function (cdf) of the hypoexponential distribution is then given by
F(z)=1-ae™1, (1)

for x > 0, where 1 is a column vector of size K,, with ones everywhere, ¢ is a line vector of size
K, and is given by a = (1,0,...,0), and e() denotes the exponential operator. The generator
square matrix M of size K, x K, is defined by the coeflicients m; ; for i, j € {1, ..., K, }. We have
m;; = —XA;and mj i1 =N, for K;_1+1 < j < K; and ¢ = 1,...,n. All remaining coefficients of

M are zero. We thus may write

—A1 AL 0o ... 0 0 0 0
0 —)\1 )\1 0 0 0 0
0
M- 0 0 0 - M 0 0 2)
0 0 0 =X X 0
0 =X

Scheuer (1988) provides a formula for F'(.) that involves high order derivatives of products of
multiple functions. The formula is however hard to compute numerically. Amari and Misra (1997)
propose a simplification of Scheuer (1988)’s formula using Laplace transforms and multi-function
generalization of the Lebnitz rule for higher order derivatives of products of two functions. For a
particular case with constraints on the values of the \;s, Van Khuong and Kong (2006) provide
the probability distribution function by inverting its Fourier transform. Using the Wilk’s integral
representation of the distribution of the product of independent beta random variables, Favaro and
Walker (2010) provide an alternative formula for F'(.). We also refer the reader for more details to
the review by Nadarajah (2008).

In this paper, we propose an alternative simple approach to analytically derive the cdf of F'(.). It



is based on a linear algebraic matrix analysis. The structure of the approach is as follows. We first
obtain some particular eigenvectors of the generator matrix M. These are next used to construct a
new basis of vectors. The new basis allows to find the Jordan-Chevalley decomposition of M into
a sum of two commutative linear operators, a diagonal one and a nilpotent one. The exponential
of the matrix M then simply follows by inverting the new basis matrix using the Cayley-Hamilton

theorem, which leads to the cdf of F(.).

2 The Result

Lemma 1 provides the eigenvalues of the matrix M, and one eigenvector associated to each eigen-

value.

Lemma 1 The eigenvalues of M are —\; fori=1,....n. An eigenvector of size K,, associated to

—\; 18 the column vector u;, where the coefficients of u;, denoted by u;; for 1 <1 < K, are given
by
u; ;=1 L I=Ki 141,

u; ;=0 > K141,

Ko+ 1<I<K;q,

i—(m+1) Ao s ki_j A Kp—l+1
II (A,ij_ﬂ/\_) (A T_”)\_) LKy 1 +1<I< K, and0<m<i-—1.
]:1 11— 1 m 1

£
I

Proof. Since M is a triangular matrix, its eigenvalues are its diagonal coefficients, i.e., —\; for

t =0,..,n. For 0 <4 =0,...,n, consider the column vector u; defined with its coefficients wu;

N Ki_1—1+1
(1 <1 < K,), where uj i, 41 = 1, ujy = 0 for I > K;_1 + 1, uy = </\i_11’_1)\i) for

i_(m""l) i ki,j A\ Km—Il+1
Ki 2+1<1[1<K; 1, and Ujp = H ()\. Z._,j)\) ()\ T)\> ,for K1 +1 <1 < Ky,
j=1 i—j 7 m 7
and 0 < m < i—1. We now define, for 0 <7 =0, ...,n, v; as v; = Mu; and we denote its coefficients

by v;, for 1 <1 < K. Consider 1 < j <n. For K;_1 +1 <1< K; and | # K, we have
Vi = —AjUig + AjUi g1, (3)

and v; g, = —MUK,. Since u;; = 0 and u; g, 41 = 1 for | > K; 1 + 1, we deduce from

Equation (3) that v;; = 0 for I > K; 1 +1 and v g, ,41 = —A;. For K; o +1 <[ < K;_; we



s Ki_1—141 .
have u;; = ( =l ) ,and for K, 1 +1 <1 < Ky and 0 <m < i —1 we have u;; =

Aim1— A
i—(m+1) Moy \Fima (o, ) EmelHl ) Aoy ) K
1L (/\Fj_/\i) (m) . Equation (3) therefore leads to v;; = —A\;i—1 ()\ifl_/\i> +
Ag \Fimi— D)+ Ay \ Kol _
Ni—1 (Aii—/\i) = -\ </\Z_7’1_)\i> , for K; 9+ 1 <1 < K;_ 1. We also obtain

vig=—-N ] </\_ 1_’_3,) <,\ T/\_> yfor K1 +1 <1< K, and 0 <m < i—1. This
j:1 i—j 7 m i
proves that u is an eigenvector associated to the eigenvalue —\;, for ¢ = 1,...,n, and finishes the

proof of the lemma. O

Let us denote by B the standard basis composed by the family of column vectors e, for 1 <[ <
K,,. The coefficients of ¢; (1 <1 < K,,) are all zero except the coefficient in line [ which is equal
to one. Consider now a new family of vectors denoted by B’ and composed by the vectors e for
1 <1l < K, where e’Ki_1Jr1 = u;, and €] = ¢ for | # K;_1 +1 and ¢ = 1,..n. In Theorem 1, we

prove that B’ is a basis.
Theorem 1 The family of vectors B’ is a basis.

Proof. The number of vectors in B’ is equal to the space dimension, K,,. It thus remains to prove
that the family of vectors B’ is linearly independent. The proof is done by contradiction. Suppose
that the family B’ is linearly dependent. Therefore, there exists some values a1, as,...,ak, € R,
non all zero, such that aje} + agely, + ---aKne’Kn = 0. We have €] = u; = ey, e/K1+1 = Uy =
baier +bagea + - Fbo i p1€K 115 0, € = Un = bnier Fbpoea bk, 11€K, 141,

where the coeflicients bs; (1 < s <t < K, _1+1), given by Lemma 1, are all strictly positive. Then
ar€} + agey + - ak, € (4)
= ay(1+by1+bs1+---bni)er +ag(1+bog +bzo+ -+ bno)
+ ot ag, 1 +100,K,_ 1 +1€Ky 141 T 0K, 42€K,_+2 + -+ aK, ek,
=0
Since the coeflicients by (1 < s <t < K,,_1 + 1) are all strictly positive and (e, e2, ..., ek, ) is the

Basis B, we should have a; = ag = ... = ag,, = 0, which is absurd. Thus B’ is a basis. O

Let us now proceed to a change of basis from B to B’. We want to write M in the new basis B,

which leads to a matrix denoted by M’. We denote by P the new basis matrix allowing to move



from B to basis B’. This means that P is given by the vectors of the old basis B but written in the

new basis B’. We have M = PM'P~!. We next give P and P’. We have

Ikl PLQ P1,3 .. Pl,n
0271 IkQ P273 .. P27n
Pnfl,n
On,l R e On,n—l Ikn
where P, j, for ¢,5 =1,--- ,n and 7 < j, is a matrix of size k; x k; with 0 everywhere except in the

first column. The coefficient of line k (1 < k < k;) of the first column of P ; is

jﬁ A ky A ki—k+1 (6)
AL —Aj Ai — Aj '

l=i+1

The matrix Ij,, for ¢« = 1,...,n, is the identity matrix of size k; x k;, and the matrix O, ;, for
i,7 = 1,--- ,n, of size k; X k; has zero coefficients everywhere. We now compute P~ using the
Cayley-Hamilton theorem (see for example Gourdon (1994)). Since (I, — P)" = Ok,,, we deduce

n

using the binomial theorem that Y- (7)(—1)*P* = Ok,,, where (}) = k'(nle)' forn > 0 and 0 <

k=0
n n n
k<n. Thus Ig, = = > (})(-1)*PF =P <— > (’;)(-1)’@“). The matrix — Y (})(—1)*P*!
k=1 = k=1
n
commutes with P. We therefore obtain P~ = —kzl (D) (=D)kPr=L,
In the basis B, the generator matrix is
Ei O O13 ... O1n
02,1 Es 0273 - Ogm
M/ — . . . . . , (7)
On—l,n
On,l ce R On,n—l E,
where E; (i =1,---,n) is a sub-matrix of size k; x k;. It is given by
- AN 0 ... 0 0
0 _)\i >\z I 0 0
E; = (8)
0 _>\i /\z
0 O O _)\z )\l
0 0 0 -\



Fori=1,--- ,n, E; may be written as F; = D; + N; with

-Xi 0 0 0 0 0 N O 0 0
0o =X\ 0 0 0 0 0 N 0 O
D — : e . : and N — Do ©
0 o - =X 0 0 0O 0 . 0 N
0 0 0 =X\ 0 0 Ai
0 0 0 0 -\ 0 0

Using the sub-matrices D; and N;, we define the matrices D and N as

Dy O12 O3 ... O1n N1 O12 O3 .. O1n
Os1 Dy Oz ...  Osn Os1 Ny Oz ...  Osn
D = : : ,and N = : ' : :
On—1n : On—1n
Ont .. oo Owmo Dy Oni ooi vio Opma  Na

(10)
Therefore M’ = D 4+ N. Since N™ax(ki ka2, kn) — Ok, K, , the matrix N is nilpotent. Note that D
is a diagonal matrix. Then, D commutes with any other matrix, in particular N. Therefore the
decomposition of M’ into M’ = N + D is the unique Jordan-Chevalley decomposition of M’ into a
summation of two commutative matrices, a nilpotent one and a diagonalisable one. Using the new
basis matrix P, we have M = PM'P~' = P(N + D)P~1, so, ¢*™ = Pe*(N+D) p=1 (see Gourdon
(1994)). Since N and D commute, we deduce that e*(N+P) = 2D x ¢#N  Because 2D is a diagonal

matrix we have

exDl 0172 01,3 e Ol,n
02,1 €xD2 02,3 e Og,n
e = , (11)
On—l,n
On71 R . Onynfl 6xD"
with
e~ 0 0
0 e . 0
exDi — ' ‘ , (12)
0 0 e~



= (@ny

for i = 1,---,n. Recall that eV is given by an infinite summation, e*¥ = Y T However,
i=0
ks X @y
since N is nilpotent (for ¢ = 1,--- ,n, we have N, = Oy, 1,), the evaluation of = is done
i=0
max(ki,k2, - kn)—1 NV
within a finite number of calculations. We have e*VV = ($j') . Then,
=0 '
Nf 0172 0173 Ol,n
0271 Ng 0273 02,n
N = : (13)
On—l,n
On,l On,n—l N?%
for j € N, where the matrix Nij is of size k; x k; (¢ =1,--- ,n). The Nij’s coefficients of line s and

column ¢ are all zero except if t — s = j and j = 0, - - - k; where the coefficients are all equal to )\Z

As a consequence

™M 015 O13 O1n
N
O21 "2 Os3 Oz
6:BN — ’
On—l,n
On,l On,n—l emNn
where
ox2 2 zki=2 \ki—2  gki=l yki—1
L ozhi 5 TN o= N
i xki73 k:i—?) I‘k’i72 k‘i—2
0 1 o\ = =21 Ni
e:):Ni _ ,
2242
0 0 1 T =N
0 0 1 T
0 O . 0 0 1
for i =1,--- ,n. Finally, we may write
e"N1erD1 O1,2 O1,3 O1n
021 e®N2emD2 O, 4 02,
eac(N—l—D) _ 7
On—l,n
Ny ,2Dn
On,l Onjnfl eTine®

(14)

(16)



where

2

—x); —TAi ). —zh; 222 —xh; xfi—2 yki—2 —xh; xkiTl k-1
e eT NN em TN .oeT A (kifz)!)‘il e TN (kifl)!)‘il
—x)\; —x)\; . .. —a); xkiT3 k=3 —a); xhiT2 yki—2
0 e TN e Mg\ .oeT TN (ki—3)!)‘i e TN (ki—2)!>‘i
exNie:cDi — ) (17)
. . p— . p— . 2
0 0 " e A e~ Nig )\ e TN LIN?
0 0 ... 0 e~ T e Thig ),
0 0 0 0 e~
fori=1,---,n.

In order to obtain the cdf of the hypoexponential distribution we only need to evaluate the

sum of the coefficients of the first line of the matrix e*™. Note that in the particular case of an

Erlang distribution (ky = k3 = -+ = k,, = 0) we have P = P~! = I},,. We then easily obtain the
well-known expression F(z) =1 — e“lk:}?:_l ()‘ff)k, for x > 0, by summing the coefficients of the
=0
first line of e*N1e?P1,
We have
e*N1+D1) Py 5er(N2+D2) - Py gee(NatDs) . Py e (NntDn)
Os1 #(Na4D2)  py en(NatDs) Py e (NntDn)
PerD+N) — : : . (18)
: Py e (N tDn)
On 1 e . Onn—1 e (Nn+Dn)
where
Pi,jez(NjJrDj) _
()" an(25)" - e ()
(25)" ()" T ()

fori,j=1,..n and ¢ < j.

We then have to evaluate Pet(P+N)p=1 = S~ (7)(—1)k=1per(P+N) pk=1 Note again that P
k=1

can be written as P = Ik, + P — Ik, . The matrices Ik, and P — Ik, commute, Ik, is diagonal



and P — Ik, is nilpotent. This implies

Pex(D-i—N)P—l — Z (Z) (_1)k—1P€w(D+N) (IKn 4 P — IKn)k_l
k=1
n k—
_ Z n ( 1)k71P I(D+N) S k—1 P I l
- :IC - e Z l ( - Kn) ’
k=1 =0

or equivalently

n k—1
Per(D+N) p-1 _ ZZ(_l)kfl <Z> <k ; 1) PerP+N) (P _ [ YL

k=11=0
We have (P — Ik,)? = Ig,,and for 1 <1 <n—1

O11 A1p A1z ... Aip
O21 Oz Azz ... Az y,
P-Te)=| o (19)
Ap—1m
Oni +vi wvi Ount O
where A; j = O; j for j—i < [,1,j5 = 1,...,n, otherwise 4; ; = > Pia Payas  Pay g0 1 FPay 1,5

i<ar<as<--<a;_1<j
The matrix P; o, Pa; a0 -+ Pay_9,a, 1 FPay_,,; 1s @ matrix of dimension k; x k; where all coefficients are

zero except the ones on the first column. The coefficient of line k (for 1 < k < k;) of the first
column is equal to

\; ki—k+1 aﬁl A Ko, aﬁl An kn ﬁ A, K
)\i - >\a1 )\m - )\al )\n - )\a2 )\T — )\aj )

m:z+1 n=ai r=aj_1

We are only interested in the sum of the coefficients of the first line of e**. We thus evaluate the
terms in the first line of Pe®P+N)(P — I ) for 0 <1< n—1. For | = 0, Pe*P+N)(P — [ )0 =
Pe*P+N) - Then, using Equation (18) we compute the terms in the first line of Pe*(P+N), For

1<l<n-—1, we have

O11 Bip Bz ... B
O21 Oz2 Basz ... Bs
PPN (P e Y= e : : (20)
anl,n
Opni .. .. Opp—1 Oppy
where B; ; = O;; for j —i < [, 4,5 = 1,...,n, otherwise for i = 1 and 1 < j < n, By; =
j—1
ZPLSex(NS*DS) > PsaPayas  Pay_9,a,,Pa,_,,; With the convention that P =
s=1 s<a;<ag<--<a;—1<j

Iy, . Therefore, the cdf of the hypoexponential distribution is given by



F(x)=1-

zn:sz(—l)k_l <Z> <I<: ] 1) zn:jz_ie—msjnll (}\l il)\s

>k8
k=11=0 j=1s=1

)\S ke a1—1 )\m km a2—1 )\n kn
Z <)‘s_)‘a1> H <)‘m_/\a1> H <)‘n_)‘a2>

s<a1<---<aj—1<j m=s+1 n=ai

1 (&)’“’“i‘l(us—xal)mq’

|
r=a;_1 q=0 T

for x > 0.

3 Conclusion

This paper proposes a new approach based on linear algebraic matrix analysis for the computation
of the cumulative distribution function of the sum of independent Erlang random variables. This is
a simpler alternative approach to the existing ones in the literature. However, direct computation
of the involved expressions may lead to numerical difficulties. As a future research, it would be

interesting to develop an efficient numerical method to avoid numerical round of errors.

Acknowledgements

This work was supported by Agence Nationale de la Recherche under the project ANR-JCJC-
SIMI3-2012-OPERA. We also want to express our gratitude to the anonymous reviewers and the

associate editor for their useful comments, that significantly improved this paper.

References

Amari, S. and Misra, R. (1997). Closed-form expressions for distribution of sum of exponential

random variables. IEEE Transactions on Reliability, 46:519-522.

Favaro, S. and Walker, S. (2010). On the distribution of sums of independent exponential random

variables via wilks’ integral representation. Acta applicandae mathematicae, 109(3):1035-1042.

10



Gourdon, X. (1994). Les maths en téte : Algébre. Ellipses, Paris.

Nadarajah, S. (2008). A review of results on sums of random variables. Acta Applicandae Mathe-

maticae, 103(2):131-140.

Scheuer, E. (1988). Reliability of an m-out of-n system when component failure induces higher

failure rates in survivors. IEEE Transactions on Reliability, 37(1):73-74.

Van Khuong, H. and Kong, H. (2006). General expression for pdf of a sum of independent expo-

nential random variables. IEEE Commaunications Letters, 10(3):159-161.

11



